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DYNAMICS AND CONTROL OF FLEXIBLE MULTIBODY STRUCTURES

Timothy J. Stemple

(ASTRACT)

The goal of this study is to present a method for deriving equations of motion capable of
modeling the controlled motion of an open loop multibody structure comprised of an arbi-
trary number of rigid bodies and slender beams. The procedure presented here for deriving
equations of motion for flexible multibody systems is carried out by means of the Principle
of Virtual Work (often referred to in the dynamics literature as d’Alembert’s Principle).

We first consider the motion of a general flexible body relative to the inertial space, and
then derive specific formulas for both rigid bodies and slender beams. Next, we make a small
motions assumption, with the end result being equations for a Rayleigh beam, which include
terms which account for the axial motion, due to bending, of points on the beam central axis.
This process includes a novel application of the exponential form of an orthogonal matrix,
which is ideally suited for truncation. Then, the generalized coordinates and quasi-velocities
used in the mathematical model, including those needed in the spatial discretization process
of the beam equations are discussed. Furthermore, we develop a new set of recursive relations
used to compute the inertial motion of a body in terms of the generalized coordinates and
quasi-velocities.

This research was motivated by the desire to model the controlled motion of a flexible
space robot, and consequently, we use the multibody dynamics equations to simulate the
motion of such a structure, providing a demonstration of the computer program. For this
particular example we make use of a new sequence of shape functions, first used by Meirovitch
and Stemple to model a two dimensional building frame subjected to earthquake excitations.
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Chapter 1 Introduction

1.1 Overview

The goal of this study is to present a method for deriving equations of motion capable
of modeling the controlled motion of an open loop multibody structure comprised of an
arbitrary number of rigid bodies and slender beams. The equations of motion for flexible
multibody structures consist of simultaneous ordinary differential equations for the rigid-
body motions and boundary-value problems, composed of partial differential equations and
boundary conditions, for the elastic deformations. Such coupled sets of differential equations
are referred to as hybrid [33]. The solution of hybrid sets of equations is difficult, with the
problem further complicated by the fact that the equations are generally nonlinear, even
when the elastic deformations are small.

The procedure presented here for deriving equations of motion for flexible multibody
systems is carried out by means of the Principle of Virtual Work [31], often referred to in
the dynamics literature as d’Alembert’s Principle [32]. The Principle of Virtual Work allows
for a fairly streamlined and systematic approach to the derivation of multibody dynamics
equations of motion. This is particularly true when the ultimate goal is to develop a general
purpose computer program which can be applied to any number of different structures.

There are five basic steps involved in the derivation. In the first place we consider the
motion of a general flexible body relative to the inertial space, and then derive specific
formulas for both rigid bodies and slender beams. The slender beam equations, however, are
not in a form suitable for numerical analysis, so that the second step involves making a small
motions assumption. This process includes a novel application of the exponential form of an
orthogonal matrix, which is ideally suited for truncation, with the end result being equations
for a Rayleigh beam [52]. In fact, the equations include terms which account for the axial
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motion, due to bending, of points on the beam central axis. The third step is to introduce
the generalized coordinates and quasi-velocities used in the mathematical model, including
those needed in the spatial discretization process of the beam equations. In the fourth step
we discuss the relative motion of one body with respect to another and develop a new set of
recursive relations used to compute the inertial motion of a body in terms of the generalized
coordinates and quasi-velocities. In the fifth and final step, we combine the results of the
previous four steps to derive the system ordinary differential equations of motion used to
model the multibody structure.

This research was motivated by the desire to model the controlled motion of a flexible
space robot, such as the one used on the space shuttle. Consequently, we use the multibody
dynamics equations to simulate the motion of such a structure, providing a demonstration
of the multibody dynamics code. For this particular example we make use of a sequence
of shape functions first used by Meirovitch and Stemple [46] to model a two dimensional
building frame subjected to earthquake excitations. The results are presented in the form
of plots of the various joint displacements, the displacements of points on the beams due to
the elastic motion, as well as the control torques of the various actuators.

1.2 Literature Survey

Many common engineering structures, including various types of spacecraft, land vehicles,
industrial machinery and robots, can be modeled as multibody systems. The technical
literature on the subject is vast, indeed, with publications going back several decades. We
include here a literature survey which represents a fair cross-section of all the various aspects
of multibody dynamic analysis.

In some applications multibody structures can be modeled by assuming that all bodies
in the structure are rigid, with the derivation of equations of motion carried out by a variety
of techniques such as Newton-Euler equations, d’Alembert’s principle, Lagrange’s equations,
or the method popularized by Kane. The literature devoted to rigid multibody structures is
well established, and here we simply single out the books by Haug [17], Huston [20], Roberson
and Schwertassek [51], Shabana [53] and Wittenburg [64], as well as papers by Kane and
Levinson [22, 23].

The modeling of flexible multibody systems relies heavily on principles and techniques for
modeling single flexible bodies. In an early paper, Meirovitch and Nelson [40] considered the
problem of stability of spinning spacecraft modeled as a rigid core with two flexible beams
simulating antennas. They derived Lagrange’s ordinary differential equations in terms of
quasi-coordinates for the rigid-body rotations of the core coupled with Lagrange’s partial
differential equations for the elastic deformations relative to a reference frame embedded
in the rigid core. Using the concept of “floating reference frame,” de Veubeke [13] derived
equations of motion for a mean rigid body motion in terms of quasi-coordinates and modal
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equations for elastic motions measured relative to the mean rigid-body motion. Cavin and
Dusto [8] developed a variational formulation yielding finite element equations of motion for
a single unconstrained elastic body. Using a Lagrangian approach, Meirovitch and Quinn [41]
derived equations of motion for maneuvering flexible spacecraft. Then, they derived a set
of perturbation equations with the rigid-body maneuvers as the unperturbed motion. Sha-
bana [54] derived generalized Newton-Euler equations for deformable bodies undergoing large
translational and rotational displacements. The equations were formulated in terms of time-
invariant scalars and matrices depending on both spatial coordinates as well as the assumed
displacement field. General hybrid equations of motion for an arbitrarily shaped body in
space were derived by Meirovitch [33], who extended the concept of quasi-coordinates to
translations in terms of body axes components. An example involving a flexible beam at-
tached to a translating and rotating rigid disk was provided. Using Lagrange’s form of
d’Alembert’s principle, Weng and Greenwood [63] derived equations of motion for a body
undergoing large elastic deformations, and then applied the formulation to a beam attached
to a rotating base. Zhang, Liu and Huston [68] used Kane’s equations to derive equations for
overall large motions of an arbitrarily shaped body. Two examples were provided, a rotating
beam and a rotating plate.

Mathematical models for flexible multibody systems tend to be considerably more in-
volved than those for single flexible bodies, or rigid bodies with flexible parts. Ho [18] used
the “direct path method” to derive equations of motion for multibody spacecraft with topo-
logical tree configuration, with the terminal bodies being flexible and the interconnecting
bodies assumed to be rigid. Three methods for deriving the equations were considered,
Lagrangian-Newtonian, all Newtonian and all Lagrangian. Vu-Quoc and Simo [61] consid-
ered the dynamics of flexible multibody spacecraft by referring the motion to an inertial
frame. To this end, they introduced a floating reference frame translating relative to the
inertial space. Kim and Haug [25] used a recursive formulation to model the dynamics of
flexible multibody systems, whereby the elastic deformation of each body is represented by
deformation modes. T'wo models for flexible multibody systems were considered by Yamada,
Tsuchiya and Ohkami [65], one based on a Newton equation for each body in conjunction
with constraint equations and one based on Kane’s equations. In the context of flexible
multibody systems, Géradin, Cardona and Granville [15] discussed a nonlinear beam model,
a substructuring technique for incorporating the flexibility of individual members into the
overall equations of motion and the incorporation of kinematic constraints. Chang and
Shabana [10] addressed the problem of modeling flexible multibody structures subjected to
changes in topology due to changes in the connectivity between bodies. They discretized the
system by the finite element method. Extending the approach of Ref. [33], Meirovitch and
Kwak [37] considered the problem of pointing flexible antennas mounted on a spacecraft by
stabilizing the spacecraft relative to the inertial space and maneuvering the antennas relative
to the spacecraft at the same time. Keat [24] developed an nth order algorithm capable of
modeling systems of rigid or flexible bodies. The formulation can accomodate open-chain,
tree and closed-loop topologies, and the joints connecting adjacent bodies can have 0 to 6 de-
grees of freedom. A formulation of the dynamics of rotorcraft consisting of flexible and rigid
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components was presented by Agrawal [1]. The result of using the finite element method in
conjunction with a multibody approach is a set of differential-algebraic equations of motion.
Avello, de Jalon and Bayo [3] used Lagrange’s equations to derive equations of motion for
flexible slender bodies modeled as nonlinear Timoshenko beams. Constraints are introduced
with a penalty formulation and the resulting differential equations were integrated by New-
mark’s methods. Cyril, Angeles and Misra [12] developed a model consisting of both rigid
and flexible links and used it to simulate a typical maneuver of the Space Shuttle remote
manipulator. Euler-Lagrange equations are derived for each body separately and then as-
sembled to obtain the constrained dynamical equations for the multibody system. A new
recursive dynamics analysis of flexible multibody systems was formulated by Lai, Haug, Kim
and Bae [28] using a kinematic graph concept and a variational vector calculus approach.
Assuming small deformations, the flexibility was modeled by means of modal coordinates.
To illustrate the approach, a flexible closed-loop spatial robot was analyzed. Nikravesh and
Ambrosio [48] formulated the equations of motion for multibody systems containing both
rigid and flexible bodies. They used joint coordinates to derive the minimum number of
equations for the rigid bodies and the finite element method to discretize the flexible bodies.
A systematic method for deriving the minimum number of equations of motion of spatial
flexible multibody systems was presented by Pereira and Proenca [49]. Relative kinematics
in terms of relative joint coordinates and velocities was used to formulate the equations of
motion. Shabana [55] considered issues related to the dynamics modeling of constrained de-
formable bodies undergoing large rigid-body displacement. He discretized the bodies by the
finite element method. A formulation capable of treating the problem of maneuvering and vi-
bration control of a flexible multibody system was developed by Kwak and Meirovitch [27].
Equations of motion in terms of quasi-coordinates were derived for each body separately
and then combined by means of a consistent kinematical synthesis. Vukasovic, Celigueta
and de Jalon [60] used Cartesian coordinates to model flexible multibody structures, with
the elastic deformations represented by linear combinations of Ritz vectors with respect to
a local reference frame. An example involving a satellite deployment was provided. Various
issues in the structural modeling of flexible multibody systems were discussed by Suleman,
Modi and Venkayya [57]. Comparative analyses between component and system modal dis-
cretization techniques were presented. When the system undergoes large three-dimensional
rigid-body motions, in addition to elastic motions, Lagrange’s equations in terms of quasi-
coordinates [32, 40, 50] provide an alternative to ordinary Lagrange’s equations [41]. Hybrid
equations of motion in terms of quasi-coordinates were derived by Meirovitch [34] directly
from Hamilton’s principle and by Meirovitch and Stemple [43] by transforming ordinary La-
grange’s equations. The developments of Refs. [34] and [43] are carried out using symbolic
vector operations in conjunction with recursive kinematical relations to eliminate redundant
coordinates. The hybrid equations have been discretized by Meirovitch and Stemple [42] by
the approach of Ref. [38] and the resulting ordinary differential equations cast in state form
for control.

