Deepak Agarwal, Abhimanyu Singh

Dynamics 365 for
Finance and Operations
Development

COOKbhooK

Build extensive, powerful, and agile business solutions

LI Packt>

Dynamics 365 for Finance and
Operations Development
Cookbook

Fourth Edition

Build extensive, powerful, and agile business solutions

Deepak Agarwal
Abhimanyu Singh

BIRMINGHAM - MUMBAI

Dynamics 365 for Finance and Operations
Development Cookbook

Fourth Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2009
Second edition: May 2012
Third edition: April 2015

Fourth edition: August 2017

Production reference: 1100817

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-886-4

www.packtpub.com

http://www.packtpub.com

Authors
Deepak Agarwal
Abhimanyu Singh

Reviewer
Santosh Paruvella

Commissioning Editor
Aaron Lazer

Acquisition Editor
Denim Pinto

Content Development Editor
Lawrence Veigas

Technical Editor
Mehul Singh

Copy Editor
Safis Editing

Project Coordinator
Prajakta Naik

Proofreader
Safis Editing

Indexer
Francy Puthiry

Graphics
Abhinash Sahu

Production Coordinator
Nilesh Mohite

Credits

About the Authors

Deepak Agarwal is a Microsoft Certified Professional who has more than 6 years of
relevant experience. He has worked with different versions of Axapta, such as AX 2009, AX
2012, and Dynamics 365. He has had a wide range of development, consulting, and leading
roles, while always maintaining a significant role as a business application developer.
Although his strengths are rooted in X++ development, he is a highly regarded developer
and expert in the technical aspects of Dynamics AX development and customization. He
has also worked on base product development with the Microsoft team.

He was awarded the Most Valuable Professional (MVP) award from Microsoft for
Dynamics AX four times in a row, and he has held this title since 2013.

He shares his experience with Dynamics AX on his blog Axapta V/s Me.
Deepak has also worked on the following Packt books:

1. Microsoft Dynamics AX 2012 R3 Reporting Cookbook
2. Dynamics AX 2012 Reporting Cookbook
3. Microsoft Dynamics AX 2012 Programming: Getting Started

I would like to thank my wife for her support during this duration. Big thanks for her
understanding while I spent late hours working on this book. Thanks to my co-author,
Abhimanyu, and the Packt team for their support and efforts.

Abhimanyu Singh works as a Microsoft Dynamics 365 for Finance and Operations
consultant. Since the start of his career in 2012, he has worked in the development and
designing of business solutions for customers in supply chain management, banking, and
finance domain using Microsoft technologies. He has several certifications, including the
Microsoft Certified Dynamics Specialist certification.

I would like to thank my parents, sister, and brother-in-law for their support and
inspiration during the time spent on this book. Secondly, I wish to thank the co-author of
this book, and my friend, Deepak Agarwal--a very experienced Dynamics AX consultant.

About the Reviewer

Santosh Paruvella has 12 years of experience in Dynamics AX, and he has worked on
various versions of it, from 3.0 to 2012, and Dynamics 365 for Finance and Operations. He is
presently working as a Technical Architect and Lead for various implementation projects,
designing the solutions and leading the team towards successful implementations.

I have got the chance to review this Dynamics 365 for finance and Operations
Development Cookbook, and I am very thankful to the Packt team and the author for this
opportunity. This is a very good book for beginners to start with AX development.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.comand as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

. Mapt

https:/ / www. packtpub. com/ mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https:/ / www. amazon. com/ dp/ 1786468867.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786468867

This book is dedicated to my grandpa, the late Mr. M.R. Agarwal. You are always a blessing
indeed.

- Deepak Agarwal

Table of Contents

Preface 1
Chapter 1: Processing Data 8
Introduction 8
Creating a new project, package, and model 9
How to do it... 9
There's more... 13
Creating a new number sequence 14
How to do it... 15
How it works... 21
See also 21
Renaming the primary key 22
How to do it... 25
How it works... 28
Adding a document handling note 28
Getting ready 29
How to do it... 30
How it works... 32
Using a normal table as a temporary table 32
How to do it... 33
How it works... 34
Copying a record 34
How to do it... 35
How it works... 37
There's more... 38
Building a query object 39
How to do it... 40
How it works... 41
There's more... 42
Using the OR operator 43

See also 44
Using a macro in a SQL statement 44
How to do it... 45
How it works... 46

Executing a direct SQL statement 47

How to do it... 47

How it works... 50
There's more... 51
Enhancing the data consistency checks 53
Getting ready 53
How to do it... 55
How it works... 57
There's more... 58
Using the date effectiveness feature 58
How to do it... 59
How it works... 62
Chapter 2: Working with Forms 63
Introduction 63
Creating dialogs using the RunBase framework 64
How to do it... 65
How it works... 69
Handling the dialog event 70
How to do it... 71
How it works... 75
See also 76
Creating dialogs using the SysOperation framework 76
Getting ready 77
How to do it... 78
Building a dynamic form 86
How to do it... 87
How it works... 91
Adding a form splitter 93
How to do it... 94
How it works... 95
Creating a modal form 96
How to do it... 96
How it works... 98
There's more... 98
See also 98
Modifying multiple forms dynamically 98
How to do it... 99
How it works... 101
Storing the last form values 101

How to do it... 102

[]

How it works... 104
Using a tree control 105
How to do it... 106
How it works... 111
See also 112
Adding the View details link 112
How to do it... 113
How it works... 115
Selecting a form pattern 116
How to do it 116
Full list of form patterns 117
How to do it... 118
Creating a new form 121
Getting ready 121
How to do it... 121
How it works... 126
Chapter 3: Working with Data in Forms 127
Introduction 127
Using a number sequence handler 128
How to do it... 128
How it works... 131
See also 132
Creating a custom filter control 132
How to do it... 133
How it works... 137
See also 138
Creating a custom instant search filter 138
How to do it... 138
How it works... 140
See also 141
Building a selected/available list 141
How to do it... 142
How it works... 146
There's more... 147
Creating a wizard 151
How to do it... 152
How it works... 162
Processing multiple records 164
How to do it... 164

[]

How it works... 167
Coloring records 168
Getting ready 168
How to do it... 168
How it works... 169
See also 170
Adding an image to records 170
How to do it... 171
How it works... 172
There's more... 172
Displaying an image as part of a form 173

Saving a stored image as a file 175
Chapter 4: Building Lookups 179
Introduction 179
Creating an automatic lookup 180
How to do it... 180
How it works... 181
There's more... 181
Creating a lookup dynamically 183
How to do it... 184
How it works... 186
There's more... 187
Using a form to build a lookup 187
How to do it... 187
How it works... 191
See also 193
Building a tree lookup 193
How to do it... 193
How it works... 196
See also 197
Displaying a list of custom options 197
How to do it... 198
How it works... 200
There's more... 200
Displaying custom options in another way 200
How to do it... 201
How it works... 204
There's more... 204
Building a lookup based on the record description 207

[]

How to do it... 207
How it works... 209
There's more... 210
Building the browse for folder lookup 213
How to do it... 214
How it works... 218
There's more... 218
Creating a color picker lookup 219
How to do it... 220
How it works... 222
Chapter 5: Processing Business Tasks 223
Introduction 223
Using a segmented entry control 224
How to do it... 224
How it works... 227
There's more... 227
See also 229
Creating a general journal 230
How to do it... 230
How it works... 235
There's more 235
See also 238
Posting a general journal 238
How to do it... 238
How it works... 240
See also 240
Processing a project journal 241
How to do it... 241
How it works... 243
There's more... 244
Creating and posting a ledger voucher 245
How to do it... 245
How it works... 248
See also 250
Changing an automatic transaction text 250
Getting ready 251
How to do it... 251
How it works... 253
There's more... 253

[]

Creating a purchase order 254
How to do it... 255
How it works... 256
There's more... 257

Posting a purchase order 257
How to do it... 257
How it works... 259
There's more... 260

Creating a sales order 261
How to do it... 261
How it works... 262
There's more... 263

Posting a sales order 263
How to do it... 264
How it works... 265
There's more... 265

Creating an electronic payment format 266
How to do it... 266
How it works... 271

Chapter 6: Data Management 273

Introduction 273

Data entities 274
Getting ready 274
How to do it... 275
How it works... 280
There's more... 281

Building a data entity with multiple data sources 283
How to do it... 283
How it works... 289
There's more... 290

Data packages 292
Getting ready... 292
How to do it... 294
There's more... 299
See also 302

Data migration 302
Getting ready 303
How to do it... 305
How it works... 308

[]

Importing data 308
How to do it... 308
How it works... 314

Troubleshooting 314
Getting ready 314
How to do it... 315
How it works... 322
There's more... 326

Chapter 7: Integration with Microsoft Office 327

Introduction 327

Configuring and using the Excel Data Connector add-in 328
How to do it... 328
How it works... 332

Using Workbook Designer 333
How to do it... 333
How it works... 336

Export API 336
How to do it... 337
How it works... 339

Lookup in Excel - creating a custom lookup 340
How to do it... 340
How it works... 341

Document management 342
How to do it... 342
How it works... 344
There's more... 344

Chapter 8: Integration with Power Bl 346

Introduction 346

Configuring Power BI 347
How to do it... 347
How it works... 354
There's more... 355
See also 355

Consuming data in Excel 356
How to do it... 356
How it works... 361
See also 362

Integrating Excel with Power Bl 363

[]

How to do it... 363
How it works... 366
See also 366
Developing interactive dashboards 366
How to do it... 367
How it works... 374
Embedding Power Bl visuals 374
How to do it... 374
How it works... 376
Chapter 9: Integration with Services 377
Introduction 377
Authenticating a native client app 378
Getting ready 378
How to do it... 378
How it works... 386
There's more... 387
See also 387
Creating a custom service 388
Getting ready 388
How to do it... 388
How it works... 392
Consuming custom services in JSON 392
Getting ready 393
How to do it... 393
How it works... 396
There's more... 396
Consuming custom services in SOAP 397
Getting ready 397
How to do it... 398
How it works... 400
Consuming OData services 401
Getting ready 401
How to do it... 402
How it works... 405
There's more... 406
See also 406
Consuming external web services 406
Getting ready 406
How to do it... 406

[]

How it works... 412
There's more... 413
See also 414
Chapter 10: Improving Development Efficiency and Performance 415
Introduction 415
Using extensions 416
How to do it... 416
How it works... 419
Caching a display method 420
How to do it... 420
How it works... 422
There's more... 423
Calculating code execution time 424
How to do it... 424
How it works... 425
There's more... 426
Enhancing insert, update, and delete operations 427
How to do it... 427
How it works... 434
There's more... 435
Using delete_from 435

Using update_recordSet for faster updates 436
Writing efficient SQL statements 437
How to do it... 437
How it works... 439
There's more... 440
See also 441
Using event handler 441
How to do it... 442
How it works... 444
There's more... 444
Creating a Delegate method 445
Getting ready... 445
How to do it... 445
How it works... 447
There's more... 447
See also 447
Index 448

[]

Preface

As a Dynamics 365 for Finance and Operations developer, your responsibility is to deliver
all kinds of application customization, whether small adjustments or a bespoke modules.
Dynamics 365 for Finance and Operations is a highly customizable system and requires a
significant amount of knowledge and experience to deliver quality solutions. One goal can
be achieved in multiple ways, and there is always the question of which way is the best.

This book takes you through numerous recipes to help you with daily development tasks.

Each recipe contains detailed step-by-step instructions along with the application
screenshots and in-depth explanations. The recipes cover multiple Dynamics 365 for
Financial and Operations modules, so, at the same time, the book provides an overview of
the functional aspects of the system for developers.

What this book covers

Chapter 1, Processing Data, focuses on data manipulation. It explains how to build data
queries, check and modify existing data, read and write external files, and use data
effectively.

Chapter 2, Working with Forms, covers various aspects of building forms in Dynamics 365
for Finance and Operations. In this chapter, dialogs and their events are explained. Also,
various useful features, such as splitters, tree controls, and checklists, are explained.

Chapter 3, Working with Data in Forms, basically supplements chapter 2, Working with
Forms, and explains the data organization in forms. The examples in this chapter include
instructions for building filter controls on forms, processing multiple records, and working
with images and colors.

Chapter 4, Building Lookups, covers all kinds of lookups in the system. This chapter starts
with a simple, automatically generated lookup, continues with more advanced ones, and
finishes with standard Windows lookups, such as the file selection dialog and the color
picker.

Chapter 5, Processing Business Tasks, explains how to use the Dynamics 365 for Finance and
Operations business logic API. In this chapter, topics such as how to process journals,
purchase orders, and sales orders are discussed. Other features, such as posting ledger
vouchers, modifying transaction texts, and creating electronic payment formats, are
included as well.

Preface

Chapter 6, Data Management, explains the data management and data entity concepts, how
to build a data entity, data packages, and import and export in Dynamics 365 for Financial
and Operations.

Chapter 7, Integration with Microsoft Office, explains how to configure and use the Excel
Data Connector add-in, and design Excel workbooks with the data feed from Dynamics 365
from Operations using OData. It also covers how to use the export API and document
management.

Chapter 8, Integration with Power B, explains the configuration of Power Bl and its
integration with Dynamics 365 for Financial and Operations to develop interactive
dashboards and embed them in Dynamics 365 for Financial and Operations workspaces.

Chapter 9, Integration with Services, explains how to use services in Dynamics 365 for
Financial and Operations. This chapter covers how to create services, authentication, SOAP
applications, JSON applications, and OData services. It also demonstrates how to consume
external services.

Chapter 10, Improving Development Efficiency and Performance, presents a few ideas on how
to make daily development tasks easier. It discusses how system performance can be
improved by following several simple rules. This chapter explains how to calculate code
execution time, how to write efficient SQL statements, and how to properly cache display
methods.

Exceptions and considerations

The code in this book follows the best practice guidelines provided by Microsoft, but there
are some exceptions:

¢ No text labels were used to make the code clear

e No three-letter code was used in front of each new AOT object

¢ No configuration or security keys were used

e Object properties that are not relevant to the topic being discussed are not set

Also, here are some considerations that you need to keep in mind when reading this book:

¢ Each recipe only demonstrates the principle and is not a complete solution

e The data in your environment might not match the data used in the recipes, so
the code might have to be adjusted appropriately

e For each recipe, the assumption is that no other modifications are present in the
system, unless it is explicitly specified

[2]

Preface

e The code might not have all the possible validations that are not relevant to the
principle being explained

e The code might have more variables than required in order to ensure that it is
clear for all audiences

e Sometimes, unnecessary code wrapping is used to make sure the code fits into
the page width of this book and is easily readable

What you need for this book

All the coding examples were performed in a Microsoft Azure-hosted Microsoft Dynamics
365 for Financial and Operations environment. The following list of software from the
virtual image was used in this book:

e Microsoft Dynamics 365 for Financial and Operations (Update 6)
e Microsoft Visual studio 2015

e Microsoft Windows Server 2015 Enterprise

o Microsoft SQL Server 2016

e Microsoft Power BI

¢ Microsoft Office Excel 2015

¢ Microsoft Office Word 2015

e Microsoft Internet Explorer

e Windows Notepad

Although all the recipes have been tested on the previously-mentioned software, they may
work on older or newer software versions with minor code adjustments. As Microsoft is
continuously evolving on Dynamics 365 for Financial and Operations, we might see some
differences while using the same code in older or newer updates of application. Stick to the
concept and customize or extend the application.

Who this book is for

If you are a Dynamics AX developer primarily focused on delivering time-proven
applications, then this book is for you. This book is also ideal for people who want to raise
their programming skills above the beginner level, and, at the same time, learn the
functional aspects of Dynamics 365 for Financial and Operations. Some X++ coding
experience is expected.

[3]

Preface

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "Then, to
override the data source's write () method."

[4]

Preface

A block of code is set as follows:

[FormDataSourceEventHandler (formDataSourceStr (CustGroup,
CustGroup), FormDataSourceEventType::Written)]

public void CustGroup_OnWritten (FormDataSource sender,
FormDataSourceEventArgs e)

{

this.numberSegFormHandler () . formMethodDataSourceWrite () ;

}

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button
moves you to the next screen."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

[5]

http://www.packtpub.com/authors

Preface

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk N

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip [/ PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/ Dynamics- 365- for- Finance- and- Operations- Development-—

Cookbook— Fourth- Edition. We also have other code bundles from our rich catalog of
books and videos available at https:/ / github. com/ PacktPublishing/ .Check them
out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

[6]

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Dynamics-365-for-Finance-and-Operations-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Dynamics-365-for-Finance-and-Operations-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Dynamics-365-for-Finance-and-Operations-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata

Preface

To view the previously submitted errata, go to
https://www.packtpub.com/books/content /support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[7]

https://www.packtpub.com/books/content/support

Processing Data

In this chapter, we will cover the following recipes:

¢ Creating a new project, package, and model
¢ Creating a new number sequence

¢ Renaming the primary key

¢ Adding a document handling note

¢ Using a normal table as a temporary table
¢ Copying a record

e Building a query object

¢ Using a macro in a SQL statement

¢ Executing a direct SQL statement

¢ Enhancing the data consistency checks

¢ Using the date effectiveness feature

Introduction

This chapter focuses on data manipulation exercises in all new Dynamics 365 for Finance
and Operations. These exercises are very useful when doing data migration, system
integration, custom reporting, and so on. Here, we will discuss how to work with query
objects from the X++/C# code. We will also discuss how to reuse macros in X++ SQL
statements and how to execute SQL statements directly to the database. This chapter will
explain how to rename primary keys, how to merge and copy records, how to add
document handling notes to selected records, and how to create and read XML and comma-
separated files. The chapter ends with a recipe about the date effectiveness feature.

Processing Data

Creating a new project, package, and model

Elements in Dynamics 365 for Finance and Operations represent every individual element
of AOT such as class, table, form, and so on. Elements in Dynamics 365 for Finance and
Operations are stored on disk as XML files; these files contain the metadata and source code
for the element. The XML files are the unit of Source Control.

Projects works the same as AX2012, but in D365 an element can be customized only once
they are added to a specific Visual Studio project. The project may only belong to one
model.

A Dynamics 365 for Finance and Operations model is a group of elements. Standard
elements are part of a standard model; you can add them into your model and do
customization. A model is a design-time concept. An example of models: warehouse
management model, a project accounting model, and more. Models can have one or more
projects. Models may only belong to one package.

A Dynamics 365 for Finance and Operations package is a deployment and compilation
unit of one or more models. It includes model metadata, binaries, cubes, and other
associated resources. One or more D365 packages can be packaged into a deployment
package, which is the vehicle used for deployment on UAT and production environments.
Packages are packaged into a deployable package file for deployment to Sandbox or
production environments. A package can have one or more models. Packages can have
references to other packages, just like .NET assemblies can reference each other.

How to do it...

To create a new project, follow these steps:

Open Visual Studio as admin.

On the File menu, point to New, and then click Project.

In the list of template types, expand the Installed node.
Expand the Templates node.

Select the Microsoft Dynamics 365 for Operations category.
Select the D365 Project template.

Enter the name and location for the new project.

NSOk ®Dh =

[9]

Processing Data

8. Select Create directory for solution if you want to create a new solution for this
project, uncheck if you want to add in your current solution.

New Project |L-

b Recent

MET Framework 4.5.2 | ~| Sort by: Default - £ = Search Installed Templates (Ctrl+E) P~
4 |nstalled ek . i i
gpl Best Practice Rules Dynamics 365 for Operatio Type: Dynamics 365 for Operations
a
4 Templates Dynamics 365 for Operations Project
X
b Visual C2 | Developer Tools Addin Dynamics 363 for Operatio
I Visual Basic X+ X X i i
I Operations Project Dynarmics 365 for Operatio
Visual F#
b Visual C++
SQL Server
Python
Dynamics 365 for Operations
I JavaScript
I TypeScript
Game

Build Accelerator

-

Other Project Types

w
4 3
b Online Click here to ge online and find templates.
Mame: ‘ValidateDatET\mERe(eipe‘ |
Location: I:\Book\Chapter 01\ <
Solution name: ValidateDateTimeReceipe

Create directory for solution
[] Add to Source Control

To create a new model, follow these steps:

1. Open Visual Studio as admin.

2. On the Dynamics 365 menu, point to Model management and select Create
model.

[10]

Processing Data

3. Give a model, publisher name, and other values:

Steps

Select package
Select referenced packages

Summary

Add parameters

Model name:
Maodel publisher:
Layer:

Yersion:

Model description:

Maodel display name:

[11]

PacktPub

Deepak agarwal, Abhirmanyu singh

USr |-

1.0.0.0

This model will contain code for Dynamics
365 for Operations customization,

PacktPub

Processing Data

4. Now here you can create a new package or select any existing package. We could
create a new package and select the required package as referenced packages:

Create model .

Steps Select package

(@ Create new package

Create a model that builds into its own assembly and is deployed

as a separate package. Choose this option to extend the
application.

) Select existing package

Create a model that is part of an existing package. Choose this
option if your model requires customizations of an existing
package, including over-layering of source code and metadata.

Back | | Mext | | Cancel

[12]

Processing Data

5. Double-check the summary with details. Select Create new project if you want to
create a new project in this model once created. You can mark this model to all
your new projects by selecting options:

Create model .

Steps Summary

Marme: PacktPub

Display Mame: PacktPub

Publisher: Deepak agarwal, Abhirmanyu singh

Layer: usr

Version: 1.0.0.0

Description: This model will contain code for Dynamics 3

Referenced packages: ApplicationPlatform, ApplicationFoundation

{ 1 >

Create new project
praoj

Make this my default model for new projects

There's more...

As you saw, there was one more step while creating a model, Select referenced packages.
When you create your own package you can select from an existing package to add them as
references in your new package. You may need to add some standard package reference if
you want to add them into your customization.

[13]

Processing Data

Here are the steps to create a new package:

—_

Open Visual Studio as admin.

N

On the Dynamics 365 menu, point to Model management and select Create
model.

Give a model, publisher name, and other values.

On the next step select Create new package

Give a name to your package.

Next select the existing package as a reference to this new package.
Click on Finish.

NSOk

So now you have your own model with a new package.

Creating a new number sequence

Number sequences in Dynamics 365 for Finance and Operations are used to generate
specifically formatted numbers for record identification. These number sequences can be
anything from voucher numbers or transaction identification numbers to customer or
vendor accounts.

When developing custom functionality, often one of the tasks is to add a new number
sequence to the system in order to support newly created tables. Adding a number
sequence to the system is a two-step process. First, we create the number sequence itself;
second, we start using it in some particular form or from the code.

D365 contains a list of NumberSegApplicationModule derivative classes, which hold the
number sequence's setup data for the specific module. These classes are read by the number
sequence wizard, which detects existing number sequences and proposes to create the
missing ones or newly added ones. The wizard is normally run as a part of the application
initialization. It can also be rerun any time later when expanding the D365 functionality
used, where a setup of additional number sequences is required. The wizard also has to be
rerun if new custom number sequences are added to the system.

[14]

Processing Data

In this recipe, we will do the first step, that is, add a new number sequence to the system. In
a standard application, the customer group number is not driven by any number sequence,
so we will enhance this by creating it. The second step is explained later in the Using a
number sequence handler recipe in Chapter 3, Working with Data in Forms.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Create a new NumberSegModuleCustomer_packt class in the D365 Project that
extends the NumberSegModuleCustomer class in the Application and add the
following code snippet at the bottom of the 1oadModule_Extension () method:

class NumberSegModuleCustomer_packt extends
NumberSegModuleCustomer

public void loadModule_Extension ()

{
NumberSegDatatype datatype = NumberSegDatatype::construct ();

datatype.parmDatatypelId (extendedTypeNum (CustGrouplId));
datatype.parmReferenceHelp ("Customer group ID");
datatype.parmWizardIsContinuous (false) ;
datatype.parmWizardIsManual (NoYes: :No) ;
datatype.parmWizardIsChangeDownAllowed (NoYes: :Yes) ;
datatype.parmWizardIsChangeUpAllowed (NoYes: :Yes);
datatype.parmWizardHighest (999);
datatype.parmSortField (20) ;

datatype.addParameterType (

NumberSegParameterType: :DataArea, true, false);

this.create (datatype);

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.comn. If you
purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed
directly to you.

[15]

http://www.packtpub.com
http://www.packtpub.com/support

Processing Data

2. Create a new runnable class (Job) with the following lines of code, build the
solution and run it:

class loadNumSeqgCustPackt
{
/// <summary>
/// Runs the class with the specified arguments.
/// </summary>
/// <param name = "_args">The specified arguments.</param>
public static void Main (Args args)
{
//define the class variable
NumberSegModuleCustomer_packt nymberSegMod = new
NumberSegModuleCustomer_packt () ;

//load the number sequences
nymberSegMod. loadModule_Extension () ;

3. Run the number sequence wizard by clicking on the Generate button under
Number sequence by going to Organization administration | Common |
Number sequence and then click on the Next button, as shown in the following

screenshot:
NUMBER SEQUENCE JReldileliM
MEW MAINTAIN ADMINISTRATION
Number sequence Edit Status list
Generate Manual cleanup
History
NUMEER SEQUEMNCES
Area Reference
‘ Filter ‘ ‘ ‘ ‘
MNumber seq... Name Smallest Largest Mext Format
ABroClaim Approved Broker Claim 1 999999 1 APBRC######
Acco_1 Acco_1 1 999999 1 #EEEEE
Acco_10 Acco_10 30000000 399999399 30000000 FIV-###a#sas
Acco_100 Acco_100 1 999999 1 #EEEEE

[16]

Processing Data

4. Click on Details to view more information. Delete everything apart from the
rows where Area is Accounts receivable and Reference is Customer group. Note
the number sequence codes and click on the Next button, as shown here:

Setup

CUSTOMIR GROUP B0

Accounts recenable Custemer group Moo 14522 1 959 BRME.wee
Acoounts recenvalble Customer group Ao 14523 1 999 CNMF-sae
Accounis receivable Customer group Acco_14524 1 959 DAT-###
Acoounts recenvable Customer group Acco_14525 i 959 DEMF.#s#
Aooounts recenable Customer group Acco_ 14526 1 959 FRRT-#ae
Accounts mcenvable Customer group Acco 14527 1 999 FRS1.##0
Accounts necenvable Customer group Acco 14528 1 999 GESI-ses
Acoounts recenvalble Customer group Acco_ 14529 1 999 GLOO-#88
Acoounts recervable Customer group Acco_14530 1 459 GLMF-###

Camcel

5. On the last page, click on the Finish button to complete the setup, as shown in the

following screenshot:

Completed

hrea

Meumber of

Accounts receivable 24

Finish

[17]

Processing Data

6. The newly created number sequences now can be found in the Number sequence
form, as shown in the following screenshot:

DEECH NUMBER SEQUENCE [elgileliiy

MEW MAINTAIN ADMINISTRATION

Number sequence Edit Status list

Generate Manual cleanup

History
MNUMBER SEQUENCES
Area Reference Company
Filter ‘ ‘Accounts receivable ‘ ‘ Customer group ‘

Number seq... MName Smallest Largest Next Format
Acco_14522 Acco_14522 1 999 1 BRMF-###
Acco_14523 Acco_14523 1 999 1 CNMF-###
Acco_14524 Acco_14524 1 999 1 DAT-###
Acco_14525 Acco_14525 1 999 1 DEMF-##&
Acco_14526 Acco_14526 1 999 1 FRRT-###
Acco_14527 Acco_14527 1 999 1 FRSI-###
Acco_14528 Acco_14528 1 999 1 GBSI-###
Acco_14529 Acco_14529 1 999 1 GLCO-###
Acco_14530 Acco_14530 1 999 1 GLMF-###

[18]

Processing Data

7. Navigate to Organization administration | Number sequences | Segment
configuration and notice the new Customer group reference under the Accounts
receivable area:

OPTIONS

Segment configuration

You cannot change a number sequence configuration that is currently in use. Before you change this configuration, you must delete any number sequences that use it.

Area Reference Area
T

Accounts payable A | Accounts receivable

Collection letter
Accounts receivable . Reference
Collection letter voucher

Address baok Customer group
Censclidation ID
Advance holders 3 Countries/regions
Corrective facture

Alerts
Corrective free text credit note

Bank .) SEGMENTS
Corrective free text credit note vouche

Basic Company

Corrective free text invoice
Yes

Bill of materials
Corrective free text invoice voucher
Budget
Currency payment order
Costs absorption
Customer account
Deferrals
Customer group
Document management
Direct debit mandate ID
elnvoice
Endarsed bill of exchange voucher
Fashion medule
Entry certificate

8. Navigate to Accounts receivable | Setup | Accounts receivable parameters and
select the Number sequences tab. Here, you should see the new number
sequence code:

[19]

Processing Data

Credit rating 2

Prices

Electronsc documants

Inventory dimensions

Rebate program

Margin alerts

Warehouse management

Accounts receivable parameters

Set up number sequences for receivables documents
Rebate ID Sale_18 Biocked from production -~
Direct deiit mandate |0 Arco_15%0 Select the number sequen
associate with the direct d
Fem list Sale_696 Unigue key for creating ite
Entry certificate Acco 1610 Select 3 number sequence
used fior the entry certifica
Gift card inveice Aeen_1630 This is 3 unique sequence
nurber sat up to be used
Gt card voucher Acen_1650 Voucher number assgned
free text invoice created a:
Rebate agreement ID Sale 824 Select the number sequen
associate with the rebate
Custamer group Aren_14524 Custarner group 1D =
£ >

9. The last thing to be done is to create a helper method for this number sequence.
Create a new extension class CustParameters_Extension for the
CustParameters table and add it to the Dynamics 365 Project and then create
the following method and build the solution:

[ExtensionOf (tableStr (CustParameters))]

final

{
///
///
///
///
///
///

class CustParameters_Extension
<summary>
Gets the number reference customer group id.
</summary>
<returns>
An instance of the <c>NumberSequenceReference</c> class.

</returns>

client server static NumberSequenceReference
numRefCustGroupId ()

{

NumberSequenceReference NumberSegReference;
NumberSegReference = NumberSeqReference::findReference
(extendedTypeNum (CustGroupId)) ;

return NumberSegReference;

[20]

Processing Data

How it works...

We start the recipe by adding a number sequence initialization code into the
NumberSegModuleCustomer_packt class. As understood from its name, the number
sequence initialization code holds the initialization of the number sequences that belong to
the Accounts receivable module.

The code in the 1oadModule_Extension () method defines the default number sequence
settings to be used in the wizard, such as the data type, description, and highest possible
number. Additional options such as the starting sequence number, number format, and
others can also be added here. All the mentioned options can be changed while running the
wizard. The addParameterType () method is used to define the number sequence scope.
In the example, we created a separate sequence for each Legal entity.

Before we start the wizard, we initialize number sequence references. This should be done

as a part of the Dynamics 365 for Finance and Operations initialization checklist, but in this
example, we execute it manually by calling the 1oadModule_Extension () method of the
NumberSegApplicationModule_packt class.

Next, we execute the wizard that will create the number sequences for us. We skip the
welcome page and in the second step of the wizard, the Details button can be used to
display more options. The options can also be changed later in the Number sequences form
before or even after the number sequence is actually used. The last page shows an overview
of what will be created. Once completed, the wizard creates new records in the Number
sequences form for each company.

The newly created number sequence reference appears in the Segment configuration form.
Here, we can see that the Data area checkbox is checked, which means that we will have
separate number lists for each company. The number sequence setup can be normally
located in the module parameter forms.

See also

e The Using a number sequence handler recipe in Chapter 3, Working with Data in
Forms

[21]

Processing Data

Renaming the primary key

Most of you who are familiar with the Dynamics 365 for Finance and Operations

application, have probably used the standard Rename function. This function allows you to
rename the primary key of almost any record. With this function, you can fix records that

were saved or created by mistake. This function ensures data consistency, that is, all the

related records are renamed as well. It can be accessed from the Record information form

(shown in the following screenshot), which can be opened by selecting Record info from

the right-click menu on any record:

Edit New Delete VENDOR PROCUREMENT

PERSONALIZE PAGE OPTIONS

Always open for editing Security diagnostics Record info
Personalize this form Advanced Filter/Sort Change view

Add to workspace

Click the edit button to make changes.

ALL VENDORS

‘ Filter
Vendor account MName
1001 A. Datum Corporation
1002 Fabrikam

INVOICE ~ GENERAL

SHARE

Get a link

Vendor hold

Phone

111-555-0028

111-555-0031

Exten|

[22]

Processing Data

A new form will open as follows:

Record information

The following actions are available

VENDORS

Yendor account

1001

Rename the unique record key. This action is time consuming
because all references will be updated too.

Rename
Display information about all the fields in this record.
Show all fields Database Log

Create insert script for regenerating the record. The script lines
are copied to the Clipboard.

Script
Use this record as a template when creating new records,

Company accounts template

User template

[23]

Processing Data

Click on the Rename button to rename the Vendor Account field value.

Microsoft Dynamics AX

Parameters

Enter a new value for 1001. Vendor account

0K Cancel

When it comes to mass renaming, this function might be very time-consuming as you need
to run it on every record. An alternative way of doing this is to create a job that
automatically runs through all the required records and calls this function automatically.

[24]

Processing Data

This recipe will explain how the record's primary key can be renamed through the code. As
an example, we will create a job that renames a vendor account.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Navigate to Accounts payable | Vendors | All vendors and find the account that
has to be renamed, as shown in the following screenshot:

Edit New Delete pWaVIMleR PROCUREMENT INVOICE GEMERAL
MAINTAIN COPY SET UP
On hold Add vendor to another legal entity Contacts Summary update
Bank accounts Certifications

Vendor state tax IDs

Click the edit button to make changes.

ALL VENDORS

| Filter
Vendor account MName Vendor hold
1001 A, Datum Corporation No

. 1002 Fabrikam No
1003 Litware No
1004 Morthwind Traders No
1005 Proseware No
1006 Southridge Video No
1007 The Phone Company No
1008 Wide World Importers No

CPTIONS

Purchase orders with retention

Product filters

Phone

111-555-0028
111-555-0031
222-555-0032
333-555-0033
111-555-0034
222-555-0035
222-555-0038

111-555-0037

TRANSACTIONS
Transactions
Invoices

Balance

Extensio

TAX

Up
Ver|

2. Click on Transactions in the Action pane to check the existing transactions, as

shown in the following screenshot:

[25]

Processing Data

T Settlement Paid ent O = A 059 Inquiry

Click the edit button to make changes.

1002 : FABRICAM
Vendor transactions

D Show open only
GENERAL FPAYMENT FROMIZSORY NOTE SETTLEMENT REMITTANCE HISTORY 1099 FINANCIAL DIMENSIONS

11/30/2015 2001123 736919 000 uUsD 7.369.19
140000704 11/30/2015 2001123 7.369.19 000 usD =7.369.19
. APPMD00TTE h1/30/2015 14,464.57 0,00 UsD 14.464.57
PIV-110000878 11/30/2015 2001189 1224582 000 usD -12,245.82
FIV-110000886 11/30/2015 2001157 4.028.31 -4028.31 UsD -4.02831
PIV-110000696 11/30/2015 2001207 B.459.02 -B459.02 UsD -8.459.02
140001062 12/7/2015 2001152 534013 0.00 usD 5.340.13
140001062 12/7/2015 2001152 5.340.13 000 UsD -5,340.13
140001063 12772015 2001189 12.245.82 000 usp 1224582
140001063 127205 2001189 12.245.82 000 usD -12.245.82

-4,08

3. Create a new project, create a runnable class named VendAccountRename, and
enter the following code snippet. Use the previously selected account:

class VendAccountRename
{
/// <summary>
/// Runs the class with the specified arguments.
/// </summary>
/// <param name = "_args">The specified arguments.</param>
public static void main (Args _args)

VendTable vendTable;
ttsBegin;

select firstOnly vendTable
where vendTable.AccountNum == '1002"';

if (vendTable)

{
vendTable.AccountNum = 'US-1002"';
vendTable.renamePrimaryKey () ;

ttsCommit;

[26]

Processing Data

4. Select class VendAccountRename and right-click and then select Set as startup
object. Execute the class by clicking Start in Visual Studio and check whether the
renaming was successful, by navigating to Accounts payable | Vendors | All
vendors again and finding the new account. The new account should have
retained all its transactions and other related records, as shown in the following
screenshot:

MNew Delete PROCUREMENT INVIOICE GENERAL OPTIONS
MAINTAIN coPyY SETUP TRANSACTIONS TAX INFORMATION RELATED INFORMATION
On hold Add vendor to anather legal entity Contacts Summary update Purchase arders with retention Transactions Update 1099 Vendaor search
Bank accounts Certifications Product filters Imvoices Vendor settlement for 10955
Vendor state tax 1Ds Balange
<

Click the edit button to make changes.

Us-1002

o Bcsount Naeme Vendor hold Phone Extension

. Us-1002 Fabrikam Nol 111-555-0031 10

5. Click on Transactions in the Action pane in order to see whether the existing
transactions are still in place, as shown in the following screenshot:

[27]

Processing Data

Edit Woucher Settlement Paid by checks Onginal document Open details Wendor 1099 transactions Inquiry
Chick the edit button to make changes.

US-1002 : FABRIKAM

Vendor transactions

D Show open only

GEMNERAL PAYMENT PROMISSORY NOTE SETTLEMENT REMITTANCE HISTORY 1099 FINANCIAL DIMENSIONS
e

11/30/2015 2001123 7.369.19 0.00 UsSD 7.369.19
11/30/2015 2001123 7.369.19 0.00 UsSD -7.369.19

|11"’30f'2015] | 14,464.57 0.00 UsSD 14.464.5T7
113002015 2001189 12.245.82 0.00 UsSD -12.245.82
11/30/2015 2001197 402631 -4028.31 USD -4,028.31
1/30/2015 2001207 8.459.02 -8459.02 USD -8.459.02
120772015 2001152 534013 000 UsD 534013
12/7/2015 2001152 534013 0.00 UsD -5.340.13
12/7/2015 2001189 12,245.82 000 UsD 12.245.82
12/7/2015 2001189 12.245.82 000 UsD -12.245.82

A% e 17 EoE AE Ann 1iem sTeeE ac

How it works...

In this recipe, we first select the desired vendor record and set its account number to the
new value. Note that only the fields belonging to the table's primary key can be renamed in
this way.

Then, we call the table's renamePrimaryKey () method, which does the actual renaming.
The method finds all the related records for the selected vendor account and updates them
with the new value. The operation might take a while, depending on the volume of data, as
the system has to update multiple records located in multiple tables.

Adding a document handling note

Document handling in Dynamics 365 for Finance and Operations is a feature that allows
you to add notes, links, documents, images, files, and other related information to almost
any record in the system. For example, we can track all the correspondence sent out to our
customers by attaching the documents to their records in Dynamics 365 for Finance and
Operations. Document handling on most of the forms can be accessed either from the
Action pane by clicking on the Attachments button and selecting Document handling from
the Command menu under File or selecting the Document handling icon from the status
bar.

[28]

Processing Data

Document handling has a number of configuration parameters that you can find by
navigating to Organization administration | Setup | Document management. Please refer
to Dynamics 365 for Operations Manuals to find out more.

Dynamics 365 for Finance and Operations also allows you to add document handling notes
from the code. This can come in handy when you need to automate the document handling
process. In this recipe, we will demonstrate this by adding a note to a vendor account.

Getting ready

Before you start, ensure that document handling is enabled on the user interface. Open
Document management parameters by navigating to Organization administration | Setup
| Document management and make sure that Use Active document tables is not marked,
as shown in the following screenshot:

Dynamics AX Organization administration > Document management > Document management parameters Search for a page ,O D

= [HSave OPTIONS L2

Document management parameters

General Set up document handling

Use Active document tables Maximum file size in megabytes Office Web Apps Server
MNumber sequences No 50 |h‘tlp5:f‘jonenote.of‘ﬁceapps.live.co\ O
File types

SharePoint

Then, open the Document types form from the same location and pick or create a new
document type with its Group set to Note, as shown in the following screenshot. In our
demonstration, we will use Note.

[29]

Processing Data

Click the edit button to make changes.

£ Filter | Document types
. Type Name

File —

General
Image Class Category SharePoint Address

Simple note MNone |‘
Note Group Location DOCUMENT REMOVAL OPTIONS

Note Database Remove
Document only

URL

Ask for confirmation

No

How to do it...

Carry out the following steps in order to complete this recipe:

1. Navigate to Accounts payable | Vendors | All vendors and locate any vendor
account to be updated, as shown in the following screenshot:

ALL VENDORS
L Filter
v Vendor account T Name Vendor hold Phone
1001 A. Datum Corporation Mo 111-555-0028
1003 Litware Mo 222-555-0032
1004 MNorthwind Traders Mo 333-555-0033
1005 Proseware ‘ Nol 111-555-0034
1006 Southridge Video Mo 222-555-0035
1007 The Phone Company Mo 222-555-0038
1008 Wide World Importers Mo 111-555-0037

4000 O e B " Bl

[30]

Processing Data

2. Create a Dynamics 365 for Operations Project, create a new runnable class named
VendAccountDocument, and enter the following code snippet. Use the
previously selected vendor account and document type:

class VendAccountDocument
{
static void main (Args _args)
{
VendTable vendTable;
DocuType docuType;
DocuRef docuRef;

vendTable = VendTable::find('1005");
docuType = DocuType::find('Note');

if (!docuType ||
docuType.TypeGroup != DocuTypeGroup: :Note)

throw error ("Invalid document type");

docuRef.RefCompanyId = vendTable.dataAreald;

docuRef.RefTableId = vendTable.TableId;
docuRef.RefRecId = vendTable.RecId;
docuRef.TypeId = docuType.Typeld;
docuRef .Name = 'Automatic note';
docuRef .Notes = 'Added from X++';

docuRef.insert () ;

info ("Document note has been added successfully");

}

3. Run the class to create the note.

4. Go back to the vendor list and click on the Attachments button in the form's
Action pane or select Document handling from the Command menu under File
to view the note added by our code, as shown in the following screenshot:

[31]

Processing Data

& Edit | | New ™ il Delete | 7 Ope 3 Options O References 57 Created by ™ OPTIONS P

Click the edit button to make changes.

£ Fitter | Attachments for Vendor account: 1005, Proseware
i Description Type Attached
':l:tomatlc Mgz Automatic note MNote No
General
DETAILS CREATE
Notes Created by
Added from X++ Admin

Created date and time

9/19/2016 03:51:22 PM

Restriction

Internal

Attachment

How it works...

All the document handling notes are stored in the DocuRef£ table, where three fields,
RefCompanyId, RefTableId, and RefRecId, are used to identify the parent record. In this
recipe, we set these fields to the vendor company ID, vendor table ID, and vendor account
record ID, respectively. Then, we set the type, name, and description and inserted the
document handling record. Notice that we have validated the document type before using
it. In this way, we added a note to the record.

Using a normal table as a temporary table

Standard Dynamics 365 for Finance and Operations contains numerous temporary tables
that are used by the application and can be used in custom modifications too. Although
new temporary tables can also be easily created using the Dynamics 365 for Operations
Project, sometimes it is not effective. One of the cases where it is not effective can be when
the temporary table is similar to an existing one or exactly the same. The goal of this recipe
is to demonstrate an approach for using standard non temporary tables in order to hold
temporary data.

