Modeling, Dynamics, and Control of Cyber-Physical Systems

Mihailo Jovanović

ee.usc.edu/mihailo/

USC Viterbi School of Engineering

Mini-Workshop on Theoretical Foundations of CPS

Motivating applications

networks of dynamical systems

fluid flows

Modeling, dynamics, and control of distributed systems

- ***** theory and applications
- * methods for uncertainty propagation, analysis, and design

Inter-area oscillations in power systems

Image credit: Florian Dörfler

CONTROL

Conventional control of generators fully decentralized controller

network of generators

Conventional control of generators fully decentralized controller

network of generators

- CONVENTIONAL CONTROL
 - \star local oscillations \checkmark
 - ★ inter-area oscillations X

Possible alternative

structured dynamic controller

distributed plant and its interaction links

Possible alternative

structured dynamic controller

distributed plant and its interaction links

CHALLENGE

design of controller architectures

performance vs complexity

structured memoryless controller

distributed plant and its interaction links

OBJECTIVE

identification of a signal exchange network

performance vs sparsity

• OBJECTIVE

\star promote sparsity of feedback gain F

Sparsity-promoting optimal control

 $\gamma > 0$ – performance vs complexity tradeoff

 $w_{ij} \ge 0$ – weights (for additional flexibility)

Fardad, Lin, Jovanović, ACC '11

Lin, Fardad, Jovanović, IEEE TAC '13

Optimal actuator/sensor selection

• **OBJECTIVE:** identify row-sparse feedback gain

- Change of variables: Y := F X
 - \star convex dependence of J on X and Y
 - *** row-sparse structure preserved**

Polyak, Khlebnikov, Shcherbakov, ECC '13 Münz, Pfister, Wolfrum, IEEE TAC '14 Dhingra, Jovanović, Luo, CDC '14

Power networks

- SPARSITY-PROMOTING WIDE-AREA CONTROL
 - ***** remedy against inter-area oscillations

single long-range interaction: nearly centralized performance

Dörfler, Jovanović, Chertkov, Bullo, ACC '13

Dörfler, Jovanović, Chertkov, Bullo, IEEE TPWRS '14

OPTIMIZATION

Augmented Lagrangian

Auxiliary variable

 $\begin{array}{ll} \underset{F,G}{\text{minimize}} & J(F) + \gamma g(G) \\ \text{subject to} & F - G = 0 \end{array}$

 \star benefit: decouples J and g

Augmented Lagrangian

$$\mathcal{L}_{\rho}(F,G;\Lambda) = J(F) + \gamma g(G) + \langle \Lambda, F - G \rangle + \frac{\rho}{2} \|F - G\|_{F}^{2}$$

Proximal augmented Lagrangian

$$\mathcal{L}_{\rho}(F,G;\Lambda) = J(F) + \underbrace{\gamma g(G)}_{2} + \frac{\rho}{2} \|G - (F + (1/\rho)\Lambda)\|_{F}^{2} - \frac{1}{2\rho} \|\Lambda\|_{F}^{2}$$

 \star minimize over G

$$G^{\star}(F,\Lambda) = \mathbf{prox}_{(\gamma/\rho)g}(F + (1/\rho)\Lambda)$$

Proximal augmented Lagrangian

$$\mathcal{L}_{\rho}(F,G;\Lambda) = J(F) + \underbrace{\gamma g(G) + \frac{\rho}{2} \|G - (F + (1/\rho)\Lambda)\|_{F}^{2}}_{\sim} - \frac{1}{2\rho} \|\Lambda\|_{F}^{2}$$

 \star minimize over G

$$G^{\star}(F,\Lambda) = \mathbf{prox}_{(\gamma/\rho)g}(F + (1/\rho)\Lambda)$$

 \star evaluate \mathcal{L}_{ρ} at G^{\star}

Method of multipliers

$$F^{k+1} = \operatorname{argmin}_{F} \mathcal{L}_{\rho^{k}}(F; \Lambda^{k})$$
$$\Lambda^{k+1} = \Lambda^{k} + \rho^{k}(F^{k+1} - G^{\star}(F^{k+1}, \Lambda^{k}))$$

- FEATURES
 - \star nonconvex J: convergence to a local minimum
 - \star *F*-minimization: differentiable problem
 - \star adaptive ρ -update
 - * outstanding practical performance

Dhingra & Jovanović, ACC '16

Dhingra & Jovanović, arXiv:1610.04514

CONTROL-ORIENTED MODELING

Feedback flow control

Image credit: M. Visbal

Image credit: Yoshino, Suzuki, Kasagi

technology:shear-stress sensors; surface-deformation actuatorsapplication:turbulence suppression; skin-friction drag reduction

challenge: distributed controller design for complex flow dynamics

Low-complexity stochastic modeling

Low-complexity stochastic modeling

• OBJECTIVE

- * combine physics-based with data-driven modeling
- * account for statistical signatures of turbulent flows using stochastically-forced linearized models

• THEOREM

 $X = X^* \succeq 0$ is the steady-state covariance of $\dot{x} = A x + B d$

Georgiou, IEEE TAC '02

Problem setup

known elements of X

$AX + XA^* = -\underbrace{(BH^* + HB^*)}_Z$

- PROBLEM DATA
 - \star system matrix A
 - \star partially available entries of X
- UNKNOWNS
 - \star missing entries of X
 - \star disturbance dynamics Z

input matrix Binput power spectrum H

"Physics-aware" matrix completion

• CONVEX OPTIMIZATION PROBLEM

$$\begin{array}{ll} \underset{X,Z}{\text{minimize}} & -\log \det \left(X \right) \,+\, \gamma \, \| Z \|_{*} \\ \text{subject to} & A \,X \,+\, X \,A^{*} \,+\, Z \,=\, 0 & \qquad \text{physics} \\ & X_{ij} \,=\, G_{ij} & \text{for given } i,j & \qquad \text{available data} \end{array}$$

"Physics-aware" matrix completion

• CONVEX OPTIMIZATION PROBLEM

$$\begin{array}{ll} \underset{X,Z}{\text{minimize}} & -\log \det \left(X \right) \, + \, \gamma \, \| Z \|_{*} \\ \text{subject to} & A \, X \, + \, X \, A^{*} \, + \, Z \, = \, 0 & \quad \text{physics} \\ & X_{ij} \, = \, G_{ij} & \text{for given } i, j & \quad \text{available data} \end{array}$$

* nuclear norm: proxy for rank minimization

$$||Z||_* := \sum \sigma_i(Z)$$

Zare, Chen, Jovanović, Georgiou, IEEE TAC '17 Zare, Jovanović, Georgiou, J. Fluid Mech. '17