The development of multibody dynamics formulations especially for modeling mecha-
nisms and land vehicles has been made necessary to a large extent by the fact that the
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kinematics for such systems is substantially more complicated than for aerospace structures.
In fact, the modeling of mechanisms and land vehicles often requires multibodies forming
closed loops, and in some cases even involves nonholonomic constraints. Because the inter-
est in this paper lies mainly in aerospace structures and flexible robots, we concentrate the
review on a few papers in which the flexibility is included in the model.

Yoo and Haug [66, 67] developed a flexible multibody model in which the individual bod-
ies can undergo large rigid-body motions but the elastic displacements remain small. The
deformation modes for flexible bodies are generated by a lumped mass finite element ap-
proach and the equations of motion are derived by using a Lagrange multipliers formulation.
Koppens et. al. [26] considered the dynamics of a deformable body allowed to undergo large
displacements, with the deformation modeled independently from the rigid-body motions by
means of a linear combination of assumed displacement fields. The system equations of mo-
tion were derived by d’Alembert’s principle and illustrated by means of a uniform beam and
a crank-slider mechanism. Lieh [29] presented a separated-form formulation for the dynamics
and control of multibody systems with elastic members treated as Euler-Bernoulli beams,
where “separated” is in the sense that the inertia matrix, nonlinear coupling vector, gener-
alized force vector and base motion-induced terms are determined individually. Examples
include an elastic vehicle with active suspension and an elastic crank-slider mechanism. The
problem of including the rotational, or dynamic stiffening, effect in the analysis of flexible
bodies has been considered by Wallrapp and Schwertassek [62].

Industrial robots have been modeled traditionally as chains of rigid bodies moving relative
to an inertial space, with adjacent bodies connected by motors providing internal control
torques. With the advent of lightweight industrial robots and space robots, such as the Space
Shuttle manipulator arm, it has become necessary to include the flexibility in the system
model.

Book et. al. [6] considered the control of a flexible robot consisting of two pinned beams
using two flexibility models. They investigated and compared three types of linear feedback
control. Later, Book [7] developed nonlinear equations of motion for flexible manipulator
arms with adjacent arms connected by rotary joints. Assuming small deformations, the dis-
placement of the flexible links was expressed as linear combinations of shape functions. The
efficiency of the formulation was compared to that of a rigid-link model. Hughes [19] used
the “direct path method” to derive equations of motion for a chain of bodies, with the two
end bodies being rigid and the intermediate bodies capable of small flexible motions. A com-
puter program based on these dynamical equations was written and used to model the Space
Shuttle robot arm. Low [30] used Hamilton’s principle to derive hybrid equations of motion
for flexible robots including inertial, Coriolis, centrifugal, gravitational and external force
effects. Two examples were studied, a three-link flexible manipulator with revolute joints
and a flexible manipulator consisting of a prismatic bar and a discrete mass. Naganathan
and Soni [47] used a Newton-Euler formulation in conjunction with Timoshenko beam theory
discretized by the finite element method to develop a nonlinear model capable of predicting
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the response of spatial manipulators with flexible links. From studies of both planar and
spatial manipulators, they concluded that nonlinear kinematic coupling has significant effect
on the positioning errors of the end-effector. Baruh and Tadikonda [4] used an approach
similar to substructure synthesis to model a robot with elastic arms. They concluded that
the centrifugal stiffening effect plays a large role in the overall system behavior. Bayo et.
al. [5] considered the inverse dynamics and kinematics of multilink flexible robots, with the
links modeled by the Timoshenko beam theory discretized by the finite element method.
A method was developed for determining the joint torques required to produce a specified
end-effector motion, with the performance tested both by simulation and experiment. Equa-
tions of motion for a planar model of the proposed Space Station-based Mobile Servicing
System were derived by means of Lagrange’s equations by Chan and Modi [9], who designed
controls using linear quadratic theory. A parallel processing algorithm to simulate the dy-
namical equations for constrained flexible multibody systems undergoing large rotations was
developed by Ider [21], who tested its performance by simulating a spatial robotic manip-
ulator. Amirouche and Xie [2] used Kane’s equations to develop a model for the dynamic
simulation of rigid/flexible multibody systems. Using finite element discretization, a recur-
sive formulation was developed and applied to a two-link robot manipulator. Meirovitch
and Lim [39] considered the controlled response of a flexible space robot. A perturbation
approach applied to the original nonlinear equations of motion permitted the control law to
be divided into two parts, one for rigid-body maneuvering carried out open-loop and another
for the elastic motions controlled by a closed-loop discrete-time linear quadratic regulator
with prescribed degree of stability. Meirovitch and Chen [36] considered the problem of
designing controls for a flexible space robot required to ferry a payload in space and to dock
with an orbiting target. The robot trajectory is determined by an optimization procedure,
with controls based on a perturbation approach. The rigid-body maneuvering control is de-
termined using inverse dynamics and the elastic vibration is controlled by a linear quadratic
regulator for time-varying systems. Chen and Meirovitch [11] developed a control scheme
for a docking maneuver of a flexible space robot with a moving target. The problem is
complicated by the assumption that the target’s motion is not known a priori. Lagrange’s
equations are used to derive equations of motion, which are separated into two sets suitable
for rigid-body maneuver and vibration suppression control. Van Woerkom and de Boer [59]
developed an “order-n” algorithm used to simulate the motion of a flexible space manipula-
tor consisting of a base (the spacecraft) and an end-effector connected by a chain of flexible
arms. A discussion of the parametric Lagrange form of d‘Alembert’s principle is included.
Van Woerkom [58] discussed the problem of including the axial deformation of beams, as
applied to models of space robots. Four methods of including the axial deformation, i.e.,
nonlinear deformation field modeling, perturbed dynamics modeling, fictitious joints model-
ing and bracket joints modeling, are discussed. The hybrid equations of Refs. [34] and [43]
were first discretized by means of substructure synthesis [38] and then used by Meirovitch
and Stemple [42, 44, 45] to carry out rest-to-rest maneuvers of flexible robots. Controls were
designed by the Liapunov direct method and direct feedback control was used to suppress
the elastic vibration of the links.



Chapter 2 Flexibility Models

In this chapter we develop the equations required to describe the inertial kinematics and
dynamics of the bodies making up the structure. Vectors and tensors in three-dimensional
Euclidian space are denoted with bold type (R, u, F, Q), points are denoted with italic type

(Oo, P1, P») and, as usual, the notation ?132) represents a vector with initial point P; and
terminal point P». Scalars and matrices are denoted by plane type (R, u, F, ) with the
usual basis in R? given by e; = [1 0 0]7, e, =[0 1 0]T and e3 = [0 0 1]T. The terminology
component matriz refers to either a 3-by-1 matrix, r for example, containing the components
of a vector r along specified orthogonal axes, or a 3-by-3 matrix, F for example, containing
the components of a tensor F with respect to specified orthogonal axes. Furthermore, we let
{O;xyz} stand for an orthogonal coordinate system with axes xyz and origin O. Some basic
matrix definitions and identities are developed in the Appendix.