As an example, we will use the vendor table to insert and display a couple of temporary
records without affecting the actual data.

[32]

Processing Data

How to do it...

Carry out the following steps in order to complete this recipe:

1. In the Dynamics 365 Project, create a new class named VendTableTmp with the
following code snippet:

class VendTableTemp
{

public static void main (Args _args)

{
VendTable vendTable;

vendTable.setTmp () ;

vendTable.AccountNum = '1000"';
vendTable.Blocked = CustVendorBlocked: :Noj;
vendTable.Party =1;
vendTable.doInsert () ;

vendTable.clear ();

vendTable.AccountNum = '1002"';
vendTable.Blocked = CustVendorBlocked::All;
vendTable.Party = 2;

vendTable.doInsert ();

while select vendTable
{
info (strFmt (
"$1 - %2",
vendTable.AccountNum,
vendTable.Blocked)) ;
}
}
}

2. Run the class and check the results, which may be similar to this:

Z Edit OPTIONS P

Click the edit button to make changes.

() 1002 - All
(:) 1000 - No

[33]

Processing Data

How it works...

The key method in this recipe is set Tmp () . This method is available in all the tables, and it
makes the current table instance behave as a temporary table in the current scope. Basically,
it creates an InMemory temporary table that has the same schema as the original table.

In this recipe, we create a new class and place all the code in its main () method. The reason
why we create a class, not a job, is that the main () method can be set to run on the server
tier by specifying the server modifier. This will improve the code's performance.

In the code, we first call the set Tmp () method on the vendTable table to make it
temporary in the scope of this method. This means that any data manipulations will be lost
once the execution of this method is over and the actual table content will not be affected.

Next, we insert a couple of test records. Here, we use the doInsert () method to bypass
any additional logic, which normally resides in the table's insert () method. We have to
keep in mind that even the table becomes temporary; all the code in its insert (),
update (), delete (), initValue (), and other methods is still present and we have to
make sure that we don't call it unintentionally.

The last thing to do is to check for newly created records by listing the vendTable table. We
can see that although the table contains many actual records, only the records that we
inserted were displayed in the Infolog window. Additionally, the two records we inserted
do not appear in the actual table.

Copying a record

Copying existing data is one of the data manipulation tasks in Dynamics 365 for Finance
and Operations. There are numerous places in the standard D365 application where users
can create new data entries just by copying existing data and then modifying it. A few of the
examples are the Copy button in Cost management | Inventory accounting | Costing
versions and the Copy project button in Project management and accounting | Projects |
All projects. Also, although the mentioned copying functionality might not be that
straightforward, the idea is clear: the existing data is reused while creating new entries.

In this recipe, we will learn two ways to copy records in X++. We will discuss the usage of
the table's data () method, the global buf2buf () function, and their differences. As an
example, we will copy one of the existing ledger account records into a new record.

[34]

Processing Data

How to do it...

Carry out the following steps in order to complete this recipe:

1. Navigate to General ledger | Chart of accounts | Accounts | Main accounts and

find the account to be copied. In this example, we will use 130100, as shown in

the following screenshot:

¢ Edit |+ New

lil Delete

New from template

Name Translations

Account statement = Total accounts OPTIONS

o

Click the edit button to make changes.

£ Filter

119999, TOTAL CASH & CASH EQUIVALENTS
120100, Bonds

120200, Other Marketable Securities

120300, Bill of Exchange (BOE)

120400, BOE Remitted for Collection

120500, BOE Remitted for Discount

120600, Protested BOE

129999, TOTAL SECURITIES

5‘130100, Accounts Receivable - Domestic

130110, Accounts Receivable - Foreign
130300, Accounts Receivable - Not Invoiced
130400, Credit Card Receivable

130500, Interest Receivable

130600, Notes Receivable

130700. Other Receivables

Main accounts - chart of accounts: Shared

IDENTIFICATION

Main account
130100

Name

Accounts Receivable - Domestic

LEDGER
Main account type

Asset

Reporting type

Main account category
AR
DB/CR default

Debit

Balance contro

RELATED ACCOUNTS

Offset account

Opening account

SRU code

ADMINISTRATION

V| Do not allow manual entry

Active from

[35]

Processing Data

2. Create a Dynamics 365 for Operations Project, create a runnable class named
MainAccountCopy with the following code snippet, and run it:

class MainAccountCopy
{
/// <summary>
/// Runs the class with the specified arguments.
/// </summary>
/// <param name = "_args">The specified arguments.</param>
public static void main (Args _args)

MainAccount mainAccountl;
MainAccount mainAccount2;

mainAccountl = MainAccount::findByMainAccountId (
'130100");

ttsBegin;

mainAccount?2.data (mainAccountl);
mainAccount2.MainAccountId = '130101';
mainAccount2.Name += ' - copy';

if (!mainAccount2.validateWrite())

{

throw Exception::Error;

}

mainAccount2.insert () ;

ttsCommit;

[36]

Processing Data

3. Navigate to General ledger | Chart of accounts | Accounts | Main accounts
again and notice that there are two identical records now, as shown in the
following screenshot:

& Edit -+ New [i] Delete = New from template | Name Translations | Account statement = Total accounts OPTIONS L

Click the edit button to make changes.

£ Fitte | Main accounts - chart of accounts: Shared

)) o General
120500, BOE Remitted for Discount

120600, Protested BOE Assign template v Additional consolidation accounts

129999, TOTAL SECURITIES IDENTIFICATION Balance contro
130100, Accounts Receivable - Domestic Main account
130101

51301011 Accounts Receivable - Domestic - copy

RELATED ACCOUNTS
130110, Accounts Receivable - Foreign Name

. - Offset account
130300, Accounts Receivable - Not Invoiced (REEElE REEEvEl - DN ES e

130400, Credit Card Receivable
LEDGER Opening account

130500, Interest Receivable .
Main account type

130600, Notes Receivable

ez SRU code

130700, Other Receivables)
Reporting type

130701, Accrued Vendor Rebates Receivable
130725, Bridging M) ADMINISTRATION

lain account category
130730, Received PDC w7 AR Do not allow manual entry

() i L

How it works...

In this recipe, we have two variables: mainAccount1 for the original record and
mainAccount?2 for the new record. First, we find the original record by calling
findMainAccountId () in the MainAccount table.

Next, we copy it to the new one. Here, we use the data () table's member method, which
copies all the data fields from one variable to another.

[371]

Processing Data

After that, we set a new ledger account number, which is a part of a unique table index.

Finally, we call insert () on the table if validateWrite () is successful. In this way, we
create a new ledger account record, which is exactly the same as the existing one apart from
the account number.

There's more...

As we saw before, the data () method copies all the table fields, including system fields
such as the record ID, company account, and created user. Most of the time, it is OK
because when the new record is saved, the system fields are overwritten with the new
values. However, this function may not work for copying records across the companies. In
this case, we can use another function called buf2Buf (). This function is a global function
and is located in the Global class, which you can find by navigating to AOT | Classes. The
buf2Buf () function is very similar to the table's data () method with one major difference.
The buf2Buf () function copies all the data fields excluding the system fields. The code in
the function is as follows:

static void buf2Buf (
Common _ from,
Common _to,
TableScope _scope = TableScope::CurrentTableOnly)
{
DictTable dictTable
FieldId fieldId

new DictTable (_from.TableId);
dictTable.fieldNext (0, _scope);

while (fieldId && ! isSysId(fieldId))
{

_to. (fieldId)
fieldId

_from. (fieldId);
dictTable.fieldNext (fieldId, _scope);

}
}

We can clearly see that during the copying process, all the table fields are traversed, but the
system fields, such as RecId or dataAreald, are excluded. The isSysId () helper function
is used for this purpose.

[38]

Processing Data

In order to use the buf2Buf () function, the code of the MainAccountCopy job can be
amended as follows:

class MainAccountCopyBuf2Buf
{

/// <summary>
/// Runs the class with the specified arguments.

/// </summary>
/// <param name = "_args">The specified arguments.</param>

public static void main (Args _args)

{

MainAccount mainAccountl;
MainAccount mainAccount?2;

mainAccountl = MainAccount::findByMainAccountId('130100");

ttsBegin;
buf2Buf (mainAccountl, mainAccount2);

mainAccount2.MainAccountId = '130102';
mainAccount2.Name += ' - copy';

if (!mainAccount2.validateWrite ())

{

throw Exception::Error;

mainAccount2.insert ();

ttsCommit;

Building a query object

Query objects in Dynamics 365 for Finance and Operations are used to build SQL
statements for reports, views, forms, and so on. They are normally created in the AOT using
the drag and drop functionality and by defining various properties. Query objects can also
be created from the code at runtime. This is normally done when AOT tools cannot handle
complex and/or dynamic queries.

[39]

Processing Data

In this recipe, we will create a query from the code to retrieve project records from the
Project management module. We will select only the projects of the type Time & material,
starting with 00005 in its number and containing at least one hour transaction. The project
list will be sorted by project name.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the project area, create a runnable class named ProjTableQuery, and enter
the following code snippet:

class ProjTableQuery

/// <summary>

/// Runs the class with the specified arguments.

/// </summary>

/// <param name = "_args">The specified arguments.</param>
public static void main (Args _args)

Query query;
QueryBuildDataSource gbdsl;
QueryBuildDataSource gbds2;
QueryBuildRange gbril;
QueryBuildRange gbr2;
QueryRun queryRun;
ProjTable projTable;
query = new Query();

gbdsl = query.addDataSource (tableNum(ProjTable));
gbdsl.addSortField(

fieldNum (ProjTable, Name),

SortOrder: :Ascending) ;

gbrl = gbdsl.addRange (fieldNum(ProjTable, Type));
gbrl.value (queryValue (ProjType: :TimeMaterial));

gbr2 = gbdsl.addRange (fieldNum(ProjTable,ProjId));
gbr2.value (
SysQuery: :valueLike (queryValue ('00005")));

gbds2 = gbdsl.addDataSource (tableNum (ProjEmplTrans)) ;
gbds2.relations (true);
gbds2.joinMode (JoinMode: :ExistsJoin) ;

[40]

Processing Data

queryRun = new QueryRun (query) ;

while (queryRun.next ())
{
projTable = queryRun.get (tableNum(ProjTable)) ;
info (strFmt (
"$1, %2, %3",
projTable.ProjId,
projTable.Name,
projTable.Type));
}
}
}

2. Run the class and you will get a screen similar to the following screenshot:

£ Edit OPTIONS P

Click the edit butten to make changes.
@ 000055, Midrange stereo install (mekile), Time and material
@ 000050, Midrange stereo install (mokile), Time and material

@ 000005, Midrange stereo install (mobile), Time and material

Class runner

Class "ProjTableQuery’ completed.

How it works...

First, we create a new query object. Next, we add a new ProjTable data source to the
query object by calling its addDataSource () member method. The method returns a
reference to the QueryBuildDataSource object-gbds1. Here, we call the addSortField ()

method to enable sorting by the project name.

[41]

Processing Data

The following two blocks of code create two ranges. The first block of code shows only the
projects of the time & material type and the second one lists only the records where the
project number starts with 00005. These two filters are automatically added together using
SQL's AND operator. The QueryBuildRange objects are created by calling the addrange ()
member method of the QueryBuildDataSource object with the field ID number as the
argument. The range value is set by calling value () on the QueryBuildRange object itself.
We use the queryVvalue () function from the Global class and the valueLike () function
from the sysQuery class to prepare the values before applying them as a range. More
functions, such as queryNotValue () and queryRange (), can be found in the Global
application class by navigating to AOT | Classes. Note that these functions are actually
shortcuts to the SysQuery application class, which in turn has even more interesting helper
methods that might be handy for every developer.

Adding another data source to an existing one connects both the data sources using SQL's
JOIN operator. In this example, we are displaying projects that have at least one posted
hour line. We start by adding the ProjEmplTrans table as another data source.

Next, we need to add relationships between the tables. If relationships are not defined on
tables, we will have to use the addLink () method with relation field's ID numbers. In this
example, relations in the tables are already defined, so you only need to enable them by
calling the relations () method with t rue as an argument.

Calling joinMode () with JoinMode: :ExistsJoin as a parameter ensures that only the
projects that have at least one hour transaction will be selected. In situations like this, where
we do not need any data from the second data source, performance-wise it is better to use
an exists join instead of the inner join. This is because the inner join fetches the data
from the second data source and, therefore, takes longer to execute.

The last thing that needs to be done is to create and run the queryRun object and show the
selected data on the screen.

There's more...

It is worth mentioning a couple of specific cases when working with query objects from the
code. One of them is how to use the OR operator and the other one is how to address array
fields.

[42]

Processing Data

Using the OR operator

As you have already noted, regardless of how many ranges are added, all of them will be
added together using SQL's AND operator. In most cases, this is fine, but sometimes complex
user requirements demand ranges to be added using SQL's OR operator. There might be a
number of workarounds, such as using temporary tables or similar tools, but we can use the
Dynamics 365 for Operations feature that allows you to pass a part of a raw SQL string as a
range.

In this case, the range has to be formatted in a manner similar to a fully-qualified SQL
where clause, including field names, operators, and values. The expressions have to be
formatted properly before you use them in a query. Here are some of the rules:

¢ The expression must be enclosed within single quotes

Inside, the whole expression has to be enclosed within parentheses

Each subexpression must also be enclosed within parentheses

String values have to be enclosed within double quotes
e For enumerations, use their numeric values

For value formatting, use various Dynamics 365 for Operations functions, such as
queryValue () and date2StrXpp (), or methods from the SysQuery class.

Let's replace the code snippet from the previous example with the following lines of code:

gbr2.value (SysQuery: :valueLike (queryValue ('00005'")));
with the new code:
gbr2.value (strFmt (' ((%1 like "%2") || (%3 = %4))"',
fieldStr (ProjTable,ProjId),queryvalue ('00005*"),
fieldStr (ProjTable, Status),ProjStatus::InProcess+0));

Notice that by adding zero to the enumeration in the previous code, we can force the
strFmt () function to use the numeric value of the enumeration. The st rFmt () output
should be similar to the following line:

((ProjId like "00005*") || (Status = 3))

[43]

Processing Data

Now if you run the code, besides all the projects starting with 00005, the result will also
include all the active projects, as shown in the following screenshot:

Z Edit opTiIons

Click the edit button to make changes. X
@' 000060, Midrange stereo install (maobile), Time and material ~13 X ~
@' 000055, Midrange stereo install (maebile), Time and material

@ 000050, Midrange stereo install (mokbile), Time and material

Class runner

Class "ProjTableQueryORConcept’ completed.

See also

e The Creating a custom filter recipe in Chapter 3, Working with Data in Forms
e The Using a form for building a lookup recipe in Chapter 4, Building Lookups

Using a macro in a SQL statement

In a standard Dynamics 365 for Finance and Operations application, there are macros, such
as InventDimJoin and InventDimSelect, which are reused numerous times across the
application. These macros are actually full or partial X++ SQL queries that can be called with
various arguments. Such approaches save development time by allowing you to reuse
pieces of X++ SQL queries.

In this recipe, we will create a small macro, which holds a single where clause, to display
only the active vendor records. Then, we will create a class that uses the created macros to
display a vendor list.

[44]

Processing Data

How to do it...

Carry out the following steps in order to complete this recipe:

1. Create a Dynamics 365 for Operations Project and create a new macro named
VendTableNotBlocked with the following code snippet:

(%1.Blocked == CustVendorBlocked: :No)

2. In the Dynamics 365 Project, create a new runnable class called
VendTableMacro with the following code:

class VendTableMacro
{
/// <summary>
/// Runs the class with the specified arguments.
/// </summary>
/// <param name = "_args">The specified arguments.</param>
public static void main (Args _args)

VendTable vendTable;

while select vendTable
where #VendTableNotBlocked (vendTable)
{
info (strFmt (
ll%l — %2",
vendTable.AccountNum,
vendTable.name ()));

}

3. Run the job and check the results, as shown in the following screenshot:

[45]

Processing Data

£ Edit OPTIONS P

Click the edit button to make changes. X
@ US-111 - Contoso office supply ~ 44 X ~
@ US-110 - City-wide Advertising

i) Us-09- Property Management

Class runner

Class "VendTableMacro' completed.

How it works...

First, we define a macro that holds the where clause. Normally, the purpose of defining
SQL in a macro is to reuse it a number of times in various places. We use $1 as an
argument. More arguments can be used.

Next, we create a job with the select statement. Here, we use the previously created macro
in the where clause and pass vendTable as an argument.

The query works like any other query, but the advantage is that the code in the macro can
be reused elsewhere.

Remember that before we start using macros in SQL queries, we should be aware of the
following caveats:

¢ Too much code in a macro might reduce the SQL statement's readability for other
developers

e Cross-references do not take into account the code inside the macro

¢ Changes in the macro will not reflect in the objects where the macro is used until
the objects are recompiled

[46]

Processing Data

Executing a direct SQL statement

Dynamics 365 for Finance and Operations allows developers to build X++ SQL statements
that are flexible enough to fit into any custom business process. However, in some cases, the
usage of X++ SQL is either not effective or not possible at all. One such case is when we run
data upgrade tasks during an application version upgrade. A standard application contains
a set of data upgrade tasks to be completed during the version upgrade. If the application is
highly customized, then most likely, standard tasks have to be modified in order to reflect
data dictionary customization's, or a new set of tasks have to be created to make sure data is
handled correctly during the upgrade.

Normally, at this stage, SQL statements are so complex that they can only be created using
database-specific SQL and executed directly in the database. Additionally, running direct
SQL statements dramatically increases data upgrade performance because most of the code
is executed on the database server where all the data resides. This is very important while
working with large volumes of data.

This recipe will demonstrate how to execute SQL statements directly. We will connect to the
current Dynamics 365 for Finance and Operations database directly using an additional
connection and retrieve a list of vendor accounts.

How to do it...

Carry out the following steps in order to complete this recipe:

1. In the Dynamics 365 Project, create a new class named VendTableSql using the
following code snippet:

class VendTableSgl
{
/// <summary>
/// Runs the class with the specified arguments.
/// </summary>
/// <param name = "_args">The specified arguments.</param>
public static void main (Args _args)

UserConnection userConnection;
Statement statement;

str sglStatement;
SglSystem sglSystem;
SglStatementExecutePermission sqlPermission;
ResultSet resultSet;
DictTable tblVendTable;

[47]

Processing Data

DictTable tblDirPartyTable;
DictField fldParty;

DictField fldAccountNum;
DictField fldDataAreald;
DictField fldBlocked;

DictField fldRecId;

DictField fldName;

tblVendTable = new DictTable (tableNum (VendTable)) ;

tblDirPartyTable = new DictTable (tableNum(DirPartyTable));

fldParty = new DictField(
tableNum (VendTable),
fieldNum (VendTable,Party));

fldAccountNum = new DictField(
tableNum (VendTable),
fieldNum (VendTable, AccountNum)) ;

fldDataAreald = new DictField(
tableNum (VendTable),
fieldNum (VendTable,DataAreald)) ;

fldBlocked = new DictField(
tableNum (VendTable),
fieldNum (VendTable, Blocked));

fldRecId = new DictField(
tableNum (DirPartyTable),
fieldNum (DirPartyTable,RecId));

fldName = new DictField(
tableNum (DirPartyTable),
fieldNum (DirPartyTable,Name)) ;

sglSystem = new SqglSystem();
sglStatement = 'SELECT

'JOIN %4 ON %3.%5 = %4.
'WHERE %7 = %9 AND %8 = %$10°';

o
°
o
°

1, %2 FROM %3 ' +
6

sglStatement = strFmt (

sglStatement,

fldAccountNum.name (DbBackend: :Sql),
fldName.name (DbBackend: :Sql),
tblVendTable.name (DbBackend: :Sql),
tblDirPartyTable.name (DbBackend::Sql),
fldParty.name (DbBackend: :Sql),
fldRecId.name (DbBackend: :Sql),

[48]

Processing Data

fldDataArealId.name (DbBackend::Sql),

fldBlocked.name (DbBackend: :Sql),
sglSystem.sglLiteral (curext (), true),
sglSystem.sglLiteral (CustVendorBlocked: :No, true));

userConnection = new UserConnection();
statement userConnection.createStatement () ;

sglPermission = new SglStatementExecutePermission (
sglStatement) ;

sglPermission.assert () ;
resultSet = statement.executeQuery (sglStatement) ;
CodeAccessPermission: :revertAssert () ;

while (resultSet.next())
{
info (strFmt (
"$1 - %2",
resultSet.getString (1),
resultSet.getString(2)));
}
}
}

2. Run the class to retrieve a list of vendors directly from the database, as shown in
the following screenshot:

Z Edit opmions O

Click the edit button to make changes. ot
@ US-1002 - Fabrikam A1 X A
@ 9001 - Contoso Entertainment System

® 8001 - Northwind Transportation Company

Class runner

Class "VendTableSql' completed.

[49]

Processing Data

How it works...

We start the code by creating the DictTable and DictField objects to handle the vendor
table and its fields, which are used later in the query. The DirPartyTable is used to get
additional vendor information.

A new sqlSystem object is also created. It is used to convert D365 types to SQL types.

Next, we set up a SQL statement with a number of placeholders for the table or field names
and field values to be inserted later.

The main query creation takes place next, when the query placeholders are replaced with
the right values. Here, we use the previously created DictTable and DictField type
objects by calling their name () methods with the DbBackend: : Sql enumeration as an
argument. This ensures that we pass the name in the exact manner it is used in the
database-some of the SQL field names are not necessary, which is the same as field names
within the application.

We also use the sqlLiteral () method of the previously created sqlSystem object to
properly format SQL values in order to ensure that they do not have any unsafe characters.

The value of the sqlstatement variable that holds the prepared SQL query depending on
your environment is as follows:

SELECT ACCOUNTNUM, NAME FROM VENDTABLE
JOIN DIRPARTYTABLE ON VENDTABLE.PARTY = DIRPARTYTABLE.RECID
WHERE DATAAREAID = 'usmf' AND BLOCKED = 0

Once the SQL statement is ready, we initialize a direct connection to the database and run
the statement. The results are returned in the resultset object, and we get them by using
the while statement and calling the next () method until the end.

Note that we created an sqlPermission object of the type
SglStatementExecutePermission here and called its assert () method before
executing the statement. This is required in order to comply with Dynamics 365 for
Operation's trustworthy computing requirements.

Another thing that needs to be mentioned is that when building direct SQL queries, special
attention has to be paid to license, configuration, and security keys. Some tables or fields
might be disabled in the application and may contain no data in the database.

The code in this recipe can be also used to connect to external ODBC databases. We only
need to replace the UserConnection class with the 0dbcConnection class and use text
names instead of the DictTable and DictField objects.

[50]

Processing Data

There's more...

The standard Dynamics 365 for Finance and Operations application provides an alternate
way of building direct SQL statements by using a set of SQLBuilder classes. By using these
classes, we can create SQL statements as objects, as opposed to text. Next, we will
demonstrate how to use a set of SQL.Builder classes. We will create the same SQL
statement as we did before.

First, in a Dynamics 365 project, create another class named VendTableSglBuilder using
the following code snippet:

class VendTableSglBuilder
{
/// <summary>
/// Runs the class with the specified arguments.
/// </summary>
/// <param name = "_args">The specified arguments.</param>
public static void main (Args _args)

{

UserConnection userConnection;
Statement statement;

str sglStatement;
SglStatementExecutePermission sglPermission;
ResultSet resultSet;
SQLBuilderSelectExpression selectExpr;
SQLBuilderTableEntry vendTable;
SQLBuilderTableEntry dirPartyTable;
SQLBuilderFieldEntry accountNum;
SQLBuilderFieldEntry dataAreald;
SQLBuilderFieldEntry blocked;
SQLBuilderFieldEntry name;
selectExpr = SQLBuilderSelectExpression::construct();

selectExpr.parmUseJoin (true);

vendTable = selectExpr.addTableId(
tablenum (VendTable)) ;

dirPartyTable = vendTable.addJoinTableId (
tablenum (DirPartyTable));

accountNum = vendTable.addFieldId(
fieldnum (VendTable, AccountNum)) ;

name = dirPartyTable.addFieldId(
fieldnum(DirPartyTable,Name)) ;

[51]

Processing Data

dataAreald = vendTable.addFieldId(
fieldnum(VendTable, DataAreald));

blocked = vendTable.addFieldId (
fieldnum (VendTable, Blocked)) ;

vendTable.addRange (dataAreald, curext());
vendTable.addRange (blocked, CustVendorBlocked: :No);

selectExpr.addSelectFieldEntry (
SQLBuilderSelectFieldEntry: :newExpression (
accountNum,
'AccountNum')) ;

selectExpr.addSelectFieldEntry (
SQLBuilderSelectFieldEntry: :newExpression (

name, 'Name'));
sglStatement = selectExpr.getExpression (null);
userConnection = new UserConnection();
statement = userConnection.createStatement () ;

sgqlPermission = new SglStatementExecutePermission (
sglStatement) ;

sglPermission.assert () ;
resultSet = statement.executeQuery (sglStatement);
CodeAccessPermission: :revertAssert ();
while (resultSet.next())
{
info (strfmt (
"$1 - s2",

resultSet.getString (1),
resultSet.getString(2)));

}

In the preceding method, we first create a new selectExpr object, which is based on the
SQLBuilderSelectExpression class. It represents the object of the SQL statement.

[52]

Processing Data

Next, we add the vendTable table to it by calling its member method addTableId (). This
method returns a reference to the vendTable object of the type SQLBuilderTableEntry,
which corresponds to a table node in a SQL query. We also add DirPartyTable as a joined
table.

Then, we create a number of field objects of the SQLBuilderFieldEntry type to be used
later and two ranges to show only this company account and only the active vendor
accounts.

We use addSelectFieldEntry () to add two fields to be selected. Here, we use the
previously created field objects.

The SQL statement is generated once the getExpression () method is called, and the rest
of the code is the same as in the previous example.

Running the class will give us results, which are exactly similar to the ones we got earlier.

Enhancing the data consistency checks

It is highly recommended that you run the standard Dynamics 365 for Finance and
Operations data consistency checks from time to time, which can be found by navigating to
System administration | Periodic tasks | Database | Consistency check, to check the
system's data integrity. This function finds orphan data, validates parameters, and does
many other things, but it does not do everything. The good thing is that it can be easily
extended.

In this recipe, we will see how we can enhance the standard Dynamics 365 for Finance and
Operations consistency check to include more tables in its data integrity validation.

Getting ready

Before we start, we need to create an invalid setup in order to make sure that we can
simulate data inconsistency. Navigate to Fixed assets | Setup | Value models and create a
new model, for instance, TEST, as shown in the following screenshot:

[53]

Processing Data

Save -} New [i] Delete = Fixed asset groups OPTIONS ©

£ Filter | Value models
Value model Description
TEST ~
‘ TEST | | Test consistency check ‘
Test consistency check
General
150_SLLR
150% RB switch to SLLR DEPRECIATION Extraordinary depreciation profile SETUP
Calculate depreciation v Posting layer

200 SLLR e

200% RB switch to SLLR Depreciation profile Allow net book value higher than acq...

v
Leave net book value at Ne

Altemative depreciation profile

v -

CONSUM

Consumption

=
o
3
2
o
o
3
i3
4
g
3
i
5

INTANGIB Calendar

Intangible Fixed Assets ~
RB_SLIR Derived value models

2052 RR cwitch tn S1 R Derived depreciation books

Navigate to Fixed assets | Setup | Fixed asset posting profiles and under the Ledger
accounts group, create a new record with the newly created value model for any of the
posting types, as shown here:

Save | + New [i Delete OPTIONS P q 8 O
2 Fiter | Fixed asset posting profiles

Posting profile Description
ALL ALL | FA General Posting Profile |

FA General Posting Profile

Ledger accounts

{ Add [i] Remove

Acquisition ~

Value model T Groupings Account relation Main account Offset account

TEST Al v 180100 e ‘ 30016(1 v
150_SLLR Al 180100 300160

200_SLLR Al 180100 300160

CONSUM Al 180100 300160

INTANGIB Al 180140 300160

RB_SLLR Al 180100 300160

Go back to the Value models form and delete the previously created value model. Now, we
have a nonexistent value model in the fixed asset posting settings.

[54]

Processing Data

How to do it...

Carry out the following steps in order to complete this recipe:

1. In the Dynamics 365 Project, create a new class named
AssetConsistencyCheck with the following code snippet:

class AssetConsistencyCheck extends SysConsistencyCheck

{

client server static ClassDescription description()

{

return "Fixed assets";

client server static HelpTxt helpText ()
{

return "Consistency check of the fixed asset module";

public Integer executionOrder ()

{

return 1;

public void run()

{
this.kernelCheckTable (tableNum (AssetLedgerAccounts));

[551]

Processing Data

2. Navigate to System administration | Periodic tasks | Database | Consistency
check, select the newly created Fixed assets option from the Module drop-down
list, and click on OK to run the check, as shown here:

Consistency check

[€l2) |31 RUM IN THE BACKGROUND

Madule ~
‘ Fixed assets| v‘

Check/Fix

Check ~ ‘

From date

i
Fixed assets

Consistency check of the fixed asset module v

[561]

Processing Data

3. Now, the message displayed in the Infolog window should complain about the
missing value model in the fixed assets posting settings, as shown in the
following screenshot:

Message details

Fixed assets

Table Fixed asset posting profile

' Posting profile: ALL, Acquisition

The value 'TEST in field "Value model is
not found in the related table “Fixed

asset value model setup’.
@ MNumber of errors found: 1

@ MNumber of errors corrected: 0

How it works...

The consistency check in Dynamics 365 for Finance and Operations validates only the
predefined list of tables for each module. The system contains a number of classes derived
from SysConsistencyCheck. For example, the CustConsistencyCheck classis
responsible for validating the Accounts receivable module, LedgerConsistencyCheck for

validating General ledger, and so on.

[571

Processing Data

In this recipe, we created a new class named AssetConsistencyCheck, extending the
SysConsistencyCheck class for the fixed asset module. The following methods were
created:

e description (): This provides a name to the consistency check form.

helpText (): This displays some explanation about the check.
e executionOrder (): This determines where the check is located in the list.

run () : This holds the code to perform the actual checking. Here, we use the
kernelCheckTable () member method, which validates the given table.

There's more...

The classes that we just mentioned can only be executed from the main Consistency check
form. Individual checks can also be invoked as standalone functions. We just need to create
an additional method to allow the running of the class:

static void main (Args _args)

{
SysConsistencyCheckJob consistencyCheckJob;

AssetConsistencyCheck assetConsistencyCheck;

consistencyCheckJob = new SysConsistencyCheckJob (
classIdGet (assetConsistencyCheck));

if (!consistencyCheckJob.prompt ())
{

return;

}

consistencyCheckJob.run();

}

Using the date effectiveness feature

Date effectiveness allows developers to easily create date range fields. Date ranges are used
to define record validity between the specified dates, for example, defining employee
contract dates and defining vendor license validity.

This feature significantly reduces the amount of time that developers spend on developing
business logic/code and also provides a consistent approach to implement data range fields.

[581]

Processing Data

This recipe will demonstrate the basics of date effectiveness. We will create a new table to
implement date range validation.

How to do it...

Carry out the following steps in order to complete this recipe:

Run Visual Studio as admin:

1. Load your earlier project.

2. Add a new TablePktEmployeeContract.

Add New ltem - Chapter1 (USR) [PacktPub]

o

4 |nstalled Sort by: Default - Search Installed Templates (Ctrl+E) P~

4 AX Artifacts E Compaosite Data Entity AX Artifacts Type: AX Artifacts
Analytics Table for Dynarmics AX
Business Process and Workflow IE‘ Cornposite Query A Artifacts
Code
Configuration E Data Entity AX Artifacts
LEiE T E—)E Map A Artifacts
Data Types
Labels And Resources E‘ Query AX Artifacts
Reports

. Table AKX Artifacts

Security
services E Table Collection AX Artifacts
User Interface

4 » E View A Artifacts

B Online

Click here to ge online and find templates.
MName: PlktEmployeeContract
Set the property as follows:
Property Value
ValidTimeStateFieldType | Date

[591]

Processing Data

0 Chapter1 - PktEmployee... X Properties v O X
Table PktEmployeeContract -

eS| s

PktEmployeeContract®™ + X

Search ... =
PktEmployeeContract (usr) [PacktPub] Report Ref -
b B Fields Save Data Per Company Yes
b g9 Field groups Save Data Per Partition Yes
b sha Indexes Singular Label
b T Full Text Indexes Storage Mode Disk
P o7 Relations System Table Mo
b BR Delete Actions Table Contents MotSpecified
b G& State Machines Table Type Regular
b Ef Mappings Tags
b &% Methods Valid Time State Field Type Date
I & Ewvents e
Abstract Mo
Extends
Instance Relation Type
Support Inheritance Mo
-
Name

The name of the element.

Note the two new fields that are automatically added to the table, as shown in the
following screenshot (ValidTo and ValidFrom):

=] PltEmployeeContract (usr) [PacktPub]
4 [Fields
el ValidTo
gl ValidFrom
g EmplMum
o Mame
o RegistrationMum
b ¥ Field groups
P o5 Indexes
4 T Relations
b ER Delete Actions
P O& State Machines
b B Mappings
P &% Methods
P & Events

[60]

Processing Data

3. Now create a new index as follows and add fields as follows:

Search ...
= PktErnployeeContract (usr) [PacktPub]
4 [Fields
gl ValidTe
gl ValidFrom
o EmplMum
m Mame

@ RegistraticnMurm
P E¥ Field groups
4 5 Indexes
H EmplMum
B RegistrationMum
H ValidFrom
H ValidTo
I Full Text Indexes
=T Relations
BR Delete Actions
Oo State Machines
EAl Mappings
&% Methods
& Events

h =

A = A

4. Set the following mentioned property for the index here:

Property Value

AlternateKey Yes

ValidTimeStateKey | Yes
ValidTimeStateMode | NoGap

[61]

Processing Data

5. Now open the table and enter some records in this table itself instead of creating
a new form for the table. Right-click on Table and select Browse table:

[Save | &~ New [i] Delete | Hide system fields OPTIONS ©

v Table browser: PkttmployeeContract

£ Filter |

v EmplNum | Name RegistrationMurn ValidFrom | ValidTo datafreald

1 Sam sam12345 9/11/2016 | | Never] | usmf -

How it works...

We start the recipe by setting the ValidTimeStateFieldType property to Date in the
SysEmailTable table. This automatically creates two new fields--validFromand validTo
that are used to define a date range.

Next, we add the created fields to the primary index where the Emp1Numn field is used and
adjust the index's properties.

We set the AlternateKey property to Yes in order to ensure that this index is a part of an
alternate key.

We set the ValidTimeStateKey property to Yes in order to specify that the index is used
to determine valid date ranges.

We also set the ValidTimeStateMode property to NoGap in order to ensure that email
templates with the same identification number can be created within continuous periods.
This property can also be set to Gap, allowing noncontiguous date ranges.

[62]

Working with Forms

In this chapter, we will cover the following recipes:

¢ Creating dialogs using the RunBase framework
¢ Handling the dialog event

¢ Creating dialogs using the SysOperation framework
e Building a dynamic form

¢ Adding a form splitter

¢ Creating a modal form

¢ Modifying multiple forms dynamically

e Storing the last form values

¢ Using a Tree control

¢ Adding the View details link

e Selecting a Form Pattern

e Full list of form patterns

¢ Creating a new form

Introduction

Forms in Dynamics 365 for Finance and Operations represent the user interface and are
mainly used to enter or modify data. They are also used to run reports, execute user
commands, validate data, and so on.

Working with Forms

Normally, forms are created using the AOT by producing a form object and adding form
controls, such as tabs, tab pages, grids, groups, data fields, and images. The form's behavior
is controlled by its properties or the code in its member methods. The behavior and layout
of form controls are also controlled by their properties and the code in their member
methods. Although it is very rare, forms can also be created dynamically from code.

In this chapter, we will cover various aspects of using Dynamics 365 for Finance and
Operations forms. We start by building Dynamics 365 for Finance and Operations dialogs,
which are actually dynamic forms, and then go on to explain how to handle their events.
The chapter will also show you how to build dynamic forms, how to add dynamic controls
to existing forms, and how to make modal forms.

Creating dialogs using the RunBase
framework

Dialogs are a way to present users with a simple input form. They are commonly used for
small user tasks, such as filling in report values, running batch jobs, and presenting only the
most important fields to the user when creating a new record. Dialogs are normally created
from X++ code without storing the actual layout in the AOT.

The application class called Dialog is used to build dialogs. Other application classes, such
asDialogField, DialogGroup, and DialogTabPage, are used to create dialog controls.
The easiest way to create dialogs is to use the RunBase framework. This is because the
framework provides a set of predefined methods, which make the creation and handling of
the dialog well-structured, as opposed to having all the code in a single place.

In this example, we will demonstrate how to build a dialog from code using the RunBase
framework class. The dialog will contain customer table fields shown in different groups
and tabs for creating a new record. There will be two tab pages, General and Details. The
first page will have the Customer account and Name input controls. The second page will
be divided into two groups, Setup and Payment, with relevant fields inside each group.
The actual record will not be created, as it is beyond the scope of this example. However, for
demonstration purposes, the information specified by the user will be displayed in the
Infolog window.

[64]

Working with Forms

How to do it...

Carry out the following steps in order to complete this recipe:

1. Add anew project Create dialog.

2. Add a new Runnable class and rename it MyDialog. Now, add the following
code snippet:

Declare all your objects in the class, as shown follows:

class MyDialog extends RunBase

{

DialogField fieldAccount;
DialogField fieldName;
DialogField fieldGroup;
DialogField fieldCurrency;
DialogField fieldPaymTermId;
DialogField fieldPaymMode;
CustName custName;
CustGroupId custGroupld;
CurrencyCode currencyCode;

CustPaymTermId paymTermId;
CustPaymMode paymMode;

public container pack()

{

return conNull () ;

public boolean unpack (container _packedClass)

{

return true;
}

¢ Create a dialog method to capture runtime user inputs for customer details:

Object dialog()
{

Dialog dialog;
DialogGroup groupCustomer;
DialogGroup groupPayment;
dialog = super();

dialog.caption ("Customer information");

fieldAccount=dialog.addField

[65]

Working with Forms

(extendedTypeStr (CustVendAC), "Customer account");
fieldName =dialog.addField (extendedTypeStr (CustName)) ;
dialog.addTabPage ("Details");

groupCustomer = dialog.addGroup ("Setup");

fieldGroup=dialog.addField
(extendedTypeStr (CustGroupId));

fieldCurrency=dialog.addField
(extendedTypeStr (CurrencyCode)) ;

groupPayment = dialog.addGroup ("Payment") ;

fieldPaymTermId=dialog.addField
(extendedTypeStr (CustPaymTermId)) ;

fieldPaymMode = dialog.addField
(extendedTypeStr (CustPaymMode)) ;

return dialog;

}

e Now, when users select their desired values, we need to read all of them to show
in the infolog. Use getFrombDialog to read a dialog field's value:

public boolean getFromDialog()
{

custAccount = fieldAccount.value();
custName = fieldName.value () ;
custGroupId = fieldGroup.value();
currencyCode = fieldCurrency.value();
paymTermId = fieldPaymTermId.value () ;
paymMode = fieldPaymMode.value();

return super|();

}

¢ Use the run method to make Infolog statements, as in the following code:

public void run()

{
info ("You have entered customer information:");
info (strFmt ("Account: %1", custAccount));
info (strFmt ("Name: %1", custName));
info (strFmt ("Group: %1", custGroupld));
info (strFmt ("Currency: %$1", currencyCode));
info (strFmt ("Terms of payment: %$1", paymTermId));
info (strFmt ("Method of payment: %$1", paymMode));
}

[66]

Working with Forms

public static void main (Args _args)
{
MyDialog myDialog = new MyDialog();

if (myDialog.prompt ())
{

myDialog.run();

}
}

3. In order to test the dialog, right-click on this class and set as startup project.

4. Build your project. Now, run the project. The following form will appear in the
internet browser:

Customer information

Parameters ~
Customer account Mame
Details v

[67]

Working with Forms

4. Click on the Details tab page; you will see a screen similar to the following
screenshot:

Customer information

Parameters A
Customer account MName

Details A
SETUP

Customer qgroup

Currency

PAYMENT

Terms of payment

| Y|
Method of payment

| /|

5. Enter information in all the fields and click on OK. The results will be displayed
on the Infolog tab on top of the browser window.

[68]

Working with Forms

How it works...

First, we create a new class named MyDialog. By extending it from RunBase, we utilize a
standard approach to develop data manipulation functions in Dynamics 365 for Operations
. The RunBase framework will define a common structure and automatically add additional
controls, such as the OK and Cancel buttons, to the dialog.

Then, we declare class member variables, which will be used later. The DialogField type
variables are actual user input fields. The rest of the variables are used to store the values
returned from the user input.

The pack () and unpack () methods are normally used to convert an object into a container
and convert the container back into an object, respectively. A container is a common format
used to store objects in the user cache (SysLastValue) or to transfer the object between the
server and client tiers. The RunBase framework needs these two methods to be
implemented in all its subclasses. In this example, we are not using any of the pack () or
unpack () features, but because these methods are mandatory, we return an empty
container from pack () and we return true from unpack ().

The layout of the actual dialog is constructed in the dialog () member method. Here, we
define local variables for the dialog itself-tab pages and groups. These variables, as opposed
to the dialog fields, do not store any values for further processing. The super () in the
method creates the initial dialog object for us and automatically adds the relevant controls,
including the OK and Cancel buttons.

Additional dialog controls are added to the dialog by using the addField (), addGroup (),
and addTabPage () methods. There are more methods, such as addText (), addImage (),
and addMenuItemButton (), which are used to add different types of controls. All the
controls have to be added to the dialog object directly. Adding an input control to groups or
tabs is done by calling addField () right after addGroup () or addTabPage (). In the
previous example, we added tab pages, groups, and fields in a top-down logical sequence.
Note that it is enough only to add a second tab page; the first tab page, labeled General, is
added automatically by the RunBase framework.

[69]

Working with Forms

Values from the dialog controls are assigned to the variables by calling the value ()
member method of DialogField. If a dialog is used within the RunBase framework, as it
is used in this example, the best place to assign dialog control values to variables is the
getFormDialog () member method. The RunBase framework calls this method right after
the user clicks on OK.

The main processing is done in the run () method. For demonstration purposes, this class
only shows the user input in the Infolog tab on top of the browser window.

In order to make this class runnable, the main () static method has to be created. Here, we
create a new CustCreate object and invoke the user dialog by calling the prompt ()
method. Once the user has finished entering customer details by clicking on OK, we call the
run () method to process the data.

Handling the dialog event

Sometimes, in the user interface, it is necessary to change the status of one field depending
on the status of another field. For example, if the user marks the Show filter checkbox, then
another field, Filter, appears or becomes enabled. In AOT formes, this can be done using the
modified () input control event. However, if this feature is required on runtime dialogs,
handling events is not that straightforward.

Often, existing dialogs have to be modified in order to support events. The easiest way to
do this is, of course, to convert a dialog into an AOT form. However, when the existing
dialog is complex enough, a more cost-effective solution would probably be to implement
dialog event handling instead of converting into an AOT form. Event handling in dialogs is
not flexible, as in the case of AOT forms; but in most cases, it does the job.

In this recipe, we will create a dialog similar to the previous dialog, but instead of entering
the customer number, we will be able to select the number from a list. Once the customer is
selected, the rest of the fields will be filled in automatically by the system from the customer
record.

[70]

Working with Forms

How to do it...

Carry out the following steps in order to complete this recipe:
1. Add anew class named MyDialogSelect with the following code snippet:

class MyDialogSelect extends RunBase

{
DialogField fieldAccount;
DialogField fieldName;
DialogField fieldGroup;
DialogField fieldCurrency;
DialogField fieldPaymTermId;
DialogField fieldPaymMode;

public container pack()
{

return conNull () ;

public boolean unpack (container _packedClass)
{
return true;

}
2. Create a dialog method to capture run time user inputs for customer details:

Object dialog()

{
Dialog dialog;
DialogGroup groupCustomer;
DialogGroup groupPayment;
dialog = super();

dialog.caption ("Customer information");
dialog.allowUpdateOnSelectCtrl (true);

fieldAccount = dialog.addField
(extendedTypeStr (CustAccount), "Customer account");

fieldName =dialog.addField
(extendedTypeStr (CustName)) ;
fieldName.enabled (false);

dialog.addTabPage ("Details");

[71]

Working with Forms

groupCustomer = dialog.addGroup ("Setup");
fieldGroup = dialog.addField
(extendedTypeStr (CustGroupld));
fieldCurrency = dialog.addField
(extendedTypeStr (CurrencyCode)) ;
fieldGroup.enabled(false);
fieldCurrency.enabled(false);

groupPayment = dialog.addGroup ("Payment") ;
fieldPaymTermId =dialog.addField
(extendedTypeStr (CustPaymTermId)) ;
fieldPaymMode = dialog.addField
(extendedTypeStr (CustPaymMode)) ;
fieldPaymTermId.enabled(false);
fieldPaymMode.enabled (false);

return dialog;

public void dialogSelectCtrl()
{
CustTable custTable;

custTable = CustTable::find(fieldAccount.value());
fieldName.value (custTable.name ());
fieldGroup.value (custTable.CustGroup) ;
fieldCurrency.value (custTable.Currency);
fieldPaymTermId.value (custTable.PaymTermId) ;
fieldPaymMode.value (custTable.PaymMode) ;

public static void main (Args _args)
{
MyDialogSelect myDialogSelect = new MyDialogSelect();

if (myDialogSelect.prompt ())
{

myDialogSelect.run();

[72]

Working with Forms

3. Set this class as Set as Startup Object

Solution Explorer 1

@ o-5d|p -
Search Selution Explorer (Ctrl+;) £

fa] Solution 'Chapter02' (1 project)

4 [" Create Dialog (USR) [PacktPub]
| References

#¢ MyDialog

¢ Open
Open With...

Open Designer
> View Code F7

Scope to This
Mew Solution Explorer View

Exclude From Project

ah Cut Ctrl+X
H Copy Ctrl+C
X Delete Del
Rename

Set as Startup Object
Advanced Comnpare...
Find References
Discover Related Tests
View Hierarchy

Fun Best Practices Fixers

p 7 Alt+Ent
A -

[73]

Working with Forms

4. Save all your changes and build your project. Now run the project. The following
form will appear in an internet browser.

5. Run the project, select any customer from the list, and move the cursor to the next
control. Notice how the rest of the fields were automatically populated with the
customer's information, as shown in the following screenshot:

?
Customer information
Parameters A
Customer account Mame
v
Customer account T Name Account number ~
DE-001 Contoso Europe ~
test08 test 08
Us-001 Contoso Retail 5an Diego
Us-002 Contoso Retail Los Angeles
Us5-003 Forest Wholesales
Us-004 Cave Whaolesales W

[74]

Working with Forms

6 When you click on the Details tab page, you will see more information about the
customer, as shown in the following screenshot:

Customer information

Parameters

Customer account Mame

Us-001 W

Details
SETUP
C'JS:L_"TlEI' E'CI.,C'

Currency

PAYMENT

Terms of payment

Method of payment

0K Cancel

How it works...

The new class named MyDialogSelect is actually a copy of the MyDialog class from the
previous recipe, with a few changes. In its class declaration, we leave all the DialogField

declarations and remove the rest of the variables.

[75]

Working with Forms

The pack () and unpack () methods remain the same, as we are not using any of their
features.

In the dialog () member method, we call the allowUpdateOnSelectCtrl () method with
the t rue argument to enable input control event handling. We also disable all the controls,
apart from Customer account, by calling enable () with the false parameter for each
control.

The dialogSelectCtrl () member method of the RunBase class is called every time the
user modifies any input control in the dialog. It is the place where we have to add all the
required code to ensure that in our case, all the controls are populated with the correct data
from the customer record-once Customer account is selected.

The main () method ensures that the class is runnable.

See also

e The Creating dialogs using the RunBase framework recipe

Creating dialogs using the SysOperation
framework

SysOperation is a framework in Dynamics 365 for Finance and Operations that allows
application logic to be written in a way that supports running operations interactively or via
the D365 batch server. The SysOperation framework follows the MVC (Model-View-
Controller) pattern. As the name implies, the MVC pattern isolates the Model, View, and
Controller components, which makes the process loosely coupled built over the
SysOperation framework. Depending on parameters, the controller can execute different
service operations under four main execution modes. Regardless of which mode a service is
running in, the code runs on a server. This makes the minimum number of round trips
between server and client.

¢ Synchronous: When a service is run in synchronous mode, although it runs on a
server, it freezes the Dynamics 365 for Operations browser client. A call is
initiated from the client and an object is marshaled to the server to run in CIL.
This is good for smaller processes.

[76]

Working with Forms

¢ Asynchronous: In an asynchronous call to service, the client remains responsive.
They only work using the WCF asynchronous service call mechanism. This is
why it is necessary to have it running as an AIF service. One should drop it to the
Dynamics 365 for Operations service group and redeploy the service group. This
is good for lengthy processes where durability is not important.

¢ Reliable Asynchronous: Works like batch service. As soon as a call is initiated to
run a service in reliable asynchronous mode, it is scheduled to be run on the
batch server instantly, but removed as soon as it finishes the job. One can see it
among other scheduled jobs. Since it runs on a batch server, it can exploit the
power of parallel processing. It is used in scenarios where a job needs to be run
on a server and not to schedule. There is room for performance enhancement
making use of parallel processing among different AOS.

¢ Scheduled Batch: A job is scheduled to run on a batch server. This is similar to
reliable asynchronous, except that it does not delete the job instance once the job
is finished. This is used for jobs that need to be run repeatedly at specified time
intervals. There is room for performance enhancements making use of parallel
processing among different AOS.

In this recipe, we will create a dialog which will take certain parameters. Based on the
parameters provided, customer's balance will be displayed onscreen by pressing the button
on the All Customers form to Display balances. It can be opened by navigating to Accounts
receivable | Customers | All Customers.

Getting ready

We will be using the following development artifacts for demonstration purposes.

¢ Data contract: The data contract (CustBalanceDataContract) is the model
class in which we define which attributes we need for our operation, commonly
set as parameters by the user in a dialog. It's just a model class with an attribute,
in which we will use the DataContractAttribute attribute to decorate our
class declaration. For each member variable, we have to define one parm
methods using the attribute DataMemberAttribute, which will work like getter
setter method. Additionally, if we want some more methods to be available to us,
we can also extend the standard class SysOperationDataContractBase. With
this class, we can define how our basic dialog will look to the user. We can define
our labels, groups, sizes, and types of parameters.

[77]

Working with Forms

How to do it...

Carry out the following steps in order to complete this recipe:

1. In the VS project, create a new class called CustBalanceDataContract with the
following code snippet:

[
DataContractAttribute,
SysOperationContractProcessingAttribute
(classStr (CustBalanceUIBuilder)),
SysOperationGroupAttribute
('Date', "@ApplicationPlatform:SingleSpace"”, '1'")
]
class CustBalanceDataContract implementsSysOperationValidatable
{

NoYesId allowModifyDate;

TransDate transDate;

str packedQuery;

/// <summary>

/// Gets or sets the value of the datacontract parameter
DateTransactionDate.

/// </summary>

/// <param name="_transDate">

/// The new value of the datacontract parameter
DateTransactionDate;

/// </param>

/// <returns>

/// The current value of datacontract parameter
DateTransactionDate

/// </returns>

[DataMemberAttribute ('DateTransactionDate"')

, SysOperationLabelAttribute (literalStr ("Q@SYS11284")),
SysOperationGroupMemberAttribute ('Date'),
SysOperationDisplayOrderAttribute('1')] // today's date

public TransDate parmTransDate

(TransDate _transDate = transDate)

{

transDate = _transDate;
return transDate;
/// <summary>

/// Gets or sets the value of the datacontract parameter
DateControl.

[78]

Working with Forms

/// </summary>

/// <param name="_allowModifyDate">
/// The new value of the datacontract parameter
DateControl;

/// </param>

/// <returns>

/// The current value of datacontract parameter
DateControl

/// </returns>

[DataMemberAttribute ('DateControl"'),

SysOperationLabelAttribute ("Enable date control"),

SysOperationGroupMemberAttribute ('Date'),

SysOperationDisplayOrderAttribute ('0'")]

public NoYesId parmAllowModifyDate

(NoYesId _allowModifyDate = allowModifyDate)
{

allowModifyDate = _allowModifyDate;

return allowModifyDate;
}

/// <summary>
/// Validates the dialog values for errors.
/// </summary>
/// <returns>
/// false if an error has occurred in the dialog values;
otherwise, true
/// </returns>
/// <remarks>
/// The dialog values are handled through the contract.
/// </remarks>
public boolean validate()
{

boolean ret = true;

if (!'transDate && allowModifyDate)
ret = checkFailed('Transaction date cannot be empty');

return ret;

[DataMemberAttribute,
AifQueryTypeAttribute
('_packedQuery', querystr (CustTableSRS))
]
public str parmQuery (str _packedQuery = packedQuery)
{
packedQuery = _packedQuery;
return packedQuery;

[79]

Working with Forms

}

public Query getQuery ()
{

return new
Query (SysOperationHelper: :base64Decode (packedQuery)) ;
}

public void setQuery (Query _query)
{
packedQuery
=SysOperationHelper: :base64Encode (_query.pack());

}

Here, SsysOperationGroupAttribute specifies how we group the contract
parameters and provides the order in which to display the group. Data contract
also implements the SysOperationvalidatable interface, due to which we
need to override the validate () method and validate parameters before actual
execution begins. Using SysOperationContractProcessingAttribute, we
specify the UIbuilder class to modify the parameter's behavior at runtime. We
will create this Ul builder class later in this chapter.

2. In the VS project, create a new class called CustBalanceController with the
following code snippet:

e Controller: As the name implies, this class has great responsibility for initiating
the operation. This class holds all the information regarding execution mode; it
should show a progress form or dialog. It is best practice not to write the whole
business login in the Controller class itself. That's why, in this demo, we have
created one service class to write our business logic, and that service class
reference is provided in this controller class main method.

class CustBalanceController extends
SysOperationServiceController
{
str packedQuery;
CustBalanceDataContract contract;

/// <summary>

/// Sets the query ranges based on caller.

/// </summary>

/// <param name="_gquery">

/// The hold the <c>Query</c> object of the service.

[801]

Working with Forms

/// </param>
public void setRanges ()

{

QueryBuildRange queryBuildRange;
QueryBuildDataSource queryBuildDataSource;
FormDataSource custTableDS;
CustTable custTable;

str range;

Query _query;

contract = this.getDataContractObject () as
CustBalanceDataContract;

_query = contract.getQuery();

if (this.parmArgs ()

&& this.parmArgs () .caller ()

&& this.parmArgs () .dataset () == tableNum(CustTable))
{

custTableDS = FormDataUtil::getFormDataSource
(this.parmArgs () .record());

if (_query && custTableDS)

{
// build range
for (custTable = custTableDS.getFirst (true) ?
custTableDS.getFirst (true) : custTableDS.cursor();
custTable;
custTable = custTableDS.getNext ())
{

range = range == '' ? custTable.AccountNum
range
+ ',' + custTable.AccountNum;
}
if (range)
{

queryBuildDataSource =
_query.dataSourceTable (tableNum(CustTable));

// check for QueryBuildDataSource
if (queryBuildDataSource)
{
// clear the old range,and then add it
queryBuildDataSource.clearRanges () ;
if (!queryBuildRange)
{
queryBuildRange
=queryBuildDataSource.addRange
(fieldNum (CustTable, AccountNum)) ;

[81]

Working with Forms

}

queryBuildRange.value (range) ;

}

contract .setQuery(_qguery);

public static void main (Args _args)

{
CustBalanceController controller = new
CustBalanceController (classStr (CustBalanceService),
methodStr (CustBalanceService, processData),
SysOperationExecutionMode: : Synchronous) ;

controller.parmArgs (_args);
controller.setRanges();
controller.startOperation();

}

Here, we extend the SysOperationServiceController class to inherit
controller capabilities. The main method is used to create an instance of the
controller class, where we specify the service class and service method which need
to be called to execute the business logic. The setRanges () method is called to
specify ranges based on the caller.

¢ Service: As I mentioned earlier, it's not a good practice to keep the whole
business logic in one controller class, because it would be a big responsibility for
a single class to handle. That's why, here, we have created a Service class which
is referenced in the Controller class.

3. In the VS project, create a new class called CustBalanceController with the
following code snippet:

class CustBalanceService

{
[SysEntryPointAttribute]
public void processData (CustBalanceDataContract
_custBalanceDataContract)

{

QueryRun queryRun;
CustTable custTable;
Amount balance;

[82]

Working with Forms

// create a new queryrun object
queryRun = new queryRun
(_custBalanceDataContract.getQuery());

// loop all results from the query
while (queryRun.next ())

custTable = queryRun.get (tableNum(custTable));

if (_custBalanceDataContract.parmTransDate())
balance = custTable.balanceMST

(dateNull (),
_custBalanceDataContract.parmTransDate ()) ;

else
balance = custTable.balanceMST () ;
// display the balance
info(strFmt ("%1 - %2",custTable.AccountNum,balance));

}

Here, we get the contract parameters and execute the business logic. The customer
balance in the accounting currency is displayed as at a date if a certain date is
specified. Herein, we could also multithread our process.

e UlIBuider: This class is only required when you want to play with added
parameters (data member attributes) in the contract class. For example,
modifying lookup or enabling/disabling certain parameters on a dialog.

4. In the VS project, create a new class called CustBalanceUIBuilder with the
following code snippet:

class CustBalanceUIBuilder extends
SysOperationAutomaticUIBuilder

{
DialogField dialogFieldAllowModifyDate;

DialogField dialogFieldTransDate;
CustBalanceDataContract custBalanceDataContract;

public boolean allowModifyDateModified (FormCheckBoxControl
_checkBoxControl)

{
// set enabled or disabled based on checkbox
dialogFieldTransDate.enabled
(any2enum(dialogFieldAllowModifyDate.value()));

[83]

Working with Forms

// or alternatively

//

dialogFieldTransDate.enabled
(_checkBoxControl.checked());

return true;

public void postBuild()
{

super () ;

// get datacontract
custBalanceDataContract = this.dataContractObject ();

// get dialog fields

dialogFieldTransDate= this.bindInfo () .getDialogField
(custBalanceDataContract, methodstr
(custBalanceDataContract, parmTransDate));

dialogFieldAllowModifyDate=

this.bindInfo () .getDialogField
(custBalanceDataContract, methodstr

(custBalanceDataContract, parmAllowModifyDate)) ;

// register override methods
dialogFieldAllowModifyDate.registerOverrideMethod
(methodstr (FormCheckBoxControl, modified),
methodstr (CustBalanceUIBuilder,
allowModifyDateModified), this);
dialogFieldTransDate.enabled
(any2enum(dialogFieldAllowModifyDate.value()));

}

Here, we override the postBuild method and get the two dialog fields. Taking it
further, we register the allowModifyDateModified () on event modified of our
dialogFieldAllowModifyDate control.

Finally, we need to create an action menu item as an entry point to execute the
preceding code:

[84]

Working with Forms

1. In the VS project, create a new action menu item called
CustBalanceController with the following properties:

Properties * 1 X
CustBalanceController Menu ltem Action Properties -
=8 [£
Maintain User Licensze Mone -
m CustBalanceController
Object CustBalanceController
Object Type Class
Pararmeters
Cuery
Read Permissions Auto

2. Place the menu item at Accounts receivable | Customers | All Customers |
Customer | Balance | Display balance, as shown in the following screenshot:

CustTable bxtensiont = < [
D -

FY

Search ...

[CustTable.Extension1 (usr) [PACKT] [Base: Application Suite] Design | Pattern: Details Master
&¥ Methods 4 ActionPaneHeader (Action Pane)
% Events ¥ Methods

g Data Sources £ Events
[Parts NewDeleteButtonGroup (Button Group)

aptabCustomer (Action Pane Tab)
&% Methods
Events
btngrpCustomerAccounts (Button Group)
btngrpCustomerTransactions (Button Group)
= bingrpCustomerBalance (Button Group)
b g% Methods
P& Events
P mibCustOpenBalanceCurrency (Menu ltem Butt
b +E5 CustBalanceController (Menu ltem Button)
b btngrpCustomerforecast (Button Group)
3 btngrpCustomerSetup (Button Group)

3
3
3
[

| A~

AT T T T

[85]

Working with Forms

3. Finally, our customer form will look as follows:

Parameters
Enable date contral Today's date
No]
Records to include
%Y Filter
CUSTOMERS
Customer account
Run in the background
4. The final output will look as follows:
ACCOUNTS TRANSACTIONS BALANCE FORECAST SETUP ATTACHMENTS FRAUD CATALO)
Contacts Transactions Balance Forecast Bank accounts Credit cards Attachments Hold Send cf
Change party association Display balances Summary update Product filters Clear
Notes
<
Click the edit button to make changes.
—
() 1001 - -53.12
ALL CUSTOMERS
| P Filter
v Account T Name Invoice account Customer group Currency Telephone
100002 Default Online Customer 30 usD
100003 Default Call center Customer 30 usD
U 1001 | basketball Stadium 20 usD 987-555-014
1002 Football Stadium 20 usbD 412-555-014

SysOperationTemplateFarm

[86]

Working with Forms

Building a dynamic form

A standard approach to creating forms in Dynamics 365 for Finance and Operations is to
build and store form objects in the AOT. It is possible to achieve a high level of complexity
using this approach. However, in a number of cases, it is necessary to have forms created
dynamically. In a standard Dynamics 365 for Finance and Operations application, we can
see that application objects, such as the Table browser form, various lookups, or dialogs,
are built dynamically. Even in Dynamics 365 for Finance and Operations, where we have a
browser-based interface, every form or dialog opens in a browser only.

In this recipe, we will create a dynamic form. In order to show how flexible the form can be,
we will replicate the layout of the existing Customer groups form located in the Accounts
receivable module. The Customers form can be opened by navigating to Accounts
receivable | Setup | Customers.

How to do it...

Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class called CustGroupDynamicForm with the
following code snippet.
2. We will run this class directly to get output. So, just for ease, we will write all
code in the main method of this class:

class CustGroupDynamicForm

{

{

// Object declarations
DictTable

Form

FormBuildDesign
FormBuildDataSource
FormBuildActionPaneControl
FormBuildActionPaneTabControl
FormBuildButtonGroupControl
FormBuildButtonGroupControl
FormBuildCommandButtonControl
FormBuildCommandButtonControl
FormBuildMenuButtonControl
FormBuildFunctionButtonControl
FormBuildFunctionButtonControl
FormBuildGridControl

public static void main (Args _args)

dictTable;
form;
design;

ds;
actionPane;
actionPaneTab;
btngrpl;
btngrp2;
cmdNew;
cmdDel;
mbPosting;
mibPosting;
mibForecast;
grid;

[871]

Working with Forms

FormBuildGroupControl grpBody;
Args args;
FormRun formRun;
#Task

dictTable = new DictTable (tableNum(CustGroup)) ;

// Use Form class to create a dynamics form and
//use its method to set different properties.
form = new Form();

form.name ("CustGroupDynamic") ;

//Add datasource in Form
ds = form.addDataSource (dictTable.name());
ds.table (dictTable.id());

//Set Design prperties

design = form.addDesign ('Design');
design.caption ("Customer groups");
design.style (FormStyle::SimplelList);
design.titleDatasource (ds.id());

//Add ActionPan design controls and set their
//properties

actionPane = design.addControl (

FormControlType: :ActionPane, 'ActionPane');
actionPane.style (ActionPaneStyle::Strip);
actionPaneTab = actionPane.addControl (
FormControlType: :ActionPaneTab, 'ActionPaneTab');
btngrpl = actionPaneTab.addControl (
FormControlType: :ButtonGroup, 'NewDeleteGroup');
btngrp2 = actionPaneTab.addControl (
FormControlType: :ButtonGroup, 'ButtonGroup');

//Add CommandButton design controls and set their
//properties

cmdNew = btngrpl.addControl (

FormControlType: :CommandButton, 'NewButton');
cmdNew.primary (NoYes: :Yes);

cmdNew . command (#taskNew) ;

//Add CommandButton design controls and set their
//properties

cmdDel = btngrpl.addControl (
FormControlType: :CommandButton, 'DeleteButton');
cmdDel.text ("Delete");

[881]

Working with Forms

cmdDel.saveRecord (NoYes: :Yes);
cmdDel .primary (NoYes: :Yes);
cmdDel .command (#taskDeleteRecord) ;

//Add MenuButton design controls and set their
//properties

mbPosting = btngrp2.addControl (

FormControlType: :MenuButton, 'MenuButtonPosting');
mbPosting.helpText ("Set up related data for the group.");
mbPosting.text ("Setup");

mibPosting = mbPosting.addControl (
FormControlType: :MenuFunctionButton, 'Posting');
mibPosting.text ('Item posting');
mibPosting.saveRecord (NoYes: :No) ;
mibPosting.dataSource (ds.id());
mibPosting.menultemName

(menuitemDisplayStr (InventPosting));

mibForecast = btngrp2.addControl (

FormControlType: :MenuFunctionButton, 'SalesForecast');
mibForecast.text ('Forecast');
mibForecast.saveRecord (NoYes: :No);
mibForecast.menultemName (

menuitemDisplayStr (ForecastSalesGroup));

//Add Grid design controls and set their
//properties

grpBody = design.addControl (FormControlType: :Group,
'Body') ;

grpBody.heightMode (FormHeight : :ColumnHeight) ;

grpBody.columnspace (0) ;

grpBody.style (GroupStyle::BorderlessGridContainer);

grid = grpBody.addControl (FormControlType::Grid, "Grid");
grid.dataSource (ds.name());

grid.showRowLabels (false);

grid.widthMode (FormWidth: :ColumnWidth) ;

grid.heightMode (FormHeight: :ColumnHeight) ;

//Add fields in Grid and set their //properties

grid.addDataField
(ds.id (), fieldNum (CustGroup,CustGroup));

[891]

Working with Forms

grid.addDataField(
ds.id (), fieldNum(CustGroup,Name)) ;

grid.addDataField(
ds.id (), fieldNum(CustGroup,PaymTermId));

grid.addDataField(
ds.id (), fieldnum(CustGroup,ClearingPeriod));

grid.addDataField(
ds.id (), fieldNum(CustGroup,BankCustPaymIdTable));

grid.addDataField(
ds.id (), fieldNum(CustGroup,TaxGroupId));
args = new Args();
args.object (form) ;

formRun = classFactory.formRunClass (args) ;
formRun.init () ;
formRun.run () ;

formRun.detach () ;

}

3. In order to test the form, run the CustGroupDynamic class. Notice that the form
is similar to the one located in Accounts receivable, which can be obtained by
navigating to Setup | Customers | Customer groups, as shown in the following
screenshot:

[90]

Working with Forms

& Edit | New Ti] Delete OPTIONS

Click the edit button to make changes.
v Customer groups
} New il Delete Setup v Forecast

Customer gr.. T Description Terms of payment Default tax group
Wholesale customers MNet30
20 Major customers Met30
30 Retail customers Met10
40 Internet customers Met10
50 Employees Met30
80 Other customers Met10
90 Intercompany customers Met10
Employee

Retail Met 30

How it works...

We start the code by declaring variables. Note that most of the variable types begin with
FormBuild, which are a part of a set of application classes used to build dynamic forms.

Each of these types corresponds to the control types that are manually used when building
forms in the AOT.

Right after the variable declaration, we create a dictTable object based on the CustGroup
table. We will use this object several times later in the code. Then, we create a form object
and set a name by calling the following lines of code:

form = new Form();
form.name ("CustGroupDynamic") ;

[91]

Working with Forms

The name of the form object is not important, as this is a dynamic form. The form should
have a data source, so we add one by calling the addbataSource () method to the form
object and by providing a previously created dictTable object, as shown here:

ds = form.addDataSource (dictTable.name());
ds.table (dictTable.id());

Every form has a design, so we add a new design, define its style as a simple list, and set its
title data source, as shown in the following code snippet:

design = form.addDesign ('Design');
design.caption ("Customer groups");
design.style (FormStyle::SimplelList);
design.titleDatasource (ds.id());

Once the design is ready, we can start adding controls from the code as if we were doing
this from the AOT. The first thing you need to do is to add a st rip action pane with its
buttons:

actionPane = design.addControl (

(FormControlType: :ActionPane, 'ActionPane');
actionPane.style (ActionPaneStyle::Strip);
actionPaneTab = actionPane.addControl (

(FormControlType: :ActionPaneTab, 'ActionPaneTab');
btngrpl = actionPaneTab.addControl (

Right after the action pane, we add an automatically expanding grid that points to the
previously mentioned data source. Just to follow best practices, we place the grid inside a
Group control:

grpBody = design.addControl (FormControlType::Group, 'Body');
grpBody.heightMode (FormHeight : :ColumnHeight) ;
grpBody.columnspace (0) ;

grpBody.style (GroupStyle::BorderlessGridContainer);

grid = grpBody.addControl (FormControlType::Grid, "Grid");
grid.dataSource (ds.name());

grid.showRowLabels (false);

grid.widthMode (FormWidth: :ColumnWidth) ;

grid.heightMode (FormHeight: :ColumnHeight) ;

Next, we add a number of grid controls that point to the relevant data source fields by
calling addDataField () on the grid object. The last thing is to initialize and run the form.
Here, we use the recommended approach to creating and running forms using the globally
available classFactory object.

[92]

Working with Forms

Adding a form splitter

In Dynamics 365 for Finance and Operations, complex forms consist of one or more
sections. Each section may contain grids, groups, or any other element. In order to maintain
section sizes while resizing the form, the sections are normally separated by so-called
splitters. Splitters are not special Dynamics 365 for Finance and Operations controls; they
are Group controls with their properties modified so that they look like splitters. Most of the
multisection forms in Dynamics 365 for Finance and Operations already contain splitters.

In this recipe, in order to demonstrate the usage of splitters, we will modify one of the
existing forms that does not have a splitter. We will modify the Account reconciliation
form in the Cash and bank management module. You can open this module by navigating
to Cash and bank management | Setup | Bank group. From the following screenshot, you
can see that it is not possible to control the size of each grid individually and that they are
resized automatically using a fixed radio button when resizing the form:

& Edit + New [i] Delete | Update bank accounts OPTIONS °

Click the edit button to make changes.
Y | [Fiter | Bank groups
= Bank groups Routing number MName
?}a;ngUR BankEUR 1458 Bank of Europe
Address
BankUSA
123456780
General
Contact information
Reconciliation

In this recipe, we will demonstrate the usage of splitters by improving this situation. We
will add a form splitter between two grids in the mentioned form. This will allow users to
define the sizes of both grids in order to ensure that the data is displayed optimally.

[93]

Working with Forms

How to do it...

Carry out the following steps in order to complete this recipe:

1. Add the BankGroup form in the AOT and, in the form's design, add a new Group
control right after the ActionPane control with the following properties:

Property Value

Name Top

AutoDeclaration | Yes

FrameType None

2. Move the DetailsHeader and Tab controls into the newly created group.
3. Change the following properties of the existing DetailsHeader group:

Property | Value

Top Auto

Height | Column height

4. Add a new Group control immediately below the Top group with the following
properties:

Property Value

Name Splitter

Style SplitterVerticalContainer

AutoDeclaration | Yes

5. Add the following line of code at the bottom of the form's class declaration:
SysFormSplitter_Y formSplitter;
6. Add the following line of code at the bottom of the form's init () method:

formSplitter = new SysFormSplitter_Y (Splitter, Top, element);

[94]

Working with Forms

7. Save all your code and build the solution.

8. Now, in order to test the results, navigate to Cash and bank management |
Setup | Bank groups. Note that, now, the form has a splitter in the middle, which
makes the form look better and allows you to resize both grids, as shown in the
following screenshot:

Z Edit - New Ti] Delete = Update bank accounts OPTIONS ~ .°
Click the edit button to make changes. X
~
v 5 rier | Bank groups
= Address ~
BankEUR
1458
BankUSA
123456780
General v
Contact information v
Reconciliation v
Bank groups
W
BankEUR

How it works...

Normally, a splitter has to be placed between two form groups. In this recipe, to follow this
rule, we need to adjust the BankGroup form's design. The DetailsHeader group and Tab
controls are moved to a new group called Top. We do not want this new group to be visible
to the user, so we set FrameType to None. Setting AutoDeclaration to Yes allows you to
access this object from the code. Finally, we make this group automatically expand in the
horizontal direction by setting its width property to Column width. At this stage, the
visual form layout does not change, but now we have the upper group ready.

We change its Top behavior to Auto and make it fully expandable in the vertical direction.
The Height property of the grid inside this group also has to be changed to Column
height in order to fill all the vertical space.

[95]

Working with Forms

In the middle of these two groups, we add a splitter. The splitter is nothing but another
group which looks like a splitter. We set its Style property to
SplitterVerticalContainer, which makes this control look like a proper form splitter.

Finally, we have to declare and initialize the SysFormSplitter_Y application class, which
does the rest of the tasks.

In this way, horizontal splitters can be added to any form. Vertical splitters can also be
added to forms using a similar approach. For this, we need to use another application class
called SysFormSplitter_X.

Creating a modal form

Often, people who are not familiar with computers and software tend to get lost among
open application windows. The same can be applied to Dynamics 365 for Finance and
Operations. Frequently, a user opens a form, clicks a button to open another one, and then
goes back to the first one without closing the second form. Sometimes this happens
intentionally, sometimes not, but the result is that the second form gets hidden behind the
first one and the user starts wondering why it is not possible to close or edit the first form.

Although it is not best practice, sometimes such issues can be easily solved by making the
child form a modal window. In other words, the second form always stays on top of the
first one until it is closed. In this recipe, we will make a modal window from the Create
sales order form.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Add the salesCreateOrder form in the project and set its Design property:

Property Value

WindowType | Popup

[96]

Working with Forms

2. In order to test it, navigate to Sales and marketing | Common | Sales orders |
All sales orders and start creating a new order. Notice that, now, the sales order
creation form always stays on top:

Create sales order

Customer AA

CUSTOMER

Customer account

One-time customer
No [

Search by Search for

Keyword A e

Mame

Contact

ADDRESS

Delivery name Address

0K Cancel

[97]

Working with Forms

How it works...

The form's design has a WindowType property, which is set to Standard by default. In
order to make a form behave as a modal window, we have to change it to Popup. Such
forms will always stay on top of the parent form.

There's more...

We already know that some of the Dynamics 365 for Finance and Operations forms are
created dynamically using the Dialog class. If we take a deeper look at the code, we will
find that the Dialog class actually creates a runtime form. This means that we can apply the
same principle--change the relevant form's design property. The following lines of code
can be added to the Dialog object and will do the job:

dialog.dialogForm() .buildDesign () .windowType
(FormWindowType: :Popup) ;

Here, we get a reference to the form's design by first using the dialogForm () method of
the Dialog object to get a reference to the DialogForm object, and then we call
buildDesign () on the latter object. Lastly, we set the design property by calling its
windowType () method with the FormiWindowType: : Popup argument.

See also

e The Creating dialogs using the RunBase framework recipe

Modifying multiple forms dynamically

In the standard Dynamics 365 for Finance and Operations, there is a class called
SysSetupFormRun. The class is called during the run of every form in Dynamics 365 for
Operations; therefore, it can be used to override one of the common behaviors for all
Dynamics 365 for Finance and Operations forms. For example, different form background
colors can be set for different company accounts, some controls can be hidden or added
depending on specific circumstances, and so on.

In this recipe, we will modify the SysSetupFormRun class to automatically add the About
Dynamics 365 for Operations button to every form in Dynamics 365 for Finance and
Operations.

[98]

Working with Forms

How to do it...

Carry out the following steps in order to complete this recipe:

1. Add a new project, name it Mult ipleForm, and change the model to Application
Platform, as shown in the following screenshot:

MultipleForm (USR] [PacktPub] Property Pages \L-
General Use Label Text as Field Name False ~
4 (Project)
Startup Object Type Class
Startup Object
Company
Partition initial
Project File MultipleForm.rmrproj
Project Folder I\Book\ChapterD2\MultipleForm =
[Appicaton Pstform ~
Model Publisher Microsoft Corporation
Layer sys
Synchronize Database on Build False
Generate Form Adaptors False
b
Model
The model that contains the project artifacts.
| oK | | Cancel | | Apply |

2. Add the FormRun class and create a new method with the following code snippet:

private void addAboutButton ()

{
FormActionPaneControl actionPane;
FormActionPaneTabControl actionPaneTab;
FormCommandButtonControl cmdAbout;
FormButtonGroupControl btngrp;
#define.taskAbout (259)

actionPane = this.design () .controlNum(1l);
if (l'actionPane ||
! (actionPane is FormActionPaneControl) ||

actionPane.style() == ActionPaneStyle::Strip)

return;

actionPaneTab = actionPane.controlNum (1) ;

[991]

Working with Forms

}

if (l'actionPaneTab ||
! (actionPaneTab is FormActionPaneTabControl))

return;

btngrp = actionPaneTab.addControl
(FormControlType: :ButtonGroup, 'ButtonGroup');
btngrp.caption ("About") ;

cmdAbout = btngrp.addControl
(FormControlType: :CommandButton, 'About');
cmdAbout . command (#taskAbout) ;
cmdAbout .imageLocation
(SysImageLocation: :EmbeddedResource) ;
cmdAbout .normalImage ('412");
cmdAbout .big (NoYes: :Yes);
cmdAbout . saveRecord (NoYes: :No) ;

3. In the same class, override its run () method with the following code snippet:

public void run()

{

}

this.addAboutButton () ;
super () ;

4. In order to test the results, open any list page; for example, go to Accounts
Receivable | Customers | All customers and you will notice a new button
named About Dynamics 365 for Operations in the Action pane, as shown in the
following screenshot:

[100]

Working with Forms

Z Edit |+ New [i] Delete = About Microsoft Dynamics AX |REUSIeNIZWM SELL INVOICE COLLECT PROJECTS SERVICE MARKET RETAL P

ACCOUNTS TRANSACTIONS BALANCE FORECAST SETUP ATTACHMENTS FRAUD CATALOGS CUSTOMER SERVICE REGISTRATION

Contacts Balance Forecast Bank accounts Credit cards Attachments Hold Send catalog Customer senvice Registratien IDs
Change party association Summary update Product filters Clear Registration number search

Notes

Click the edit button to make changes.

v
v Account T Name Currency Invoice account Customer group Telephone Extension Is merged
004003 Mara Gentry usD 30
004005 Eve Whitehead usb 30
004007 Owen Talley usb 30
004009 Mathew Tolley usb 30
004011 Jennifer Beach usb 30
004013 Shelly Beach usb 30 206-555-5011

004015 Cameron Hartnett UsD 30 Customer group: 30, Retail customers

How it works...

The SysSetupFormRun is the application class that is called by the system every time a user
runs a form. The best place to add our custom control is in its run () method.

We use the this.design () method to get a reference to the form's design and then we
check whether the first control in the design is an action pane. We continue by adding a
new separate button group and the About Dynamics 365 for Operations command button.
Now, every form in Dynamics 365 for Finance and Operations with an action pane will
have one more button.

Storing the last form values

Dynamics 365 for Finance and Operations has a very useful feature that allows you to save
the latest user choices per user per form, report, or any other object. This feature is
implemented across a number of standard forms, reports, periodic jobs, and other objects
which require user input. When developing a new functionality for Dynamics 365 for
Finance and Operations, it is recommended that you keep it that way.

[101]

Working with Forms

In this recipe, we will demonstrate how to save the latest user selections. In order to make it
as simple as possible, we will use the existing filters on the Bank statement form, which can
be opened by navigating to Cash and bank management | Common | Bank accounts,
selecting any bank account, and then clicking on the Account reconciliation button in the
Action pane. This form contains one filter control called View, which allows you to display
bank statements based on their status. The default view of this form is Unreconciled. We
will see how to use the below code to save user selections for future purposes.

How to do it...

Carry out the following steps in order to complete this recipe:

1. In the AOT, find the BankAccountStatement form and add the following code
snippet to the bottom of its class declaration:

AllNotReconciled showAllReconciled;
#define.CurrentVersion (1)
#localmacro.CurrentList
showAllReconciled

#endmacro

2. Add the following additional form methods:

public void initParmDefault ()

{

showAllReconciled = AllNotReconciled: :NotReconciled;
}

public container pack()
{

return [#CurrentVersion, #CurrentList];

public boolean unpack (container _packedClass)
{

int version = RunBase::getVersion (_packedClass);

switch (version)

{

case #CurrentVersion:

[version, #CurrentList] = _packedClass;
return true;
default:

return false;

[102]

Working with Forms

return false;

public IdentifierName lastValueDesignName ()

{

return element.args () .menultemName () ;

public IdentifierName lastValueElementName ()

{

return this.name () ;

public UtilElementType lastValueType ()
{

return UtilElementType: :Form;

public UserId lastValueUserId()
{

return curUserId();

public DataAreald lastValueDataArealId()
{

return curext ();

}

3. Override the form's run () method and add the following lines of code right
before its super () method:

xSysLastValue: :getLast (this);
AllReconciled.selection (showAllReconciled) ;

4. Override the form's close () method and add the following lines of code at the
bottom of this method:

showAllReconciled = AllReconciled.selection();
xSysLastValue: :savelast (this);

5. Finally, delete the following line of code from the init () method of the
BankAccountStatement data source:

allReconciled.selection(1);

[103]

Working with Forms

6. Now, to test the form, navigate to Cash and bank management | Common |
Bank accounts, select any bank account, click on Account reconciliation, change
the filter's value, close the form, and then open it again. The latest selection
should remain, as shown in the following screenshot:

USMF EUR : FOREIGN CURREMNCY ACCOUMNT - EUR

Bank statement

Wi
View

‘ Reconciled 4 ‘

v | Bank statement date Bank statement Currency Ending balance | Reconciled ¥

1/31/2014 B5-0001 EUR hDD,DDD.DO 11/30/2015

How it works...

First, we define a variable that will store the value of the filter control. The #CurrentList
macro is used to define a list of variables that we are going to save in the usage data.
Currently, we have our single variable inside it.

The #CurrentVersion macro defines a version of the saved values. In other words, it says
that the variables defined by the #CurrentList macro, which will be stored in the system
usage data, can be addressed using the number 1.

Normally, when implementing the last value saved for the first time for a particular object,
#CurrentVersion is set to 1. Later on, if you decide to add new values or change the
existing ones, you have to change the value of #CurrentVersion, normally increasing it by
one. This ensures that the system addresses the correct list of variables in the usage.

The initParmbefault () method specifies the default values if nothing is found in the
usage data. Normally, this happens if we run a form for the first time, we change
#CurrentVersion, or we clear the usage data. This method is called automatically by the
xSysLastValue class.

[104]

Working with Forms

The pack () and unpack () methods are responsible for formatting a storage container from
the variables and extracting variables from a storage container, respectively. In our case,
pack () returns a container consisting of two values: version number and statement status.
These values will be sent to the system usage data storage after the form is closed. When the
form is opened, the xSysLastValue class uses unpack () to extract values from the stored
container. It checks whether the container version in the usage data matches the current
version number defined by #CurrentVersion, and only then the values are considered
correct and assigned to the form's variables.

The return values of 1astValueDesignName (), lastValueElementName (),
lastValueType (), lastValueUserId (), and lastValueDataArealId () represent a
unique combination that is used to identify the stored usage data. This ensures that
different users can store the last values of different objects in different companies without
overriding each other's values.

The lastValueDesignName () method is meant to return the name of the object's current
design in cases where the object can have several designs. In this recipe, there is only one
design, so instead of leaving it empty, we used it for a slightly different purpose. The
method returns the name of the menu item used to open this form. In this case, separate
usage datasets will be stored for each menu item that opens the same form.

The last two pieces of code need to be added to the form's run () and close () methods. In
the run () method, xSysLastValue: :getLast (this) retrieves the saved user values
from the usage data and assigns them to the form's variables.

Finally, the code in the close () method is responsible for assigning user selections to the
variables and saving them to the usage data by calling
xSysLastValue: :savelast (this).

Using a tree control

Frequent users will notice that some of the Dynamics 365 for Finance and Operations forms
use tree controls instead of the commonly used grids. In some cases, this is extremely
useful, especially when there are parent-child relationships among records. It is a much
clearer way to show the whole hierarchy, as compared to a flat list. For example, product
categories are organized as a hierarchy and give a much better overview when displayed in
a tree layout.