2.1 Principle of Virtual Work

The starting point for deriving equations of motion is the Principle of Virtual Work [31],
which, for a structure comprised of N bodies labeled i =1, 2, ..., N, takes the form

N
SR = 0, (2.1)
i=1

where a general expression for R; valid for any model of a solid body is given by

R, = /poi(ri)ii-ézi(ri,t) dV—|—/Tr[Toi(ri,t)(sFi(ri,t)} dv

oi oi

— [ba(rit) - oz(r, ) dV — [ 7a(ri,t) - o7k 1) dA (2.2)

Bo; 9B,
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This is where the region B,;, which serves as a reference configuration for body i, is occupied

by the body at time t = 0, and 0B,; is the boundary of B,; (Fig. 1). Furthermore, r; = m
is the position vector of a typical point Py; in B, pci(r;) is the mass density of the body, when
in the reference configuration, Ty (r;, t) is the (first) Piola-Kirchoff stress tensor for body i,
and b;(r;, t) and T4(r;, t) are, respectively, the body force density (force per unit reference
volume) and surface traction (force per unit reference surface area). As the bodies in the
structure translate, rotate and deform, the points O, and P, of body i will occupy new
points in space, which we denote by O; and P, respectively. To keep track of the position of

points O; and P, we let Ri(t) = O,0; and z(r;,t) = O, P, where O, is a point fixed in the
inertial space. The gradient of z;(r;, t) with respect to r;, denoted by Fi(ri,t) = Vz(r,t), is
a second order tensor referred to as the deformation gradient [16] of body i.

Although we could proceed with the derivation directly from Eq. 2.2, it is more efficient
to first rewrite the formula for R; in terms of vector and tensor components. To this end,
we introduce the inertial coordinate system {Oq; %Yoz, } (Fig. 1) and the moving coordinate
system {O; xyiz; }, fixed on body i, for i = 1, 2, ..., N; body axes xyiz;, for time t = 0, are
denoted by xeiyeizoi- Then, r; = [x y z]T denotes the component matrix of vector r;, along
axes Xoi¥YoiZoi, Ri(t) and z(r,t) = z(x,y,z,t) are component matrices for vectors R;(t) and
z;(r;, t), respectively, both along inertial axes Xo¥zo, and re(ri,t) is the component matrix,

along body axes xyiz;, for vector rg(r,t) = OTDT , implying that re(r;,0) = r;. Note that the
components of r; are Lagrangian (or material) coordinates and the components of z; are
Eulerian (or spatial) coordinates for body i. We also let Ty, Fi, bei and 7,; be the component
matrices of Ty;, F;, by; and T, respectively, all with components along inertial axes X,Yoz.
The component matrix T; of the Piola-Kirchoff stress tensor, which measures force per unit
area in the reference configuration, is related to Tg, the component matrix (also with respect
to inertial axes X,¥2zo) of the Cauchy stress tensor, by the formula [16]

To = (detF)TaF ™. (2.3)

Recall that the conservation of angular momentum principle implies that the Cauchy stress
tensor is symmetric, that is,
To = Ta (2.4)

Then, since z;, To;, Fi, bei and 7,; are all in terms of components along the same set of
axes, we can rewrite Eq. 2.2 in the form

R = /poi(ri)(sz?(ri,t)zi(ri,t)dv+/Tr[T;(ri,t)aFi(ri,t)} dv

- /5zr(ri,t)boi(ri,t) dv — / 527 (11, )7 (i, t) d.A. (2.5)

The four terms making up R; will be referred to, in order, as the inertia term, the internal
force term, the body force term and the surface traction term. However, since we are con-
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deformed Y
configuration
B;
reference -
z configuration oi

Boi

Yoi

Figure 1: Reference and Deformed Configuration of a Body

cerned primarily with space structures, we assume that the effect of body forces is negligible
for the duration of the simulations to be performed, so that b,; = 0.

It is worth pointing out that the Principle of Virtual Work is simply a more primitive
version of the extended Hamilton’s Principle [31, 32]. In fact, the internal force term, which
gives the virtual work done by internal stresses, is often written as the variation of a strain
energy plus terms used to model internal damping. Then, in combination with the body
force term and surface traction term, the last three terms of R; are written as Ve — (5_Wnc7;,
where V. ; is the potential energy and (5_Wnc7; the nonconservative virtual work for body i.
Note first that this allows writing the Principle of Virtual Work in the form

N
3 / P02l 5dV + 8Voes — DWoei | = 0. (2.6)
i=1 B

oi

Then, integrating with respect to time from t = t; to t = t; and applying the integration by
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parts formula yields the extended Hamilton’s Principle,

ts -
/ (6L + OWpe) dt = O, (2.7)
(SZi(I’i,tl):(SZi(l’i,tg):O, ri GBoi, i:1,2,...,N, (28)
where
L = T-V (2.9)

is the system Lagrangian, in which

/ poifi 1 dV (2.10)
B

is the kinetic energy of the system,

Voe = Z Ve (2.11)

is the potential energy and
5Wnc = Z 0 nc,i (212)

is the system nonconservative virtual work.

2.2 Rigid Body Motion

The motion of coordinate system {O; xyizi} with respect to coordinate system {Oq;XoYoZo }
involves both the translation of point O; as well as the rotation of axes x;yiz;. We have earlier
introduced the component matrices R;(t) and z(r;, t), which involve the position of points O,
and P, respectively, with respect to the inertial space. We also require the matrix of direction
cosines of body axes xyiz; relative to the inertial axes X,Yozo, which is denoted by P, (t). Note
that since P/ (t) transforms components of a vector, along axes xyyizi, to components of the
same vector, but along axes X,YoZo, the matrix form of the vector equation (Fig. 1)

Zi(l’i,t) = Ri(t)+rei(ri,t) (213)

is given by
zi(r,t) = Ri(t) + Plra(ri,t). (2.14)

We also make use of the quasi-velocities Vi(t) and (% (t), which are, respectively, component
matrices, along axes xyyiz;, for the velocity vector R;(t), and angular velocity vector €2;(t) of
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axes Xx;yiz; with respect to axes x,¥oz,. Referring to Egs. A.24 and A.25 in the appendix, this
implies that

V; = PR, (2.15)
% = PP (2.16)
Analogous to V; and €, the quasi-virtual displacements dR’ and 00O; are defined by
ORY = PR, (2.17)
607 = POPT (2.18)

and, due to the fact that P, (t) is an orthogonal matrix, Eqgs. 2.16 and 2.18 can be rewritten
in the forms

P = —QpP, (2.19)
T = P, (2.20)
5P = —4O;P, (2.21)
SPT = PT 06y (2.22)

At this point we derive a formula for F;(r;, t), which was introduced earlier as the compo-
nent matrix, with respect to inertial axes X,YoZ,, of the deformation gradient Vz; of body i.
Note first that the constant matrix P (0) is the matrix of direction cosines of axes Xo;YoiZo;
with respect to axes x,YoZo- Then, by definition [16], F; = dz /0¥, in which ¥; = PI(0)r; is the
component matrix, along axes X,YozZ,, of position vector r;. Referring now to Eq. A.39 and
the comment immediately preceding it, we see that

8zi(ri, t)
orl

Fi(l’i, t) =

P.(0). (2.23)

The equations developed so far in this section are valid for any of the bodies in the
structure. However, for the time being at least, we proceed with the assumption that body i
is rigid. This means that the distance between any two points in the body remains constant,
which, when applied to points O; and P, (Fig. 1), implies that

rei(ria t) = . (224)
Substituting this into Eq. 2.14, the component matrix, along inertial axes X,Y»z,, for the
position vector of an arbitrary point in a rigid body is given by

z = Ri+Pn. (2.25)
Recalling that r; is independent of time, so that f; = 0, we take time derivatives of Eq. 2.25
and make use of Eqgs. 2.15 and 2.20 to get that
z = Ri+PQr
= PV — ), (2.26)
zZ = PT(V rQ)+PTQ(V i)
= PI(Vi — 7 + QVi — QiR Q). (2.27)
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Then, analogous to Eq. 2.26, we take the variation of Eq. 2.25 and use Eqgs. 2.17 and 2.22
to get that

(52; = (SR, + P,T S\@/i*l’i

= PI(0R" —100]). (2.28)

Considering now the deformation gradient for the body, Eqs. 2.23, 2.25 and A.5 imply that

i 8(R, + P;rl’i)

FF = —=P(0) = ————=

(0) or’

P.(0) = PTR(0). (2.29)

Furthermore, we can use Eq. 2.22 to get the variation of the deformation gradient as
0F, = PTd6;PR (0), (2.30)

and also, since P, and P, (0) are both proper orthogonal matrices, F; is also proper orthogonal,
so that
detF; = 1. (2.31)

We now have enough information to construct the formula for R;. Substituting Eqs. 2.27
and 2.28 into Eq. 2.5 and making use of Eq. A.11, the inertia term for a rigid body takes
the form

[psozlziav = [pa(6RT +507TR)RPI(V: = 7k + Vs — 4R%) av
B B

oi

= (SRI*T (m;V; — geiQi + ﬁiVi — ﬁigeiQi)

oi

+ 607 (SeVi + Jeifd + S Vi + Qi) (2.32)
in which

m = [pai(r)dv, (2.33-a)

Boi
Sei = /poi(ri)ri dv, (2.33-b)

Boi
Jei = / poi(r)RF dV, (2.33-c)

Boi
(2.33-d)

are the mass, first moments of inertia, and mass moments of inertia, respectively, for the
body. Next, substituting Eqs. 2.3, 2.29 and 2.30 into Eq. 2.5, and making use of Eqs. A.37,
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2.4 and 2.31, the internal force term for a rigid body takes the form

/Tr [TLoF|dV = /Tr (det F)F; TaPT 667 P, (0)] dV
= / Te [PT(0)P, TP 667 Py (0)] dV

= /Tr 507 P, (0)PT(0) (P TuPT)] dv

- /Trigéi*(PiTc;PiT)} v = o, (2.34)

where the last equality follows from Eq. A.38 and the fact that 507 is skew-symmetric and
P, TPl is symmetric.

We consider now the surface traction term. In this regard, first note that the surface
traction 7,; can be written as
Toi = 7o+ Py, (2.35)

where 77; is nonzero only on that part of the surface of body i which contacts another body
in the structure, and 7 is nonzero only on that part of the surface of body i which does
not contact any other body in the structure. Note that including P’ in this formula implies
that 74 is in terms of components along body axes x;yiz;. Then, substituting into Eq. 2.5 and
making use of Eq. 2.28, we get that

[oaradA = [ozTrzdA+ [ (SRT +005TR)PPIrn dA

9B,; 9By; dBg;
= / 0z 75 dA + 0RTFg + 66 TMg;, (2.36)
where
Fa(t) = /Tsi(riat)dA, (2.37-a)
9B,
Msi(t) = / fi7si(ri, t) dA, (2.37-b)
oB

oi

are external force and moment component matrices, both along body axes x;y;z;. Now combine
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Eqgs. 2.32, 2.34 and 2.36, plus the fact that the body force is assumed to be zero, to get that

R, — [ 5Ri*T 5@i*T } (Mrri [ g' 1 — Gr;> — /(5ziTTji dA, (2.38)
: A8,
where
ml —S.
Mrri — ~I el , . —
—m;ﬁ; Qigei Vi Fsi
Gi = [ —Sa —ude ] [ Qi ] * [ Ms; ] ' (2.39-b)

2.3 Slender Beams

The reference configuration By; for a slender beam can be written in the form [52]
Bi = {(xy.2)|(y.2) € Aq(x) for 0 < x < 4}, (2.40)

where ¢; is the length of the beam and A.(x) C R? defines a cross-section. We make the
common simplifying assumption that cross-sections remain planar, which allows the intro-
duction of an orthogonal coordinate system {Og; &mi¢ } (Fig. 2) fixed on cross-section Ag(x).
We also assume that the &-axis coincides with the central axis of the beam in undeformed
state, and that body axes x;yiz; coincide with cross-section axes &n;¢; at x = 0.

We start by considering the motion of points in cross-section A (x) relative to the inertial
space. In fact, due to the assumption that cross-sections remain planar, the analysis is
essentially the same as for a rigid body. To this end, R;(x,t) denotes the component matrix,

along inertial axes X,Yozo, of position vector Rg(x,t) = m (Fig. 2) and Pg(x,t) is the
matrix of direction cosines of cross-section axes &n;(; with respect to inertial axes X,Yoz.
Furthermore, Vg(x,t) is the component matrix of velocity vector Rg(x,t) and Qg(x,t) is
the component matrix of the angular velocity vector, €2 (x,t), of axes &n(; with respect to
axes XoYoZo, both with components along cross-section axes &n;,¢(;. We also make use of quasi-
virtual displacements analogous to Vg(x,t) and €2¢(x, t), denoted by 6R%(x,t) and 605 (x, t),
respectively, and let

=0y 2" (2.41)

—
be the component matrix, along cross-section axes &n;(;, of vector O P, where P, is a point
in the beam with Lagrangian coordinates (x,y, z).
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Figure 2: A Slender Beam in Deformed Configuration

Based on the preceding definitions we can invoke Eqs. A.24, A.25, A.26 and A.27 to get
that

Vi = PgRq, (2.42)
Qg = P4PL (2.43)
SR, = PsoRg, (2.44)
005 = PqoPL (2.45)

Furthermore, since Rg(x,t) is the component matrix of a position vector, and P (x,t) is a
matrix of direction cosines, both functions of the spatial variable x, we can introduce two
3-by-1 matrices, f.i(x,t) and ¢e(x,t), defined by [52] (refer to the comment immediately
preceding Eqs. A.26 and A.27)

@ci(xa t) = Pci(
¢ci(xa t) = Pci(

where the “prime” represents partial differentiation with respect to x. As will be seen shortly,
the components of (g and ¢ are related to the strain in the beam.

)R (x, ), (2.46)

X, t
x, t)P4T(x, t), (2.47)

Before proceeding, we point out that for a slender beam, integration over the body and
integration over the surface of the body, excluding the two ends, can be decomposed as
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follows:

/ v = / EE/ dydz dx, (2.48-a)

0 Aci(x)
4
/ dA = / 7{ ds dx, (2.48-h)
0 “0AL()

where s measures arc length around the boundary of cross-section A(x).

Because of the assumption that a beam cross-section translates and rotates as a thin
rigid plate, we can make use of the rigid body derivations and substitute r, and R for r; and
Ri, respectively, in Eq. 2.25, and then substitute V, Qq, 0R, and 607 for Vi, @, 0R" and
007, respectively, in Egs. 2.25, 2.26, 2.27 and 2.28 to arrive at

zy = Rci"’PIirpa

7 = PH(Va—F0),

7z = PIi(Vci - |~’chi + Qcivci - QcinQci)a
5z, = P;((SR;—Fpa@:i).

To derive a formula for the inertia term, combine Eqs. 2.51 and 2.52, and then make use of
Eq. 2.48-a to get that

[podalzidv = / // pes (BRET + 60278, )P PE(Vis — 7o + RV — Qi) dydz} dx
B, A (x)

oi

/ / /)ou 5R*T Fchi + Qcivci - QcinQci)
A (¥)

+00% (rp i — T2 + TpQa Ve — QciFchi)} dydz} dx

= [ R (Vs + Vi) + 000 (Jof2e + et (2:33)
0

where
pei(x) = // Poi(%, Y, ) dydz (2.54)
Agi (%)

is the mass per unit length,

Ja) =[] palx.y,2)5573 dydz
Agi(x)

= diag|Jai(%), Jyyi (%), Jzai(%)] (2.55)
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is the mass moment of inertia density, with
jyyi (X) = // Poi (Xa Y, 2)22 dde,
Agi(x)

Jal) =[] palx.y,2)y* dyez
Agi(x)
Joi () = Jyyi(x) + Jzai (),

and we have assumed that each cross-section is symmetric, implying that

//po;(x,y,Z)rpdydz = 0.

Aci(x)

For future use, we also define

~

Ji(x) = diag[(), jzzi(x), Jyy;(x)},

and note that

~ ~

Jci + J:. = JxxiL
in which I is the 3-by-3 identity matrix.

17

(2.56-a)

(2.56-b)

(2.56-c)

(2.57)

(2.58)

(2.59)

To derive a formula for the deformation gradient we make use of Eqs. 2.23, 2.41, 2.46,

2.47 and 2.49 to get that

fo= ol

82; P 0) _ [82; 8zi : 8zi

= Pli[ﬁc; — FpQci €2 63} P(0) = P;:ri[fci +e €2 63} P, (0)

&+1 0 0
== P;r, €yi 10 Pi (0)
€2i 0 1

= Pli(eqe] +1)P;(0),

in which the component matrix of a strain vector for the body is defined by

EXi(ri, t)
6ci(riu t) = 6yi(rh t) = G (X7 t) — € - |~’Pﬁbci(xa t)'

€4 (i, t)

Now take the variation of Eq. 2.60-b, and then use Eqgs. A.29 and 2.45 to get that

OF; = PLoO% (el +T)R(0) + Ph(decel )Pi(0)
= Tilde(P566% )F; + P(becel )P, (0).

g4 g4 Yhlp — [R.LPg. & pr
Ox Oy 8Z]P'(0) [RC'+PC'¢C'rP : Pies

P 63} P (0)

(2.60-a)

(2.60-b)

(2.61)

(2.62)
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Furthermore, we can use Eq. 2.60-a to arrive at the formulas

detF;, = e +1, (2.63)
1 0 0
(det F)F; = PI0) | —ei 14+ei O P. (2.64)
—€zi 0 1+ e

Consequently, making use of Eqs. A.37, A.38, 2.3, 2.4, 2.62 and 2.64, the internal force term
takes the form

/Tr[ToTifSFi} dy = /Tr -(det Fi)Fi_chi(SFi} dy
Boi B

_ / Tr |(det F)F T { Tilde (P00 )Fi + Ph(dece] )P (0) }| dV
Boi

= / Tr[(det ) Tilde (P 60 ) F; F; 'Ta] dv
BOI

1 0 0
+ /TI‘ PT(O) —¢€yj 1+ & 0 Pei TciP;:ri((SEcie—lr) P (0) dy

Boi — i 0 1 +e
Seq 0 0 100
— [T d (PsTuPl) | dei 0 0 | ROPT(O) | =6 1+eq 0 dv.
Bg; 5€zi 0 0 — €4 0 1+€xi