[105]

Working with Forms

This recipe will discuss the principles of how to build tree-based forms. As an example, we
will use the Budget model form, which can be found by navigating to Budgeting | Setup |
Basic Budgeting | Budget models. This form contains a list of budget models and their
submodels and, although the data is organized using a parent-child structure, it is still
displayed as a grid. In this recipe, in order to demonstrate the usage of the Tree control, we
will replace the grid with a new Tree control.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Add a new project in your solution in Visual Studio. Add a new class called
BudgetModelTree with the following code snippet:

public class BudgetModelTree
{
FormTreeControl tree;
BudgetModelId modelId;
}

public void new(
FormTreeControl _formTreeControl,
BudgetModelId _budgetModelId)

tree = _formTreeControl;
modelId = _budgetModelId;

public static BudgetModelTree construct (
FormTreeControl _formTreeControl,
BudgetModelId _budgetModelId = '")

return new BudgetModelTree (

_formTreeControl,
_budgetModelId) ;

private TreeltemlIdx createNode (

TreeltemIdx _parentIdx,
BudgetModelId _modellId,
RecId _recId)

TreeltemIdx itemIdx;
BudgetModel model;
BudgetModel submodel;

[106]

Working with Forms

model = BudgetModel::find(HeadingSub: :Heading,
_modelId);

itemIdx = SysFormTreeControl::addTreeltem(
tree,
_modelId + ' : ' + model.Txt,
_parentIdx,
_recld,

0,

true);

if (modelId == _modelId)

{

tree.select (itemIdx) ;

}

while select submodel

where submodel.ModellId == _modellId &&
submodel. Type == HeadingSub: :SubModel

{
this.createNode (
itemIdx,
submodel . SubModellId,
submodel .RecId) ;

}

return itemIdx;

public void buildTree()

{

BudgetModel model;
BudgetModel submodel;
TreeltemIdx itemIdx;

tree.deleteAll ();
tree.lock();
while select RecId, ModellId from model
where model.Type == HeadingSub::Heading
notExists join submodel
where submodel.SubModelId == model.ModelId &&
submodel. Type == HeadingSub::SubModel
{
itemIdx = this.createNode (
FormTreeAdd: :Root,
model .ModelId,
model.RecId);
SysFormTreeControl: :expandTree (tree, itemIdx);
}

tree.unLock (true);

[107]

Working with Forms

2. In the AOT, open the BudgetModel form's design, expand the Body group, then
expand the GridContainer group and change the following property of the
BudgetModel grid control:

Property | Value
Visible |No

3. Create a new Tree control right below the BudgetModel grid with these
properties, as shown in the following table along with their values:

Property Value

Name Tree

Width Column width
Height Column height
Border Single line
RowSelect Yes
AutoDeclartion | Yes

4. Add the following line of code to the bottom of the form's class declaration:
BudgetModelTree modelTree;
5. Add the following lines of code at the bottom of the form's init () method:

modelTree = BudgetModelTree::construct (Tree);
modelTree.buildTree () ;

6. Override selectionChanged () on the Tree control with the following code

snippet:
public void selectionChanged (
FormTreeltem _oldItem,
FormTreeltem _newltem,

FormTreeSelect _how)

{
BudgetModel model;
BudgetModelId modelId;

super (_oldItem, _newItem, _how);

[108]

Working with Forms

if (_newlItem.data())
{
select firstOnly model
where model.RecId == _newltem.data();
if (model.Type == HeadingSub::SubModel)
{
modelId = model.SubModelId;
select firstOnly model
where model.ModelId == modelId

&& model.Type == HeadingSub::Heading;
}

BudgetModel_ds.findRecord (model) ;
BudgetModel_ds.refresh();

}

7. Override the delete () method on the BudgetModel data source with the
following code snippet:

public void delete()
{

super () ;

if (BudgetModel.RecId)
{

modelTree.buildTree () ;

}

8. Add the following line of code at the bottom of the write () method on the
BudgetModel data source:

modelTree.buildTree () ;

9. Override the delete () method on the SubModel data source with the following
code snippet:

public void delete ()
{

super () ;

if (SubModel.RecId)
{

modelTree.buildTree () ;

[109]

Working with Forms

10. Override the write () method on the SubModel data source and add the
following line of code at the bottom:

modelTree.buildTree () ;

11. Save all your code and build your solution.
12. In Visual Studio, the BudgetModel design should look like the following
screenshot:

By Design | Pattern: Simple List and Details - List Grid
b ActionPane (Action Pane)
4 ["] GridContainer (Group)

&% Methods

£ Events

[] CuickFilterContral (CQuickFilter)

=i BudgetModel (Grid)
+'s= Tree (Tree)

4 g% Methods

+Zig selectionChanged

B & Events
b ["] DetailsHeader (Group) | Pattern: Fields and Field Groups

b [3 Tab (Tab)

h VW W W

13. To test the Tree control, navigate to Budgeting | Setup | Basic budgeting |
Budget models. Notice how the budget models are presented as a hierarchy, as
shown here:

[110]

Working with Forms

= Edit -+ New [i] Delete OPTIONS P

Click the edit button to make changes.

v Budget model

FY2011 : Fiscal year 2011 budget Budget madel Name

FY2016 Fiscal year 2016 budget
FY2012 : Fiscal year 2012 budget 1scal year uage

FY2013 : Fiscal year 2013 budget

General
FY2014 : Fiscal year 2014 budget
Stopped
FY2015 : Fiscal year 2015 budget No
4 ;FYZDIE : Fiscal year 2016 budget
F¥2016-1: Fiscal year 2016 budget - first half Submodel
FY2016-2 : Fiscal year 2016 budget - second half f-Add i Remove
v Submodel
FY2016-1
FY2016-2

How it works...

This recipe contains a lot of code, so we create a class to hold most of it. This allows you to
reuse the code and keep the form less cluttered.

The new class contains a few common methods, such as new () and construct (), for
initializing the class, and two methods which actually generate the tree.

The first method is createNode () and is used to create a single budget model node with
its children, if any. It is a recursive method, and it calls itself to generate the children of the
current node. It accepts a parent node and a budget model as arguments. In this method, we
create the node by calling the addTreeItem () method of the SysFormTreeControl class.
The rest of the code loops through all the submodels and creates subnodes (if there are any)
for each of them.

Second, we create buildTree (), where the whole tree is created. Before we actually start
building it, we delete all the existing nodes (if any) in the tree and then lock the Tree
control to make sure that the user cannot modify it while it's being built. Then, we add
nodes by looping through all the parent budget models and calling the previously
mentioned createNode (). We call the expandTree () method of the
SysFormTreeControl class in order to display every parent budget model that was
initially expanded. Once the hierarchy is ready, we unlock the Tree control.

[111]

Working with Forms

Next, we modify the BudgetModel form by hiding the existing grid section and adding a
new tree control. Tree nodes are always generated from the code and the previously
mentioned class will do exactly that. On the form, we declare and initialize the modelTree
object and build the tree in the form's init () method.

In order to ensure that the currently selected tree node is displayed on the form on the
right-hand side, we override the tree control's selectionChanged () event, which is
triggered every time a tree node is selected. Here, we locate a corresponding record and
place a cursor on that record.

The rest of the code on the form is to ensure that the tree is rebuilt whenever the data is
modified.

See also

o The Preloading images recipe in Chapter 3, Working with Data in Forms
e The Building a tree lookup recipe in Chapter 4, Building Lookups

Adding the View details link

Dynamics 365 for Finance and Operations has a very useful feature that allows the user to
open the main record form with just a few mouse clicks on the current form. The feature is
called View details and is available in the right-click context menu on some controls. It is
based on table relationships and is available for those controls whose data fields have
foreign key relationships with other tables.

Because of the data structure's integrity, the View details feature works most of the time.
However, when it comes to complex table relations, it does not work correctly or does not
work at all. Another example of when this feature does not work automatically is when the
display or edit methods are used on a form. In these and many other cases, the View
details feature has to be implemented manually.

In this recipe, to demonstrate how it works, we will modify the General journal form in the
General ledger module and add the View details feature to the Description control,
allowing users to jump from the right-click context menu to the Journal names form.

[112]

Working with Forms

How to do it...

Carry out the following steps in order to complete this recipe:

1. Add the LedgerJournalTable form to your project, expand its data sources,
and override jumpRef () of the Name field on the LedgerJournalTable data

source with the following code snippet:

public void jumpRef ()

{

}

LedgerJournalName name;

Args args;
MenuFunction mf;

name = LedgerJournalName::find

(LedgerJournalTable.JournalName) ;

if (!name)
{

return;

args = new Args();
args.caller (element) ;
args.record (name) ;

mf = new MenuFunction

(menuitemDisplayStr (LedgerJournalSetup),

MenulItemType::Display);
mf.run (args) ;

2. Save all your code and build your solution.

[113]

Working with Forms

3. Navigate to General ledger | Journals Entries | General journal, select any of
the existing records, and right-click on the Description column. Notice that the
View details option, which will open the Journal names form, is available now,
as shown here:

Save -+ New Lines Open lines in Excel ~ Validate Inquiries » Print

v General journals

Show

‘ Not posted V‘ D Show user-created only

[N GEMERAL SETUP BLOCKING FINAMNCIAL DIMENSIONS HISTORY

v | Joumal batch... T | Name Description Posted % Posted on
4l 00459 WFGenJm WE General Journal
00471 WFGenJm WF Generg Form informatien

Personalize: Description
Export all rows

View details

You may need to refresh your Dynamics 365 for Operations page to reflect your
changes in the frontend.

4. When you click on View details, the below form should open:

[114]

Working with Forms

B Save + MNew il Delete = Joumnal control Posting restrictions OPTIONS pel

WFGENJRN : GEMERAL JOURNAL - WORKFLOW
T |2 Finer | Journal names
= Name Description
- Name T Description
Allocation | Ledger allocations
Allocation Ledger allocations A
APInvApp AP Invoice Approval General
APlnvaice AP Invaice Journal type New voucher Detail level
APInvReg AP Invoice Register | Allocation ~
ARCnsmp AR Consumption journal Fees posting
o APPROVAL
Broker Broker Liability
Active
Budget Budget Appropriation Document Lines limit
No]
CheckRev Check Reversal
Approve
CustPay Customer Payment "
OFFSET ACCOUNT PROPOSAL CURRENCY
Deductinl Deduction journal
DepRev Deposit Reversal APPROVAL WORKFLOW
FABudget FA Budget Approval workflow B o -
ccount type Currency
FACur Fixed Asset Entries - Current Mo

How it works...

Normally, the View details feature is controlled by the relationships between the
underlying tables. If there are no relationships or the form control is not bound to a table
field, then this option is not available. However, we can force this option to appear by
overriding the control's jumpRef () method.

In this method, we add code that opens the relevant form. This can be done by declaring,
instantiating, and running a FormRun object, but an easier way to do this is to simply run
the relevant menu item from the code. In this recipe, the code in jumpRef () does exactly
that.

In the code, first we check whether a valid journal name record is found. If so, we run the
LedgerJournalSetup menu item with an Args object that holds the journal name record
and the current form object information as a caller. The rest is done automatically by the
system, that is, the Journal names form is opened with the currently selected journal name.

[115]

Working with Forms

Selecting a form pattern

In the latest version of Dynamics 365 for Finance and Operations, form patterns are now an
integrated part of the form development experience. These patterns provide form structure
based on a particular style (including required and optional controls), and also provide
many default control properties. In addition to top-level form patterns, Dynamics 365 for
Operations has also introduced subpatterns which can be applied to container controls, and
that provide guidance and consistency for subcontent on a form, such as, on a Fast Tab.

Form patterns have made form development easier in Dynamics 365 for Finance and
Operations by providing a guided experience for applying patterns to forms to guarantee
that they are correct and consistent. Patterns help validate form and control structures, and
also the use of controls in some places. Patterns also help guarantee that each new form that
a user encounters is immediately recognizable in appearance and function. Form patterns
can provide many default control properties, and these also contribute to a more guided
development experience. Because patterns provide many default layout properties, they
help guarantee that forms have a responsive layout. Finally, patterns also help guarantee
better compatibility with upgrades.

Many of the existing form styles and templates from AX 2012 continue to be supported in
the current version Dynamics 365 for Finance and Operations. However, legacy form styles
and templates that aren't supported have a migration path to a Dynamics 365 for Finance
and Operations pattern. Because the foundational elements of Dynamics 365 for Finance
and Operations are built based on those legacy form styles and patterns, the transition from
AX 2012 to the current version of Dynamics 365 for Finance and Operations is as easy as
possible.

The selection of a form pattern is an important step in the process of migrating a form. A
pattern that is a good fit for the target form reduces the amount of migration work that is
required. Therefore, some investigation is required to select the best form pattern for the
form that you're migrating.

How to do it

Applying a pattern is a straightforward process that can modify properties on multiple
containers and controls on a form. Here is the standard flow for applying patterns:

1. Identify a target form and add it to your project. Then, in Visual Studio, open
Application Explorer, and find the form. Right-click the form, and then select
Add to project. When you open the form in the designer, it should have the
Pattern: <unselected> designation on the design node.

[116]

Working with Forms

2. Decide which pattern to apply. You can refer to the exported details file in the last
recipe.

3. Now we need to apply the pattern. Right-click the Design node of the target
form, select Apply pattern, and then click the Pattern to apply.

4. As a last step, we may need to handle a few errors. Information about the pattern
appears on the Pattern tab. To learn about the pattern structure, click control
names on the Pattern tab to navigate the pattern structure.

5. Double-click an error to go to the control that the error was reported for, if the
control exists.

6. If the control already exists on the form but is in a different place, move the
control to the correct place, as indicated by the pattern.

7. If the control doesn't exist, create the control.

Full list of form patterns

In the current version of Dynamics 365 for Finance and Operations, there are a total of five
form patterns that we use the most:

Details Master
Form Part - Fact Boxes

Simple List
Table of Contents
¢ Operational workspaces

For a full list of the forms that are currently using a particular form pattern, generate the
Form Patterns report from within Microsoft Visual Studio. On the Dynamics 365 menu,
expand the Add-ins option, and click Run form patterns report. A background process
generates the report. After several seconds, a message box appears in Visual Studio to
indicate that the report has been generated and inform you about the location of the Form
Patterns report file. You can filter this file by pattern to find forms that use a particular
pattern.

[117]

Working with Forms

How to do it...

We're going to look at how to run the form patterns report. This report is generated through
Visual Studio and gives us information about all of the forms in the system with the
corresponding form patterns:

1. Open VS as admin and go to the Dynamics 365 menu.
2. Select Add ins | Run form patterns report:

Deplay * lation Explorer _
Madel Management 3
Import Project... Ctrl+R, Ctrl+P
Build models... Ctrl+R, Ctri+B | Discover wh
Synchronize database... Ctrl+R, Ctrl+D IO Learn about new featul
Find labels... Ctrl+R, Ctrl+L See what's new in the
Find tag references... Ctrl+R, Ctrl+G Bxplore what's new in
Metadata search... Ctrl+R, Ctrl+5
Infoleg Ctrl+R, Ctrl+N
Addins b Create project from conflicts
Send feedback... Create CF perf test from recording
Options... Data Entity report
Data Entity statistics
Recent Run form patterns report
FleetManagement Form statistics
Import Task Recerding
View related roles for all duties
View related objects for all roles

3. This will generate a CSV file that we can open in Excel.

Microsoft Visual Studio .

o Ch\Users\axlocaladminiDecuments'\PatternsReport.csv written to disk.

[118]

Working with Forms

4. Open the Excel file and you'll notice that, we have columns that tell us which
model the form is in, the system name for the form, as well as the form style and
the form pattern:

Maodel - | Form - | Style -
UnitOfMeasure UnitOfMeasureLookup Lookup
UnitOfMeasure UnitCOfMeasure SimpleListDetails
Foundation PdsCustRebateGroup SimpleList
Tutorial Tutorial_ControlForm Auto
Foundation VendlnvoicelnfolistPagePreviewPane FormPart
Foundation BudgetTransactionlnguiry SimpleList
Foundation PdsCostBasis SimpleList
UnitOfMeasure UnitOfMeasureTranslation SimpleList
Foundation ImgFlexBalance SimpleList
TestEssentials HierarchicalGridTest Auto
Foundation FactureCorrectedAmounts_RU Auto
Foundation RDeferralsProfileTrans SimpleList
Foundation BudgetTransactionHeaderWorkflowDropDialog DropDialog
Foundation FactureEditLines_RU Auto
Foundation SalesLineDeliveryDetails Dialog
Foundation JmgFeedbackWizard Dialog
Foundation PdsCustSellableDays SimpleList
Foundation PdsFreightGroup SimpleList
TestEssentials TestFormLauncher Auto
Foundation FacturelourLookup_RU Lookup
Foundation VendinvoicelnfoSubTableLookup Lookup

[119]

Working with Forms

5. In this CSV file, we will also get details about the controls and the coverage
percentage. Filter helps to determine which system form has which pattern
applied, and also which forms do not have any pattern applied. The following are
all form patterns in Dynamics 365 for Operations:

2]l SotAteZ

Zl SotZtoh
Sort by Color »
Text Filters 3
Search yel

-] (Select All)

[w] AdvancedSelection
Custom

[+] DetailsMaster

[¥] DetailsMasterTabs
DetailsTransaction
Dialog

[+| DialogDoubleTabs
[+ DialogFastTabs
DialogReadOnly
DialogTabs

[w] DropDialog

[+| DropDialogReadOnly
FormPartFactboxCard
FormPartFactboxGrid
[| FormPartSectionList
[| FormPartSectionListDouble
HubPartChart

W] LookupGridOnly
LookupPreview

LookupTab
SimpleDetails-FastTabsContainer
[+] SimpleDetails-Panarama
SimpleDetails-StandardTabsContainer
SimpleDetails-ToolbarFields

[SimpleList

[+ simpleListDetails
SimpleListDetails-Grid
SimplelistDetails-Tree

[+ TableOfContents

[v| WarkspaceOperational
[Blanks)

| OK || Cancel |

Apply your filter as per your requirements and see the results.

[120]

Working with Forms

Creating a new form

In Dynamics 365 for Finance and Operations, form creations are slightly easier than in
AX2012 and earlier versions. Here, we have more tools to create any specific form using
design templates. Every form plays an important role where we need to interact with the
user to view, insert, update, or delete any record(s).

In this recipe, we will create a simple form using a template and add this form to one of the
menus so that users can access it from the front end.

Getting ready

Let's think about a scenario where the admin needs to check all existing users in the system.
Although we have one standard form for this, we cannot give access to everyone because
this form also has many other options to perform on this form, while our requirement is to
just see read only data. We will use this form in further recipes to justify the name of this
form. Here, it will show all enabled and disabled users.

How to do it...

1. Add a new form in your project name it PktDisabledUsers.
2. Expand the Data Sources node and add the UserInfo table in it:

[T PktDisabledUsers (usr) [Packt_Reference]
b &% Methods

& Events

4 g DataSources

&¥ Methods

& Events

H Fields

g1 Field groups

g Reference Data Sources
i Derived Data Sources

b] Parts

R = S

[121]

Working with Forms

3. Set the following properties on Data source:

FormDataSourceRoot Userinfo

B2 S Qs m | »

H Behavior
Allow Create No
Allow Delete No
Allow Edit No
Auto Motify Yes
Auto Query Yes
Autao Search Yes
Cross Company Auto Cuery Mo
Insert At End No
Insert If Empty No
Max Access Right Delete
Only Fetch Active Mo
Optional Record Mode ImplicitCreate

4. Go to Design, right click on Apply Pattern, and select Simple List. This will
create the respective pattern for you:

Preview | Pattern

Pattern : Simple List
Version: 1.1

[Simple List : Design]

ﬂ[;'5'4:||;:llir:ati|:-r1 Bar (ActionPane) @ Missing]
—[Custom Filter Group (Group) @ Missing]
— Simple List Grid (Grid) : Missing |

H{ Footer (Group) @ none]

5. You have to add all those elements in design the section in the same order.

[122]

Working with Forms

6. Add all the missing objects such as ActionPane, Group, and a Grid.

7. Now, you have to select a pattern for CustomFilter group; select Custom and
Quick Filters.
8. You will see another pattern available for this; add all missing objects to this

group:

Preview | Pattern

Pattern : Custom and Quick Filters
Yersion: 1.1

[Eustom and Quick Filters : CotomFilter]

— Quick Filter (QuickFilterCentrol) : Missing |

H['.’.:l..lstu::rm Filter Fields Group (Group) @ none]

ﬂ[Custom Filter Fields (Field type) : none]

9. Your form design should look like this:

s Design | Pattern: Simple List
4 [ActionPan (Action Pane)
b &¥ Methods
P % Events
4 |"] CutomFilter (Group) | Pattern: Custom and Quick Filters
b &% Methods
P& Ewvents
4[] QuickFilterControll (QuickFilter)
b g¥ Methods
& Events
b g Methods
[& Events

[123]

Working with Forms

10. Now, let's add some fields in your grid to show actual data. Add fields from
UserInfo Data source:

E Design | Pattern: Simple List
4 [ActionPan (Action Paneg)

b &% Methods
P& Ewvents
4 [CutomFilter (Group) | Pattern: Custom and Quick Filts
b g¥ Methods
& Ewvents
4 [] QuickFilterControll (QuickFilter)
b g¥ Methods
& Events

E58 MainGrid (Grid)

b &¥ Methods

P % Events

[E Uzerinfo_enable (Combo Box)
[Userinfo_networkdlias (String)
[+ Userlnfo_name (String)

[Userlnfo_language (5tring)

11. Give a caption to your design, such as Disabled users with color. We will
use this form in further recipes to justify its name:

FormDesign FormDesign

= |apkmn e

E Design | Pattern: Simple List

b ActionPan (Action Pane)
b ["] CutomFilter (Group) | Pattern: Custorn and Quick Filters B Appearance
b B8 MainGrid (Grid) Allow User Setup Yes
Caption Disabled user with color
DialogSize Small
Hide If Empty Yes
Show Delete Button Auto
Show Mew Button Auto
Use Caption From Menu lter No
Window Type Standard

12. Now, to add this form to the front end, create a Display Menu Item for this
form.

[124]

Working with Forms

13. Create an extension of SystemAdminstration menu and add this new display
menu item under Users, as in the following screenshot:

| SystemAdministration.Extension1 (usr) [Packt_Reference] [Base: Application Foundation]
P Workspaces
F Users

SysUserinfoPage

SysGroupManagementPage

SysUsersCOnline

SysUserGroupinfo

UserflequestListPage
Security
Workflow
Inquiries
Setup
Periodic

VOV VW

14. To test this form, save all your changes and build the solution. Now, go to
System administrator| Users | Disabled users with color. Your form should look
like the following screenshot:

OPTIONS

Click the edit button to make changes.
Disabled user with color
£ Filter |
+ Enabled Emil MName language
true BROOKE@taeofficial.ccsctp.net BROCKE en-us
true BrunoD@taeofficial.ccsctp.net BrunoD en-us
true CASSIE@taeofficial.ccsctp.net CASSIE en-us
true CHARLIE@taeofficial.ccsctp.net CHARLIE en-us
true CHRIS@taeofficial.ccsctp.net CHRIS en-us
true CHRISTIP@taeofficial.ccsctp.net CHRISTINA en-us
true CLAIRE@taeofficial.ccsctp.net CLAIRE en-us

[125]

Working with Forms

How it works...

Creating a new form in Dynamics 365 for Finance and Operations is very systematic and
easy. All you need to do is identify the purpose of the form and choose a relevant pattern.
Once you apply a pattern to your form, it will show the required object details with a
sequence, as shown in step 4 in the above recipe. All you need to add now are the respective
objects in your design with the given sequence.

[126]

Working with Data in Forms

In this chapter, we will cover the following recipes:

¢ Using a number sequence handler

¢ Creating a custom filter control

¢ Creating a custom instant search filter
e Building a selected/available list

¢ Creating a wizard

¢ Processing multiple records

¢ Coloring records

¢ Adding an image to records

Introduction

This chapter basically supplements the previous one and explains data organization in
forms in the new Dynamics 365 for Finance and Operations. It shows how to add custom
filters to forms to allow users to filter data and create record lists for quick data
manipulation.

This chapter also discusses how the displaying of data can be enhanced by adding icons to
record lists and trees, and how normal images can be stored along with the data by reusing
the existing Dynamics 365 for Finance and Operations application objects.

A couple of recipes will show you how to create wizards in the new Dynamics 365 for
Finance and Operations to guide users through complex tasks. This chapter will also show
several approaches to capturing user-selected records on forms for further processing, and
ways to distinguish specific records by coloring them.

Working with Data in Forms

Using a number sequence handler

As already discussed in the Creating a new number sequence recipe in Chapter 1, Processing
Data, number sequences are widely used throughout the system as a part of the standard
application. Dynamics 365 for Finance and Operations also provides a special number
sequence handler class to be used in forms. It is called NumberSeqFormHandler and its
purpose is to simplify the usage of record numbering on the user interface. Some of the
standard Dynamics 365 for Finance and Operations forms, such as Customers or Vendors,
already have this feature implemented.

This recipe shows you how to use the number sequence handler class. Although in this
demonstration we will use an existing form, the same approach will be applied when
creating brand new forms.

For demonstration purposes, we will use the existing Customer groups form located in
Accounts receivable | Setup | Customers and change the Customer group field from
manual to automatic numbering. We will use the number sequence created earlier, in the
Creating a new number sequence recipe in Chapter 1, Processing Data.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Create a new project, UsingNumberSeghandler, create a new extension class
CustGroup_Extension for the CustGroup form, and add the following code
snippet to its class declaration:

public NumberSegFormHandler numberSegFormHandler;
2. Also, create a new method called numberSegFormHandler () in the same class:

public NumberSegFormHandler numberSegFormHandler ()

{

if (!'numberSegFormHandler)

numberSegFormHandler = NumberSegFormHandler: :newForm (

CustParameters: :numRefCustGroupId () .NumberSequenceld,

this,this.CustGroup_ds, fieldNum (CustGroup, CustGroup)) ;
}

return numberSegFormHandler;

[128]

Working with Data in Forms

3. To override the CustGroup data source's create () method, copy the
OnCreating and OnCreated events from the data source and paste them in the
class CustGroup_Extension with the following code snippet:

[FormDataSourceEventHandler (formDataSourceStr (CustGroup,
CustGroup), FormDataSourceEventType::Creating)]

public void CustGroup_OnCreating(FormDataSource sender,
FormDataSourceEventArgs e)

{

this.numberSegFormHandler () . formMethodDataSourceCreatePre () ;

[FormDataSourceEventHandler (formDataSourceStr (CustGroup,
CustGroup), FormDataSourceEventType::Created)]

public void CustGroup_OnCreated (FormDataSource sender,
FormDataSourceEventArgs e)

{

this.numberSegFormHandler () . formMethodDataSourceCreate () ;

}

4. Then, to override its delete () method, subscribe to the OnDeleting event of
the CustGroup data source and paste it in the extension class with the
following code snippet:

[FormDataSourceEventHandler (formDataSourceStr (CustGroup,
CustGroup), FormDataSourceEventType::Deleting)]
public void CustGroup_OnDeleting(FormDataSource sender,
FormDataSourceEventArgs e)
{

this.numberSeqFormHandler () . formMethodDataSourceDelete () ;

}

5. Then, to override the data source's write () method, subscribe to the OnWritten
event with the following code snippet:

[FormDataSourceEventHandler (formDataSourceStr (CustGroup,
CustGroup), FormDataSourceEventType::Written)]

public void CustGroup_OnWritten (FormDataSource sender,
FormDataSourceEventArgs e)

{

this.numberSeqFormHandler () . formMethodDataSourceWrite () ;

[129]

Working with Data in Forms

6. Similarly, to override its validateWrite () method, subscribe to the
OnValidatedWrite event of the CustGroup data source with the following code
snippet:

[FormDataSourceEventHandler (formDataSourceStr (CustGroup,
CustGroup), FormDataSourceEventType::ValidatedWrite)]

public void CustGroup_OnValidatedWrite (FormDataSource sender,
FormDataSourceEventArgs e)

{

boolean ret = true;

ret =
this.numberSeqFormHandler () . formMethodDataSourceValidateWrite
(ret);

}

7. For the same data source, to override its 1inkActive () method, subscribe to
OnLinkActive with the following code snippet:

[FormDataSourceEventHandler (formDataSourceStr (CustGroup,
CustGroup), FormDataSourceEventType::PostLinkActive)]

public void CustGroup_OnLinkActive (FormDataSource sender,
FormDataSourceEventArgs e)

this.numberSegFormHandler ()
.formMethodDataSourceLinkActive () ;

}

8. Finally, to override the form's close () method, subscribe to the OnClosing
event of the form with the following code snippet:

[FormEventHandler (formstr (CustGroup), FormEventType::Closing)]
public void CustGroup_OnClosing (xFormRun formRun,
FormEventArgs e)

{

if (numberSegFormHandler)

{

numberSegFormHandler. formMethodClose () ;
}
}

9. In order to test the numbering, navigate to Accounts receivable | Setup |
Customers | Customer groups and try to create several new records--the
Customer group value will be generated automatically:

[130]

Working with Data in Forms

= [Save -+ New [il Delete = Setup™ Forecast | Productfilters ©

v Customer groups
£ Filter ‘
Customer gr... T | Description Terms of payment Default tax group Prices include s...
USMF-002 Packt002 Met30 hd ~ D
USMF-001 Packt001 Met30
10 Wholesales customers Net30
100 Intercompany retail customers Net10
20 Major customers Net30
30 Retail customers Net10
40 Internet customers Met10
80 Other customers Net10
90 Intercompany customers Net10

How it works...

First, we declare an object of type NumberSegFormHandler in the form's class declaration.
Then, we create a new corresponding form method called numberSegFormHandler (),
which instantiates the object if it has not been instantiated yet and returns it. This method
allows us to hold the handler creation code in one place and reuse it many times within the
form.

In this method, we use the newForm () constructor of the NumberSegFormHandler class to
create the numberSegFormHandler object. It accepts the following arguments:

The number sequence code, which was created in the Creating a new number sequence recipe
in Chapter 1, Processing Data, ensures the proper format of the customer group numbering.
Here, we call the numRefCustGroupId () helper method from the CustParameters table
to find which number sequence code will be used when creating new customer group
records:

¢ The FormRun object, which represents the form itself
¢ The form data source, where we need to apply the number sequence handler
¢ The field number of the field into which the number sequence will be populated

[131]

Working with Data in Forms

Finally, we add the various NumberSeqgFormHandler methods to the corresponding events
methods on the form's data source to ensure proper handling of the numbering when
various events are triggered.

0 You may need to refresh your browser to see your changes.

See also

The Creating a new number sequence recipe in Chapter 1, Processing Data

Creating a custom filter control

Filtering forms in Dynamics 365 for Finance and Operations is implemented in a variety of
ways. As part of the standard application, Dynamics 365 for Finance and Operations
provides various filtering options, such as Filter by Selection, Filter by Grid, or Advanced
Filter/Sort located in the toolbar, which allow you to modify the underlying query of the
currently displayed form. In addition to the standard filters, the Dynamics 365 for Finance
and Operations list pages normally allow quick filtering on most commonly used fields.
Besides that, some of the existing forms have even more advanced filtering options, which
allow users to quickly define complex search criteria.

Although the latter option needs additional programming, it is more user-friendly than
standard filtering and is a very common request in most of the Dynamics 365 for Finance
and Operations implementations.

In this recipe, we will learn how to add custom filters to a form. We will use the Main
accounts form as a basis and add a few custom filters, which will allow users to search for
accounts based on their name and type.

[132]

Working with Data in Forms

How to do it...

Carry out the following steps in order to complete this recipe:

1. In the AOT, locate the MainAccount form and select the option to create
extension of it in a new project. Open the form and select the design under the
NavigationList control and add a new group control with the following

properties:
Property Value
Name Filter

AutoDeclaration | Yes

2. Move this group below TreeFilter and add a new String control with the
following properties:

Property Value

Name FilterName

AutoDeclaration Yes

ExtendedDataType | AccountName

3. Add a new ComboBox control to the same group with the following properties:

Property Value

Name FilterType

AutoDeclaration | Yes

EnumType DimensionLedgerAccountType
Selection 10

[133]

Working with Data in Forms

4. Create a new extension class, MainAccountForm_Extension, subscribe an
OnModified event of the newly created controls, and add the following code
snippet in the extension class:

[ExtensionOf (formstr (MainAccount))]
final class MainAccountForm_Extension

[FormControlEventHandler (formControlStr (MainAccount,
FilterName), FormControlEventType::Modified)]

public void FilterName_OnModified (FormControl sender,
FormControlEventArgs e)

FormDataSource mainAccount_ds =

sender.formRun () .dataSource (formdatasourcestr (MainAccount,
MainAccount)) ;

mainAccount_ds.executeQuery () ;

[FormControlEventHandler (formControlStr (MainAccount,
FilterType), FormControlEventType::Modified)]

public void FilterType_OnModified(FormControl sender,
FormControlEventArgs e)

FormDataSource mainAccount_ds =
sender.formRun () .dataSource (formdatasourcestr (MainAccount,
MainAccount)) ;
mainAccount_ds.executeQuery () ;
}
}

5. After all modifications, in the AOT, the MainAccount .Extensionl form will
look similar to the following screenshot:

[134]

Working with Data in Forms

Solution Explorer
@ o-sa@|F =

Desi Fattern: Simple List and Details - Tr —
esign | Pattem: Simple Lt and Deta ee Search Solution Explorer (Ctrl+;)

3 ActionPane (Action Pane)
4 NavigationList (Group) fad Solution 'CustomFilterControl' (1 project)
4 g% Methods 4 ["] CustomFilterControl (USR) [Packt_Reference]

3] References
] MainAccount.Extension1
#3 MainAccountForm_Extension

-

Events
4 TreeFilter (QuickFilter)
b &¥ Methods
P % Events
4 +|"] Filter (Group)
P g® Methods
I % Events
b +[=] FilterName (String)
b+ FilterType (Combo Box)
3 Tree (Tree)
VerticalSplitter (Group)
DetailsHeader (Group) | Pattern: Fields and Field Groups

6. In the same extension class, subscribe to the OnQueryExecuting and
OnQueryExecuted events to override the executeQuery () method of the
MainAccount data source, and then add the following code snippet in the
extension class:

[FormDataSourceEventHandler (formDataSourceStr (MainAccount,
MainAccount), FormDataSourceEventType::QueryExecuting)]
public void MainAccount_OnQueryExecuting (FormDataSource
sender, FormDataSourceEventArgs e)
{

QueryBuildRange gbrName;

QueryBuildRange gbrType;

QueryBuildDataSource gbds =

sender.query () .dataSourceTable (tableNum (MainAccount)) ;

MainAccount: :updateBalances () ;

gbrName = SysQuery::findOrCreateRange (
gbds, fieldNum (MainAccount,Name)) ;

gbrType = SysQuery::findOrCreateRange (
gbds, fieldNum (MainAccount, Type)) ;

str filterText =
this.design () .controlName ("FilterName") .valueStr();
if (filterText)
{
gbrName.value (SysQuery: :valueLike (
filterText));
i

else

[135]

Working with Data in Forms

gbrName.value (SysQuery::valueUnlimited());

}

if (FilterType.selection() ==
DimensionLedgerAccountType: :Blank)

gbrType.value (SysQuery: :valueUnlimited()) ;

}

else

{

gbrType.value (queryValue (FilterType.selection()));

[FormDataSourceEventHandler (formDataSourceStr (MainAccount,

MainAccount),

FormDataSourceEventType: :QueryExecuted)] public

void MainAccount_OnQueryExecuted (FormDataSource

sender,

{

this.createTree();

FormDataSourceEventArgs e)

e In order to test the filter, navigate to General ledger | Common | Main accounts
and change the values in the newly created filters--the account list will change,
reflecting the selected criteria:

¢ Edit = | New [i] Delete

New from template ™ | Name Translations

A Filter

Account name

| Bank account

Main account type

| Asset

V]

110110, Bank Account -
110115, Bank Account -
110120, Bank Account -
110130, Bank Account -
110140, Bank Account -
110150, Bank Account -

110160, Bank Account -

usb
CAD
CNY
EUR
DKK
GBP

Payroll

IDENTIFICATION
Main account

110110

Name

Bank Account -

LEDGER
Main account type

Asset

Reporting type

usp

Main account category

CASH

Account statement = Total accounts OPTIONS P

| Main accounts - chart of accounts: Shared

ADMINISTRATION
Do not allow manual entry
Active from

Active to

Suspended

Field to transfer balance on closing sheet

Close type

CONSOLIDATION

[136]

Working with Data in Forms

How it works...

We start by adding an empty Filter group control to make sure all our controls are placed
from the left to the right in one line.

Next, we add two controls that represent the Account name and Main account type filters
and enable them to be automatically declared for later usage in the code. We also subscribe
their onModified () event methods to ensure that the MainAccount data source's query is
re-executed whenever the controls' values change.

Finally, we subscribe to OnQueryExecuting and OnQueryExecuted events on the
MainAccount data source to override the function of the executeQuery () method. The
code uses two event handlers, to apply the ranges before super () of executeQuery () and
createTree () after the super () .OnQueryExecuting event make sure the query is
modified before fetching the data.

Here, we declare and create two new QueryBuildRange objects, which represent the
ranges on the query. We use the findOrCreateRange () method of the SysQuery
application class to get the range object. This method is very useful and important, as it
allows you to reuse previously created ranges.

Next, we set the ranges' values. If the filter controls are blank, we use the

valueUnlimited () method of the SysQuery application class to clear the ranges. If the
user types some text into the filter controls, we pass those values to the query ranges. The
global queryvalue () function--which is actually a shortcut to SysQuery::value()-
ensures that only safe characters are passed to the range. The SysQuery: :valueLike ()
method adds the * character around the account name value to make sure that the search is
done based on partial text.

Note that the SysQuery helper class is very useful when working with queries, as it does all
kinds of input data conversions to make sure they can be safely used. Here is a brief
summary of some of the SysQuery methods:

e valueUnlimited (): This method returns a string representing an unlimited
query range value, that is, no range at all.

e value (): This method converts an argument into a safe string. The global
queryValue () method is a shortcut for this.

e valueNot (): This method converts an argument into a safe string and adds an
inversion sign in front of it.

[137]

Working with Data in Forms

See also

o The Building a query object recipe in Chapter 1, Processing Data.

Creating a custom instant search filter

The standard form filters and the majority of customized form filters in Dynamics 365 for
Finance and Operations are only applied once the user presses a button or a key. This is
acceptable in most cases, especially if multiple criteria are used. However, when the result
retrieval speed and usage simplicity has priority over system performance, it is possible to
set up the search so that the record list is updated instantly when the user starts typing.

In this recipe, to demonstrate the instant search, we will modify the Vendor group form.
We will add a custom Name filter, which will update the group list automatically when the
user starts typing. We will need to overlay the Vendor group form, as the methods that we
will be using for instant search don't yet have an event listener provided by Microsoft.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Create a new project in Visual Studio, open the vendGroup form, and add a new
group control Filter below QuickFilterControl to the already existing
CustomFilterGroup group control.

Property Value

Name Filter

AutoDeclaration | Yes

[138]

Working with Data in Forms

2. Then, add a string control to the new group Filter with the following
properties:

Property Value

Name FilterName

AutoDeclaration Yes

ExtendedDataType | Name

3. Override the control's textChange () method with the following code snippet:

public void textChange ()
{

super () ;

VendGroup_ds.executeQuery () ;

}

4. On the same control, override the control's enter () method with the following
code snippet:

public void enter ()

{

super () ;
this.setSelection(strLen(this.text ()),
strLen(this.text ()));

}
5. Override the executeQuery () method of the vendGroup data source as follows:

public void executeQuery ()
{
QueryBuildRange gbrName;

gbrName =
SysQuery::findOrCreateRange (this.queryBuildDataSource (),
fieldNum (VendGroup, Name)) ;

gbrName.value (FilterName.text () ?
'*'+queryValue (FilterName.text ())+'*"'

SysQuery::valueUnlimited());

super () ;

[139]

Working with Data in Forms

6. In order to test the search, build your solution, navigate to Accounts payables |
Vendors | Vendor groups, and start typing in the Name filter. Note how the
vendor group list is being filtered automatically:

Dyna mics 365 Operations Accounts payable » Vendors > Vendor groups

Z Edit | | New Ti] Delete VENDOR GROUPS OPTIONS P

Click the edit button to make changes.

Vendor groups

MName

A Filter ‘ ‘ Vendors]

Vendor group T Description % Terms of payment Default tax group
10 Parts vendors Met30

20 Services vendors Met30

40 Other vendors Met30

50 Intercompany vendors MNet10

OME One-time vendors Maonth+15

How it works...

First of all, we add a new control, which represents the Name filter. Normally, the user's
typing triggers the textChange () event method on the active control every time a
character is entered. So, we override this method and add code to re-execute the form's
query whenever a new character is typed in.

Next, we have to correct the cursor's behavior. Currently, once the user types in the first
character, the search is executed and the system moves the focus out of this control and then
moves back into the control selecting all the typed text. If the user continues typing, the
existing text will be overwritten with the new character and the loop will continue.

[140]

Working with Data in Forms

In order to go around this, we have to override the control's enter () event method. This
method is called every time the control receives a focus, whether it was done by a user's
mouse, key, or by the system. Here, we call the setSelection () method. Normally, the
purpose of this method is to mark a control's text, or a part of it, as selected. Its first
argument specifies the beginning of the selection and the second one specifies the end. In
this recipe, we use this method in a slightly different way. We pass the length of the typed
text as a first argument, which means the selection starts at the end of the text. We pass the
same value as a second argument, which means that selection ends at the end of the text. It
does not make any sense from a selection point of view, but it ensures that the cursor
always stays at the end of the typed text, allowing the user to continue typing.

The last thing to do is to add some code to the executeQuery () method to change the
query before it is executed. Modifying the query was discussed in detail in the Creating a
custom filter control recipe. The only thing to note here is that we add * to the beginning and
the end of the search string to do the search with a partial string.

Note that the system's performance might be affected, as the data search is executed every
time the user types in a character. It is not recommended to use this approach for large
tables.

See also

e The Creating a custom filter control recipe

All your objects must belong to the same package, so you don't need to
create a separate project for each recipe. You can add your code/object in
your existing project/solution customization is possible only if the models
are in the same package.

Building a selected/available list

Frequent users might note that some of the Dynamics 365 for Finance and Operations forms
contain two sections placed next to each other and allow the moving of items from one side
to the other. Normally, the right section contains a list of available values and the left one
contains the values that have been chosen by the user. Buttons in the middle the allow the
moving of data from one side to another. Double-click and drag and drop mouse events are
also supported. Such design improves the user's experience, as data manipulation becomes
more user-friendly.

[141]

Working with Data in Forms

Some of the examples in the standard application can be found at General ledger | Chart of
accounts | Dimensions | Financial dimension sets or System administration | Users |
User groups.

This functionality is based on the SysListPanelRelationTableCallBack application
class. Developers only need to create its instance with the required parameters and the rest
is done automatically.

This recipe will show the basic principles of how to create selected/available lists. We will
add an option for assigning customers to buyer groups in the Buyer groups form in the
Inventory management module.

How to do it...

Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new table named InventBuyerGroupList. Let's not change
any of its properties, as this table is for demonstration only.