(2.65)

Now take note that Pg TPl is the component matrix, with respect to cross-section axes &G,
of the Cauchy stress tensor, and let

Ti(ris t)
Tci(l’i,t) = Tyi(l’i,t) (266)
Tzi(l’i, t)

be the component matrix, along cross-section axes &n;(;, for the stress vector acting on the
cross-section Ag(x), as shown in Fig. 3. Recall from basic continuum mechanics [16] that
since the &-axis is perpendicular to the cross-section, 7; is both the first row and first column
of component matrix P;T4PL. This allows writing

Txi  Tyi Tzi
PiTiPi = | 7 Tao Ta2 |, (2.67)
Ti T3z Ta3

in which Tss, T3o and T3 are stress tensor components which enforce the “cross-sections re-
main planar” assumption. Continuing from Eq. 2.65, and making use of Eqs. 2.48-a and 2.61,
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Figure 3: Components of Stress Vector Acting on a Cross-Section

we see then that the internal force term can be written as

Txi  Tyi TZi (SEXi 0 0
/Tr [TIoF|dV = /Tr T Tas Tan | | e 0 0] %dy
Toi Ta2 Tss o6z 0 0
= /562—;7—ci dV (268—&)
Oél
= /// (5T+(5c,rp)7'c, dydz dx
0 Agi(x)
4
= /(5 e + 565ma) dx, (2.68-b)
0
in which
00 T
fa(x) = fi(x) = //Tc;(x,y,z,t)dydz, (2.69-a)
[ fa() ] Ac(x)
()
ma(x) = | my(x) | = //FpTci(x,y,z,t)dydz. (2.69-b)
[ mai(x) ] ()

Note that f,; is the axial force, f,; and f,; are shear forces, m,; is the twisting moment, and

my; and m; are bending moments for the beam.

Considering the fact that (g and ¢ depend on Ry and P, it is possible to derive a
relationship between 03, and d¢g on the one hand, and 0R}; and dO¢ on the other hand.
To this end, we take the variation of both sides of Eqs. 2.46 and 2.47, and then, making
use of Eqs. 2.44, 2.45, 2.46 and 2.47, plus the fact that the variational operator and partial
differentiation with respect to x commute, we get that
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(5/6(:; - (5Pci )R::I —|— Pci 5R::|
—06% P Ry + (P 0Rq)' — PéoR
Séz. ﬁcn + (SR:;, + &ciPci 5Rci
= ORY + ¢adRY + P00 (2.70)

0¢g = (0Pg)PE + PP
= 00 Pq P+ (PyoPT) — P4oPT
= —00% dei + 00K + P P
= 00+ &cig\ézi — 00} Pei
— 30 + (3003, (2.71)
where the last equality follows from Eq. A.10. Equation 2.71 then implies that

0 = 0OF+ ¢qO% . (2.72)

We turn now to the surface traction term. As with the rigid body case, we can split 7;
into two parts,
Toi = 7—;; + P;:riTsia (273)

where 7; is nonzero only on that part of the surface of body i which contacts another body
in the structure, which in this case means one or both ends of the beam, and 7; is nonzero
only on that part of the surface of body i which does not contact any other body in the
structure. Note that including P in this formula implies that 7 is in terms of components
along cross-section axes &n;(;. Then, making use of Eqs. 2.48-b and 2.52, we get that

4
/ 62 T dA = / 527 dA + / 7{ (3R -+ 5027 F, ) Pe PT, 7 ds dx

OBy 9By; 0 A4
4 .
= [olridA+ [ (oRTE + 00T mg) dx, (2.74)
OB 0
where
. - fa(xt) ]
fax,t) = | filxt) | = 76(x,y,z,t) ds, (2.75-a)
L .F (Xat) 1 A (x)
[ m(x,t) ]
a(x,t) = my,(x, | = ]{ Fora(%,y,2,t) ds, (2.75-b)
| mMi(x,t) DA (x)

are surface force and moment component matrices, respectively, which can be used to account
both for forces acting along the length of the beam, as well as forces and moments external
to the structure as a whole acting at the ends of the beam.
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Now combine Eqs. 2.53, 2.68-b, 2.70, 2.72 and 2.74, plus the assumption that body forces
are zero, with Eq. 2.5, to get that

Ri= /Ei [(5RZT (pcivci + pciﬁcivci - 'Fsi) + 005" (jcchi + Qcijcchi - rﬁs,i)

0
+00% 6 + 095 ma) dx - / 5z,Tr:, dA (2.76-a)

/ R*T pcivci + pciﬁcivci - 'Fsi) + 005 (jcchi + Qcijcchi - rf1si)
0

(3R — ORL Ge — 60T )i + (0057 — 50T b maidx — [ 62T 7, dA
0B;

/ R*T pa ci +pCIQCIVCI ¢cn ci sn) + (5@:;—'— (Jani + Qcijcchi - Bcifci - Qgcimci - rﬁsi)
0

I [e]]

+OR F + 607 Mg dx — / 52T d A (2.76-D)

/ R*T pcivci + pciﬁcivci ¢cn ci sn) + (5@;—'— (JaQa + anJann - - Bcifci
0

_Qgcimci - )} dX —+ ((5R*Tfa + 5@0 mC'

- /(52?7’3} dA, (2.76-c)

where the last equality follows from integration by parts. Note that Eqgs. 2.76-a and 2.76-b
are in variational form, suitable for producing discretized equations of motion.



Chapter 3 Spatial Discretization

The discretization process involves three steps. To begin with, we introduce local kinematic
variables which describe the motion of points on the beam relative to the moving coordinate
system {O;; x;yiz; }. This, in itself, does not introduce any approximations. Next, we specialize
to a Rayleigh beam and make a small motions assumption, and then finally introduce shape
functions and generalized coordinates to model the elastic displacement of the beam.

3.1 Non-Inertial Beam Equations

The goal of this section is to rewrite Eq. 2.76-a in a form suitable for discretization. To
this end, we let r;(x,t) be the component matrix, along body axes x;yiz;, of the vector

—_—
ri(x,t) = O;0q (Fig. 2) and E(x,t) the matrix of direction cosines of the cross-section axes
&niG with respect to body axes x;yizi. Furthermore,

ug(x,t) = [uxi(x,t) uyi (X, t) ug(x, t)}T (3.1)

is the component matrix of the displacement vector of point O on the central axis of the
beam, along axes x;yiz;, and

b, t) = [alx 1) Galx, ) dalx, )] (3.2)

is the component matrix for the vector which defines the axis of rotation of E.. That is, the
magnitude of 1 equals the angle of rotation associated with E, and the direction indicates
the axis of rotation. As discussed in the Appendix, the formula for Eg in terms of the
components of 1 can be written as a power series (Eq. A.30), and consequently is well
suited for truncation.

22
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Based on the above statements, we have that

i = X€ + Ug, (3.3)
(%9) ~k

Eq = eXp wa Z (34)
k=0 !

Ri = Ri+Plr, (3.5)

Pci — EciPi' (36)

As discussed in the Appendix, E is, indeed, a proper orthogonal matrix, and furthermore,

Tilde( Deithes ) = EE., 3.7)
Tilde( Dty ) = EqE], (3.8)
Tilde(Dadvq) = EqdEL, (3.9)
in which N o
Z k+1 (3.10)

k=0

We note, however, that the specific formulas given here for E5 and D¢ are not used until the
next section. Consequently, the equations developed in this section, particularly Egs. 3.27,
3.28-c, 3.28-d and 3.28-e, are valid for other characterizations of the matrix of direction
cosines Eg.

Now substitute Egs. 3.5 and 3.6 into Eq. 2.42, and use Egs. 2.15, 2.20 and 3.3 to get that
Vi = PiRi = E4P (R. + PlQurg + PiTUci)
= Eq (Vi — el + Uci)- (3.11)

Furthermore, substitute Eq. 3.6 into Eq. 2.43, and use Eqgs. 2.20, 3.6 and 3.7 to get

Qci = Pci P;I—I = Ecnpld(PlTE;rl)_
dt N
= EaP [PTQES + PTES (Deida )|
= Tilde(EciQi+Dci¢ci), (3.12)
so that
Qi = Eqf + Davla. (3.13)

Analogous to Eqgs. 3.11 and 3.13, we also have

ORG = Ed(ORr —Fa607 + dug), (3.14)
(5@:;, - Ec,(5@,* —|—Dc,(5wc, (315)
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Next, substitute Egs. 3.5 and 3.6 into Eqgs. 2.46 and 2.47 and use Eqgs. 3.3 and 3.8 to get

B = PaR, = EqPPIY, = Eq(er+ul), (3.16)
bi = PP = EGPPIE] = EGE] = (Datly), (317)

so that
¢ci = Dciw:;i' (318)

Equations 3.11 and 3.13, together with Eqgs. 3.3 and 3.7 imply that

Vi +QaVe = Eq (V. — il — U + Uci) - (D:i\izci)vci + (Efci\ﬁi + DcAﬂZci)Vc.
= Eq (V. — Fal + g — aciQi) + (Efci\ﬁi) E.i (Vi — Faldi + Uci)