2. Add a new field to the table with the following properties (click on Yes if asked
to add a new relation to the table):

Property Value

Type String

Name Groupld
ExtendedDataType | ItemBuyerGroupld

3. Add another field to the table with the following properties:

Property Value
Type String
Name CustAccount

ExtendedDataType | CustAccount

[142]

Working with Data in Forms

4. In the AOT, open the InventBuyerGroup form and change its design's property
as follows:

Property | Value

Style Auto

5. Add a new Tab control with the following properties to the design's bottom:

Property Value
Name Tab
Width mode |SizeToAvailable

Height mode | Column height

6. Add anew TabPage control with the following properties to the newly created
tab:

Property | Value

Name |BuyerGroups

Caption |Buyer groups

7. Add another TabPage control with the following properties to the newly created
tab:

Property | Value

Name Customers

Caption |Customers

[143]

Working with Data in Forms

8. Move the existing Grid control into the first tab page and disable the existing
CustomFilterGroup group by setting its property:

Property | Value
Enable [No

9. The form will look similar to the following screenshot:

L‘-L,,, Design | Pattern: Simple List
b ActionPane (Action Pane)
b "] CustomFilterGroup (Group) | Pattern: Custom and Quick Filters
4 +[3 Tab (Tab)
b & Methods
& Events
4 +[*] BuyerGroups (Tab Page)
P g¥ Methods
P& Events
b i858 Grid (Grid)
4 +[1] Customers (Tab Page)
4 ¥ Methods
P & Ewvents

e ————————

10. Add the following line to the form's class declaration:
SysListPanelRelationTable sysListPanel;

11. Override the form's init () method with the following code snippet:

public void init ()

{
container columns;
#ResAppl

columns = [fieldNum(CustTable, AccountNum)];

sysListPanel = SysListPanelRelationTable::newForm (
element,

element.controlId(

formControlStr (InventBuyerGroup, Customers)),

[144]

Working with Data in Forms

"Selected",

"Available",

#ImageCustomer,

tableNum (InventBuyerGroupList),

fieldNum (InventBuyerGroupList, CustAccount),
fieldNum (InventBuyerGroupList, GroupId),
tableNum (CustTable),

fieldNum (CustTable, AccountNum),

columns) ;

super () ;
sysListPanel.init ();
}

12. Override the pageActivated () method on the newly created Customers tab
page with the following code snippet:
public void pageActivated()
{
sysListPanel.parmRelationRangeValue (

InventBuyerGroup.Group) ;

sysListPanel.parmRelationRangeRecId (
InventBuyerGroup.RecId);

sysListPanel.fill ();

super () ;

}

13. In order to test the list, first, save all your code and build your solution.

[145]

Working with Data in Forms

14. Now navigate to Inventory management | Setup | Inventory | Buyer groups
and select any group. Then, go to the Customers tab page and use the buttons
provided to move records from one side to the other. You can also double-click or
drag and drop with your mouse:

£ Edit |+ New [i] Delete OPTIONS O

Click the edit button te make changes.

Buyer groups

£ Filter

BUYER GROUPS [RelURyrelVI=ia

AVAILAELE SELECTED

DE-001 ~ Jus-002

test08 > Us-001

Us-003

Us-004

Us-005

Us-006

Us-007

Us-008

uUs-008

How it works...

In this recipe, the InventBuyerGroupList table is used as a many-to-many relationship
table between the buyer groups and the customers.

In terms of form design, the only thing that needs to be added is a new tab page. The rest is
created dynamically by the SysListPanelRelationTable application class.

[146]

Working with Data in Forms

In the form's class declaration, we declare a new variable based on the
SysListPanelRelationTable class and instantiate it in the form's init () method using
its newForm () constructor. The method accepts the following parameters:

¢ The FormRun object representing the form itself.

e The name of the tab page.

e The label of the left section.

e The label of the right section.

e The number of the image that is shown next to each record in the lists.
e The relationship table number.

¢ The field number in the relationship table representing the child record. In our
case, it is the customer account number--CustAccount.

e The field number in the relationship table representing the parent table. In this
case, it is the buyer group number--GroupId.

e The number of the table that is displayed in the lists.

A container of the field numbers displayed in each column.

We also have to initialize the list by calling its member method init () in the form's
init () method right after the super () method.

The list's controls are created dynamically when the Customers tab page is opened. In order
to accommodate that, we add the list's creation code to the pageActivated () event
method of the newly created tab page. In this way, we ensure that the list is populated
whenever a new buyer group is selected.

There's more...

The SysListPanelRelationTable class can only display fields from a single table.
Alternatively, there is another application class named
SysListPanelRelationTableCallback, which allows you to create more complex lists.

In order to demonstrate its capabilities, we will expand the previous example by displaying
the customer name next to the account number. The customer name is stored in another
table and can be retrieved by using the name () method on the CustTable table.

[147]

Working with Data in Forms

First, in the form's class declaration, we have to change the list declaration to the following
code line:

SysListPanelRelationTableCallback sysListPanel;

Next, we create two new methods--one for the left list and the other one for the right list--
that generate and return data containers to be displayed in each section. The methods will
be placed on the InventBuyerGroupList table. In order to improve performance, these
methods will be executed on the server tier (note the server modifier):

static server container selectedCustomers (
ItemBuyerGroupld _groupId)
{

container ret;
container data;
CustTable custTable;

InventBuyerGroupList groupList;

while select custTable
order by AccountNum
exists join groupList

where groupList.CustAccount == custTable.AccountNum
&& groupList.GroupId == _groupld
{
data = [custTable.AccountNum,

custTable.AccountNum,
custTable.name ()];

ret += [datal;

return ret;

static server container availableCustomers (
ItemBuyerGroupld _groupId)

container ret;
container data;
CustTable custTable;

InventBuyerGroupList groupList;

while select custTable

order by AccountNum

notExists join firstOnly groupList

where groupList.CustAccount == custTable.AccountNum

[148]

Working with Data in Forms

&& grouplList.GroupId == _groupIld
{

data = [custTable.AccountNum, custTable.AccountNum,
custTable.name ()];

ret += [datal;

return ret;

}

Each of the methods returns a container of containers. The outer container holds all the
items in the list. The inner container represents one item in the section and it contains three
elements--the first is the identification number of the element and the next two are
displayed on the screen.

Next, we create two new methods with the same names on the InventBuyerGroup form
itself. These methods are required to be present on the form by the
SysListPanelRelationTableCallback class. These methods are nothing but wrappers
to the previously created methods:

private container selectedCustomers ()

{

return InventBuyerGroupList::selectedCustomers (
InventBuyerGroup.Group) ;

private container availableCustomers ()

{

return InventBuyerGroupList::availableCustomers (
InventBuyerGroup.Group) ;

}

In this way, we reduce the number of calls between the client and server tiers while
generating the lists.

Finally, we replace the form's init () method with the following code snippet:
public void init ()
{
container columns;
#ResAppl

columns = [0, 071;

sysListPanel = SysListPanelRelationTableCallback::newForm(
element, element.controlId(

[149]

Working with Data in Forms

}

This time, we used the

formControlStr (InventBuyerGroup, Customers)),
"Selected",

"Available",

#ImageCustomer,

tableNum (InventBuyerGroupList),

fieldNum (InventBuyerGroupList, CustAccount),
fieldNum (InventBuyerGroupList, GroupId),
tableNum (CustTable),

fieldNum (CustTable, AccountNum),

columns,

0,

v
’

v
’

identifierStr (selectedCustomers),
identifierStr (availableCustomers));

super () ;

sysListPanel.init ();

newForm () constructor of the

SysListPanelRelationTableCallback class, which is very similar to the previous one,
but accepts the names of methods as arguments, which will be used to populate the data in
the right and left sections.

Note that the columns

container that previously held a list of fields now contains two zeros.

By doing that, we simply define that there will be two columns in each list. Since the lists
are actually generated outside the SysListPanelRelationTableCallback class, we do

not need to specify the

field numbers of the columns anymore.

Now, when you run the Buyer groups form, both sections contain a customer name

column:

[150]

Working with Data in Forms

/ Edit -~ New [i] Delete OPTIONS °

Click the edit button to make changes.
Buyer groups
P Filter
BUYER GROUPS
AVAILABLE SELECTED
DE-001 Contoso Europe ~ Us-001 Contoso Retail San Die...
test0d test 08 - uUs-002 Contoso Retail Los An...
uUs-003 Forest Wholesales
Us-004 Cave Wholesales <
Us-005 Contoso Retail Seattle
uUs-006 Contaso Retail Portland
Us-007 Desert Wholesales
Us-008 Sparrow Retail
uUs-00s8 Owl Wholesales v

Creating a wizard

Wizards in Dynamics 365 for Finance and Operations are used to help a user to perform a
specific task. An example of a standard Dynamics 365 for Finance and Operations wizards
is the Number Sequence Wizard.

Normally, a wizard is presented to a user as a form with a series of steps. During the wizard
run, all the user's inputs are collected and committed to the database. Then, the user presses
the Finish button on the last wizard page.

In this recipe, we will create a new wizard to create main accounts. First, we will use the
standard Dynamics 365 for Finance and Operations wizard to create a framework, and then
we will add some additional controls manually.

[151]

Working with Data in Forms

How to do it...

Carry out the following steps in order to complete this recipe:

1. In the Development Workspace, create a new Dynamics 365 for Operations
project.
2. Create a new Class named wizard that extends SysWizard:

Wizard & X

Search ...

1,t Wizard (usr) [Packt_Ledger]
] =@ accessMenuFunction

Wizard xpp

=@ cancel

=@ formMame

=@ new

=@ next

=g parmiCallerDest
=@ run

=@ setupMavigation
=@ validate

=@ whereDetails
<@ main

=@ finish

[152]

Working with Data in Forms

3. Create a new Form named wizard, select a design, and apply the design pattern
Wizard:

I

Drop Dialog - Read Only
e Hierarch !
_ R Form Part Factbox Card I
Apply pattern a Form Part Factbox Grid i

Mew L Form Part Section List pu

Open table browse Form Part Section List Double
Tags 3 Hub Part Chart

B Hub Part Grid

- List Page

Lookup - Basic
Properties Alt + Enter

Lookup w/ Preview
Lookup w/ Tabs
Simple Details w/Fast Tabs

Simple Details w/Panorama
Simple Details w/Standard Tabs
Simple Details w/Toolbar and Fields

Simple List

Simple List and Details - List Grid
Simple List and Details - Tabular Grid
Simple List and Details - Tree

Table of Contents

Task Double

Task Single

Wizard

Workspace xp

4. Address BP Warnings:

® Design.Caption isn'tempty

The form must be referenced by at least one menu item
® TabPage.Caption isn't empty (for all wizard content pages)
® MainInstruction.Text isn't empty (for all wizard content pages)

[153]

Working with Data in Forms

The form design should look as follows:

by, Design | Pattern: Wizard
4 [MainTab (Tab)

b g¥ Methods

b % Events

b [Stepl (Tab Page)

4 [7 step2 (Tab Page)
&¥ Methods
% Events
A Title2 (Static Text)
'] Body2 (Group) | Pattern: <unspecified>
P g% Methods
[% Ewvents
4 |*] FieldGroup (Group)
&% Methods
% Events
AccountMum (String)
AccountMame (String)

b T AccountType (Combo Box)

b [Step3 (Tab Page)

[~

[
4
[
P

5. Create a new display menu item named Wizard, set its Object Type as Class
and Object as Wizard, and the properties window should look as follows:

Meeds Record MNa
Open Made Auto
F Data

Configuration Key

Correct Permissions Auto
Country Configuration Key
Country Region Codes

Create Permissions Auto
Delete Permissions Auto
Enum Parameter

Enum Type Parameter

Maintain User License MNone
[Nome
Ohject Wizard
Ohject Type Class
Parareters

Query

Read Permissions Auto
Report Design

Tags

Update Permissions Auto
Wiew User License MNone

[154]

Working with Data in Forms

6. Create a new macro library named MainAccountWizard with the following line
of code:

#define.tabStep2 (2)

Wizard #® X Solution Explorer

Wizard

Search ... Q|YG)";|§T'@|’—-
4 ¥ Methods i, Design | Pattern: Wizard =
=& classDeclaration D MainTab (Tab) Search Selution Explorer (Ctrl+;)
=@ init b g¥ Methods Fa] Selution 'CreatingWizard' (1 project)
=$ tab b % Events 4[] CreatingWizard (USR) [Packt_Ledger]
=% wizard 4 [Stepl (Tab Page) il References
=@ accountMum 3 ﬁﬁ Methods ﬂ MainAccountWizard
@ accountMame B % Events #3 Wizard
=% accountType b A WelcomeTut (Static Text) O wizard
=9 sethlext b ["] Bodyl (Group) | Pattern: <unspecified>] Wizard
b & Events 4 [7 Step2 (Tab Page)
- b -

Preview | Pattern

W Wizard content (Tab) : MainTab

7. Modify the Wwizard class by adding the following lines of code to its class
declaration:

MainAccount mainAccount;
#MainAccountWizard

8. Add a new method in the class name accessMenuFunction:

/// <summary>

/// Retrieves a menu function.

/// </summary>

/// <returns>

/// The menu function.

/// </returns>

public MenuFunction accessMenuFunction ()

{
return new
MenuFunction
(menuitemDisplayStr (Wizard),MenultemType::Display);
}

9. Override the method formname () and add the following line of code:

return formStr (Wizard);

[155]

Working with Data in Forms

10. Add a new method parmCallerDest and use the following code:

/// <summary>

/// Gets or sets caller destination (used to get parameter from
menu item)

/// </summary>

/// <param name="_callerDest">Caller destination.</param>
/// <returns>Caller destination</returns>
public str parmCallerDest (str _callerDest = callerDest)
{
callerDest = _callerDest;

return callerDest;

}

11. Add the following line of code to the overridden method setupNavigation ()
in the same class:

nextEnabled|[#tabStep2] = false;

12. Override the finish () method of the class with the following code snippet:

protected void finish()

{
mainAccount.initValue () ;
mainAccount .LedgerChartOfAccounts =
LedgerChartOfAccounts: :current () ;

mainAccount .MainAccountId = formRun.accountNum /() ;
mainAccount.Name = formRun.accountName () ;
mainAccount.Type = formRun.accountType () ;
super () ;

}

13. Replace the validate () method of the same class with the following code
snippet:

boolean validate ()
{

return mainAccount.validateWrite () ;

[156]

Working with Data in Forms

14. Replace the run () method of the same class with the following code snippet:
void run ()
{
mainAccount.insert ();
info (strFmt (
"Ledger account '%1' was successfully created",
mainAccount .MainAccountId));
}
15. In the Wizard form, add the following line of code to its class declaration:

#MainAccountWizard

16. Change the form's design property:

Property | Value

Caption |Main account wizard

17. Modify the properties of the Step1 tab page, as follows:

Property | Value

Caption | Welcome

18. Add anew staticText control in this tab page with the following properties:

Property | Value

Name WelcomeTxt

Text This wizard helps you to create a new main account.

19. Modify the properties of the step2 tab page:

Property | Value

Caption | Account setup

HelpText | Specify account number, name, and type.

[157]

Working with Data in Forms

20. Add anew StringEdit control in this tab page with the following properties:

Property Value

Name AccountNum

AutoDeclaration Yes

Label Main account

ExtendedDataType | AccountNum

21. Add one more StringEdit control in this tab page with the following
properties:

Property Value

Name AccountName

AutoDeclaration Yes

ExtendedDataType [AccountName

22. Add a new ComboBox control in this tab page with the following properties:

Property Value

Name AccountType

AutoDeclaration | Yes

EnumType DimensionLedgerAccountType

23. Modify the properties of the Step3 tab page, as follows:

Property | Value

Caption |Finish

24. Add anew staticText control on this tab page with the following properties:

Property | Value

Name FinishTxt

Text This wizard is now ready to create new main account.

[158]

Working with Data in Forms

25. Create the following four methods at the top level of the form:

public MainAccountNum accountNum ()
{

return AccountNum.text () ;

public AccountName accountName ()
{

return AccountName.text ();

public DimensionLedgerAccountType accountType ()
{
return AccountType.selection();
}
public void setNext ()
{
sysWizard.nextEnabled (
this.accountNum() && this.accountName (),
#tabStep2,
false);

}
26. Add the following code in the init () method of the form:

public void init ()

super () ;
if (element.Args () .caller())
{
sysWizard = element.Args().caller();
}
else

{
Wizard::main(new Args());
element.closeCancel () ;

}
27. Add a new method named tab () and place the following code:
FormTabControl tab ()

{

return MainTab;

[159]

Working with Data in Forms

28. Add a new method that returns the reference of the wizard instance:

SysWizard wizard()
return sysWizard;

29. Now, override the textChange () method on the AccountNum and
AccountName controls with the following code:

public void textChange ()
{

super () ;
element.setNext () ;

After all modifications, the form will look as follows:

Search ...
[T Wizard (usr) [Packt_Ledger] b ¥ Methods
4 ¥ Methods I # Events
=@ classDeclaration b [3 Stepl (Tab Page)
<@ init 4 [Step2 (Tab Page)
=@ tab b ¥ Methods
<@ wizard P & Events
<@ accountNum b A Title2 (Static Text)
=@ accountName 4 "] Body2 (Group) | Pattern: <unspecified>
“ig accountType b g¥ Methods
@ setMNext b £ Events
B # Events 4[] FieldGroup (Group)
b i@l DataSources b ¥ Methods
b [Parts I # Events
P AccountMum (String)
4 ¥ Methods
=@ textChange
P % Events
4 AccountMame (String)
4 ¥ Methods
@ textChange
— .

30. In order to test the newly created wizard, run the Wizard menu item, and the
wizard will appear. On the first page, click on Next:

[160]

Working with Data in Forms

Dynamics AX

MAIN ACCOUNT WIZARD

Welcome

This wizard helps you to create a new main account.

“ Cancel

31. On the second page, specify Main account, Account name, and Main account
type:

'3 /23
e«@| @ hitps/dpkdevacs... 0 ~ @ & |[@ Main account wizard -- Dy... ‘ ‘
3% (@ Dynamics AX

ssms O uwsmE [

Dynamics AX

= MAIN ACCOUNT WIZARD

Account setup

Specify account number, name and type. Main account Fie
110155
Account name L

‘ Bank account - LTL | [|

Main account type

‘ Balance shsed V|

Back Next Cancel

[161]

Working with Data in Forms
32. On the last page, click on Finish to complete the wizard:

\r
a\\‘@‘ @ nttps.//dpkdevaos... O ~ @ & ” & Main account wizard —- Dy... ‘ |

9% @ Dynamics AX
sséms O USMF

Dynamics AX

MAIN ACCOUNT WIZARD

Finish

This wizard is now ready to create new main account.

Finish Cancel

Back

33. The Infolog window will display a message that a new account was created

successfully:

Click the edit button to make changes.

@ Ledger account *110155" was successfully created

How it works...

The wizard creates three AOT objects for us:
e The wizard class, which contains all the logic required to run the wizard

¢ The wizard form, which is the wizard layout
e Finally, the Wizard display menu item, which is used to start the wizard and can

be added to a menu

[162]

Working with Data in Forms

The generated wizard is just a starting point for our custom wizard. It already has three
pages, as we specified during its creation, but we still have to add new user input controls
and custom code in order to implement our requirements.

We start by defining a new #tabstep2 macro, which holds the number of the second tab
page. We are going to refer to this page several times, so it is good practice to define its
number in one place.

In the Wizard class, we override its setupNavigation () method, which is used to define
initial button states. We use this method to disable the Next button on the second page by
default. The nextEnabled variable is an array holding the initial enabled or disabled state
for each tab page.

The overridden finish () method is called when the user clicks on the Finish button. Here,
we initialize the record and then assign user input to the corresponding field values.

In the validate () method, we check the account that will be created. This method is called
right after the user clicks on the Finish button at the end of the wizard and before the main
code is executed in the run () method. Here, we simply call the validatewWrite () method
for the record from the main account table.

The last thing to do in the class is to place the main wizard code--insert the record and
display a message--in the run () method.

In the wizard form's design, we modify properties of each tab page and add text to explain
to the user the purpose of each step. Note that the HelpText property value on the second
tab page appears as a step description right below the step title during runtime. This is done
automatically by the syswizard class.

Finally, on the second tab page, we place three controls for user input. Later on, we create
three methods which return the controls' values: account number, name, and type values,
respectively. We also override the textChange () event methods on the controls to
determine and update the runtime state of the Next button. These methods call the
setNext () method, which actually controls the behavior of the Next button. In our case,
we enable the Next button as soon as all input controls have values.

[163]

Working with Data in Forms

Processing multiple records

In Dynamics 365 for Finance and Operations, by default, most of the functions available on
forms are related to currently selected single record. However, on many Dynamics 365 for
Finance and Operations forms you will find a multiple record selection option, but at the
same time ,you will be able to perform some certain operations only. So, to perform a
specific operation on all selected records, some modification is required.

In this recipe, we will explore how to process multiple records at the same time. You can
modify an existing process for the same. For this demonstration, we will add a new button
to the action pane on the Vend Table form to show multiple selected accounts in the
Infolog window.

How to do it...

For this recipe, we will extend the vendTable form. Currently, we don't have an option to
put multiple vendors on hold in a single click. So, we will add a new button there to process
all selected vendors. Carry out the following steps in order to complete this recipe:

Add a new project in your Visual Studio Solution ProcessingMultipleRecords, create
an extension of the VendTable form from AOT, and add this to the project.

1. To process selected records, add a new button Processselected to the
VendorModifyButtonGroup control in the action pane. Add the button here
with the following properties:

Property | Value

Name ProcessSelected
Text On hold (All selected)
MultiSelect | Yes

2. Create a new extension class VendTableFrom_ Extension for the VvendTable
form and add a method with the following code snippet:

[ExtensionOf (formstr (VendTable))]
final class VendTableFrom_Extension
public void processSelected (FormControl sender,
FormControlEventArgs e)
{
VendTable tmpVendTable, updateVendTable;

[164]

Working with Data in Forms

int recordUpdated;

for (tmpVendTable = this.VendTable_ds.getFirst (true) ?
this.VendTable_ds.getFirst (true)
this.VendTable_ds.cursor(); tmpVendTable; tmpVendTable =
this.VendTable_ds.getNext ())

ttsbegin;
select firstonly forupdate updateVendTable where
updateVendTable.AccountNum == tmpVendTable.AccountNum;

updateVendTable.Blocked = CustVendorBlocked::All;
updateVendTable.update () ;

recordUpdated++;

ttscommit;

info(strFmt ("Total %1 records processed", recordUpdated));

}
}

3. Now, copy the onClicked event handler from the ProcessSelected button
control and add a new method in VendTableFrom_ Extension with the
following code snippet:

/// <summary>

/17

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

[FormControlEventHandler (formControlStr (VendTable,
ProcessSelected), FormControlEventType::Clicked)]

public void ProcessSelected_OnClicked (FormControl sender,
FormControlEventArgs e)

this.processSelected (sender,e);

[165]

Working with Data in Forms

4. In order to test the record selection, navigate to Accounts payable | Vendor | All
vendors, select several records, and click on the new On Hold (All selected)

button.
¢ Edit | 4+ New [i] Delete PROCUREMENT INVOICE p o)
DMAINTAIN_______ COPY SET UP
On hold (All selected)
On hold [All selected)
y
Click the edit button to make changes. et
@ Total 3 records processed
ALL VENDORS
L Filter
v Vendor account T Name Vendor hold Phone
1001 Acme Office Supplies MNo 773-998-8892
1002 Lande Packaging Supplies No
‘ 1003 Ade Supply Company MNo
104 Best Supplier - Europe Mo
AirCarrier Air Cargo Carrier No v -

[166]

Working with Data in Forms

5. The selected items will be displayed in the Vendors on hold form as well. To
check, navigate to Accounts payable | Vendor | Vendors on hold.

Dyna mics AX Vendors on hold L usme Q 33 ?
= -+ New [i] Delete [NINsle:l PROCUREMENT INVOICE GENERAL O SC |
MAIMTAIN COPY SET UP TRANSACTIONS TAX INF
Edit Add vendor to anather legal entity Contacts Summary update Transactions Update
Edit in gnd Bank accounts Certifications Invaices Vendor
On hold ~ Vendor state tax [Ds Product filters Balance
y

VENDORS OM HOLD

Y L Filter
' \Vendor account T Mame Vendor hald Vendar haold release date
1001 Acme Office Supplies All
1002 Lande Packaging Supplies All
1003 Ade Supply Company All

How it works...

In earlier versions, we had MultiSelectionHelper to support such customization. In
current versions, this class has been deprecated. So we have to travel record by record here.

Next, get the first marked record using vendTable_DS.getFirst (true), and then go
through all the other marked records (if any) using vendTable_DS.getnext () and
process them one by one. In this demonstration, we simply put vendors on hold using this
code.

The last thing to do is to update the table using another object of the table. Note that the
button's MultiSelect property is set to Yes to ensure it is still enabled when multiple
records are marked.

[167]

Working with Data in Forms

Coloring records

One of Dynamics 365 for Operation's exciting features, which can enhance user experience,
is the ability to color individual records. Some users might find the system more intuitive
and user-friendly through this modification.

For example, emphasizing the importance of disabled records by highlighting terminated
employees or former customers in red allows users to identify relevant records at a glance.
Another example is to show processed records, such as posted journals or invoiced sales
orders, in green.

Getting ready

In this recipe, we will learn how to change a record's color. We will use one created earlier
form the PktDisabledUser form located in System administration | Users | Disabled
Users with color and add a method to show disabled users in red.

How to do it...

1. Add a new project in your solution.

2. Go to application explorer and search for the PktDisabledUser form; add this
form to your project.

3. Now, override the displayOption () method in its UserInfo data source with
the following code snippet:

public void displayOption (
Common _record,
FormRowDisplayOption _options)
{
if (!_record. (fieldNum(UserInfo,Enable)))
{
_options.backColor (WinAPI::RGB2int (255,100,100));
;

super (_record, _options);

}

[168]

Working with Data in Forms

You should take care with the selected model for your project, every time
you add/customize an object into your project.

4. In order to test the coloring, navigate to System administration | Users | Users |
Disabled Users with color and note how disabled users are now displayed in a
different color:

OFTIONS

Click the edit button to make changes.

Disabled user with color

‘ P Filter ‘

v Enabled Email MName language

true axrunner@taeofficial.ccsctp.net axrunner en-us
true BROOKE®@taeofficial.ccsctp.net BROOKE en-us
true BrunoD@taeofficial.ccsctp.net BrunoD en-us
true CASSIE@taeofficial.ccsctp.net CASSIE en-us

How it works...

The displayOption () method on any form's data source can be used to change some of
the visual options. Before displaying each record, this method is called by the system with
two arguments--the first is the current record and the second is a FormRowDisplayOption
object--whose properties can be used to change a record's visual settings just before it
appears onscreen. In this example, we check whether the current user is disabled, and if
they are, we change the background property to light red by calling the backColor ()
method with the color code.

[169]

Working with Data in Forms

In this example, we used the _record. (fieldNum(UserInfo,Enable)) expression to
address the Enable field on the UserInfo table. This type of expression is normally used
when we know the type of record, but it is declared as a generic Common type.

For demonstration purposes, we specified the color directly in the code, but it is a good
practice for the color code to come from a configuration table. See the Creating a color picker
lookup recipe in chapter 4, Building Lookups, to learn how to allow the user to choose and
store the color selection.

See also

e The Creating a color picker lookup recipe in Chapter 4, Building Lookups
e The Creating a new form recipe in chapter 2, Working with forms

Adding an image to records

Company-specific images in Dynamics 365 for Finance and Operations can be stored along
with the data in the database tables. They can be used for different purposes, such as a
company logo that is displayed in every printed document, employee photos, inventory
pictures, and so on.

Images are binary objects and they can be stored in the container table fields. In order to
make the system perform better, it is always recommended to store images in a separate
table so that it does not affect the retrieval speed of the main data.

One of the most convenient ways to attach images to record is to use the Document
handling feature of Dynamics 365 for Finance and Operations. It does not require any
change in the application. However, the Document handling feature is a very generic way
of attaching files to record and might not be suitable for specific circumstances.

Another way of attaching images to records is to utilize the standard application objects,
though minor application changes are required. For example, the company logo in the
Legal entities form, located at Organization administration | Setup | Organization, is one
of the places where the images are stored that way.

In this recipe, we will explore the latter option. As an example, we will add the ability to
store an image for each customer. We will also add a new Image button on the Customers
form, allowing us to attach or remove images from customers.

[170]

Working with Data in Forms

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the CustTable form in the AOT. Add a new MenuItemButton control at
the bottom of the Accounts button group, which is located at ActionPaneHeader
| aptabCustomer | btngrpCustomerAccounts, with the following properties:

Property Value
Name Image
Text Image

ButtonDisplay | TextWithImageAbove
Normallmage |10598

ImageLocation |EmbeddedResource

DataSource CustTable

MenultemType |Display

MenultemName [CompanyImage

2. Navigate to Accounts receivable | Customers | All customers and note the new
Image button in the action pane:

¢ Edit | |+ New [i] Delete | About Microsoft Dynamics AX [RelErelVi==t

ACCOUNTS TRANSACTIONS BALANCE FORECAST SETUP ATTACHMENTS CATALOGE
Contact Transactions Balance Forecast Bank accounts Credit cards Attachments Send cata
C"angc\atlcn Summary update Product filters
Image
A
Click the edit button to make changes. X
ALL CUSTOMERS
Y P Filter —
v Account T Mame Currency Invoice account Customer group
DE-001 Contoso Europe EUR 90
test08 test 08 ush 10
Us-001 Contoso Retail 5an Diego usD 30
Us-002 Contoso Retail Los Angeles ush 30
Us-003 Forest Wholesales ush 10
Us-004 Cave Wholesales uUsD 10 -

[171]

Working with Data in Forms

3. Click on the button, and then use the Change button to upload a new image for
the selected item:

& Edit | Change Remove OPTIONS O g O o X

Click the edit button to make changes. X
Image

®

Microsoft Dynamics AX

¢ The Remove button can be used to delete an existing image.

How it works...

In this demonstration, there are only three standard Dynamics 365 for Finance and
Operations objects used:

e The CompanyImage table, which holds image data and information about the
record to which the image is attached. The separate table allows you to easily
hook image functionality to any other existing table without modifying that table
or decreasing its performance.

e The CompanyImage form, which shows an image and allows you to modify it.

e The Display menu item CompanyImage, which allows you to open the form.

We added the menu item to the Cust Table form and modified some of its visual
properties. This ensures that it looks consistent with the rest of the action pane. We also
changed its DataSource property to the Cust Table data source. This makes sure that the
image is stored against that record.

There's more...

The following two topics will explain how a stored image can be displayed as a new tab
page on the main form and how it can be saved back to a file.

[172]

Working with Data in Forms

Displaying an image as part of a form

In this section, we will extend the recipe by displaying the stored image on a new tab page
on the Customers form.

Firstly, we need to add a new tab page to the end of the CustTable form's TabHeader
control, which is located inside another tab page called TabPageDetails. This is where our
image will be displayed. Right-click on this new tab and set the patterns to Image Preview
as follows:

Find references Y3 < | Quick Launch (C
Apply pattern » Dimension Entry Control
Mew 4 Dimension Expression Builder
Delete Del Fields and Field Groups
Rename F2 =
Image Preview
R List Panel
Cut Ctrl + X
} ~ Mested Simple List and Details
Copy Ctrl + C
) Tabular Fields
Duplicate
Toclbar and Fields
Move First Alt + Home Toolbar and List
Maowve Up Alt + Up
Custom
g o orop

Set the following properties of the new tab page:

Property Value

Name TabImage

AutoDeclaration | Yes

Caption Image

Add a new Window type control to the tab page. This control will be used to display the
image. Set its properties as follows:

Property Value

Name CustImage

AutoDeclaration | Yes

[173]

Working with Data in Forms

Next, let's create a new method at the top level of the CustTable form:

public void loadImage ()
{

Image img;
CompanylImage companylmage;

companyImage = CompanyImage::find(
CustTable.dataAreald,
CustTable.Tableld,
CustTable.RecId);

if (companyImage.Image)

{
img = new Image();
img.setData (companyImage.Image) ;
CustImage.image (img) ;

}

else

{

CustImage.image (null) ;

}
}

This method finds a CompanyImage record first, which is attached to the current record,
and then displays the binary data using the Cust Image control. If no image is attached, the
Window control is cleared to display an empty space.

Next, we add the following line of code after super to the bottom of the
selectionChanged () method of the CustTable data source to ensure that the image is
loaded for a currently selected record:

element.loadImage () ;

Now, save all your code and build the VS solution. To test your code, navigate to Account
receivable | Customers | All customers, select previously used customers, and click on the
customer Account number in the grid. On the Customers form, note the new tab page with
the image displayed:

[174]

Working with Data in Forms

ALL CUSTOMERS

DE-001 : Contoso Europe

Sales demographics 2100 10 10 v
Credit and collections No 000 v
Sales order defaults v
Payment defaults Net10 v
Financial dimensions v
Warehouse v
Invoice and delivery FOB 40 EXMPTEOR ™
Tra ortation v
Direct debit mandates v
Retai v
Image A

)

Saving a stored image as a file

This section will describe how the stored image can be restored back to a file. This is quite a
common case when the original image file is lost. We will enhance the standard Image form
by adding a new Save as button, which allows us to save the stored image as a file.

Let's find the CompanyImage form in the AOT and add a new Button control to the form's
ButtonGroup, which is located in the first tab of the ActionPane control. Set the button's
properties as follows:

Property | Value

Name SaveAs

Text Save as

[175]

Working with Data in Forms

Create a new method at the top level of the form:

{

}

This method will present the user with the Save as dialog, allowing them to choose the
desired filename to save the current image. Note that the imageContainer form variable
holds image data. If it is empty, it means there is no image attached, and we do not run any
of the code. We also determine the loaded file type to make sure our Save as dialog shows

public void savelImage ()

{

}

Image img;
Filename name;
str type;
#File

if (!imageContainer)

return;

img = new Image();
img.setData (imageContainer);

type = '.'+strlwr (enum2value (img.saveType()));
name = WinAPI::getSaveFileName (
element .hWnd (),

[WinAPI::fileType (type), #Al1FilesName+typel,
L
")

if (name)

img.saveImage (name) ;

only files of that particular type, for example, JPEG.

Override the button's clicked () method with the following code snippet to make sure

that the saveImage () method is executed once the user clicks on the button:

void clicked()

{

super () ;

element.savelmage () ;

[176]

Working with Data in Forms

Now, save all your changes and build your solution. To test, go to Account receivable |
Customers | All customers, click on the Image button, and you will find that a new Save as
button is available:

¢ Edit | Change Remove SaveAs

lmage

- 4 |.D5k‘top »

Organize + Mew folder

3¢ Favorites
B Desktop Administrator

& Downloads

"5l Recent places w This PC

18 This PC fiwr,

[Libraries

@ MNetwork

File name: | dynamicslab

?! Metwork

Save as type: |JPEG Image (*jpg)

Hide Folders

[177]

Working with Data in Forms

Note that the CompanyImage form is used system-wide and the new button is available
across the whole system now.

We do not recommend overlaying unless it's the only option. We urge you
to always try to use extensions, event handlers, and events for your
development to achieve any requirement rather than overlaying standard
objects. You may have found some recipes here with overlaying objects; all
of them just for illustration purposes, and to simplify the explanation of
the actual agenda of the recipe.

[178]

Building Lookups

In this chapter, we will cover the following recipes:

¢ Creating an automatic lookup

¢ Creating a lookup dynamically

¢ Using a form to build a lookup

e Building a tree lookup

¢ Displaying a list of custom options

¢ Displaying custom options in another way

¢ Building a lookup based on the record description
e Building the browse for folder lookup

¢ Creating a color picker lookup

Introduction

Lookups are the standard way to display a list of possible selection values to the user, while
editing or creating database records. Normally, standard lookups are created automatically
by the system in Dynamics 365 for Finance and Operations and are based on the extended
data types and table setup. It is also possible to override the standard functionality by
creating your own lookups from the code or using the Dynamics 365 for Finance and
Operations forms.

In this chapter, we will cover various lookup types, such as file selector, color picker, or tree
lookup, as well as the different approaches to create them.

Building Lookups

Creating an automatic lookup

EDT (Extended Data Type) and table relation type lookups are the simplest lookups in
Dynamics 365 for Finance and Operations and can be created in seconds without any
programming knowledge. They are based on table relations and appear automatically. No
additional modifications are required.

This recipe will show you how to create a very basic automatic lookup using table relations.
To demonstrate this, we will add a new Method of payment column to the existing
Customer group form.

How to do it...

To create an automatic lookup, we can follow the following steps:

1.

2.

Create a new solution named CreatingAutomaticLookup and assign an
appropriate package to it.

Find a CustGroup table in AOT under application explorer, right-click the table,
and select the option CreateExtension to add it to the project and create a new
string type field in the table with the following properties:

Property

Value

Name

PaymMode

ExtendedDataType | CustPaymMode

3.
4.
5.

Add the newly created field to the end of the Overview field group of the table.
Save your object(s) and build the solution.

To check the results, navigate to Accounts receivable | Setup | Customers |
Customer groups and note the newly created Method of payment column with
the lookup:

[180]

Building Lookups

Dynamics 365 Operations Accounts receivable > Setup > Customer groups

Save | | New [i Delete = Setup™ Forecast Productfilters OPTIONS

Customer groups

P Filter |

Customer group T Description Terms of payment Method of payment Default tax group

10 Wholesales customers MNet30 W W
100 Intercompany retail customers Met10 Method of payment T Description

20 Major customers Met30 CASH Cash

30 Retail customers Met10 CHECK Check

40 Internet customers Met10 ELECTRONIC Direct debit

80 Other customers Met10 PDC Postdated check

90 Intercompany customers MNet10 REFUND Refund

How it works...

The newly created PaymMode field is based on the CustPaymMode extended data type and
therefore, it automatically inherits its relation. To follow the best practices, all relations must
be present on tables. We also add the newly created field to the table's Overview group to
make sure that the field automatically appears on the Customer group form. This relation
ensures that the field has an automatic lookup.

There's more...

The automatically generated lookup, in the preceding example, has only two columns--
Method of payment and Description. Dynamics 365 for Finance and Operations allows
us to add more columns or change the existing columns with minimum effort by changing
various properties. Lookup columns can be controlled at several different places:

e Relation fields, on either an extended data type or a table, are always shown on
lookups as columns.

[181]

Building Lookups

e Fields defined in the table's TitleFieldl and TitleField2 properties are also
displayed as lookup columns.

e The first field of every table's index is displayed as a column.

¢ The index fields and the TitleFieldl and TitleField2 properties are in effect
only when the AutoLookup field group of a table is empty. Otherwise, the fields
defined in the Aut oLookup group are displayed as lookup columns along with
the relation columns.

¢ Duplicate columns are shown only once.

Now, to demonstrate how the AutoLookup group can affect lookup columns, let us modify
the previous example by adding an additional field to this group. Let us customize and add
the PaymSumBy field to the Aut oLookup group on the CustPaymModeTable table in the
middle, between the PaymMode and Name fields. Now, the lookup has one more column
labeled Period:

Dynamics 365 Operations

B Save -+ New [if Delete | Setup Forecast Productfilters OPTIONS

Customer groups

A~ Filter |

Customer group T Description Terms of payment Method of payment Default tax group Prices include s.

10 Wholesales customers Net30 W 4 I:l

100 Intercompany retail customers Net10 Method of payment T Period Description

20 Major customers Net30 CASH Invoice Cash

30 Retail customers Net10 CHECK Invoice Check

40 Internet customers Net10 ELECTRONIC Invoice Direct debit

80 Other customers Net10 PDC Invoice Postdated check
90 Intercompany customers Net10 REFUND Invoice Refund

It is also possible to add display methods to the lookup's column list. We can extend our
example by adding the paymAccountName () display method to the AutoLookup group on
the CustPaymModeTable table right after PaymSumBy. Save your object and build the
project. Check the result now:

[182]

Building Lookups

Save = New [i] Delete = Setup™ Forecast Product filters O

v Customer groups

A~ Filter ‘
Customer gr... T | Description Terms of payment Default tax group | Prices include s Method of payment
INMF-001 South Region v v [v

Method of payment T Description Period Account name

BOE Bill of Exchange Invoice Bill of Exchange (BOE)

CASH Invoice Cash in Hand -INR

CHK CHEQUE Invoice

CREDIT CAR CREDIT CARD Invoice Credit Card Receivable

EP Electronic Payment Invoice

Now, in this lookup, we can see the Account Name next to Period, but with the display
method in this lookup we don't have options to filter the records. Methods have limitations
to display only records, similar to earlier versions, of Dynamics 365 for Finance and
Operations.

Creating a lookup dynamically

Automatic lookups, mentioned in the previous recipe, are widely used across the system
and are very useful in simple scenarios. When it comes to showing different fields from
different data sources, applying various static or dynamic filters, or similar, some coding is
required. The current version of Dynamics 365 for Finance and Operations is flexible
enough that the developer can create custom lookups, either using the Dynamics 365 for
Finance and Operations forms or by running them dynamically from the X++ code.

This recipe will show how to dynamically build a runtime lookup from the code. In this
demonstration, we will modify the Vendor account lookup on the Customers form to allow
users to select only those vendors that use the same currency as the currently selected
customer.

[183]

Building Lookups

How to do it...

To create a lookup dynamically, we can follow the following steps:-

1. Create a new solution name CreatingDynamicLookup and assign an
appropriate package to it.

2. Create a new extension class for the vendTable table and add it to the project.
Use the following code in the class:

[ExtensionOf (tableStr (VendTable))]
final class VendTable_ Extension

{

}

{

public static void lookupVendorByCurrency (
FormControl _callingControl,
CurrencyCode _currency)

Query query;
QueryBuildDataSource gbds;
QueryBuildRange gbr;
SysTableLookup lookup;
query = new Query();

gbds = query.addDataSource (tableNum(VendTable));
gbr = gbds.addRange (fieldNum(VendTable,Currency));
gbr.value (queryvalue (_currency)) ;

lookup = SysTableLookup::newParameters (
tableNum (VendTable),

_callingControl,

true);

lookup.parmQuery (query) ;

lookup.addLookupField(

fieldNum (VendTable, AccountNum),
true);

lookup.addLookupField (fieldNum(VendTable,Party));
lookup.addLookupField (fieldNum (VendTable,Currency));
lookup.performFormLookup () ;

3. Now create a new extension class for the CustTable form with the name
CustTable_Extension. Find form CustTable and then, in the design, locate
the vendAccount field at
CustTable\Design\Tab\TabPageDetails\TabHeader\TabDetails\Vendor
\Vendor_VendAccount, copy its OnLookup () event, and paste it in an extension
class with the following code snippet:

[ExtensionOf (formStr (CustTable))]

[184]

Building Lookups

final class CustTable_Extension
{
[FormControlEventHandler (formControlStr (CustTable,
Vendor_VendAccount), FormControlEventType: :Lookup)]
public void Vendor_VendAccount_OnLookup (
FormControl sender,FormControlEventArgs e)
{
VendTable: :lookupVendorByCurrency (
sender, this.CustTable.Currency);
FormControlCancelableSuperEventArgs cancelSuper =
e as FormControlCancelableSuperEventArgs;

//cancel super () to prevent error.
cancelSuper.CancelSuperCall();

}

4. To test this, navigate to Accounts receivable | Common | Customers | All
customers, select any of the customers, and click on Edit in the action pane. Once
the Customers form is displayed, expand the Vendor account lookup located in
the Miscellaneous details tab page, under the Remittance group. The modified
lookup now has an additional column named Currency, and vendors in the list
will match the customer's currency. The following screenshot depicts this:

Dynamics 365 Operations

Bl Save = | New [i] Delete |NeNiyIoIVIS:M SELL INVOICE COLLECT PROJECTS SERVICE MARKET RETAIL GENERAL
ACCOUNTS TRANSACTIONS BALANCE FORECAST SET UP ATTACHMENTS CATALOGS
Contacts Transactions Bz - : -) A) e - “d cataleg
- - Vendor account T MName Currency W
Change party association g

104 Best Supplier - Europe EUR

ALL CUSTOMERS

DE-001: Contoso Europ

Account statement

‘ Always W ‘

‘ 1099-C'indicator
| W

No (

CUSTOMER SELF-SERVICE

[185]

Building Lookups

How it works...