= Eq (V. - |~’ciQi + Ug + ini - QtiiQi - 2aciQi)7 (3.19)
Qci = EciQi + Dcilﬁci - (D:i\lzci)EciQi + Dci&ci' (320)

Combining Egs. 3.11, 3.13, 3.14, 3.15, 3.19 and 3.20, we get that
4 . - . ~ .
/ {5R*-T (/)cchi + pcchchi) + 608" (Jcchi + QciJciQCi) } dx

/ { R*T + 605 T + du ) [pcivi = Pl + pilici + pahVi — paQiFall — 2pciaciQi}
’ (5@*TET + 5wTDT) [JciEciQi + jciDcilﬁci - jci(D:i\{ﬂ‘ci)EciQi + jciDcilbci

Cl [o]]

+(Eafh + Dathu) J (Eah + Dl )| f o
= /Ei {5Ri*T [pcivi — peitail + paiic + pahVi — paital — 2pciaciQi}

" 4067 [peitaVi — pat i+ peitaiiic + peita Vi — paiFi — 2patatia + ELIEa®
+ETJC,DC,wC, ElJs(D c,wc,)Ec.Q + ElJaDeitha + QUELIGEGQ + QEL JaDaithe
+EL(D canI)JaEciQi + E;:ri(Dciwci)Jci Dciwci}

+oug [pcivi — peifailli + peilic + peCUVi — paiFall — 2pciaciQi}
+697 [DILJGEa + DL JaDats — DIJa(Datia)Eal + DLJaDetle + DY (Eaf)JaEaty
+DJ(Eq)JeDats + DI (D) JaEa + D (Dt Dert] }
= / 5R*T Pcu i — peitelli + pailic + paiVi — Pt — 2pciaciQi}

° +<5@*T |peitaiVi + (ESJGEei — pates ) + peifeilici + EZJeDeid

- aOiV; + O (ENaEa — pat% )2 + EL(JaDa + (Datler)daDa )t

+( — 2paFatic — ELa(Date)Eq + EN (Datia)daEq — Tilde(ELJiDatis ) )0
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+oud [ﬂcivi — paitaShi + pailic + Vi — palFall — 2pciaciQi}
+5¢T [DTJ E Q + DTJ Dcnwa + DT( Q )Ja EaQ + DT (Jchn + ( ci&ci)jci Dci)&ci

+D;:r|( - jci(Dciw‘ci) - (Jci Dciw‘ci) + (Dciw‘ci)Jci) EciQi}}dX' (321)

Before proceeding with the derivation, we note that Eq. 2.55 implies that Tr(jc;) = 2jxxi,
and then, making use of Eqs. A.9 and 2.59 we see that

Ji(De) — (JeDeithe) + (D) = —Ja(Deitia) — Tr(Ja)(Daidher) + J(Daiti)
+2(Dci¢ci)jci = (Dciw‘ci) [2jci - (Trja)l}
= —2(Data) )i (3.22)

Furthermore, premultiplying by E; and post-multiplying by E implies that

ET cn( cnwa) ci (ETJchnwcn) + E;ri(Dciw‘ci)jciEci = _2E;(Dci¢ci)J:iEci' (323)
Substituting Egs. 3.22 and 3.23 into Eq. 3.21 we have that

/Ei {5Rz.T (pcivci + pciﬁcivci) + (5@:;.1— (jcchi + Qcijcchi) } dx
0

A

= 5Ri*T/ | {pcivi — Pl + pailici + paiVi — paQifell — 2pciaciQi}
0
4 . . ) . .
+ 5@i*T/ {pctiiVi + (E;Jci Eq — pcing)Qi + paifeiici + EZJeiDeite
0

+pafahVi + (ET'jci Ea — Pc.~2)9 +E] (Ja Dei + ( :i\izci)jciDci)lbci
+( — 2pafeiti + EX(Deites) J5Er ) 4 s dx
+/€i (5‘1; {pcivi — paitail + paiiic + paiVi — paQiFal — 2pciaciQi}
0 + 008 {DIJeEcih + DI JiDeithe + DI (Ecifl)JiEa
+D! (jciDci + (DcAﬂZci)jci Dci)¢ci - 2DL(Dci¢ci)J:iEciQi }>dx. (3.24)

To arrive at a formula for the surface traction term, we make use of Eqgs. 3.14 and 3.15 to
get that
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/ ’ (OR:Tfs + 60T mg ) dx = / ’ (R + 667 TFes + ul )EXfs + (967 TEL + 691 Df ) mg| dx
0
/ SRIT(ELR) + 607 (FuELfa + Efma)
0
+0u;(ESfa) + 6v] (Dlimg) | dx

— R TFg + 60 TMq + / ’ [0uf(Elfs) + 005 (DEms )| dx, (3.25)
0

where
[ in 1 4
FSi = Fyi = / E;r|fSI dX’ (326‘&)
. FZi -
[ Mxi 4
My = | M, | = / (FaEXfa + DImy) dx. (3.26-b)
Mzi 1 0

Now combine Eqgs. 3.24 and 3.25 with Eq. 2.76-a to get that
4 ~ ~ ~ e
Ri = 5Ri*T{miVi - SeiQi +/ Peillci dx + mill Vi — QiS¢ — 254€% — Fsi}
SO : & . . . -
+5@?<T{Seivi + Jeif2i + / (pctiiuci + Ez—iJciDciwci) dx + Seif2iVi + Qideil;
0
—2I1ei{) + oei — Msi}
& . ) ~ ~ -
+/ <5u; {pcivi — peilci€li + peillc + peifhVi — paifhifall — 2pciuel — E;fsi}
+607{DLIGE, + DlJaDat — DY (Eaf + 2Dt ) JEaL,
+D;r. [jciDci + (Dciw‘ci)jciDci} ¢ci - D;rimsi} + (56ch| + &blmc.) dx
/ 5z,TT:, dA, (3.27)
in which
&
m = / pei dx, (3.28-a)

4
Sei = / Peifai dX, (3.28-b)
0
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A

Jei == /I(E;rijciEci_pcing) an (328_C)
0
& - —
e = / [pctiiUci"’E;ri(Dciwci)J:iEci} dx, (3.28-d)
0
i = / EL [JaDa + (Deithe) JeDei] s dx. (3.28-¢)
0

3.2 Second-Order Rayleigh Beam

At this point we specialize to a Rayleigh beam, which is simply a beam model which includes
rotatory inertia and which satisfies the same kinematical constraints as an Euler-Bernoulli
beam. These constraints can be stated as:

1. The distance, along the central axis of the beam, between any two points on the central
axis remains constant.

2. The tangent line to the central axis remains perpendicular to the central axis.

In order to derive usable consequences of these two assumptions, note first that Rl is the
component matrix, along inertial axes X,Y¥»Z,, of the tangent vector to the central axis. Con-
sequently, 3(x) = P (x)R(x) is the component matrix of the tangent vector, but this time
along cross-section axes &n;¢;. Then, since x measures arc length along the central axis when
the beam is in undeformed state, postulate 1 requires that

/a+x \/ (s,t)fa(s,t) ds. (3.29)

Now set a to zero, take the derivative with respect to x and then square the result to get
that

BE(xt)Ba(x,t) = L (3.30)

Postulate 2 requires that
Bixtes = Bi(xt)es = 0, (3.31)
which, taken together with Eq. 3.30, shows that (5 = +e;. However, it is obvious that (g

points away from the same side of the cross-section as e; does, so that G5 = e;. Combining
this with Eq. 3.16, we see that

ﬁci = Eci (el + U::i) = €. (332)
Before proceeding, first rewrite this as

ul, = (EL —Dey, (3.33)

Cl
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which represents three scalar equations involving the six components of ug and ;. Based on
this equation alone, it would seem reasonable to take the components of v as independent;
however, the standard approach, and the one we adopt here, is to take 1)y, u,i and uy as
independent.