First, on the vendTable table, we create a new method that generates the lookup. This is
the most convenient place for such a method, taking into consideration that it may be
reused at a number of other places.

In this method, we first create a new query, which will be the base for lookup records. In
this query, we add a new data source based on the vendTable table and define a new range
based on the Currency field.

Next, we create the actual lookup object and pass the query object through the
parmQuery () member method. The 1ookup object is created using the newParameters ()
constructor of the SysTableLookup class. It accepts the following three parameters:

e The table ID, which is going to be displayed.
¢ A reference to the form calling the control.

e An optional boolean value, which specifies that the value in the control should
be preselected in the lookup. The default is t rue.

We use the addLookupField () method to add three columns--Vendor account, Name,
and Currency. This method accepts the following parameters:

e The ID of the field that will be displayed as a column.

¢ An optional Boolean parameter that defines which column will be used as a
return value to the caller control upon user selection. Only one column can be
marked as a return value. In our case, it is vendor account.

Finally, we run the lookup by calling the performFormLookup () method.

The last thing to do is to add some code to the 1ookup () method of the VendAccount field
of the CustTable data source in the CustTable form. By replacing its super () method with
our custom code, we have overridden the standard, automatically generated lookup, with
the custom lookup.

[186]

Building Lookups

There's more...

Suppose for some use case we need to show the vendor balance as well. We could achieve
this by using the method balanceAllCurrency on VendTable, which displays the vendor
balance. To do so, we could add the following code in the 1ookupVendorByCurrency
method in the VendTable_Extension class before the performFormLookup () method
call:

lookup.addLookupField (fieldNum (VendTable, Party)) ;
lookup.addLookupField (fieldNum(VendTable, Currency));
lookup.addLookupMethod

(tableMethodStr (VendTable,balanceAllCurrency)) ;
lookup.performFormLookup () ;

Using a form to build a lookup

For the most complex scenarios, where you need some advance lookups with more options
on data filtration or selection; Dynamics 365 for Finance and Operations offers the
possibility to create and use a form as a lookup, by creating a new form.

Similar to forms, the form lookups support various features, such as tab pages, event
handling, complex logic, and so on. In this recipe, we will demonstrate how to create a
lookup using a form. As an example, we will modify the standard customer account lookup
to display only the customers who are not placed on hold for invoicing and delivery.

How to do it...

1. Add a new project and create a new form named CustLookup. Add a new data
source with the following properties:

Property Value
Name CustTable
Table CustTable
AllowCheck No
AllowEdit No
AllowCreate No

[187]

Building Lookups

AllowDelete No
OnlyFetchActive | Yes

2. Right-click on Design and Add form Pattern Lookup - Basic on design.
3. Add a new grid control to the form's design with the following properties:

Property Value
Name Customers
ShowRowLabels | No
DataSource CustTable

4. Drag and drop AccountNum and Blocked fields from a CustTable data source.
Set property auto declarationto Yes.

5. Add a new ReferenceGroup control to the grid with the following properties,
right after AccountNum:

Property Value

Name Name

DataSource CustTable

ReferenceField | Party

6. Add one more stringEdit control to the grid with the following properties,
right after the Name:

Property Value

Name Phone

DataSource |CustTable

DataMethod | phone

[188]

Building Lookups

7. Override the form's init () method with the following code snippet:

public void init ()
{
super () ;
element.selectMode (CustTable_AccountNum) ;

}
8. Override the form's run () method with the following code snippet:
public void run{()

{

FormStringControl callingControl;

boolean filterLookup;

callingControl = SysTableLookup::getCallerStringControl (
element.args());

filterLookup = SysTableLookup::filterLookupPreRun (
callingControl,

CustTable_AccountNum,
CustTable_ds);
super () ;
SysTableLookup::filterLookupPostRun (
filterLookup,
callingControl.text (),
CustTable_AccountNum,
CustTable_ds);

}

9. Finally, override the init () method of the CustTable data source with the
following code snippet:

public void init ()

{
Query query;
QueryBuildDataSource gbds;
QueryBuildRange gbr;
query = new Query();
gbds = query.addDataSource (tableNum(CustTable));
gbr = gbds.addRange (fieldNum (CustTable,Blocked)) ;
gbr.value (queryvalue (CustVendorBlocked: :No)) ;
this.query (query) ;

[189]

Building Lookups

10. The form in the Application Object Tree (AOT) will look similar to the following

screenshot:
| Custlookup (usr) [PacktPub] I;l,-,_,,.,. Design | Pattern: Lookup - Basic
4 g¥ Methods 4 EEE Custormner (Grid)
=i classDeclaration b g¥ Methods
=@ init P & Events
=@ run [CustTable_AccountMum (String)
[& Ewvents [E CustTable Blocked (Combo Box)
4 i Data Sources booEs Mame (Reference Group)
4 g CustTable [+ Phone (String)
4 g¥ Methods
=@ init
[& Events
W Fields
- E9 Field groups
P i@ Reference Data Sources

b+ g Derived Data Sources
b [] Parts

11. Locate the CustAccount extended data type in the AOT, create its extension with
name CustAccount .Extension, and change its property as follows:

Property |Value

FormHelp | CustLookup

12. To test the results, navigate to Sales and marketing | Common | Sales orders |
All sales orders and start creating a new sales order. Note that, now, the
Customer account lookup is different, and it includes only active customers:

[190]

Building Lookups

i
Create sales order
Customer ~ A
CUSTOMER
Customer account
W

Customer account T Imvoicing and delivery ... W MName Telephone
INMF-000001 No Wingtip Toys India Ltd. 080-3548
INMF-000002 No Tailspin Toys India Ltd. 022-7845,
INMF-000003 No Fourth Coffee India 011-54587
INMF-000004 Mo Wide World India Importers 044-2579.
INMF-000005 No Fabrikam India Ltd. 011-7546,
INMF-000006 Mo Customs authority 011-7345)
< i - - - -y
ADDRESS
Delivery name Address

v

How it works...

Automatically generated lookups have a limited set of features and are not suitable in more
complex scenarios. In this recipe, we are creating a brand new form-based lookup, which
will replace the existing customer account lookup. The name of the newly created form is
CustLookup and it contains the Lookup text at the end to make sure it can be easily
distinguished from other forms in the AOT.

In the form, we add a new data source and change its properties. We do not allow any data
updating by setting the AllowEdit, AllowCreate, and AllowDelete properties to No.
Security checks will be disabled by setting A11owCheck to No. To increase the performance,
we set OnlyFetchActive to Yes, which will reduce the size of the database result set to
only the fields that are visible on the form. We also set the data source index to define initial
data sorting.

[191]

Building Lookups

Next, in order to make our form lookup look exactly like a standard lookup, we have to
adjust its layout. Therefore, we set its Frame and WindowType properties to Border and
Popup, respectively. This removes form borders and makes the form very similar to a
standard lookup. Then, we add a new grid control with four controls inside, which are
bound to the relevant CustTable table fields and methods. We set the ShowRowLabels
property of the grid to No to hide the grid's row labels.

After this, we have to define which form control will be used to return a value from the
lookup to the calling form. We need to specify the form control manually in the form's
init () method, by calling element.selectMode (), with the name of the control as an
argument.

In the form's run () method, we add some filtering, which allows the user to use the
asterisk (*) symbol to search for records in the lookup. For example, if the user types 1*
into the Customer account control, the lookup will open automatically with all customer
accounts starting with 1. To achieve this, we use the filterLookupPreRun () and
filterLookupPostRun () methods of the standard SysTableLookup class. Both these
methods require a calling control, which can be obtained by the
getCallerStringControl () method of the same SysTableLookup class. The first
method reads the user input and returns t rue if a search is being performed, otherwise, it
returns false. It must be called before the super () method in the form's run () method,
and it accepts four arguments:

e The calling control on the parent form
¢ The returning control on the lookup form
e Themain data source on the lookup form

* Anoptional list of other data sources on the lookup form, which are used in
the search

The filterLookupPostRun () method must be called after the super () method in the
form's run () method, and it also accepts four arguments:

¢ A result value from the previously called filterLookupPreRun () method
e The user text specified in the calling control

¢ The returning control on the lookup form

¢ The lookup data source

The code in the CustTable data source's init () method replaces the data source query
created by its super () method with the custom one. Basically, here, we create a new Query
object and change its range to include only active customers.

[192]

Building Lookups

The FormHelp property of the CustAccount extended data type will make sure that this
form is opened every time the user opens the Customer account lookup.

See also

e The Building a query object recipe in Chapter 1, Processing Data

Building a tree lookup

The form's t ree controls are a user-friendly way of displaying a hierarchy of related
records, such as a company's organizational structure, inventory bill of materials, projects
with their subprojects, and so on. These hierarchies can also be displayed in the custom
lookups, allowing users to browse and select the required value in a more convenient way.

The Using a tree control recipe in Chapter 2, Working with Forms, explained how to present
the budget model hierarchy as a tree in the Budget model form. In this recipe, we will reuse
the previously created BudgetModelTree class and demonstrate how to build a budget
model tree lookup.

How to do it...

1. In the AOT, create a new form named BudgetModelLookup. Set its design
properties as follows:

Property Value

Frame Border

WindowType | Popup

2. Add anew Tree control to the design with the following properties:

Property | Value

Name ModelTree

Width |250

[193]

Building Lookups

3. Add the following line of code to the form's class declaration:
BudgetModelTree budgetModelTree;

4. Override the form's init () method with the following code snippet:

public void init ()

{
FormStringControl callingControl;
callingControl = SysTableLookup::getCallerStringControl (
this.args());
super () ;
budgetModelTree = BudgetModelTree: :construct (
ModelTree,
callingControl.text ());
budgetModelTree.buildTree () ;

}

5. Override the mouseDb1Click () and mouseUp () methods of the ModelTree
control with the following code snippet:

public int mouseDblClick (
int _x,
int _y,
int _button,
boolean _ctrl,
boolean _shift)
{
int ret;
FormTreeltem formTreeltem;
BudgetModel DbudgetModel;
ret = super(_x, _y, _button, _ctrl, _shift);
formTreeltem = this.getItem(this.getSelection());
select firstOnly SubModellId from budgetModel
where budgetModel.RecId == formTreeltem.data();
element.closeSelect (budgetModel.SubModelId) ;
return ret;
}
public int mouseUp (
int _x,
int _y,
int _button,
boolean _ctrl,
boolean _shift)
{
int ret;
ret = super(_x, _y, _button, _ctrl, _shift);

[194]

Building Lookups

return 1;

}

6. The form will look similar to the following screenshot:

BudgetModellookup + X
Search .. P~

(7 Budgeiiodellookup s PackPub]
b &% Methods 4 i ModelTree (Tree)

P % Events 4 ¥ Methods

b | Data Sources =@ mouseDbIClick

b] Parts =@ mouselp

P & Events

Preview | Pattern

R R i 7

7. In the AOT, open the BudgetModel table and change its 1ookupBudgetModel ()
method with the following code snippet:

public static void lookupBudgetModel (
FormStringControl _ctrl,

boolean _showStopped = false)

{

Args args;
Object formRun;
args = new Args();

args.name (formStr (BudgetModelLookup)) ;
args.caller(_ctrl);

formRun = classfactory.formRunClass (args) ;
formRun.init () ;
_ctrl.performFormLookup (formRun) ;

[195]

Building Lookups

8. To see the results, navigate to Budgeting | Common | Budget register entries |
All budget register entries. Start creating a new entry by clicking on the Budget
register entry button in the action pane and expanding the Budget model
lookup:

Bl Save -+ MNew [i] Delete | Open in Excel

PERSONALIZE PAGE OPTIONS EDIT SHARE
Always open for editing Security diagnostics Record info Read mode Get a link
Persenalize this form Advanced Filter/Sort ~ Change view Revert

BUDGET REGISTER ENTRY

USMF000010

Budget register entry
TRANSACTION SELECT Budget type STATUS

Default date Budget model In use

Source document FY¥2017 : Fiscal year budget v In use by user
~

FY2018 : Fiscal year budget

F¥2019 : Fiscal year budget Budget register entry status

F¥2020 : Fiscal year budget Draft

- 4 FY2021: Fiscal budget

Budget account entries fscalyear budge

_ FY2021-1 : Fiscal year 2012 first half

Add line T Remove v Related information
FY2021-2 : Fiscal year budget second half

+" | Budget check re... | Date Account structure Dimension values Amount | Amount type

How it works...

First, we create a new form named BudgetModelLookup, which we will use as a custom
lookup. We set its design's Frame and WindowType to Border and Popup respectively, to
change the layout of the form so that it looks like a lookup. We also add a new Tree control
and set its width.

[196]

Building Lookups

In the form's class declaration, we define the BudgetModelTree class, which we have
already created in the Using tree controls recipe in Chapter 2, Working with Forms.

The code in the form's init () method builds the tree. Here, we create a new object of the
BudgetModelTree type by calling the construct () constructor, which accepts two
arguments:

¢ The Tree control, which represents the actual tree.

¢ The Budget model, which is going to be preselected initially. Normally, it is a
value of the calling control, which can be detected using the
getCallerStringControl () method of the SysTableLookup application
class.

¢ The code in mouseDblClick () returns the user-selected value from the tree node
back to the calling control and closes the lookup.

e Finally, the mouseUp () method has to be overridden to return 1 to make sure
that the lookup does not close while the user expands or collapses the tree nodes.

See also

o The Using a tree control recipe in Chapter 2, Working with Forms

Displaying a list of custom options

Besides normal lookups, Dynamics 365 for Finance and Operations provides a number of
other ways to present the available data for user selection. It does not necessarily have to be
a record from the database; it can be a list of hardcoded options or some external data.
Normally, such lists are much smaller as opposed to those of the data-driven lookups, and
are used for very specific tasks.

In this recipe, we will create a lookup of several predefined options. We will use a job for
this demonstration.

[197]

Building Lookups

How to do it...

1. Add anew project and add a new RunnableClass named PickList:

class PickList
{
/// <summary>
/// Runs the class with the specified arguments.
/// </summary>
/// <param name = "_args">The specified arguments.</param>
public static void main (Args _args)

Map choices;
str ret;

choices = new Map (
Types::Integer,

Types::String);

choices.insert
choices.insert
choices.insert
choices.insert
choices.insert
choices.insert

1, "Axapta 3.0");

2, "Dynamics AX 4.0");
3, "Dynamics AX 2009");
4, "Dynamics AX 2012");
5, "Dynamics AX 7");

6, "Dynamics 365");

ret = pickList (choices, "", "Choose version");
if (ret)
{

info(strFmt ("You've selected option No. %1", ret));

}

2. Save all your code, right-click on this new class, and click on Set as startup
object. Now build your project.

[198]

Building Lookups

3. Run the project to view the results:

Choose version

Axapta 3.0
Dynamics AX 4.0
Dynamics AX 2009
Dynamics AX 2012
Dynamics AX 7

Dynamics 365

OK Cancel

4. Double-click on one of the options to show the selected option in the Infolog
window:

Dynamics AX 135ms O USMF

= kit OPTIONS P

Click the edit button to make changes.

@ You've selected option No. 5

Class runner

Class "Picklist' completed.

[199]

Building Lookups

How it works...

The key element in this recipe is the global pickList () function. Lookups created using
this function are based on values stored in a map. In our example, we define and initialize a
new map. Then, we insert a few key-value pairs and pass the map to the pickList ()
function. This function accepts three parameters:

¢ A map that contains lookup values
e A column header, which is not used here
¢ A lookup title

The function that displays values from the map returns the corresponding keys, once the
option is selected.

There's more...

The global pickList () function can basically display any list of values. Besides that,
Dynamics 365 for Finance and Operations also provides a number of other global lookup
functions, which can be used in more specific scenarios. Here are a few of them:

e pickDataArea (): This shows a list of Dynamics 365 for Finance and Operations
companies.

e pickUserGroups (): This shows a list of user groups in the system.

e pickUser (): This shows a list of Dynamics 365 for Finance and Operations
users.

e pickTable (): This shows all Dynamics 365 for Finance and Operations tables.

e pickField(): This shows table fields. The table number has to be specified as an
argument for the function.

e pickClass (): This shows alist of Dynamics 365 for Finance and Operations
classes.

Displaying custom options in another way

The global system functions, such as pickList () and pickUser (), allow developers to
build various lookups displaying a list of custom options. Besides that, the standard
Dynamics 365 for Finance and Operations application contains a few more useful functions,
allowing us to build more complex lookups of custom options.

[200]

Building Lookups

One of the custom functions is called selectSingle (), and it provides the user with a list
of options. It also displays a checkbox next to each option that allows users to select the
option. To demonstrate this, we will create a new class that shows the usage of these
functions.

How to do it...

1. Add a new project in the solution name DisplayCustomOptionsAnotherWay.
2. Find a sysListSelect form in AOT and select customize to add it in the project.
3. Add new method selectsSingle and add the following code:

public void selectSingle()
{
singleSelect = true;

}

4. Now select project and add a new item, a new Runnable class (Job) named
SysListSelectSingle:

class SysListSelectSingle
{
/// <summary>
/// Runs the class with the specified arguments.
/// </summary>
/// <param name = "_args">The specified arguments.</param>
public static void main (Args _args)

container choices;

container headers;

container selection;

container selected;

boolean ok;

choices = [

"3.0\nAxapta 3.0", 1, false],

"4 ,0\nDynamics AX 4.0", 2, false],
"2009\nDynamics AX 2009", 3, false],
"2012\nDynamics AX 2012", 4, false],
"2012R2\nDynamics AX 2012 R2", 5, false],
"2012R3\nDynamics AX 2012 R3", 6, true],
["2016\nDynamics 365 for operations", 7, truel]l;
headers = ["Version", "Description"];
selection = SysListSelectSingle::selectSingle (
"Choose version",

"Please select Dynamics AX version",

[
[
[
[
[
[

[201]

Building Lookups

choices,

headers) ;

[ok, selected] = selection;

if (ok && conLen(selected))

{
info (strFmt (
"You've selected option No. %1",
conPeek (selected,1)));

static client container selectSingle(

Caption _caption,

str _info,// An info text displayed in the top of the form
container _choices,

container _headers = conNull(),// If null, the list view is
used
Object _caller = null
)
{
Args args;
FormRun formRun;
Object ob7j;
container selected;
args = new Args (formStr (SysListSelect));
args.caller(_caller);
formRun = classfactory.formRunClass (args) ;

formRun.init () ;
formRun.design () .visible (true);
obj = formRun;

obj.infotxt (_info);
obj.choices (_choices);
obj.headers (_headers);
obj.selectSingle();
formRun.run() ;
formRun.wait () ;

selected = obj.selected();
if (conLen(selected) > 0)

return [formRun.closedOk (), [conPeek (selected,1)1];
}

return [formRun.closedOk (), conNull()];

[202]

Building Lookups

5. Run the job to display the options:

Microsoft Dynamics AX

Please select Dynamics AX version

v | Version Description
3.0 Axapta 3.0
4.0 Dynamics AX 4.0
2009 Dynamics AX 2009
2012 Dynamics AX 2012

L4l 2012R2 Dynamics AX 2012 R2
2012R3 Dynamics AX 2012 R3
2016 Dynamics 365 for oper...

6. Select any of the options, click on the OK button, and note that your choice is
displayed in the Infolog window shown in the following screenshot:

Click the edit button to make changes.

@ You've selected option Ne. 5

Class runner

Class "SysListSelectSingle’ completed.

[203]

Building Lookups

How it works...

We start by defining the choices variable and setting its values. The variable is a container
and it holds container values, where each container inside the parent container is made of
three elements and represents one selectable option in the list:

e The first element is text displayed on the lookup. By default, in the lookup, only
one column is displayed, but it is possible to define more columns, simply by
separating the texts using the new line symbol.

e The second element is the number of an item in the list. This value is returned
from the lookup.

¢ The third value specifies whether the option is marked by default.

Now, when the list values are ready, we call the selectsingle () function to build the
actual lookup. This function accepts five arguments:

e The window title

The lookup description
A container of list values

A container representing column headings
¢ An optional reference to a caller object

The singleSelect () function returns a container of two elements:

e true or false depending whether the lookup was closed using the OK button
or not
¢ The numeric value of the selected option

There's more...

You may notice that the lookup, which was created using the singleselect () method,
allows chooses only one option from the list. There is another similar function named
selectMultiple (), which is exactly the same except that the user can select multiple
options from the list. The following code snippet demonstrates its usage:

class SysListSelectMultiple
{
/// <summary>
/// Runs the class with the specified arguments.
/// </summary>
/// <param name = "_args">The specified arguments.</param>

[204]

Building Lookups

public static void main (Args _args)
{

container choices;

container headers;

container selection;

container selected;

boolean ok;

choices = [
"3.0\nAxapta 3.0", 1, false],
"4 .0\nDynamics AX 4.0", 2, false],
"2009\nDynamics AX 2009", 3, false],
"2012\nDynamics AX 2012", 4, false],
"2012R2\nDynamics AX 2012 R2", 5, false],
"2012R3\nDynamics AX 2012 R3", 6, true],
["2016\nDynamics 365 for operations", 7, truel]l;
headers = ["Version", "Description"];
selection = SysListSelectMultiple::selectMultiple (
"Choose version",
"Please select Dynamics AX version",
choices,
headers) ;
[ok, selected] = selection;
if (ok && conLen(selected) > 0)
{

[
[
[
[
[
[

for (int i = 1; i <= conLen(selected); i++)
{
info (strFmt (
"You've selected option No. %1",
conPeek (selected,1)));

/* Returns container with the status of how the form is
closed plus the selected ids.*/

static client container selectMultiple (

Caption _caption,

str _info, // An info text displayed in the top of the form
container _choices,

container _headers = conNull(), // If null, the list view
is used
Object _caller = null
)
{
Args args;
FormRun formRun;
Object obij;
args = new Args (formStr (SysListSelect));

args.caller(_caller);

[205]

Building Lookups

}

formRun = classfactory.formRunClass (args) ;
formRun.init () ;
formRun.design () .visible (true);

obj = formRun;

obj.infotxt (_info);

obj.choices (_choices);

obj.headers (_headers);

formRun.run () ;

formRun.wait () ;

return [formRun.closedOk (), obj.selected()];

Now, in the lookup, it is possible to select multiple options:

Microsoft Dynamics AX

Please select Dynamics AX version

' | Version

3.0

Description

Axapta 3.0

Dynamics AX 4.0
Dynamics AX 2009
Dynamics AX 2012
Dynamics AX 2012 R2

Dynamics AX 2012 R3

Note that in this

case, the returned value is a container holding the selected options.

[206]

Building Lookups

Building a lookup based on the record
description

Normally, data lookups in Dynamics 365 for Finance and Operations display a list of
records where the first column always contains a value, which is returned to a calling form.
The first column in the lookup normally contains a unique record identification value,
which is used to build relations between tables. For example, the Customer lookup displays
the customer account number, the customer name, and some other fields; the Inventory
item lookup displays the item number, the item name, and other fields.

In some cases, the record identifier can be not so informative. For example, it is much more
convenient to display a person's name versus its number. In the standard application, you
can find a number of places where the contact person is displayed as a person's name, even
though the actual table relation is based on the contact person's ID.

In this recipe, we will create such a lookup. We will replace the Vendor group selection
lookup on the Vendors form to show group description, instead of group ID.

How to do it...

1. In the AOT, create a new String extended data type with the following
properties:

Property | Value

Name VendGroupDescriptionExt

Label Group

Extends |Description

2. Open the VvendTable table and create a new method with the following code
snippet:

public edit VendGroupDescriptionExt editVendGroup (

boolean _set,

VendGroupDescriptionExt _group)

{
VendGroup vendGroup;

if (_set)

{

if (_group)

[207]

Building Lookups

if (VendGroup: :exist (_group))
{

this.VendGroup = _group;
}

else

{
select firstOnly VendGroup from vendGroup
where vendGroup.Name == _group;
this.VendGroup = vendGroup.VendGroup;

else
{
this.VendGroup = '';
}
}
return VendGroup::name (this.VendGroup) ;

}

3. In the AOT, find the vendTable form, locate the Posting group control inside
MainTab | TabPageDetails | Tab | TabGeneral | UpperGroup | Posting, and
modify its properties as follows:

Property |Value

DataGroup

4. In the same form, in the Post ing group, modify the Posting_VendGroup
control as follows:

Property Value

DataField

DataMethod | editVendGroup

5. Override the 1ookup () method of the Posting_VendGroup control with the
following code snippet:

public void lookup ()
{

this.performTypelLookup (extendedTypeNum (VendGroupId)) ;
}

[208]

Building Lookups

6. To check the results, navigate to Accounts payable | Common | Vendors | All
vendors, select any record, and click on the Edit button in the action pane. In the
opened form, check the newly created lookup on the Group control, located in the

General tab of the page:

VENDORS

IDENTIFICATION
Vendor account
1002

ype

Organization

MName

‘ Lande Packaging Supplies

B ‘

Search name

Lande Packaging Supp ‘

Addresses

Group

1002 : Lande Packaging Supplies

ABC code

Other vendors

7 ‘

| None V‘

Vendor group T

10

20

30

40

50

ONE

Description

Parts vendors

Services vendors

Tax Authorities

Other vendors
Intercompany vendors

One-time vendors

T

MATION

o

How it works...

First, we create a new extended data type, which we will use as the basis for the vendor
group selection control. The type extends the existing Description extended data type
as it has to be of the same size as the vendor group name. It will also have the same label as
VendGroupId because it is going to replace the existing Group control on the form.

Next, we create a new edit method, which is used to show the group description instead
of the group ID on the form. It also allows changing the control value.

[209]

Building Lookups

The edit method is created on the VendTable table, it is the most convenient place for
reuse and it uses the newly created extended data type. This ensures that the label of the
user control stays the same. The method accepts two arguments, as this is a mandatory
requirement for the edit methods. The first argument defines whether the control was
modified by the user, and if yes, the second argument holds the modified value. In this
recipe, the second value can be either group ID or group description. The value will be
group ID if the user selects this value from the lookup. It will be group description if the
user decides to manually type the value into the control. We use the extended data type,
which is bigger in size, that is, the VendGroupDescriptionExt type. The method returns a
vendor group name, which is shown on the form.

Next, we need to modify the VendTable form. We change the existing vendor group ID
control to use the newly created edit method. By doing this, we make the control unbound
and therefore lose the standard lookup functionality. To correct this, we override the
lookup () method on the control. Here, we use the per formTypeLookup () method to
restore the lookup functionality.

There's more...

In the previous example, you may notice that the lookup does not find the currently
selected group. This is because the system tries to search group ID by group description.
This section will show how to solve this issue.

First, we have to create a new form named VendGroupLookup, that acts as a lookup. Add
a new data source to the form, with the following properties:

Property Value
Name VendGroup
Table VendGroup
Index Groupldx
AllowCheck No
AllowEdit No

AllowCreate No
AllowDelete No
OnlyFetchActive | Yes

[210]

Building Lookups

Change the properties of the form's design as follows:

Property Value

Frame Border

WindowType | Popup

Add a new Grid control to the form's design with the following properties:

Property Value

Name VendGroups
ShowRowLabels | No
DataSource VendGroup
DataGroup Overview

Several new controls will appear in the grid automatically. Change the properties of the
VendGroups_VendGroup control as follows:

Property Value

AutoDeclaration | Yes

Override the form's init () and run () methods with the following code snippet,
respectively:

public void init ()
{
super () ;
element.selectMode (VendGroups_VendGroup) ;
}
public void run()
{
VendGroupId groupld;
groupId = element.args () .lookupValue();
super () ;
VendGroup_ds.findValue (
fieldNum (VendGroup, VendGroup), groupld);

[211]

Building Lookups

The key element here is the findvalue () method in the form's run () method. It places the
cursor on the currently selected vendor group record. The group ID is retrieved from the
argument's object using the Lookupvalue () method.

In the project, the form design will look similar to the following screenshot:

VendGrouploockup + X KENGIEERTY VendTablexpp VendTable [c]

Search ... P~
[VendGroupLeokup (usr) [PacktPub] « | Dy Design | Pattern: <unspecified>

4 g Methods 4 558 VendGroups (Grid)

&% Methods

=@ classDeclaration b

<@ init P & Events
=@ run b VendGroups_VendGroup (String]

P % Events 3 VendGroups_MName (String)

4 g DataSources b VendGroups_PaymTermld (String)

4 g VendGroup 4 VendGroups_ClearingPeriod (String)

b g% Methods [VendGroups_TaxGroupld (String)
I % Events [VendGroups_TaxPeriodPaymentCode_PL (String)
b HW Fields - b VendGroups_ExcludeFromSignup_PSM (Check Box)

oo |

Next, we need to create a new static method on the VendGroup table, which opens the
new lookup form:

public static void lookupVendorGroupForm (
FormStringControl _callingControl,
VendGroupId _groupId)

FormRun formRun;

Args args;

args = new Args();

args.name (formStr (VendGroupLookup)) ;
args.lookupValue (_groupId);

formRun = classFactory.formRunClass (args) ;
formRun.init () ;
_callingControl.performFormLookup (formRun) ;

}

Here, we use the formRunClass () method of the global classFactory object. Note that
here we pass the group ID to the form through the Args object.

The final touch is to change the code in the 1ookup () method of the
VendGroups_VendGroup control on the vendTable form:

public void lookup ()

{
VendGroup: : lookupVendorGroupForm(this, VendTable.VendGroup) ;

[212]

Building Lookups

Now, when you open the Vendors form, make sure that the current vendor group in the
Group lookup is preselected correctly:

Acme Office Supplies

arty association

10N Group ABC code Phonetic name
unt Other vendors A | | Mone hd
Vendor group T Description Terms of payment Default tax group Exclude from se..
10 Parts vendors Net30
iz 20 Services vendors MNet30
30 Tax Authorities Month+15
@ 40 Other vendors Net30
50 Intercompany vendors Net10

ice Supplies .
ONE One-time vendors Month+15

Building the browse for folder lookup

In Dynamics 365 for Finance and Operations, file reading or saving is a very common
operation. Normally, for non-automated operations, the system prompts the user for file
input.

This recipe will demonstrate how the user can be presented with the file browse dialog box
in order to choose the files in a convenient way.

Folder browsing lookups can be used when the user is required to specify a local or a
network folder, to store or retrieve external files. Such lookups are generated in Dynamics
365 for Finance and Operations using the File upload control.

In this recipe, we will learn how to create a lookup for folder browsing. As an example, we
will create a new field and control named Documents on the Vendor parameters form,
which will allow us to store a folder path.

[213]

Building Lookups

How to do it...

1. Create a new project. Open AOT, add a VendParameters table for
customization, and create a new field with the following properties:

Property Value

Type String

Name DocumentPath
Label Documents
ExtendedDataType | FilePath

2. Add the newly created field to the bottom of the table's General field group.

3. In AOT, find form VendParameters and add it to the project using the
customize option.

4. Select form and datasource VendParameters and select the Restore option.

5. Add anew FileUploadControl next to the Document path with the following
properties:

B Data

Auto Declaration Yes

Configuration Key

Country Region Codes

Custom Display NMame FileUploadControl (File
Help Text

Meeded Permizsion Mone

Tags

Type Custom
Misc

BrowseText Upload
FileMamelabel Upload file

FileTypesAccepted ot

FileUpload Strategy Chi

Pattern

PatternVersion

Style MinimalWithFilename

[214]

Building Lookups

6. After restore, the form design should look as follows:

B Design | Pattern: Table of Contents
4 [Tab (Tab)
P g Methods
I & Ewvents
4 [TabGeneral (Tab Page)
& Methods
& Events
'] GeneralTitle (Group)
[3 GeneralTab (Tah)
b @¥® Methods
[& Events
b &P Methods
[& Events
4 ["] General (Group)
b &¥ Methods
P & Events
[+ General_ShowAmountDebitCredit_IP (Check Box)
b +[o] General DocumentPath (String)
b +[] FileUploadControl (File Upload)
b [DefaultValues WTabPage (Tab Page) | Pattern: Fields and Field Groups

¥V ¥V v

7. Next, open the VendParameters form and change the following methods:
e init ()

® closeOk ()
8. Declare a variable in the init method as follows:
FileUpload uploadControl;
9. Add the following lines in the init () method:
uploadControl = fileuploadControl;

uploadControl.notifyUploadCompleted +=
eventhandler (FileUploadControl.uploadCompleted) ;

[215]

Building Lookups

10. Add new method closeOk () on the vendParameters form as follows:

public void closeOk ()

{
FileUpload uploadControl;
uploadControl = FileUploadControl;
uploadControl.notifyUploadCompleted —-=
eventhandler (FileUploadControl.uploadCompleted) ;
super () ;

}
11. Add a new method on FileUploadControl and add new code:

public void uploadCompleted()
{

FileUploadTemporaryStorageResult fileUploadResult =
FileUploadControl.getFileUploadResult () ;
if (fileUploadResult != null &&

fileUploadResult.getUploadStatus())

VendParameters.DocumentPath =
fileUploadResult.getFileName () ;
}
}

12. Build and synchronize the project.

13. As a result, we will be able to select and store a text file in the Accounts
receivables | Setup | Accounts receivables parameters form in the Upload file
field under the General tab page:

[216]

Building Lookups

Dynamics 365 = Operations

Elsave oOPTIONS P

Accounts payable parameters

Set up requirements for purchase order approval and vendor information

General

Invoice

Upload file for entity

Upload
Inveoice validation

Vendo
Ledger and sales tax Product receipt

Credit rating

Settlement

14. In the preceding screen, when you click on the Upload button under the General
group, a dialog opens up where we need to choose the file to upload, as shown in
the following screenshot:

<] Choose File to Upload Il

ara meterS T | <« Visual Studio 2015 » Settings » v O | | Search Settings » |
7 Organize ~ New folder =~ [@
Set up requirements for purchase ord a =
Favori ~ Mame Date modified Type
- Favorites
General B Deskiop SOL Server Management Studio File folder
Upload file for entity % Downloads &) CurrentSettings Visual Studio Setti...
=l Recent places &l CurrentSettings-2016-10-12 Visual Studio Setti...
Upload 7| DynamicsDevConfig XML File
18 This PC =
Vendor i Deskiop
Dreel 10+ °| Documents
Product
& Downloads
W Music
=| Pictures
H Videos
i OSDisk (C)
vl m >
File name: “ v‘ [AnFites 9 v]

[217]

Building Lookups

How it works...

In this recipe, we first create a new field to store the file location. We use the Filepath
extended data type. We also add this field to the field group in the table to ensure that it is
displayed on the form automatically. A File upload control is added to handle file
upload events on the form.

The following form methods are called by the file upload control and must be present on
the caller form:

e The uploadCompleted () method contains code to get the file path and place it
in the DocumentPath field

e The int () and closeOK () method delegates the uploadCompleted () method

There's more...

Additionally, if we want to select a file of a certain type, then we can easily go on
FileUploadControl, look at its properties, and find FileTypesAccepted. We could
select . txt as shown in the following screenshot:

Properties * X
FormControl FileUploadCentrol -
o B @D im U |

Type Custom -
B Misc

BrowseText Upload

FileMamelabel Upload file

FileTypesAccepted Jxt

FileUpload Strategy Class -

[218]

Building Lookups

This would make our browse folder lookup as follows, and would by default allow us to

select a * . txt file:

rements for purchasg

Upload

Ceipt

e

1= Recent places

1% This PC

m Desktop

| Documents
& Downloads
o Music

=| Pictures

8 Videos
&, OSDisk ()

LIRS

Choose File to Upload
4 [)0 « Visual Studio 2015 » Settings » v & | | Search Settings P
Organize « Mew folder e |Jj 'ﬂ'
‘¢ Favorites ~ Mame * Date modified Type
B Desktop J 50L Server Management Studio 10/27/2016 1:43 PM File folder
& Downloads | Testupload 1/4/201710:56 AM Text Document

File name: ||

Y] | |Cust0m Files (*.txt)

v

| Open

Cancel

>

Creating a color picker lookup

In Dynamics 365 for Finance and Operations, the color selection dialog boxes are used in
various places, allowing the user to select and store a color code in a table field. Then the
stored color code can be used in various places to color data records, change form
backgrounds, set colors for various controls, and so on.

In this recipe, we will create a color lookup. For demonstration purposes, we will add an
option to set a color for each legal entity in the system.

[219]

Building Lookups

How to do it...

1. In the AOT, open the CompanyInfo table and create a new field with the
following properties:

Property Value

Type Integer

Name CompanyColor
ExtendedDataType | CCColor

2. Open the OMLegalEntity form, locate the TopPanel group in Design | Tab |
General, and add a new IntEdit control with the following properties to the
bottom of the group:

Property Value

Name CompanyColor

AutoDeclaration | Yes

LookupButton | Always
ShowZero No

Label Company color

3. In the same form, create a new method with the following code snippet in the
CompanyInfo data source:

public edit CCColor editCompanyColor (boolean _set,
CompanyInfo _companyInfo,
CCColor _color)
{
if (_companyInfo.CompanyColor)
{
CompanyColor.backgroundColor (_companyInfo.CompanyColor) ;
}
else
{
CompanyColor.backgroundColor (WinAPI: :RGB2int (255,255,255));
}
CompanyColor. foregroundColor (CompanyColor.backgroundColor ());
return _companyInfo.CompanyColor;

[220]

Building Lookups

}

4. Update the properties of the newly created CompanyColor control as follows:

Property Value

DataSource |Companylnfo

DataMethod | editCompanyColor

5. On the same control, override its 1ookup () method with the following code

snippet:

public void lookup ()

{
int red;
int green;
int blue;
int color = this.value();
color = ColorSelection::selectColor (this, color);
CompanyInfo.CompanyColor = color;
this.value (color);
this.backgroundColor (color);

}

6. To test the results, navigate to Organization administration |Organization |
Legal entities and note the newly created Company color lookup:

Legal entities

Name Company
| dat dat
General
Memo Use for financial consolidation process Company color

No] 12200634 v

Use for financial elimination process
No] +
Full name

Search name

_

Localized functionality region

In hierarchy Color

| Detect using company address V| e
Ne - BA2ABA IS v

Addresses oK

Contact information

tatiuton: ronarting

[221]

Building Lookups

How it works...

Dynamics 365 for Finance and Operations does not have a special control to select colors.
Therefore, we have to create a fake control, which is presented to the user as a color
selection.

Colors in Dynamics 365 for Finance and Operations are stored as integers, so we first create
anew Integer field on the CompanyInfo table. On the form, we create a new control,
which will display the color. The created control does not have any automatic lookup and
therefore it does not have the lookup button next to it. We have to force the button to
appear by setting the control's LookupButton property to Always.

Next, we create a new edit method, which is then set on the created control as a data
method. This method is responsible for changing the control's background to match the
stored color. This gives an impression to the user that the chosen color was saved. The
background is set to white if no value is present. The method always returns the value 0
because we do not want to show the actual color code in it. The control's Showzero
property is set to No to ensure that even the returned 0 is not displayed. In this way, we
create a control that looks like a real color selection control.

The last thing to do is to override the control's 1ookup () method with the code that invokes
the color selection dialog box. Here, we use the selectColor method of the
ColorSelection class to convert the current control's background color into a red-green-
blue component set. This set is then passed to the value () method to make sure that the
currently set color is selected on the lookup initially. The selectColor () method is the
main method, which invokes the lookup. It accepts the following arguments:

¢ The current window handle
e Abinary object representing up to 16 custom colors

This method returns an integer code of the color components, which has to be converted
back to a numeric value in order to store it in the table field.

[222]

Processing Business Tasks

In this chapter, we will cover the following recipes:

¢ Using a segmented entry control

¢ Creating a general journal

¢ Posting a general journal

e Processing a project journal

¢ Creating and posting a ledger voucher
¢ Changing an automatic transaction text
¢ Creating a purchase order

e Posting a purchase order

¢ Creating a sales order

e Posting a sales order

¢ Creating an electronic payment format

Introduction

In Dynamics 365 for Finance and Operations, various business operations, such as creating
financial journals, posting sales orders, and generating vendor payments are performed
from the user interface by users on a periodic basis. For developers, it is very important to
understand how it works internally in new Dynamics 365 for Finance and Operations so
that the logic can be used to design and implement new customized business logic.

Processing Business Tasks

This chapter will explain how various Dynamics 365 business operations can be performed
through the code. We will discuss how to perform different operations on various journals,
sales order, purchase orders, and so on. This chapter also explains how to work with the
ledger voucher object and how to enhance the setup of the automatically-generated
transaction texts. Posting purchase and sales orders and changing business document
layout per company are also discussed here. This chapter includes other features, such as
creating a new electronic payment format and controlling the display of inventory
dimensions.

Using a segmented entry control

In Dynamics 365 for Finance and Operations, segmented entry control can simplify the task
of entering complex account and dimension combinations. The control consists of a
dynamic number of elements, named segments. The number of segments may vary
depending on the setup, and their lookup values may depend on the values specified in
other segments in the same control. The segmented entry control always uses the controller
class, which handles the entry and display in the control.

In this recipe, we will show you how a segmented entry control can be added to a form. In
this demonstration, we will add a new Ledger account control to the general ledger
parameters form, assuming that the control can be used as a default ledger account for
various functions. The example does not make much sense in practice, but it is perfectly
suitable to demonstrate the usage of the segmented entry control.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Create a new extension of the LedgerParameters table in your project and
create a new Int64 type field with the following properties (click on Yes to
automatically add a foreign key relationship once you are asked):

Property Value

Name LedgerDimension

ExtendedDataType | LedgerDimensionAccount

2. Add the newly created field to the General group in the table.

[224]

Processing Business Tasks

3. Find the table's relation, named DimensionAttributeValueCombination, and
change its property, as follows:

Property Value
UseDefaultRoleNames | No

4. In the project, add the LedgerParameters form and declare the following
variables in class declaration:

MainAccountRecId currentMainAccountId;
MainAccountRecId previousMainAccountId;
MainAccountRecId currentOffsetMainAccountId;
DimensionAttributeRecId mainAccountDimAttr;
LedgerJournalEngine ledgerJournalEngine;

5. In the same form, find the General_LedgerDimension segmented entry control
by going to Tab | LedgerTab | LedgerTabFastTab | GeneralTabPage | General,
and then change the field properties:

Property Value
Auto Declaration Yes
Controller class DimensionDynamicAccountController

Include Financial accounts | Yes

Is default account False

6. Now override three of its methods with the following code snippet:

public void onSegmentChanged (DimensionControlSegment _segment)
{
if (_segment.parmDimensionAttribute () .RecId ==
mainAccountDimAttr)
{
previousMainAccountId = currentMainAccountId;
}
super (_segment) ;
ledgerJournalEngine =
LedgerJournalEngine: :construct (LedgerJournalType: :Daily,

element) ;
ledgerJournalEngine.ledgerJournalTable
(element.args () .record());

[225]

Processing Business Tasks

7. Add the following lines of code at the bottom of the form's init () method

10.

before super ():

mainAccountDimAttr =
DimensionAttribute::getWellKnownDimensionAttribute
(DimensionAttributeType: :MainAccount) ;

. In the active () method of datasource LedgerParameters, add the

following line of code:

currentMainAccountId =

MainAccount: :getMainAccountRecIdFromLedgerDimension
(LedgerParameters.LedgerDimension) ;
previousMainAccountId = currentMainAccountId;

Add the DimensionHierarchyHelper class to the project and add a few lines of
code in the getHierarchyTypeByAccount Type () method at line number 442
under case enumNum (LedgerJournalACType) :

default

return DimensionHierarchyType::AccountStructure;

To test the results, navigate to General ledger | Setup | General ledger
parameters and notice the newly created Ledger account control, which allows
you to select and save the main account and a number of financial dimensions, as
shown in the following screenshot:

Ledger

Sales tax

General ledger parameters

Set up general information for general ledger

General B

Inventory dimensions

Number sequences

Batch transfer rules

Chart of accounts and dimensions

GENERAL

Check for voucher used

Maximum penny-rounding in the repor...