Our interest is in deriving equations of motion Which retain only up to second-order terms
involving the components of ug, ¥, Ug, Y, U, g, u uly, L, ulk Wl O, wc,, Oug, 01, i and
mg;. To this end, we retain the first three terms in the power series in Eq. 3.4, and substitute
into Eq. 3.33 to arrive at

u; —s W+ VZ)  —ta+ 3haty i+ st 1
u, | = Vo + sthaitlyi —3(VE+ Y2 —ha + 3yt 01, (3.34)
us, —yi+ 30t U+ 3Witha —3(U% + PE) 0
which then implies that
uy = —5(h U5, (3.35-a)
ui = tha + sty (3.35-b)
up = =i+ 5t (3.35-¢)

As can be checked by direct substitution, the second and third of these equations can be
solved for 1; and v;, yielding

Yy = (—uy+ %wxiu;;)/(l + iwii)a (3.36-a)
Ga = (Ut 3thau) /(1 + 395). (3.36-b)

Retaining up to second-order terms only, and then substituting the results into Eq. 3.35-a
and integrating yields

0l = =3 [ {lP + W)} ds. (3.37-2)

Pi(x) = —uy(x) + 5Ua(x)ul (%), (3.37-b)
Ya(x) = (%) + 58 (uy(x). (3.37-¢)

Referring to Eqs. 3.4 and 3.10, second-order expressions for E;; and D¢ are given by

[ 1- 2{( yi)? (1)} uy, U'z. ]
Eq = ul; — ity 1 - ‘{w + (uf )2} Ui = —uy,uz, , (3.38-2)
L —uy; + auy, —thyi — Quyluz| 1 - 2{¢xi (ul)*} |
11— 6{( WP (W)} Uyt Uy SU5 — fzwx;u;.
D = _iuyl wXqui 1 - _{w ( ) } ngI - 6 y| Uzi .(3.38-b)
—3U + ﬁwxiu;i I — guguy 1 — A2+ ()2} |
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Substituting Eqgs. 3.37-b, 3.37-c and 3.38-b in Eq. 3.18 yields, to second-order

¢Xi = w:q - _uy|u2| + ;u;,lu,zn (339-&)
Gyi = U+ auy, (3.39-b)
Gz = U+ Ul (3.39-c)

Recall now that for an Euler-Bernoulli beam the bending moments and twisting moment are
given by

~

My = kil Gi(¢ 4 G, (3.40-a)
myi = Eiyyl( 5+ Gy, (3.40-b)
mi = Eda(ul}+ Gulp), (3.40-c)

in which E; is the elastic modulus, G; is the shear modulus, ¢ is a damping factor, ke is a
fudge factor and Iy, I, and Ly = Iy; + I,,; are the area moments of inertia for the beam.
Then, since Eq. 3.32 implies that 05, = 0, we have that

835 fG + dpime = o [I(xiixxiG'(w;i + Cﬂﬂ;.)} + ouj; [Eiizzi(u;,i + C.U;,.)}
ou By (s + Gl (3.41)

At this point, the best way to proceed is to use a computer program, such as Mathematica, to
perform the algebraic computations required after substituting second-order approximations
into Eqgs. 3.26-a, 3.26-b, 3.28-b, 3.28-c, 3.28-d, 3.28-e and 3.27. Note also that, with reference
to Eq. 3.37-a, a simple change of order of integration allows writing

/ihmuﬂ@)¢<-— —g/"il/f(yk]{@w@ﬂ2+[¢4nf}dx (3.42)
The result of these calculations is:
smil; o [ =306 =) {(u))? + (uy)*}
Sei = 0 + / Oci Uyi dx, (3.43-a)
0 0 Uz

_ — (6 —x){ufi i + v}
Sei = / Pei uy. dx, (3.43-b)
0 Uz
0
Jyy.€ + m€2 0
Joailli + %mi&z

“ pc'”yl + paiu? zi jzzn(ugu)2 - jyyi(u,zu)2
+/ JZZ| paxuyl + (JZZI - Jyyi)wxiu,m
0 j — PciXUzj + (jZZI - jyyi)wxiu;”
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jzziu;i - /)ciXin + (jzzi - Ajyyi)wxiu,zi R R
peuz — 5pa(6F =X {(ug)? + (u5)*} + Jaai(ufs)? + Sz — Jyyi) ¥

( yyi T ZZI)wXI pciuyluu + JXXIuy|uz|

jyyl — PciXUgz; + ( zzi j yyi )wmuy.
( yyi Zzl)wxl pCIuylum + %J uy| zi dX’
peud = $pa(2 — X {(u))? + (W)} + Jyyi (W) + (Jyyi — Joi) 2
(3.43-c)
e —/)cinini - pciuziuzi + jzmu U + Jyyluz| zi
1_[ei = / pcixuyi + Jyyiuziwxi
0 pcixuzi - jzziu;iibxi
_Jzziu;i - Jzziu, wm ( yyi Jzzi)wxiu;i
( yyi T ZZI)wXIwXI Jzziu;iu;i - pciuziuzi + apci (62 )(U U + uz|uz|)
zziwxi + pciuyiuzi - JZZqu|uy| - 1JZZIuy|uz|
Jyyluy|wxl ( yyi Jzzi)wxiuw Jy
YY'wX' + pC'uZ'u)" - %Jyylumuyl - %J |u,zi dX'
(AZZ' - yy‘)wx'wXI /)ciuyiuyi - J}’)"uZ|UZ| + QpCI (gl2 )(U U + uZIuZI)
(3.43-d)

Furthermore, substituting Eqs. 2.75-a and 2.75-b into Eqs. 3.26-a and 3.26-b, we have that

r ~

N uy,fy,— uf,

Fsi = / y, x| wm zi an (343_6)
0 L uzifxi + wxi yi + fzi

£ £ S 1,/ 4 1,7 &
. —uyfy; + uy;fzi + My — 2uy|my- — zuy;m

Msi = / | (uZi - Xu,zi)'in - wai yi sz' + 2 YImX' + m}" - %inrﬁZi dx. (343_f)
0 (Xu;i — in)'in + X wa.fm + 3 Z,mxu + me My + mZI

Now, making the appropriate substitutions into Eq. 3.27, we have that
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. o 4 —(li — X)(u;iij;i + uji;) _
Ri = (SRI*T m;V; — SeiQi —|—/ Pci in dx —+ miQiVi
0 l.jzi
L [ =g+ ()2
08— 2544 + [ e 0 dx — F,
0 0
. . 4 jxxi&xiA_ pcil{ziuyi + pciuyiuziA_F %(jyyi A_ jzzi)Aulzil.j;,i + U;iu;i)
+00;T SeiVi + Jei€d + / JAxin,yﬂ@xi — PeiXUyzi — {yyil.j,zi + (-!yyi - -Jzzi)wxiu;i dx
0 Jxxiu,zilpxi + pcixuyi + Jzziij;i + (Jzzi - Jyyi)wxiu,zi
o _ 0 (Jyyi - JZZi)u;iu,zi
+Seif Vi + QiJeild — 201 8Y + / 2Jyyi¢xiu;; dx — M
0 2Jzzilﬂxiu;i

b . . . . . A . .
+/ (5wxi {JxxiQxi + Jxxiu;igzyi + Jxxiulzigzzi + Jxxilﬂxi + 2Jzziu;igzyi + 2Jyyilrjlzigzzi
0
+(Jaz = Joyi) [0 (2 — O2) — Wiy — Uy Qi + | — i}

+00i{ kaloaGi(f; + Gl }

+5in{pcivyi — Ptz + peixSli + peillyi + pei (Vi — Vaifh) — 206018
—paityi (2 + Q2) + pixiQyi + Ptz — Fyi |
+0uly{ = pei(li =)V + (Jyyi = Jozt) (FU5 Qs + 1) + Joai (i + i)
—pei (b = X)Ul(VaiQyi — Vi) — 200000 Qyi + Jpitl (02 — Q2) — 10y
Fgpa(l] — Xl (Q5 + Q%) + (Jyyi = Joat) i — 300t Qi Qi — mzi}
+ouly{ B (U + G |

+5Uzi{pcivzi + Peitlyi€i — pxCyi + peilizi + pei(Vyi — Vi) + 2paitlyiy
—Peitizi (2 + Q) + paxi Qi + Peitlyi€lyi i — 'in}
+0u{ = pei (6 = x)Voi + (Jyyi = J) (5% — i) — Jypi (O — i)
—pei (b = x)u (VaiQyi — Vi) — 2Jyithi Qi + Jyyit (02 — Q2) — JpyiQai
306 (0 —x)u; (5 + Q2) + (Jyyi = J2a )i Qi — %jxxiu;iQyini + Fﬁy;}
+(5u'z'i{E;iyyi(u'Z'i + C;U;’i)}> dx — /(52?7';2 dA. (3.44)

OB
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3.3 Shape Functions

In order to derive equations of motion which can be integrated numerically, we follow the
standard procedure [35] of approximating the functions 1x(x,t), uyi(x, t) and uz(x, t) as finite
linear combinations of shape functions which depend only on the spatial variable x. That is,
we assume

Uai(x,t) = @u(x)a.(t), (3.45-a)
bk t) = @l(x)au(t), (3.45-b)
uAi(x,t) = @h(x)a,(t), (3.45-c)
where
pal) = [eh0 @2 - Y] (3.46-2)
Vu(x) = [@i(x) W?i(x) w;\:yi(x) }T’ (3.46-b)
pal) = [ QL) A o @i ] (3.46-c)

are arrays of shape functions, and

a® = [at) @M - o] (347-a)
a0 = [at) @&® - arm ] (3.47-b)
a(®) = [ah®) @ - aFm ] (3.47¢)

are arrays of generalized coordinates, and define

ai(t) = [ af(®) ait) ai(t) ]T = [ak(t) @) - ayi(t) }T, (3.48)

where
Nei = in + Nyi + Nzi (349)

is the total number of degrees of freedom used in the discretization of the beam equations.
Substituting Eqs. 3.45-a, 3.45-b and 3.45-c into Eqs. 3.43-a, 3.43-b, 3.43-c, 3.43-d, 3.43-e,
3.43-f and 3.44, we have that