JOURNALIZING

Extended ledger journal

Reject duplicate ot No
Check continuous numbers -005-025 v Start journalizing report at page one
ves il Value Description MainAccount
Interrupt in case of error account 110110 Bank Account - USD rs
No 110115 Bank Account - CAD BusinessUnit
_ o0t
Maximum penny difference 110120 Bank Account - CNY
110130 Bank Account - EUR Department
110140 Bank Account - DKK
110150 Bank Account - GEP
110160 Bank Account - Payroll
110180 Petty Cash v
Show valid

[226]

Processing Business Tasks

How it works...

We start the recipe by creating a new field in the LedgerParameters table. The field
extends the LedgerDimensionAccount extended data type in order to ensure that the
segmented entry control appears automatically, once this field is added to the user
interface. We also add the newly created field to one of the table's groups in order to make
sure that it appears on the form automatically.

Next, we have to modify the LedgerParameters form. In its class declaration and the
init () method, we define and instantiate the LedgerDimensionAccountController
class, which handles the events raised by the segmented entry control. The combination of
the class and the control allows the user to see a dynamic number of segments, based on the
system configuration.

Then, we override the following methods in the control:

® loadAutoCompleteData (): This retrieves the autocompleted data
e loadSegments (): This loads the value stored in the table field into the control

¢ segmentedValueChanged (): This updates the controller class when the value of
the control is changed by the user

Lastly, we override the following methods in the data source field:

e resolveReference (): This finds the ledger account record specified by the user

e jumpRef (): This enables the View details link in the control's right-click context
menu

e validate (): This performs user input validation

There's more...

In this section, we will discuss how the input of the segmented entry control can be
simulated from the code. It is very useful when migrating or importing data into the
system. In the Dynamics Project, add the DimensionAttributeValueCombination table
and create a new method with the following code snippet:

public static LedgerDimensionAccount getLedgerDimension (
MainAccountNum _mainAccountId,

container _dimensions,
container _values)
MainAccount mainAccount;

[227]

Processing Business Tasks

DimensionHierarchy dimHier;
LedgerStructure ledgerStruct;
Map dimSpec;

Name dimName;

Name dimValue;
DimensionAttribute dimAttr;
DimensionAttributeValue dimAttrValue;
List dimSources;
DimensionDefaultingEngine dimEng;

int i;
mainAccount = MainAccount::findByMainAccountId (
_mainAccountId);

if (!mainAccount.RecId)
{

return O;
}
select firstOnly RecId from dimHier
where dimHier.StructureType ==
DimensionHierarchyType: :AccountStructure

&& dimHier.IsDraft == NoYes::No

exists join ledgerStruct

where ledgerStruct.Ledger == Ledger::current ()

&& ledgerStruct.DimensionHierarchy == dimHier.RecId;

if (!dimHier.RecId)
{

return 0;

}
dimSpec =
DimensionDefaultingEngine: :createEmptyDimensionSpecifiers();
for (i = 1; 1 <= conlen(_dimensions); i++)
{
dimName = conPeek (_dimensions, 1i);
dimValue = conPeek (_values, 1i);

dimAttr = DimensionAttribute::findByName (dimName) ;
if (!dimAttr.RecId)
{

continue;

dimAttrValue =
DimensionAttributeValue::findByDimensionAttributeAndValue (
dimAttr, dimValue, false, true);
if (dimAttrValue.IsDeleted)
{

continue;
}
DimensionDefaultingEngine::insertDimensionSpecifer (
dimSpec,
dimAttr.RecId,

[228]

Processing Business Tasks

dimValue,
dimAttrValue.RecId,
dimAttrValue.HashKey) ;

dimSources = new List (Types::Class);

dimSources.addEnd (dimSpec) ;

dimEng = DimensionDefaultingEngine::constructForMainAccountId (
mainAccount.RecId,

dimHier.RecId);

dimEng.applyDimensionSources (dimSources) ;

return dimEng.getLedgerDimension () ;

}

This method can be used to convert a combination of main accounts and a number of
financial dimension values into a ledger account. The method accepts the following three
arguments:

e The main account number
e A container of dimension names
e A container of dimension values

We start this method by searching for the main account record. We also locate the record of
the hierarchy of the current chart of accounts.

Next, we fill an empty map with the dimension values. Before inserting each value, we
check whether the dimension and its value are present in the system. To do this, we use the
methods in the DimensionAttribute and DimensionAttributeValue tables to do.

We end the method by creating a new DimensionDefaultingEngine object and passing
the list of dimensions and their values to it. Now, when everything is ready, the
getLedgerDimension () method of DimensionDefaultingEngine returns the ledger
account number.

See also

e The Creating a general journal recipe
o The Creating and posting a ledger voucher recipe

[229]

Processing Business Tasks

Creating a general journal

Journals in Dynamics 365 for Finance and Operations are manual worksheets that can be
posted into the system. One of the frequently used journals for financial operations is the
general journal. It allows the virtual processing of any type of posting: ledger account
transfers, fixed asset operations, customer/vendor payments, bank operations, project
expenses, and so on. Journals, such as the fixed assets journal, payment journal in
Accounts receivable or Accounts payable, and many others, are optimized for specific
business tasks, but they basically do the same job.

In this recipe, we will demonstrate how to create a new general journal record from the
code. The journal will hold a single line for debiting one ledger account and crediting
another one. For demonstration purposes, we will specify all the input values in the code.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Create a new Dynamics 365 solution named CreateGeneralJournal. Change
the model name in properties with the one created earlier.

2. In the project, create a new class named LedgerJournalTransData with the
following code snippet:

public class LedgerJournalTransData extends JournalTransData
{
}

public void create(

boolean _doInsert = false,

boolean _initVoucherlList = true)
{

lastLineNum++;

journalTrans.LineNum = lastLineNum;
if (journalTableData.journalVoucherNum())
{
this.initVoucher (
lastVoucher,
false,
_initVoucherList);

}

this.addTotal (false, false);

if (_doInsert)

{

journalTrans.dolInsert () ;

[230]

Processing Business Tasks

}

else
journalTrans.insert () ;
if (journalTableData.journalVoucherNum())

lastVoucher = journalTrans.Voucher;

3. Add the LedgerJournalStatic class in your project and replace its
newJournalTransData () method with the following code snippet:

JournalTransData newJournalTransData (
JournalTransMap _JjournalTrans,
JournalTableData _journalTableData)

{
return new LedgerJournalTransData (
_journalTrans,
_JjournalTableData) ;
}

4. Create a new class named GetLedgerDimension with the following code
snippet:

class GetLedgerDimension

{
public static LedgerDimensionAccount getLedgerDimension (
MainAccountNum _mainAccountId,

container _dimensions,
container _values)

{
MainAccount mainAccount;
DimensionHierarchy dimHier;
LedgerStructure ledgerStruct;
Map dimSpec;
Name dimName;
Name dimValue;
DimensionAttribute dimAttr;
DimensionAttributeValue dimAttrValue;
List dimSources;
LedgerDimensionDefaultingEngine dimEng;
int i;
mainAccount = MainAccount::findByMainAccountId (
_mainAccountId);

if (!mainAccount.RecId)

[231]

Processing Business Tasks

return O;
}
select firstOnly RecId from dimHier
where dimHier.StructureType ==
DimensionHierarchyType: :AccountStructure

&& dimHier.IsDraft == NoYes::No

exists join ledgerStruct

where ledgerStruct.Ledger == Ledger::current ()

&& ledgerStruct.DimensionHierarchy == dimHier.RecId;

if (!dimHier.RecId)
{
return 0;

}

dimSpec = LedgerDimensionDefaultingEngine::
createEmptyDimensionSpecifiers();

for (i = 1; 1 <= conlen(_dimensions); i++)
{
dimName = conPeek (_dimensions, 1i);
dimValue = conPeek (_values, 1i);

dimAttr = DimensionAttribute::findByName (dimName) ;

if (!dimAttr.RecId)
{

continue;

}

dimAttrValue =
DimensionAttributeValue::findByDimensionAttributeAndValue (
dimAttr, dimValue, false, true);
if (dimAttrValue.IsDeleted)
{

continue;

LedgerDimensionDefaultingEngine: :insertDimensionSpecifer (
dimSpec,
dimAttr.RecId,
dimValue,
dimAttrValue.RecId,
dimAttrValue.HashKey) ;
}
dimSources = new List (Types::Class);
dimSources.addEnd (dimSpec) ;
dimEng = LedgerDimensionDefaultingEngine::
constructForMainAccountId (
mainAccount.RecId,
dimHier.RecId);
dimEng.applyDimensionSources (dimSources) ;
return dimEng.getLedgerDimension () ;

[232]

Processing Business Tasks

}

5. Create another class named LedgerJournalCreate with the following code
snippet:

class LedgerJournalCreate

{

public static void Main (Args _args)

LedgerJournalTable jourTable;
LedgerJournalTrans jourTrans;
LedgerJournalTableData jourTableData;
LedgerJournalTransData jourTransData;
LedgerJournalStatic jourStatic;
DimensionDynamicAccount ledgerDim;
DimensionDynamicAccount offsetLedgerDim;
ttsBegin;
ledgerDim =
GetLedgerDimension: :getLedgerDimension (
'110180",
['BusinessUnit', 'Department'],
['005', '024']);
offsetlLedgerDim =
GetLedgerDimension: :getLedgerDimension (
'170150",
[' BusinessUnit', 'Department'],
['005', '024']1);
jourTableData = JournalTableData::newTable (jourTable);
jourTable.JournalNum = jourTableData.nextJournalId();
jourTable.JournalType = LedgerJournalType::Daily;
jourTable.JournalName = 'GenJrn';
jourTableData.initFromJournalName (
LedgerJournalName: : find (jourTable.JournalName)) ;
jourStatic = jourTableData.journalStatic();
jourTransData = jourStatic.newJournalTransData (
jourTrans,
jourTableData) ;
jourTransData.initFromJournalTable () ;

jourTrans.CurrencyCode = 'UsDh';
jourTrans.initValue();

jourTrans.TransDate = systemDateGet () ;
jourTrans.LedgerDimension = ledgerDim;
jourTrans.Txt = 'General journal demo';
jourTrans.OffsetLedgerDimension = offsetLedgerDim;
jourTrans.AmountCurDebit = 1000;

jourTransData.create();
jourTable.insert () ;
ttsCommit;

[233]

Processing Business Tasks

info (strFmt (
"Journal '$1' has been created", jourTable.JournallNum));

6. Save all your code and set this class as set as start up object.Now, run the
project and you will get the following message:

@ Journal & Bhas been created

7. Now check the results by navigating to General ledger | Journal entries |
General journals, as shown in the following screenshot:

Save - New [i] Delete = Lines Open linesin Excel ¥ Validate Post ™ Inquiries ™ Print v OPTIONS Eel

General journals

Show
Not posted hd D Show user-created only

[GENERAL SETUP BLOCKING FINANCIAL DIMENSIONS HISTORY

v Joumal batch... T | Name Description Posted ¥ Posted on Log In... | In
25126 GenJrn General Journal
25127 GenJrn General Journal
25128 GenJrn General Journal

8. Click on the Lines button to open journal lines and notice the created line, as
shown in the following screenshot:

[Elsave Post Validate General journals Period jounal ™ Functions ™ Fixed assets v Inquiries Print ™ OPTIONS

25129 : GENJRN
Journal voucher
Display journal lines

All v

[IN GENERAL INVOICE PAYMENT PAYMENTFEE FIXED ASSETS ~ REMITTANCE HISTORY

{ New i Delete Financial dimensions v/ Salestax Functions v
v | Date Voucher Company Account type Account Description Debit Credit | Offset comp:
1/12/2017 [F GNJL000T29 usrt v Ledger ~/ 110180-005-024 v General journal demo v 1,000.00 usrt
< >

[234]

Processing Business Tasks

How it works...

We start the recipe by creating the LedgerJournalTransData class, which will handle the
creation of journal lines. It inherits everything from the JournalTransData class, apart
from its create () method. Actually, this method is a copy of the same method from the
JournalTransData class, with the exception that it does not contain the code that is not
relevant to the ledger journal creation. We also modify the newJournalTransData ()
constructor of the LedgerJournalstatic class to use our newly created class.

The journal creation code is placed in a new job. We start the code by initializing ledger
dimensions. Here, we use the get LedgerDimension () method from the previous recipe to
get ledger dimensions. This method accepts three parameters: the main account number, a
container of dimension names, and a container of dimension values. In this example, the
ledger dimensions consist of the main account, business unit, and department, and its value
is 110180-005-024. Use your own values depending on the data you have.

We also create a new jourTableData object that is used for journal record handling. Then,
we set the journal number, type, and name and call the initFromJournalName () method

to initialize some additional values from the journal name settings. At this stage, the journal
header record is ready.

Next, we create a journal line. We create a new jourTransData object to handle the journal
line, and we call its initFromJournalTable () method to initialize additional values from
the journal header. Then, we set some of the journal line values, such as the currency and
transaction date.

Finally, we call the create () method on the jourTransData object and the insert ()
method on the jourTable object to create the journal line and header records, respectively.
The journal is now ready to be reviewed.

There's more

The preceding example can be easily modified to create different journals, not just the
general journal. For instance, the payment journal in the Accounts payable module is
based on the same data sources as the general journal and some of its code is the same. So,
let's create a new, similar job named VendPaymJournalCreate with the following code
snippet:

class VendPaymJournalCreate

{

public static void Main (Args _args)

[235]

Processing Business Tasks

LedgerJournalTable jourTable;
LedgerJournalTrans jourTrans;
LedgerJournalTableData jourTableData;
LedgerJournalTransData jourTransData;
LedgerJournalStatic jourStatic;
DimensionDynamicAccount ledgerDim;
DimensionDynamicAccount offsetLedgerDim;
ttsBegin;
ledgerDim = LedgerDynamicAccountHelper:
:getDynamicAccountFromAccountNumber ('1001"',
LedgerJournalACType: :Vend) ;
LedgerJournalACType: :Vend) ;
offsetLedgerDim = LedgerDynamicAccountHelper:
:getDynamicAccountFromAccountNumber (
'USMF OPER',
LedgerJournalACType: :Bank) ;
//Journal header data

jourTableData = JournalTableData::newTable (jourTable);
jourTable.JournalNum = jourTableData.nextJournallId();
jourTable.JournalType = LedgerJournalType::Payment;
jourTable.JournalName = 'VendPay';

jourTableData.initFromJournalName (
LedgerJournalName: :find (jourTable.JournalName)) ;

jourStatic = jourTableData.journalStatic();
//Journal line data
jourTransData = jourStatic.newJournalTransData (

jourTrans,
jourTableData) ;
jourTransData.initFromJournalTable () ;

jourTrans.CurrencyCode = 'UsDh';

jourTrans.initValue () ;

jourTrans.TransDate = systemDateGet () ;
jourTrans.AccountType = LedgerJournalACType: :Vend;
jourTrans.LedgerDimension = ledgerDim;

jourTrans.Txt = 'Vendor payment journal demo';
jourTrans.OffsetAccountType = LedgerJournalACType: :Bank;
jourTrans.OffsetlLedgerDimension = offsetlLedgerDim;
jourTrans.AmountCurDebit = 1000;

jourTransData.create();
jourTable.insert ();
ttsCommit;
info (strFmt (
"Journal '$1' has been created", jourTable.JournalNum)) ;

[236]

Processing Business Tasks

When you run your code, your output will look as follows:

Click the edit button to make changes.

@ Journal has been created

Class runner

Class "VendPaymJournalCreate' completed.

Now, the newly created journal can be found by navigating to Accounts payable | Journals
| Payments | Payment journal, as shown here:

&l Save | New [i] Delete = Lines Openlinesin Excel ™ Validate Post v Inquiies ™ Print ™ OPTIONS 2

Payment journal

Show

[AEI0N GENERAL SETUP BLOCKING FINANCIAL DIMENSIONS — HISTORY

V| Journal batch... T | Name Description Posted ¥ Posted on Log In... | Inuse by
00468 VendPay Vendor Payment
00469 VendPay Vendor Payment
00481 VendPay Vendor Payment Ay | Admin
00482 VendPay Vendor Payment

The journal's lines should reflect what we've specified in the code, as shown in the
following screenshot:

Save Post Validate ™ Payment proposal ™ Generate payments Functions Vv Inquiries ™ Print ™ QPTIONS £

00483 : VENDPAY

Vendor payments
[N)a GENERAL PAYMENT PAYMENTFEE REMITTANCE BANK HISTORY POSTDATED CHECKS
+ New [i] Delete Settle transactions Financial dimensions Sales tax Payment status » View marked transactions

v | Date Voucher Company | Account Vendor name Description Debit Credit

h/‘\GfZUﬁ 7| APPM000489 usmf ~~ 1001 ~ Acme Office Supplies Vendor payment journal demo v 1,000.00

[237]

Processing Business Tasks

The code in this section has only slight differences compared to the previous example, as
follows:

¢ The ledger dimension contains a reference to a vendor account, and the offset
ledger dimension refers to a bank account record

¢ The journal type is changed to a vendor disbursement, that is,
LedgerJournalType: :Payment

¢ The journal name to be matched with the payment journal configuration is
different

¢ The journal line account type is set to vendor, and the offset account type is set to
bank

See also

o The Using a segmented entry control recipe
e The Posting a general journal recipe

Posting a general journal

Journal posting is the next step once the journal has been created. Although most of the
time journals are posted from the user interface, it is also possible to perform the same
operation from the code.

In this recipe, we will explore how a general journal can be posted from the code. We are
going to process the journal created in the previous recipe.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Navigate to General ledger | Journals | General journal and find an open
journal. Create a new journal if none exists. Note the journal's number.

[238]

Processing Business Tasks

2. In your solution, add a new runnable class named LedgerJournalPost with the
following code snippet (replace the 00472 text with the journal's number from
the previous step):

static void LedgerJournalPost (Args _args)

{
LedgerJournalCheckPost LedgerJournalCheckPost;
LedgerJournalTable LedgerJournalTable;

LedgerJournalTable = LedgerJournalTable::find('00472");
LedgerJournalCheckPost=
LedgerJournalCheckPost: :newlLedgerJournalTable (
jourTable,
NoYes: :Yes) ;

LedgerJournalCheckPost.run();

}

3. Save all your code and build your solution.

4. Now, test set this class as a startup object, run the solution, and notice the Infolog
window, confirming that the journal was successfully posted, as shown here:

Z Edit oPTIONS P

Click the edit button to make changes.

@ MNumber of vouchers posted to the journal: 1

Class runner

Class ‘LedgerGenerallournalPost’ completed.

[239]

Processing Business Tasks

5. Navigate to General ledger | Journals | General journal and locate the journal
in order to make sure that it was posted, as shown in the following screenshot:

General journals

Show

[RE)p GENERAL SETUP BLOCKING FINANCIAL DIMENSIONS HISTORY

v | Journal batch... T | Mame Description Posted % Posted on Log ...
25114 Genlrn Cash deposit transfer L4 12/4/2015 02:35:18 AM
25115 Genlrn Cash deposit transfer ' 12/4/2015 02:36:37 AM
25116 Genlrn Bank adjustment 4 12/4/2015 02:39:11 AM
25117 Genlrn Cash deposit transfer iv4 12/4/2015 02:37:59 AM
25118 Genlrn Cash deposit transfer iv4 12/4/2015 02:39:20 AM
25119 Genlrn Cash deposit transfer L4 12/4/2015 02:40:58 AM
25120 Genlrn Cash deposit transfer ' 12/4/2015 02:42:43 AM
25129 Genlm General Journal v 1/16/2017 07:06:43 PM

How it works...

In this recipe, we created a new job named LedgerGeneralJournalPost, which holds all
the code. Here, we use the LedgerJournalCheckPost class, which does all the work. This
class ensures that all the necessary validations are performed. It also locks the journal so
that no user can access it from the user interface.

In the job, we create the jourPost object by calling the newLedgerJournalTable ()
constructor on the LedgerJournalCheckPost class. This method accepts a journal header
record to be processed and a second argument, defining whether the journal should be
validated and posted or only validated. In this recipe, we find the previously created
journal record and pass it to the LedgerJournalCheckPost class along with the second
argument, instructing it to perform both validation and posting.

See also

o The Creating a general journal recipe

[240]

Processing Business Tasks

Processing a project journal

As with most of the modules in Dynamics 365 for Finance and Operations, the Project
management and accounting module contain several journals, such as hour, expense, fee,
and item. Although they are similar to the general journal, they provide a more convenient
user interface to work with projects and contain some module-specific features.

In this recipe, we will create and post a project journal from the code. We will process an
hour journal, holding a registered employee's time.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Create a new project ProcessProjectJournal, and assign our custom model to
it.

2. Create a new class named ProjJournalCreate with the following code snippet
(replace the input values in the code to match your data):

class ProjJournalCreate
{
public static void Main (Args _args)
{
ProjJournalTable jourTable;
ProjJournalTrans jourTrans;
ProjJournalTableData jourTableData;
ProjJournalTransData jourTransData;

ProjJournalStatic jourStatic;

ttsBegin;

jourTableData = JournalTableData::newTable (jourTable);
jourTable.Journalld = jourTableData.nextJournallId();
jourTable.JournalType = ProjJdournalType: :Hour;
jourTable.JournalNameId = 'Hours';

jourTableData.initFromJournalName (
ProjJournalName::find(jourTable.JournalNameld));
jourStatic = jourTableData.journalStatic();
jourTransData = jourStatic.newJournalTransData (
jourTrans,

jourTableData) ;
jourTransData.initFromJournalTable () ;
jourTrans.initValue();
jourTrans.ProjId = '00000007"';
jourTrans.initFromProjTable (
ProjTable::find(jourTrans.ProjId));

[241]

Processing Business Tasks

jourTrans.TransDate = systemDateGet () ;
jourTrans.ProjTransDate = jourTrans.TransDate;
jourTrans.CategoryId = 'Taxi';

jourTrans.setHourCostPrice () ;
jourTrans.setHourSalesPrice () ;
jourTrans.TaxItemGroupId =
ProjCategory::find(jourTrans.CategoryId) .TaxItemGroupld;
jourTrans.DEL_Worker =
HcmWorker: : findByPersonnelNumber ('000062") .RecId;
jourTrans.Txt = 'Taxi fare reimbursement';
jourTrans.Qty = 8;
jourTransData.create();
jourTable.insert ();
ttsCommit;
info (strFmt (
"Journal '$1' has been created", jourTable.Journalld));
}
}

3. Execute the class and check the results by navigating to Project management and
accounting | Journals | Hour, as shown in the following screenshot:

Bl Save -+ MNew [if Delete OpeninExcel ¥ Copy Reverse Lines Validate Post Approval v Print

Hour journal

Show
Mot posted ~

(oI GENERAL DEFAULT VALUES BLOCKING HISTORY

+ | Name Journal T Description Hours Lines | Posted ¥ In...

PJJ_000011 0.00 1

Hours PJ1_000013 ‘ Hours, no abprovaljcurnal 0.00 1

4. Click on the Lines button to open journal lines and notice the newly created
record, as shown in the following screenshot:

[242]

Processing Business Tasks

PJJ_000013 : HOURS, NO APPROVAL JOURNAL
Journal lines for hours

(O[NNI GENERAL

V| Project date Project ID Category Description Hours | Line property Reversing
171972017 f# 00000007 v Taxi ~ Taxi fare reimbursement 8.00 Billable v D
< >
Journal Lines Voucher Lines
0.00 1 8.00 1

How it works...

In this recipe, we create a new job where we store all the code. In the job, we use the
ProjJournalTableData and ProjJournalTransData classes in a way similar to how we
used the LedgerJournalTableData and LedgerJournalTransData classes in the
Creating a general journal recipe. Here, we create a new jourTableData object used for
journal record handling. Then, we initialize the journal number, type, and name of the
actual journal record. For demonstration purposes, we set the journal name in the code, but
it can be easily replaced with a value from some parameter. Next, we call
initFromJournalName () on the jourTableData object in order to initialize some
additional values from the journal name settings. At this stage, the journal header record is
ready.

Next, we create a journal line. Here, we first create a new jourTransData object to handle
the journal line. Then, we call its initFromJournalTable () method in order to initialize
the additional values from the journal header. Finally, we set some of the journal line
values, such as transaction and project date, category, and worker number. Normally,
these values have to be taken from the user input, external data, or any other source,
depending on the functionality being built. In this example, we simply specify the values in
the code.

Lastly, we call the create () method on jourTransData and the insert () method on
jourTable to create the journal line and the header records, respectively. The journal is
now ready to be reviewed.

[243]

Processing Business Tasks

There's more...

For further journal processing, we can use the class named ProjJournalCheckPost to
post project journals from the code. In the Dynamics project, let's create another class
named ProjJournalPost with the following code snippet (replace PJJ_000013 with your
journal number):

class ProjJournalPost

{

{

}

public static void Main (Args _args)

ProjJournalCheckPost jourPost;
jourPost =
true,
true,
JournalCheckPostType: :Post,
tableNum (ProjJournalTable),
'PJJ_000013");
jourPost.run () ;

ProjJournalCheckPost:

:newJournalCheckPost (

Run the job to post the journal. The Infolog window should display the confirmation, as

shown here:

OPTIONS = P

¢ Edit
Click the edit button to make changes.

®' Number of vouchers posted to the journal: 1

Class runner

Class ‘LedgerGenerallournalPost’ completed.

In the newly created job, we use the newJournalCheckPost () constructor of the
ProjJournalCheckPost class. The constructor accepts the following arguments:

¢ A Boolean value that specifies whether to block the journal while it is being
posted or not. It is a good practice to set the value to true, as this ensures that no
one modifies this journal while it is being posted.

¢ A Boolean value that specifies whether to display results in the Infolog window.

[244]

Processing Business Tasks

The type of action being performed. The possible values for this class are either
Post or Check. The latter one only validates the journal, and the first one
validates and posts the journal at once.

The table ID of the journal being posted.

The journal number to be posted.

Finally, we call the run () method, which posts the journal.

Creating and posting a ledger voucher

In Dynamics 365 for Finance and Operations, all the financial transactions, regardless of
where they are originated, end up in the General ledger module. When it comes to
customized functionality, developers should use the Dynamics 365 APIs to create the
required system entries. No transactions can be created directly in the tables, as this may
affect the accuracy of financial data.

In order to ensure data consistency, the system provides numerous APIs for developers to
use. One of them is ledger voucher processing. This allows you to post a financial voucher
in the General ledger module. Vouchers in Dynamics 365 for Finance and Operations are
balanced financial entries that represent a single operation. They include two or more
ledger transactions. The ledger voucher API ensures that all the mandatory fields, such as
voucher numbers, ledger accounts, offset account, financial dimensions, balances, and
others, are filled and valid.

In this recipe, we will demonstrate how a ledger voucher can be created and posted from
the code. We will create a single voucher with two balancing transactions.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Double-check whether the getLedgerDimension () method exists in the
DimensionAttributeValueCombination table. If not, create it as described in
the first recipe of this chapter.

2. In the solution, create a new job named LedgerVoucherPost with the following
code snippet:

class PacktLedgerVoucherPost

{

[245]

Processing Business Tasks

public static void Main (Args _args)

{
LedgerVoucher LedgerVoucher;
LedgerVoucherObject voucherObij;
LedgerVoucherTransObject wvoucherTrObjl;
LedgerVoucherTransObject wvoucherTrObj2;
DimensionDynamicAccount ledgerDim;
DimensionDynamicAccount offsetLedgerDim;

CurrencyExchangeHelper currencyExchHelper;
CompanyInfo companyInfo;
ledgerDim =
GetLedgerDimension: :getLedgerDimension (
'110180",
['BusinessUnit', 'Department'],
['005', '024']);
offsetLedgerDim =
GetLedgerDimension: :getLedgerDimension (
'170150",
['BusinessUnit', 'Department'],
['005', '024']);
LedgerVoucher = LedgerVoucher: :newLedgerPost (

DetailSummary: :Detail,
SysModule: :Ledger,
")
voucherObj = LedgerVoucherObject:
:newVoucher ('"TEST00001");
companyInfo = CompanyInfo::findDataArea (curext());
currencyExchHelper =
CurrencyExchangeHelper: :newExchangeDate (
Ledger: :primaryLedger (companyInfo.RecId),
voucherObij.parmAccountingDate ()) ;
LedgerVoucher.addVoucher (voucherObj) ;
voucherTrObjl =
LedgerVoucherTransObject: :newTransactionAmountDefault (
voucherObij,
LedgerPostingType: :LedgerJournal,
ledgerDim,
'Usb!',
1000,
currencyExchHelper) ;
voucherTrObj2 =
LedgerVoucherTransObject: :newTransactionAmountDefault (
voucherObij,
LedgerPostingType: :LedgerJournal,
offsetLedgerDim,
'usp!',
-1000,
currencyExchHelper) ;

[246]

Processing Business Tasks

LedgerVoucher.addTrans (voucherTrObjl) ;
LedgerVoucher.addTrans (voucherTrObj2) ;
LedgerVoucher.end() ;
info (strFmt (

"Voucher '$1' has been posted", wvoucher.lastVoucher()));

3. Run the class to create a new ledger voucher, as shown in the following
screenshot:

Click the edit button te make changes.

@ Voucher TESTO0001' has been posted

Class runner

Class 'PacktledgerVoucherPost’ completed.

4. To check what has been posted, navigate to General Ledger | Inquiries |
Voucher transactions and type in the voucher number used in the code, as
shown in the following screenshot:

Inquiry

Select query

SORTING JOINS

+ Add [l Remove

v | Table Derived table Field Criteria
General journal entry General journal entry Journal number
General journal entry *~ General journal entry *~ Voucher v
General journal entry General journal entry Date
Main account Main account Main account

[247]

Processing Business Tasks

5. Click on OK to display the posted voucher:

Voucher transactions

(oY1 GENERAL
' Journal number Voucher ¥ Date T
033216 TESTO0001 1/21/2017

033216 TESTO0001 1/21/2017

Ledger account
170150-005-024.

110180-005-024

Account name
Expensel edger

Expense account

Currency
usD
usD

Amount in trans...
-1.000.00

1,000.00

1,000.00

Amount

1,000.00

Am

How it works...

In the newly created job, we first define the ledger accounts where the posting will be done.
Normally, this comes from the user input, but for demonstration purposes, here we have
specified it in the code. We use the previously created get LedgerDimension () method to
simulate the ledger account entry.

Next, we create a new LedgerVoucher object, which represents a collection of vouchers.
Here, we call the newLedgerPost () constructor of the LedgervVoucher class. The
newLedgerPost () constructor accepts three mandatory and four optional arguments,

which are listed as follows:

e Post detailed or summarized ledger transactions.
¢ The system module from which the transactions originate.

¢ A number sequence code, which is used to generate the voucher number. In this
example, we will set the voucher number manually. So, this argument can be left

empty.

¢ The transaction type that will appear in the transaction log.
¢ The transaction text.

[248]

Processing Business Tasks

A Boolean value, which specifies whether this voucher should meet the approval
requirements.

A Boolean value, defining whether the voucher can be posted without a posting
type when posting inventory transactions.

Then, we create a new LedgerVoucherObject object, which represents a single voucher.
We call the newVoucher () constructor of the LedgerVoucherObject class. It accepts only
one mandatory parameter and a number of optional parameters, which are listed as follows:

The voucher number; normally, this should be generated using a number
sequence, but in this example, we set it manually

The transaction date; the default is the session date

The system module from which the transactions originate

The ledger transaction type

A flag defining whether this is a correcting voucher; the default is No
The posting layer; the default is Current

The document number

The document date

The acknowledgement date

The addvoucher () method of the Ledgervoucher class adds the created
voucher object to the voucher

Once the voucher is ready, we create two voucher transactions. The transactions are
handled by the LedgerVoucherTransObject class. They are created by calling its
newTransactionAmountDefault () constructor with the following mandatory arguments:

The ledger voucher object

The ledger posting type

The ledger account number

The currency code

The amount in the currency

The currency exchange rate helper

[249]

Processing Business Tasks

Notice the last argument, which is a currency exchange rate helper, used when operating in
currencies other than the main company currency.

We add the created transaction objects to the voucher by calling its addTrans () method. At
this stage, everything is ready for posting.

Finally, we call the end () method on the LedgerVoucher object, which posts the
transactions to the ledger.

See also

e The Using a segmented entry control recipe

Changing an automatic transaction text

Every financial transaction in Dynamics 365 for Finance and Operations must have a
descriptive text. Some texts are entered by users and some can be generated by the system.
The latter option holds true for automatically generated transactions, where the user cannot
interact with the process.

Dynamics 365 for Finance and Operations provides a way to define texts for automatically
generated transactions. The setup can be found by navigating to Organizations
administration | Setup | Default descriptions. Here, the user can create custom
transaction texts for various automatic transaction types and languages. The text itself can
have a number of placeholders--digits with a percent sign in front of them, which are
replaced with actual values during the process. Placeholders can be from %1 to %6, and they
can be substituted with the following values:

e 31: This is the transaction date

e 32: This is a relevant number, such as the invoice and delivery note
e %3: This is the voucher number

e %4 to %6: This is custom and depends on the module

[250]

Processing Business Tasks

In this recipe, we will demonstrate how the existing automatic transaction text functionality
can be modified and extended. One of the places where it is used is the automatic creation
of vendor payment journal lines, during the vendor payment proposal process. We will
modify the system so that the texts of the automatically-generated vendor payment lines
include the vendor names.

Getting ready

First, we need to make sure that the vendor payment transaction text is set up properly.
Navigate to Organization administration | Setup | Default descriptions, find a line with
Vendor - payment, vendor, (if this record is not there, you can create a new one), and
change the text to Vendor payment %2 to %5, as shown in the following screenshot:

Bl Save - New [i] Delete OPTIONS P

£ Fitter | Default descriptions
Description Language Text
Vendor - PEIEDE vendor Vendor - payment, vendor | en-us A | |Vendor payment %2 to %5
en-us
) Parameters
Expense report transaction
user - Add [Remove

Parameter Mo. T | Reference table Reference field

How to do it...

Carry out the following steps in order to complete this recipe:

1. Add the CustvendPaymProposalTransferToJournal class to your project and
add the following lines of code at the bottom of the get TransactionText ()
method, right before its return:

transactionTxt.setKey2 (
_custVendPaymProposalline.custVendTable () .name ()) ;

[251]

Processing Business Tasks

2. Navigate to Accounts payable | Payments | Payment journal and create a new
journal. Open journal lines, run Create payment proposal, which is under
Payment proposal, from the action pane. Define the desired criteria or leave the
field blank and click on OK. In the newly opened Vendor payment proposal
form, click on the Create Payment button to transfer all the proposed lines to the
journal. See the following screenshot:

Vendor payment proposal
CASH DISCOUNT
[il Remove Multiple change Payment distribution Balance control Show payment overview
+ | Vendor name T Invoice Company accou... | Date to pay Due date Cash discount date Cash discount a.. | Amount to
Acme Office Supplies inve2811 usmf 1/7/2017 1/11/2016 [12722/2015 0.00 -17
Acme Office Supplies inv 92207 usmf 1/7/2017 1/16/2016 12/27/2015 0.00 =17
Contoso Asia AP-0002 usmf 1/7/2017 12/30/2015 0.00 -4
Contoso Asia AP-0004 usmf 1/7/2017 12/30/2015 000 -1.8
Contoso Asia AP-0007 usmf 1/7/2017 12/30/2015 0.00 -2
Contosa Chemicals Japan AP-0005 usmf 1/7/2017 12/30/2015 0.00 A
»
Voucher Invoice remainder Remittance location Interest amount
PIV-110000539 179,800.00 Acme Office Supplies
Date Cash discount amount Fine amount Payment specification
12/12/2015 -899.00
Payment ID
| |
Create payments Cancel

3. Notice that the transaction text in each journal line includes the vendor name, as
shown in the following screenshot:

[l Save Post Validate\s Payment proposal v Generate payments Functions » Inquiries % Prints O

00481 : VENDPAY

Vendor payments
[N GENERAL PAYMENT PAYMENT FEE REMITTANCE BANK HISTORY POSTDATED CHECKS

} New [i] Delete Settle transactions Financial dimensions v Sales tax Payment status ~v View marked transactions

Voucher Company | Account Vendor name Description Debit
APPMO000418 | usmf CN-001 Contoso Asia Vendor payment AP-0007 to Contoso Asia 2524500
APPMO000419 | usmf JP-001 Contoso Chemicals Jap... Vendor payment AP-0005 to Contoso Chemicals Ja 48,961.67
APPMO000420 | usmf US_TX_023 Federal Tax Authority Vendor payment USMF-00000390 to Federal Tax Authorit 37.85
APPMO000421 usmf US_TX_023 Federal Tax Authority Vendor payment USMF-00000395 to Federal Tax Authorit 37.84
APPMO000422 usmf US_TX_023 Federal Tax Authority Vendor payment USMF-00000409 to Federal Tax Authorit 164.72
4 »

[252]

Processing Business Tasks

How it works...

The vendor payment proposal uses the CustvVendPaymProposalTransferToJournal
class to create the lines. The same class contains a method named getTransactionText (),
which is responsible for formatting the text in each line. If we look inside it, we can see that
the TransactionTxt class is used for this purpose. This class contains the following
methods, which are used to substitute the placeholders from %1 to %6 in the defined text:

e %1: setDate ()

® 32: setFormLetter ()
® $3: setVoucher ()

® 34: setKeyl ()

® %5: setKey?2 ()

® %6: setKey3 ()

By taking a look at the code, you can see that only the %4 placeholder is used. So, you can
fill the %5 placeholder with the vendor name. To achieve this, you need to call the
setKey2 () method with the vendor name as an argument. In this way, every journal line
created by the automatic vendor payment proposal will contain a vendor name in its
description.

There's more...

In standard application, we have limited placeholders, as shown in the following
screenshot:

Fixed variables Optional variables

[253]

Processing Business Tasks

If more than three custom placeholders are required, it is always possible to add an
additional placeholder, by creating a new setKey () method in the TransactionTxt class.
For example, if we want to add a %7 placeholder, we have to do the following:

1. Add the following line of code to the class declaration of the TransactionTxt
class:

str 20 key4;
2. Create a new method with the following code snippet:

void setKey4 (str 20 _key4)
{

key4 = _key4;
}

3. Change the last line of the txt () method to the following:

return strFmt (
txt,
date2StrUsr (transDate, DateFlags::FormatAll),
formLetterNum,
voucherNum,
kev1l,
key2,
key3,
key4);

4. Now, we can use the setKey4 () method to substitute the $7 placeholder.

Note that, although more placeholders can be added, you should take into consideration the
fact that the transaction text field has a finite number of characters and excessive text will
simply be truncated.

Creating a purchase order

Purchase orders are used throughout the purchasing process to hold information about the
goods or services that a company buys from its suppliers. Normally, purchase orders are
created from the user interface, but in automated processes, purchase orders can be also
created from the code.

[254]

Processing Business Tasks

In this recipe, you will learn how to create a purchase order from the code. We will use a
standard method provided by the application.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Add a new runnable class named CreatePurchOrder with the following code
snippet:

static void PktCreatePurchOrder (Args _args)
{

NumberSeq numberSeqg;

PurchTable purchTable;

PurchLine purchLine;

ttsBegin;

//initialize number sequence objects

numberSeq = NumberSeq: :newGetNum (

PurchParameters: :numRefPurchId());

numberSeq.used() ;

purchTable.PurchId = numberSeqg.num() ;
purchTable.initValue();

//Initialize new record in PurchTable using vendor account
purchTable.initFromVendTable (VendTable::find ('vend001'));
if (!purchTable.validateWrite())

throw Exception::Error;
purchTable.insert ();

//insert purchase line
purchLine.PurchId = purchTable.PurchId;

purchLine.ItemId = 'item0O01';
purchlLine.createline (true, true, true, true, true, true);
ttsCommit;

info (strFmt ("New Purchase order '$1' has been created",
purchTable.PurchId));
}

2. Save and build your code and select this class as set as startup object. Now run
the project to create a new purchase order.

[255]

Processing Business Tasks

3. Navigate to Procurement and sourcing | Common | Purchase orders | All
purchase orders in order to view the purchase order created, as shown in the
following screenshot:

& Edit 4 New [i] Delete [SUeEIASHolola:0 PURCHASE MANAGE

NEW MAINTAIN COPY VIEW
From a sales order From all Totals
From journal
o~
Click the edit button te make changes. X
ALL PURCHASE ORDERS
£ Filter ‘ "ED
v Purchase order T Vendor account Invoice ace Vender account: 1001, Acme Office Supplies
b
00000044 “‘1001 1001 Acme Office Supplies A
000030 1001 1001 Acme Office Supplies
000032 1001 1001 Acme Office Supplies
000033 1001 1001 Acme Office Supplies o

How it works...

In this recipe, we created a new job named CreatePurchOrder, which holds all the code.
Here, we start by getting the next purchase order number with the help of the NumbersSeq
class. We also call the initvalue () and initFromvVendTable () methods to initialize
various purchTable buffer fields. Normally, the argument of the initFromvendTable ()
method should come from a user selection screen or some other source, but for
demonstration purposes, we specify the value in the code. We insert the purchase order
record into the table only if the validation in the validateWrite () method is successful.

Next, we create purchase order lines. Here, we assign the previously used purchase order
number and then set the item number. As previously mentioned, such values should come
from a user input or some other source, but for demonstration purposes, we specify it in the
code.

[256]

Processing Business Tasks

Finally, we call the createLine () method of the PurchLine table to create a new line.
This is a very useful method, allowing you to quickly create purchase order lines. This
method accepts a number of optional Boolean arguments, which are listed as follows:

¢ Perform data validations before saving; the defaultis false

e Initialize the line record from the PurchTable table; the defaultis false
e Initialize the line record from the InventTable table; the defaultis false
¢ Calculate inventory quantity; the default is false

¢ Add miscellaneous charges; the default is t rue

e Use trade agreements to calculate the item price; the default is false

¢ Do not copy the inventory site and warehouse from the purchase order header;
the defaultis false

e Use purchase agreements to get the item price; the defaultis false

There's more...

You can also use the data entities, to insert Purchase Order Header and Line records. To
insert purchase order header, use the PurchPurchaseOrderHeaderEntity entity and for
Purchase Order Line data use the PurchPurchaseOrderLineEntity data entity.

In the preceding code sample, we used a few methods to set some mandatory values in
PurchTable and PurchLine. Until you find similar methods in these entities, you may
have to assign all mandatory values manually.

Posting a purchase order

In Dynamics 365 for Finance and Operations, the purchase order goes through a number of
statuses in order to reflect its current position within the purchasing process. The status can
be updated either manually by using the user interface or programmatically from the code
as well.

In this recipe, we will demonstrate how a purchase order status can be updated from the
code. We will confirm the purchase order created in the previous recipe and print the
relevant document on the screen.

[257]

Processing Business Tasks

How to do it...

Carry out the following steps in order to complete this recipe:

1. Add a new runnable class, named ConfirmPurchOrder with the following code
snippet. Replace 00000044 with your number, that is created after previous code
CreatePurchOrder (your PO number could be different from mine so double-
check):

static void ConfirmPurchOrder (Args _args)
{
PurchFormLetter purchFormLetter;
PurchTable purchTable;
purchTable = PurchTable::find('00000044");
purchFormLetter = PurchFormLetter::construct (
DocumentStatus: :PurchaseOrder) ;
purchFormLetter.update (
purchTable,
T
DateTimeUtil: :date (DateTimeUtil: :utcNow()),
PurchUpdate::Al1,
AccountOrder: :None,
NoYes: :No,
NoYes::Yes);

2. Save and build your code and select this class as set as startup object. Now, run
the project to post the specified purchase order.

3. Navigate to Procurement and sourcing | Common | Purchase orders | All
purchase orders and note that the Approval status column of the posted order is
now different, as shown here:

ZEdit | 4 New [i] Delete [NGIOSPSRLIlM PURCHASE MANAGE RECEIVE INVOICE RETAIL ©
NEW MAINTAIN copy VIEW
From a sales order Fromall Totals
Cancel From journal
Click the edit button to make changes. X
ALL PURCHASE ORDERS
R Filter AED
V' Purchaseorder T Vendoraccount Invoice account ¥ Vendor name Purchase type Approval status Purchase order status Curr
00000044 1001 1001 Acme Office Supplies Purchase order Open order ~
000030 1001 1001 Acme Office Supplies Purchase order Approved Canceled
000032 1001 1001 Acme Office Supplies Purchase order Confirmed Invoiced

[258]

Processing Business Tasks

How it works...

In this recipe, we create a new job named ConfirmPurchOrder, which holds all the code.

First, we find a purchase order, which we are going to update. In this recipe, we use the
purchase order created in the previous recipe. Here, we will normally replace the code with
a user input or an output from some other function.

Next, we create a new PurchFormLetter object using its construct () constructor. The
constructor accepts an argument of the Document Status type, which defines the type of
posting to be done. Here, we use DocumentStatus: :PurchaseOrder as a value, as we
want to confirm the purchase order.

The last thing to do is to call the update () method of the PurchFormLetter object, which
does the actual posting. It accepts a number of arguments, which are listed as follows:

The purchase order header record; in this case, it is the PurchTable table.

An external document number; it's not used in this demonstration, as it is not
required when posting a purchase order confirmation.

The transaction date; the default date is the system's date.

The quantity to be posted; the default is PurchUpdate: : A11. Other options, such
as PurchUpdate: :PackingSlip or PurchUpdate: :ReceiveNow, are not
relevant when confirming a purchase order.

The order summary update; this argument is not used at all. The default is
AccountOrder: :None.

A Boolean value defining whether a preview or the actual posting should be
done.

A Boolean value defining whether the document should be printed.

A Boolean value specifying whether printing management should be used. The
default value is false.

A Boolean value defining whether to keep the remaining quantity on order;
otherwise, it is set to zero. This argument is used when posting credit notes.

A container of a number of TmpFrmVirtual records. This argument is optional
and is used only when posting purchase invoices.

[259]

Processing Business Tasks

There's more...

The same technique can be used to post a purchase packing slip, invoice, or update to any
other status, which is available in a given context. Let's take a look at the following example:

purchFormLetter = PurchFormLetter::construct (
DocumentStatus: :PurchaseOrder) ;

Replace the preceding code snippet with the following:

purchFormLetter = PurchFormLetter::construct (
DocumentStatus::Invoice);

Now, let's take another code snippet:

purchFormLetter.update (

purchTable,

T
DateTimeUtil: :date (DateTimeUtil::utcNow()),
PurchUpdate::All,

AccountOrder: :None,

NoYes: :No,

NoYes::Yes);

Replace the preceding code snippet with the following:

purchFormLetter.update (

purchTable,

'goo01"’,

DateTimeUtil::date (DateTimeUtil: :utcNow()),
PurchUpdate::Al1,

AccountOrder: :None,

NoYes: :No,

NoYes::Yes);

Now, when you run the job, the purchase order will be updated to an invoice. To check the
updated purchase order, navigate to Procurement and sourcing | Common | Purchase
orders | All purchase orders; notice that its Status field is different now.

If you are adding your objects in new projects, then you may need to set
this project property set as startup project as well, to run your preceding
code while you run the whole solution/project.

[260]

Processing Business Tasks

Creating a sales order

Sales orders are used throughout the sales process to hold information about the goods or
services that a company sells to its customers. Normally, sales orders are created from the
user interface, but for the automated processes, sales orders can also be created from the
code.

In this recipe, you will learn how to create a sales order from the code. We will use a
standard method provided by the application.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Add anew Runnable class in your project and name it SalesOrderCreate.
Copy and paste the following code in the main method of this class:

static void SalesOrderCreate (Args _args)
{
NumberSeqg numberSeq;
SalesTable salesTable;
SalesLine salesLine;
ttsBegin;
numberSeq = NumberSeq: :newGetNum (
SalesParameters: :numRefSalesId());
numberSeqg.used() ;
salesTable.SalesId = numberSeg.num();
salesTable.initValue();

salesTable.CustAccount = 'US-017"';
salesTable.initFromCustTable () ;
if (!salesTable.validateWrite ())

throw Exception::Error;

salesTable.insert ();
salesLine.SalesId = salesTable.SalesId;

salesLine.ItemId = 'D0001';
salesLine.createlLine (true, true, true, true, true, true);
ttsCommit;

info (strFmt (
"Sales order '%1' has been created", salesTable.SalesId));

}

2. Save and build your code and select this class as set as startup object. Now, run
the project to create a new sales order.

[261]

Processing Business Tasks

3. Navigate to Sales and marketing | Common | Sales orders | All sales orders in
order to view the newly created sales order, as shown in the following

screenshot:
-+ New [i] Delete QESNEEYoLIMI:M SFIL MANAGE PICK AND PACK INVOICE £
MNEW MAINTAIN PAYMENTS COPY VIEW FUNCTIONS ATTACHMENTS
Service order Cancel From all Totals MNotes
Purchase order From journal Order events
Direct delivery Order holds
~
ALL SALES ORDERS
P Filter |
v Sales order | Customer account ¥ Customer name Invoice account Order type Status Release s§
000776 Us-017 Turtle hNhD\esales Us-017 Sales order Open order Open 4,
000714 us-017 Turtle Wholesales us-017 Sales order Delivered Open
000685 us-017 Turtle Wholesales us-017 Sales order Invoiced Open

How it works...

In this recipe, we create a new job named SalesOrderCreate, which holds all the code.
The job starts by generating the next sales order number with the help of the NumbersSeq
class. We also call the initValue () and initFromCustTable () methods to initialize
various salesTable buffer fields. Notice that, for initFromCustTable (), we first set the
customer account and call the method afterwards, instead of passing the customer record as

an argument. We insert the sales order record into the table only if the validation in the
validateWrite () method is successful.

Next, we create sales order lines. Here, we assign the previously used sales order number
and set the item number.

Finally, we call the createLine () method of the SsalesLine table to create a new line.
This is a very useful method, which allows you to quickly create sales order lines. The

method accepts a number of optional Boolean arguments. The following list explains most
of them:

Perform the data validations before saving; the default is false

Initialize the line record from the SalesTable table; the defaultis false
Initialize the line record from the InventTable table; the defaultis false
Calculate the inventory quantity; the defaultis false

[262]

Processing Business Tasks

¢ Add the miscellaneous charges; the default is t rue

¢ Use the trade agreements to calculate the item price; the default is false
e Reserve the item; the defaultis false

e Ignore the customer credit limit; the default is false

There's more...

You can also use the data entities to insert Sales Order Header and Line records. To insert
into Sales order header, use the SalesOrderHeaderEntity entity, and for Sales Order
Line data, use the SalesOrderLineEntity data entity.

In the preceding code sample, we used a few methods to set some mandatory values in
SalesTable and SalesLine. You won't find similar methods in these entities so you may
have to assign all mandatory values manually.

While running any code from VS directly, it uses application Ul to perform this task. In this
situation, many times you don't have the option to choose company and the default
company will be DAT. So you have to set the company on your project before you run your
code. To set the default company for a specific project, set the project property as shown in
the following screenshot:

CreatePostSalesOrder (USR) [Packt_ApplicationSuit] Property Pages \L-
General Use Label Text as Field Name False ~
4 (Project)
Startup Object Type Class
Startup Object SalesOrderCreate
Company USMF
Partition initial
Project File CreatePostSalesOrder.rnrproj
Project Folder F\Book\Chapter03\ Chapter05\ CreateP ostSalesOrder =
Model Packt_ApplicationSuit
Model Publisher Deepak
Layer usr
Synchronize Database on Build False
Generate Form Adaptors False
b
Company
The company to use when launching the project.
oK | | Cancel | | Apply

[263]

Processing Business Tasks

Posting a sales order

In Dynamics 365 for Finance and Operations, a sales order goes through a number of
statuses in order to reflect its current position within the sales process. The status can be
updated either manually using the user interface or programmatically from the code.

In this recipe, we will demonstrate how a sales order status can be updated from the code.
We will register a packing slip for the sales order created in the previous recipe and print
the relevant document on the screen.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Add anew runnable class, named SalesOrderPostPackingSlip with the
following code snippet in the main method (replace 000776 with your Sales
Order number, that was generated after the previous code):

static void SalesOrderPostPackingSlip (Args _args)
{

SalesFormLetter salesFormLetter;

salesTable salesTable;
salesTable = SalesTable::find('000776");
salesFormLetter = SalesFormLetter::construct (

DocumentStatus: :PackingSlip);
salesFormLetter.update (

salesTable,
DateTimeUtil: :date (DateTimeUtil::utcNow()),
SalesUpdate::All,
AccountOrder: :None,
NoYes: :No,
NoYes::Yes);

}

2. Save and build your code and select this class as set as startup object. Now, run
the project to post the specified sales order. As a result you will see the status of
sales order 000776 will be changed to delivered.

[264]

Processing Business Tasks

How it works...

In this recipe, we create a new job named SalesOrderPostPackingSlip, which holds all
the code.

First, we find a sales order, which we are going to update. In this recipe, we use the sales
order created in the previous recipe. Here, we will normally replace this code with a user
input or an output from some other function.

Next, we create a new SalesFormLetter object using its construct () constructor. The
constructor accepts an argument of the Document Status type, which defines the type of
posting to be done. Here, we use DocumentStatus: :PackingSlip as a value, as we want
to register a packing slip.

Finally, we call the update () method of SalesFormLetter, which does the actual posting.
It accepts a number of arguments, as follows:

e The sales order header record, that is, the SalesTable table.
e The transaction date; the default is the system date.
¢ The quantity to be posted; the default is SalesUpdate: :A11.

¢ The order summary update; this argument is not used at all. The default is
AccountOrder: :None.

¢ A Boolean value defining whether a preview or the actual posting should be
done.

¢ A Boolean value defining whether the document should be printed.

¢ A Boolean value specifying whether printing management should be used; the
defaultis false.

¢ A Boolean value defining whether to keep the remaining quantity on order;
otherwise, it is set to zero. This argument is used when posting credit notes.

e A container of a number of TmpFrmvirtual records; this argument is optional
and is used only when posting sales invoices.

There's more...

The SalesFormLetter class can also be used to do other types of posting, such as sales
order confirmation, picking lists, or invoices. For example, to invoice the previously used
sales order:

salesFormLetter = SalesFormLetter::construct (
DocumentStatus: :PackingSlip);

[265]

Processing Business Tasks

Replace the preceding line of code with the following line of code:

salesFormLetter = SalesFormLetter::construct (
DocumentStatus: :Invoice);

Now, when you run the job, the sales order will be updated to an invoice.

Creating an electronic payment format

Electronic payments, in general, can save time and reduce paperwork when making or
receiving payments within a company. Dynamics 365 for Finance and Operations provides
a number of standard out-of-the-box electronic payment formats. The system also provides
an easy way of customizing the existing payment forms or creating new ones.

In this recipe, you will learn how to create a new custom electronic payment format. To
demonstrate the principle, we will only output some basic information, and we will
concentrate on the approach itself.

How to do it...

Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class named VvendOutPaymRecord_Test with the
following code snippet:

public class VendOutPaymRecord_Test extends VendOutPaymRecord

{

}

public void output ()

{
str outRecord;
Name companyName;
BankAccount bankAccount;
outRecord = strRep(' ', 50);
companyName = subStr (
custVendPaym.recieversCompanyName (), 1, 40);
bankAccount = subStr(
custVendPaym.recieversBankAccount (), 1, 8);
outRecord = strPoke (outRecord, companyName, 1);
outRecord = strPoke (outRecord, bankAccount, 43);
file.write (outRecord);

[266]

Processing Business Tasks

2. Create another class named VendOutPaym_Test with the following code snippet:

public class VendOutPaym_Test extends VendOutPaym
{
}
public PaymInterfaceName interfaceName ()
{
return "Test payment format";
}
public ClassId custVendOutPaymRecordRootClassId ()
{
return classNum (VendOutPaymRecord_Test);
}
protected Object dialog()
{
DialogRunbase dialog;
dialog = super();
this.dialogAddFileName (dialoqg) ;
return dialog;
}
public boolean validate (Object _calledFrom = null)
{
return true;

}
public void open ()

{
#LocalCodePage
file = CustVendOutPaym::newFile (filename, #cp_1252);
if (!'file || file.status() != IO_Status::0k)
{

throw error(
strFmt ("File %1 could not be opened.", filename));
}
file.outFieldDelimiter ('"');
file.outRecordDelimiter ('\r\n'");
file.write('Starting file:'");
}
public void close()

{

file.write('Closing file');

[267]

Processing Business Tasks

3. Navigate to Accounts payable | Setup | Payment | Methods of payment and
create a new record, as follows:

Save -+ Mew il Delete = Payment specification ~ Payment fee setup ~ Remittance files for vendors pe

2 Filter | Methods of payment - vendors
Method of payment Description Payment status
Test B
Test Test electronic payment Mone N
Invoice
Peried Grace period Payment type
BRIDGING [voice v o [other v
Invoice Allow copies of payments:
Mo
CHECK
Invoice | v |
POSTING
ELECTRONIC Account type PROMISSORY NOTE
v
e | Bank v| Type of draft
Payment account | No draft V|
PAYROLL_CK | USMF OPER] 9 |
Invoice
File formats

4. Open the File formats tab page, click on the Setup button, and move your newly
created Test payment format from the pane on the right-hand side to the pane on
the left-hand side.

5. Then, go back to the Methods of payment form and select Text payment format
in the Export format field as follows:

[268]

Processing Business Tasks

Save = | Mew [if Delete = Payment specification Payment fee setup Remittance files for vendors 0

2 Fitter | Methods of payment - vendors
Method of payment Description Payment status
Test _
Test Test electronic payment MNone hd
Invoice
Period Grace period Payment type
BRIDGING | Invoice V| 4] | Other V|
Invoice Allow copies of payments:
No
CHECK
Invoice Export format Journal name
‘ Format 1 (Test) W | | A
ELECTRONIC
Return format
Invoice
| /|
PAYROLL CK Remittance format
Invoice ‘ W |

6. Close the Methods of payment form. Navigate to Accounts payable | Journals |
Payments | Payment journal and create a new journal. Click on the Lines button
to open the journal lines. Create a new line and make sure you set Method of
payment to Test, as follows:

Save Post Validate ™ Payment proposal ™ Generate payments Functions ™ Inquiries % Print ™ OPTIONS o

00484 : VENDPAY
Vendor payments
[N GENERAL PAYMENT PAYMENT FEE REMITTANCE BAMNK HISTORY POSTDATED CHECKS
+ New [i] Delate Settle transactions Financial dimensions Sales tax Payment status » View marked transactions
Date Voucher | Company Account Vendor name Description Debit Credit | Currency Offset account type Offset account
1,’20,5 APPM... usmf ~ 1002 * lLande Packa... test payment e 120,000.00 usD ~ Bank ~ USMF OQPER
ra by

7. Next, click Generate payments. Fill in the dialog fields as displayed in the
following screenshot, click on OK, and select the exported file's name:

[269]

Processing Business Tasks

Generate payments

Parameters ~
(@) PAYMENT METHOD SELECTION

Method of payment Bank account

Test v ‘USMFOPER| v‘

(C) EXPORT FORMAT

Export format

Records to include v

8. Click on OK to complete the process; notice that the journal line's Payment status

changed from None to Sent, which means that the payment file was generated
successfully.

9. Open the created file with any text editor (for example, Notepad), to check its
contents, shown as follows:

| payment.txt - Notepad - |0 -

File Edit Format View Help

Etarting file: -
Lande Packaging Supplies 12345678
Closing file

et

[270]

Processing Business Tasks

How it works...

In this recipe, we create two new classes, which are normally required for generating
custom vendor payments. Electronic payments are presented as text files to be sent to the
bank. The first class is the VendOutPaymRecord_Test class, which is responsible for
formatting the payment lines, and the second one is the vendoutPaym_Test class, which
generates the header and footer sections and creates the payment file itself.

The vendOutPaymRecord_Test class extends VendOutPaymRecord and inherits all the
common functionality. We only need to override its output () method to define our own
logic in order to format the payment lines. The output () method is called once for each
payment line.

Inside the output () method, we use the outRecord variable, which we initially fill in with
50 blank characters using the global st rRep () function, and then insert all the necessary
information into the predefined positions within the variable, as per format requirements.
Normally, here we should insert all the required information, such as dates, account
numbers, amounts, references, and so on. However, to keep this demonstration to a
minimum, we only insert the company name and the bank account number.

In the same method, we use another variable named custvendPaym of the CustVendPaym
type, which already holds all the information we need. We only have to call some of its
methods to retrieve it. In this example, to get the company name and the bank account
number, we call recieversCompanyName () and recieversBankAccount (), respectively.
We trim the returned values using the global substr () function, and insert them into the
first and 43rd positions of the outRecord variable using the global strPoke () function.

Finally, at the bottom of the output () method, we add the formatted text to the end of the
payment file.

Another class that we create is VendOutPaym_Test. It extends the VendOutPaym class and
also inherits all the common functionality. We only need to override some of the methods
that are specific to our format.

The interfaceName () method, returns a name of the payment format. Normally, this text
is displayed in the user interface, when configuring payments.

The custVendOutPaymRecordRootClassId () method returns an ID of the class, which
generates payment lines. It is used internally to identify which class to use when formatting
the lines. In our case, it is VendOutPaymRecord_Test.

[271]

Processing Business Tasks

The dialog () method is used only if we need to add something to the user screen when
generating payments. Our payment is a text file, so we need to ask a user to specify the
filename. We do this by calling the dialogAddFileName () method, which is a member
method of the parent class. It will automatically add a file selection control and we won't
have to worry about things, such as a label or how to get its value from the user input.
There are numerous other standard controls, which can be added to the dialog by calling
various dialogAdd. .. () methods. Additional controls can also be added here using
addField () or similar methods of the dialog object directly.

The validate () method is one of the methods that has to be implemented in each custom
class. Normally, user input validation should go here. Our example does not have any
validation, so we simply return true.

In the open () method, we are responsible for initializing the file variable for further
processing. Here, we use the newFile () constructor of the CustVendOutPaym class to
create a new instance of the variable. After some standard validations, we set the field and
the row delimiters by calling the outFieldDelimiter () and outRecordDelimiter ()
methods of the CustVendoutPaym class, respectively. In this example, the values in each
line should not be separated by any symbol, so we call the outFieldDelimiter () method
with an empty string. We call the outRecordDelimiter () method with the new line
symbol to define that every line ends with a line break. Note that the last line of this method
writes a text to the file header. Here, we place some simple text so that we can recognize it
later when viewing the generated file.

The last one is the close () method, which is used to perform additional actions before the
file is closed. Here, we specify some text to be displayed in the footer of the generated file.

Now, this new payment format is ready for use. After some setup, we can start creating the
vendor payment journals with this type of payment. Note, the file generated in the previous
section of this recipe, we can clearly see which text in the file comes from which part of the
code. These parts should be replaced with your own code to build custom electronic
payment formats for Dynamics 365 for Finance and Operations.

[272]

Data Management

In this chapter, we will cover the following recipes:

e Data entities

Building a data entity with multiple data sources

Data packages

Data migration

Import of data

Troubleshooting

Introduction

The data management feature in Dynamics 365 for Finance and Operations enables you to
manage and audit your data efficiently in systems. The excellent feature provides many
tools such as Import, Export, delete bulk data and detect duplicate data, and so on. You can
also develop custom data entities as well.

Integration through the data management platform provides more capabilities and higher
throughput for inserting/extracting data through entities. Typically, data goes through three
phases in this integration scenario:

e Source - These are inbound data files or messages in the queue. Typical data
formats include CSV, XML, and tab-delimited.

e Staging - These are automatically generated tables that map very closely to the
data entity. When data management enabled is true, staging tables are generated
to provide intermediary storage. This enables the framework to do high-volume
file parsing, transformation, and some validations.

e Target - This is the data entity where data will be imported.

Data Management

Now let's see how to build an entity and how to use any existing/new data entity in
Dynamics 365 for Finance and Operations. We can create new entities in two ways:

¢ Using a Wizard
e Directly from a table

We will explain both with different recipes in this chapter.

Data entities

In the earlier version of Dynamics 365 for Finance and Operations, there are multiple
options such as DIXF, Excel Add-ins, and AIF for data management. Data entities are
introduced as a part of data management to be used as a layer of abstraction to easily
understand by using business concepts.

The concept of data entities combines those different concepts into one. You can reuse Data
entities for an Excel Add-ins, Integration, or import/export. The following table shows core
scenarios of Data management:

Data Migration Migrate reference, master, and document data from legacy or
external systems.

Setup and copy Copy configuration between company/environments.

configuration Configure processes or modules using the Lifecycle Services

(LCS) environment.

Integration Real-time service based integration.
Asynchronous integration.

More information about this can be found at https://docs.microsoft.
com/en—-us/dynamics365/unified-operations/dev-itpro/data-

entities/data-entities-data—-packages.

Getting ready

The following are the terms introduced for data management that will be used throughout
the chapter:

[274]

https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages

Data Management

Data project |A project that contains configured data entities, which include mapping
and default processing options.

Data job A job that contains an execution instance of the data project, uploaded files,
schedule (recurrence), and processing options.

Job history | Histories of source to staging and staging to target.

Data package | A single compressed file that contains a data project manifest and/or data
files. This is generated from a data job and used for import or export of
multiple files with the manifest.

Data management uses data entities under the hood for an abstract layer for business logic
implementation. Data is inserted in staging tables using SSIS, which is then validated and
transformed to map to the target entity.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Create a new Dynamics 365 for Operations project in Visual Studio.

[275]

Data Management

2. We will create a demo table with a few fields as follows, to use in this Data
Entity:

m

B PacktVendTable {usr) [Packt_ApplicationSuit]
4 [Fields
@ AccountMum
@l BankAccount
P Currency
o VendGroup
g9 Field groups
& Indexes
I Full Text Indexes
=1 Relations
BR Delete Actions
Go State Machines
B Mappings
&¥ Methods

k b ¥ h b b ™ F

3. Add a new Data Entity in the project by right-clicking the menu as follows:

4 |nstalled

4 AX Artifacts
Analytics

Code
Configuration
Data Model
Data Types

Reports
Security
Services
User Interface

4
b Online

Name:

Sort by:

Business Process and Workflow E!

Labels And Resources ﬁ
DK
=]

Add New ltem - DataEntity (USR) [Packt_ApplicationSuit]

Default -| i

Aggregate Measurement AX Artifacts
Base Enum AX Artifacts
Calculated Measure Period Template AX Artifacts
Calculated Measure Template AX Artifacts
Class AX Artifacts
Composite Data Entity AX Artifacts
Composite Query AX Artifacts
Configuration Key AX Artifacts
Configuration Key Group AX Artifacts
Data Entity AX Artifacts
Display Menu ltem AX Artifacts

Click here to go online and find templates.

[PacktvendTableEntity]

Search Installed Templates (Ctrl+E) P -

Type: AX Artifacts

Create Data Entity for Dynamics AX

Add

I

Cancel

[276]

Data Management

4. Next you will get a wizard screen, select PacktVendTable as the Primary
datasource. Entity category as Master and click on Next:

Data Entity Wizard .
Steps Specify properties
Data entity name PacktVendTableEntity
Primary datasource | PacktVendTable |*|
Entity category | Master |T |

Enable public AP

Public entity name PacktVendTable
Public collection name Paclcﬂ'u’endTables

Enable data management capabilities
Staging table PacktVendTableStaging

Security privileges

Wiew privilege PacktVendTableEntityView
Maintain privilege PacktVendTableEntityMaintain
Back Mext | | Cancel

[277]

Data Management

5. In the next step, you have to choose all required fields from the primary
dataSource table, for this recipe we will keep only a few fields and mark them
as Is Mandatory as well. Once done, click on Finish:

Data Entity Wizard =

Steps Add fields

Data source PacktVendTable

Select all
[] Convert labels to field names

Add data source| |Remove data source| | Add virtual field| |Remove virtual field

Field name Data entity field name Data type EDT type name ls Mandatory Label |d
AccountMum AccountMum String VendAccount @SYS14048
BankAccount BankAccount @5Y51317
Currency Currency String VendCurrencyCode @SYST572
VendGroup VendGroup String VendGroupld @SYS3813
[J|Datahreald Datafreald String DataAreald O Company
[]|CreatedBy CreatedBy String CreatedBy O Created by
| CreatedDateTime |CreatedDateTime UtcDateTime| CreatedDateTime O Created date an
[C]{ModifiedBy ModifiedBy String ModifiedBy | Medified by
1| modifiedDateTime | ModifiedDateTime UtcDateTime| ModifiedDateTime O Modified date a
< n >

| Back | | Finish | | Cancel

6. Save your project and build it. The project must look as follows:

[278]

Data Management

Selution Explorer
@ o-cFB|F -
Search Selution Explorer (Ctri+;)

fad Solution 'Chapter06' (1 project)
4 DataEntity (USR) [Packt_ApplicationSuit]
«J] References
4 DataEntity
«4 PacktVendTableEntity
P SecurityPrivileges
% PacktVendTableEntityMaintain
? PacktVendTableEntityView
r Tables
B PacktVendTable
EE PacktVendTableStaging

7. Now we need to add this entity in the data management work space. Navigate to
Work space | Data management| Data entities.

Add a new record as follows and save it. Now click on Validate:

Dynamics AX Data management

413ms Searchforapage O Admin

Save | -+ New [i] Delete = Child entities Modify target mapping Validate Entity structure Target fields L2

@ ‘Packt vend Table' entity is validated for data import/export

X
AN AX
v Target entities
£ Filter
« | Entity T Staging table Target entity Entity type Type
Packt vend Table PacktVendTableStaging PacktVendTableEntity |knt'\ty PacktVendTableEntity A
@PowerBlintegration:PowerBIC... = PowerBlConfigurationStaging PowerBIConfigurationEntity Entity PowerBIConfigurationEntity
1099 fields Tax1099FieldsStaging Tax1099FieldsEntity Entity Tax1099FieldsEntity

[279]

Data Management

8. Let's try to import data into PacktVendTable using this new Data entity. Now go
back to the Data management work space. Click on Import tile. Fill in the details
as follows:

AX AN
Import
JOB DETAILS

Mame

PacktVendTabe

Source data format

Excel W

Entity name

Packt vend Table S

Truncate entity data

No [

UPLOAD IMPORT FILES

Upload data file

Upload

Upload the Excel file that contains data. Now click on the Import button. You will get a
notification once this import is done. To check, browse the table and check inserted data.

How it works...

We start this recipe with creating a new table with a few fields similar to vendTable. This
table is used to create a new data entity through the VS wizard. We added new a data entity
object in our project, once we select a Data entity object it will initiate a wizard.

[280]

Data Management

In this step, we select our primary table that we created earlier. In the entity category field
you have to choose this on the basis of table type. There are five different types of entity
category. If you are using any existing table, this will select automatically, while for new
tables you may have to change it accordingly.

In the next step, we select fields that are really required in this entity. You can change a few
properties of fields such as label and mandatory. At the end of this wizard you will have a
new data entity along with a staging table created. You will find a few more supporting
Dynamics 365 for Finance and Operations objects in your project.

There's more...

It is important to understand the different categories of entities while you are working on
data entities. In Dynamics 365 for Finance and Operations, entities are categorized based on
their functions and the type of data that they serve. The following are five categories for
data entities:

e Parameter:
e Tables that contain only one record, where the columns are values
for settings. Examples of such tables exist for Account payable
(AP), General ledger (GL), client performance options, workflows,
and so on.
¢ Functional or behavioral parameters.

¢ Required to set up a deployment or a module for a specific build or
customer.

e Can include data that is specific to an industry or business. The
data can also apply to a broader set of customers.

¢ Reference:
e Simple reference data, of small quantity, that is required to operate
a business process.
¢ Data that is specific to an industry or a business process.
¢ Examples include units, dimensions, and tax codes.

¢ Master:
¢ Data assets of the business. Generally, these are the "nouns" of the
business, which typically fall into categories such as people, places,
and concepts.
e Complex reference data, of large quantity. Examples include
customers, vendors, and projects.

[281]

Data Management

¢ Document:
e Worksheet data that is converted into transactions later.

* Documents that have complex structures, such as several line items
for each header record. Examples include sales orders, purchase
orders, open balances,and journals.

e The operational data of the business.
e Transaction:
¢ The operational transaction data of the business.

¢ Posted transactions. These are non-idempotent items such as
posted invoices and balances. Typically, these items are excluded
during a full dataset copy.

¢ Examples include pending invoices.

Let's see one more example where we will discuss how to create the same entity
from the PacktVendTable wizard. To carry on, follow these steps:

1. Right-click on the table and select Addins | Create data entity. As shown in the
following screenshot:

Search ..
E PacktVendTable (usr) [Parkt AnnlicatinnSuit]
4 W Fields View code F7

m AccountMum
¥ BankAccount
@ Currency

Find references

View Hierarchy

o VendGroup Copy Ctrl + C
B Field groups
b5 Indexes Open table browser Alt + O
4 T Full Text Indexes Tags b
4 7 Relations
4 B Delete Actions
b 0& State Machines
4 Ef Mappings Addins 3 Create data entity
; f ::nizds Properties Alt + Enter View related roles

[282]

Data Management

2. It will directly create all required objects in your current project:

Microsoft Visual Studio -

The data entity, staging table and security artifacts were created and
added to the project.

oK

3. Now save all your changes and build the solution. On successful build, your
Data entity will be ready for use.

Building a data entity with multiple data
sources

We could also create a data entity where we include multiple data sources. Here our data
entity takes care of all integrity constraints and validation and creates records in related
tables if it does not exist. Let us take, an example of inventory breakdown, where we create
an inventory site, warehouse, location, zones, aisle, and so on. We could create a data entity,
which encapsulates all these tables, and a flat file import could create related records in all
these tables.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Add a new data entity in the project and name it Packt InventBreakDown.

[283]

Data Management

2. A Data Entity Wizard will be launched, as shown in the following screenshot:

Data Entity Wizard
Specify properties

Data entity name PacktinventBreakDown

Primary datasource [WMSLacation

Entity category | Master

Enable public API

Public entity name PacktinventBreakDown

Public collection name PacktlnventBreakDowns
Enable data management capabilities

Staging table PacktinventBreakDown5taging
Security privileges

View privilege PaclktinventBreakDownView

Maintain privilege PacktinventBreakDownMaintain

Cancel

3. Next you need to select all/required fields from WMSLocation.

[284]

Data Management

Data Entity Wizard

Steps Add fields
Data source | WMSLocation
Options
Select all
[Convert labels to field names
[Add data source] [Remove dats source| [Add virtual field| Remove virtusl field
Field name Dataentity fildname Datatype EDT type name IsMandatory Labelld Label Help Text IdHelp text
absoluteHeight absoluteHeight Real NMSAbsalutel ocationHeight [|@svss7e4a |Absolute height ~
aicleld aicleld Stiing WMSAisleld @5V52340 | Awsle
CheckText CheckText Stiing SCheckText @5VS50198 | Check digits
depth depth Real SDepth @5V58514 | Depth
height height Real SHeight @5VS13182 | Height
inputBlockingCauseld | inputBlockingCauseld | String WMSBlockingCauseld @5V550245 | Input blocked -
inputLocation inputLocation Stiing WMSLocationld @5V550250 | Destination location -
inventLocationld inventLocationid String InventLocationld @SVS6137 | Warehouse
LastCountedUTCDateTime | LastCountedUTCDsteTime | UrcDateTime| WHSLastCountedUTCDsteTime| [] | @WAX4553 | Last cycle count
evel evel Integer WMSLevelld T] | @5v5558%6 |Shelt
locationType locationType Enum] @SYS50212 | Location type
TocProfileld TocProfileld Stiing WHSLocProfileld T[] |@WAX2M |Location profile ID
manualName manualName Enum [H] @SY550228 Manual update
manualSortCode manualSortCode Enum] |@5v550228 |Manual update
maxPalletCount maxPalletCount Integer WMsMaxPalletCount O |@svs50244 |Max. pallets
maVolum maVolum Real WMSMaxVolume O |@5v5134571 | Max, volume
maxWeight maxWeight Real WMSMax\Weight O |@5v5134573 | Max. weight
MCRReservationPriority | MCRReservationPriority | Integer Priority O |@svs15156 |Priority
outputBlockingCauseld | outputBlockingCauseld |String] |@5v550246 | Output blocked ~
[Back [Fnish | [cancel
4. Click on the Add data source button and select Relation InventLocation.
Data Entity Wizard E
Steps Add fields

Data source WMSLocation

Optiens

Data source

Add new data source

WMSLocation

[Add data source| [Remove data source [Add virtual field| [Remove virtual field

Is Mandatory Label Id

Label

Help Text Id Help text

ht O @5VS57844 | Absolute height
Relation InventLocation [+] @SYS23440 [Aisle
Related table name InventLocation] @SYS50198 | Check digits
. [m] @5v59514 | Depth
Related data source name InventLocation = BeTTE |Feight
nputBlockingCauseld inp) [m] @5VS50245 | Input blocked
nputLocation inp) ®5Y530250 | Destination location
nventLocationld inv] @SYS6437 |Warehouse
LestCountedUTCDateTime | La ime [@WAX4553 | Last cycle count
evel lev [@S5VS55856 | Shelf
ocationType loc] @5VS50212 [Location type
LocProfileld Lo e O @WAX244 | Location profile ID
manualName mal [m] ®5550228 |Manual update
manualSortCode manualSortCode Enum] ®5550228 |Manual update
maxPalletCount maxPalletCount Integer WMSMaxPalletCount O @5VS50244 | Max. pallets
maxVolume maxVolume Real WIMSMaxVolume [@S5V5134571 | Max. volume
maxWeight maxWeight Real WIMSMaxWeight O @5V5134573 | Max. weight
MCRReservationPriority | MCRReservationPriority | Integer Priority [m] @®5VY515156 | Priority
outputBlockingCauseld | outputBlockingCauseld |String WMSBlockingCauseld [m] ®5Y530246 | Output blocked

Back

Finish

Cancel

[285]

Data Management

5. Select Invent location from the node at the right of WMSlocation, as shown in
the next screenshot.

6. Add new data source InventSite to InventLocation and select all fields:

Steps

Add fields

Datasource WMSLocation ¥

InventLocation

Options
[] Select all
[] Convert labels to field names. Add new data source -

Data source InventLocation [Add data source] [Remove data source| [Add virtual field| [Remove virtual field

Field name Data entity field name | Relation vmiEi <] Is Mandatory Labelld Label
(]| Activity Type_RU Inventlocation AdtivityT| | e Iventsite O @GL5102134 | Activity category ~
| AllowLaborStandards InventLocation_AllowLal O (@WAX3980 |Allow labor standards
| AllowMarkingReservationRemoval | InventLocation Allowial | ated date source name InventSite [] | ©WAX4Ess |Remove reservationsand |
| BranchNumber InventLocation_Branchl| O @5V593996 | Branch number
[]| ConsolidateShipARTW InventLocation_Consolid ARTW O (@WAX2908 | Consolidate shipment at re
[]] CustAccount BR InventLocation_CustAcc [H] @5VS7149 [Customer account
] CustAccount HU InventLocation_CustAcc [m] @5V57149 [Customer account
| CycleCountAllowPalletMove InventLocation_CycleCo whalletMove O @WAX2596 | Allow pallet moves during
[]| DecrementLoadLine InventLocation_Decreme] Line O @WAX2756 |Decrement load line
| DefaultKanbanFinishedGoodsLocation |InventLocation_Default, i | [cone ocation [m] @WAX4624 | Default kanban finished go
ance
(]| DefaultPreductionFinishGoodsLocation | InventLocation_DefaultP ocation [m] @WAX694 | Default production finishec
]| DefaultShipMaintenanceLoc InventLocation_DefaultShipMaintenanceLoc String WHSDefauftShipMaintenanceloc O @WAX2754 | Default shipment maintenz
[]] Defaultstatusld InventLocation_DefaultStatusld String WHSDefaultStatusld [H] @WAX3354 | Default inventory status 1D
| emptyPalietLocation InventLocation_emptyPalletLocation String WMSEmptyPalletLocationld O @5VS51191 |Empty pallet location
1| FsHStore InventLocation_FSHStore Enum [H] @RET1187 | Store
] InventCountingGroup_BR InventLocation_InventCountingGroup_BR Enum [m] @GLS116 | Identification group
InventLocationld InventLocation_InventLocationld String InventLocationld @5YS6437 | Warehouse
[InventLocationldGoodsinRoute_RU | InventLocation_InventLocationldGoodsinRoute RU |String InventLocationldGoodsinRoute_RU [m] @GL5114748 | Warehouse for items shipp. ~
< 0] >
[Back |[Finish | [Cancel

[286]

7. Add more tables, WHSZone and WMSAisle, on WMSLocation:

Data Management

Add fields

Datasource WMSLocation #|
Options InventLocation
Select all WHSZone
[] Convert labels to field na WMSAisle

Data Entity Wizard

[Add data source] [Remeve data seurce| [Add virtual field| [Remove virtual ficld

Field name Data entity field name Datatype EDTtype name Is Mandatory Label Id Label
abseluteHeight absoluteHeight Real WMSAbsolutelocationHeight O @S5Y557844 | Absolute height [
aisleld aisleld String @5Y523440 | Aisle
checkText checkText String [m] @SYS50198 | Check digits
depth depth Real] @5Y59514 | Depth
height height Real] @5Y513182 [Height
inputBlackingCauseld inputBlockingCauseld String] @5Y¥550245 | Input blocked =
inputLacation inputLacation String @S5Y¥550250 | Destination location
inventLocationld inventLocationld String InventLocationld @SYSe437 | Warehouse
LastCountedUTCDateTime LastCountedUTCDateTime UtcDateTime| WHS ountedUTCDateTime [m] @WAX4553 | Last cycle count
level level Integer WMSLevelld [m] @SYS55836 | Shelf
locationType locationType Enum O @5Y¥550212 | Location type
LocProfileld LocProfileld String WHSLocProfileld [m] @WAX244 | Location profile ID
manualName manualName Enum] @SY550228 | Manual update
manualSortCode manualSortCode Enum] @SY550228 | Manual update
maxPalletCount maxPalletCount Integer MaxPalletCount [m] @5Y550244 | Max. pallets
maxVolume maxVolume Real MaxVolume] @5Y5134571 [Max. volume
maxWeight maxWeight Real WMSMaxWeight] @SYS134573 [Max. weight
MCRReservationPriority MCRReservationPriority Integer Priority [m] @SY515156 | Priority ~

< w >

[Back || Fnsh | [cancel

8. The system will create the data entity, staging table, and privileges to support
data management and OData on the data entity.

9. Select all child data sources and set the Is Read Only property as No, as shown

in the following table:

Your properties must look as follows:

Fetch mode

OneToOne

No

Is Read Only

[287]

Data Management

=l | g) e

+8 PacktlnventBreakDown (usr) [Pac| Properties
4 g DataSources
4 g WMSLocation

= - m =
b B Fields SR
b Lid Ranges Bl; Behavior ;
4 g Data Sources Enabled Yes
b i@ InventLocation Fetch Mode OneToOne
b g WH5Zone Is Read Only Mo
b i WMSAisle Join Mode
> MW Group By O Data
b B Having Apply Date Filter Mo
b B Orderty Dynamic Fields Yes
i i Derived Data Sources Label
bW Fields Name
b ¥ Field Groups
Table
Pk Keys
. Tags
b T Relations ~ . .
b [E] Ranges Valid Tirne State Update CreateMewTimePeriod
b BR Delete Actions
P G& State Machines
b Ef Mappings
b g¥ Methods
P % Events

10. Now to verify the integrity of the data entity. Create a runnable class name,
InventBreakDownCreate, and add the following code:

class InventBreakDownCreate
{
/// <summary>
/// Runs the class with the specified arguments.
/// </summary>
/// <param name = "_args">The specified arguments.</param>
public static void main (Args _args)

PacktInventBreakDown inventBreakDown;

inventBreakDown.initValue () ;
inventBreakDown.InventSite_SitelId = 'PacktSite';
inventBreakDown.InventSite_Name = "Packt site":
inventBreakDown.InventLocation_InventLocationId = "Packtl1l";
inventBreakDown.InventLocation_Name = "Packt 11";

[288]

Data Management

inventBreakDown.wMSLocationId = "PacktWMS11";
inventBreakDown.aisleId = "PacktWMSAisle";
inventBreakDown.WMSAisle_inventLocationId = "Packtl1l";
inventBreakDown.WMSAisle_aisleId ="Packt<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>