1 + Mreidei - Gri}

T s Vi
R = [5RET5@;T}{M";[Q

‘qu;ru {M;I;i l gl 1 + Meeidei - Gei} - /5Z;r7':id./4, (350)
9B,
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in which _
m;I _Sei
Mrri = ~ s (351—&)
Sei Jei
| pciq;myyiqyi + pciql—imzziqzi [ Fo
0 XI
O 08+ 25 0 iy
—m;ll; iDei T 26 Vi F.i
Gri = o _ l 0 1 + ~ ~ T . + M ) (351_b)
—Seifd 20Mg — Qidei i (Jzzi — Jyyi)qyiMy’Z’iqzi MXi
_2Jyyiql—iMxy’iqyi Myl
L _2jzziql—i'\7|xz’iqzi ] ) -
%m;& Qpaqy.Myquyi - %pciql—imzziqzi
Sei = 0 + pc;q;@y; y (351—(3)
0 pciq;ri@zi
jxxigi 0 0
Jei = 0 Jyyigi + %m,ﬁ? 0
0 0 Jzzigi + lm;ﬁ?
q;(/)ci'\_/lyyl JZZIMy 'y ')qyl + qz. (/) My jyyi'\7|2’2’i)qzi
+ qy|(JZZI()0yI pcﬁpyl) + ( zzi J )qx| xz'i95i
qzi(Jyyigpz’i - pci@zi) + ( zzi J )qx| Xy iqyi

q;/ri(jzzi@y’i — paByi) + Uz — Jyy)afiMoria
(jzzi — jyyi)ql—il\_/lxxiqxi + q;,ri(jzzil\_/ly’y’i — %pciﬁyyi)qyi + L (peiM i — %pciﬁzzi)qzi
ql—i(jyyi - jzzi)@xi + q;,ri(%jxxil\_/ly’z’i - pcil\_/lyzi)qzi
q;ri(jyyi@z’i — PeiPzi) + (jzzi - jyyi)ql—il\_/lxy’iqyi
ql—i(jyyi - jzzi)@xi + q;,ri(%jxxil\_/ly’z’i - pcil\_/lyzi)qzi ,
(i = Joa) AT Mot + a5 (JyyiMarzi — L piMui)ay + i (paMyyi — 3 pciﬁyy;)qyi
(3.51-d)

‘ —PeityiMyyidy; — peidyiMzid,;
Sei = pci@;l,—iqyi )
pCi@l—iqzi

(3.51-¢)
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q;ll—i(jzzil\_/ly’y’i - pciMyyl)qy| + qz|(Jyy|Mz’z’| pci'\_/lzzi)qzi

Il = PeiPrdyi + i Miay;
PeiPrilyi — Jzziql—iMXy’iqyi
_jzzi@;,r/iqyi - jzziql—i'\_/lxz’iqzi + (jyyi - jzzi)ql—i'\_/lxz’iqzi
(JYYi - Jzzi)ql—i'\_/lxxiqxi + q;—i(%pciMyyi JZZiMy/y/i)qyi + q;(%pCiMZZi o pCi'\_/IZZi)qu
Jzzi@l—iqxi + q;ri (pciMyzi - %J My z/ l)qzi - %Jzziq;riMy’z’iqzi
_jyyi@zT/iqzi + (jyyi — J.z )My iGy; + Jyquxquy 'iy;
_Jyyi@l—iqxi + q;’l'l (pciMyzi - %J My z/ l)qzi - §JyyiqyiM z iqzi )
(Jzzi - Jyyi)ql—iMxxiqxi + q;/ri(%pciMyyi - pciMyyi)qyi + q;ri(%pciMzm Jyyle’z’l)qzi
(3.51-)
0.0 pc.qy.M pc.qz.l\/l ]
0---0 pCIQOyi 0---0
0---0 : 0---0 PPl
I\/Irei == 1 = ~ : ~ A = 5
R Jxxi<)0_;|<—i_|_ %(JYYi - JZZI)any 'Z’i pCqu|M %(JYYi - Jzzi)qyil\/ly’z’i + pCiq;I/—iMyzi
Jxxi(‘];/r||v|xy| (Jyyi - JZZI)qx|I\/|xy’| pClgpm - Jyyi@l—l
JXXqu||\/|xz/| pci@yi + Jzzigpy/i (JZZI - Jyyl)qX|sz’| ]
(3.51-g)
[ jxxil\_/lxxi 0 0
Meei = 0 pci'\_/lyyi -+ Jzzi'\_/ly/y/i 0 , (351—h)
L 0 0 pci'\_/lzzi + Jyyi'\_/lz’z’i
Gei = _Deeiqei - Keeiqei + deia (351‘1)
(Jozi — Jyyi )Mo (922 — 92) (Jyyi = 22 ) Mayi 22
1 CII\_/I i Qz Qz ci'\/I i V Q _VZIQi
Keel = Kze. (Jyyi - Jzzu)MXy |QX|QZ. —p yy ( + ) _; p yy ( , ; Y)
- +JZZIMy 'y’ ,(Q Q ) gpciMyyi(Qyi + in)
(jyyi - JZZI)MXZ |QXIQ (pcil\_/l JXXIMy/Z/|)QyiQZi
(jyyl Jzzi ) '\_sz’i QXI le
.......... CI'\_/IZI_ leXIM/Z/IQ Q e
ey = o doMyz) il , (3.51)

pCII\_/IZZI(QQ + QQ ) + pciMzu (V Q - VZ|Qyi)
+JnyMZ ¢4 ,(Q - Qz) gpciMzzi(Qii + Qi)
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0 20 JZZIMXy/I 2£22|Jyy|'\_/|xz’|
* vl v
Deel == Dee| _2QyiJzziMXy/i 0 2gzxipal\/Iyu 9
_2in jyyi I\_/l;l(—z/i 2Qxi Pci M 0
I(xiiXX| GI Rxxi 0 0
Keei = 0 Eil.iKy, 0 :
0 0 Ei yyiKzzi
eel = CKeel
(jyy. Jz )Py
dei = pci@yi (VZI VXIQ ) ( ZZI()OyI pci@yi)QxiQyi + Fci7
pci@zi(v ) ( yy|§02| pci@zi)QxiQZi
P wx.( ) x.(X)
Fa= [ | #0000 +2i(0ma(x) | dx
0 L a(0)fa(x) — @lL(x)yi(x)
Furthermore,
4
()OXI — pri(x) an
0
4
pru ()Oyi(x) an
0
4
Pz (pzi(x) an
0
4
Pyi = / Xpyi(x) dx,
0
4
Pzi = / Xgpzi(x) dx,
0
4
Pyi = / (p;i(x) dx,
0
4
Yzii = / <)0,z| (X) an
0
_ 4
Myi = (pXI(X)(p;(X)dX7
0
_ 4 T
Myi = @yl(x)wyi(x)dxa

35
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(3.51-1)

(3.51-m)

(3.51-n)

(3.51-0)

(3.52-a)

(3.52-b)

(3.52-c)

(3.52-d)

(3.52-¢)

(3.52-f)

(3.52-g)

(3.52-h)

(3.52-1)
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_ i
Mo = [ paldeh(x)dx
0
_ b
My /goyxxm;(x)dx
'\_Axy’i /QOXI (pyl
'\_/IXZ/I = / Pxi ( )gpm( )d X,
0
_ b
Myyi = [ @0yt (x)dx
0
_ i
Mowi = [ @l (x)ax.
0
_ b
Myoi = [ @602 (),
0
. ¢ -
My = [ (6= X))} ()
0
. ¢
Mo = [ (6 =02k (ax.
0
~ 4
My = [ (6 =)0 ()ax,
0
~ 4
Mo = [ (6 )20 (9.
0
In addition,
_ i
Rei = [ Fab0eT (9 dx.
0
Kyi = /go()go@()d,
R ) /QO QONT

Finally, referring to Eqgs. 3.43-e and 3.43-f, we also have that
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(3.52-j)

(3.52-k)

(3.52-1)

(3.52-m)

(3.52-n)

(3.52-0)

(3.52-p)

(3.52-q)

(3.52-1)

(3.52-5)

(3.52-t)

(3.53-a)

(3.53-b)

(3.53-c)
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|t >dx—qy./ Pl

dX - qZI / (pZI

4 .
q;/ QO;I(X)'F dX+/ Y' dX_qXI/ QOXI
0

¢ . . .
a / Pa(0ha() dx + qf / u00ix) e+ / fa(x) dx
/(pz, dx—l—qw/ Oy (X)F2i (x dx+/ M, (x) dx

—q

% [ o) = xR >dx—qx./ X (X)fy(x) dx

0

al / [0l (x) = i) [ (x

0

~

_%q;/ gp;i(x)rﬁyl dX_ _q2|/ gpu le
0
14

L

_/ 'sz, dx+2qy|/ @ () My

—|—/ my| dX_ _qX|/ ()OXI mzl

A

—qL/ o (X

2qx| / ()OXI

~

fui (x) dx + xf x) dx

dX+ qu|/ gpm le

dx+/ A

dx
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(3.54-a)

(3.54-b)

(3.54-c)

(3.54-d)

(3.54-¢)

(3.54-f)



Chapter 4  Equations of Motion

To each body i in the multibody system we associate another body j (Fig. 4), referred to
as the body inboard to body i [20], and chosen so that the rigid body motion of body i
relative to body j can be analyzed in an efficient manner. The inertial motion of each body
in the structure can be determined recursively, by working backwards from the body, to its
inboard body, and then finally to the base body, referred to as body 1. Furthermore, the
body inboard to body 1 is taken to be the inertial space, referred to as body 0 (zero).

4.1 Generalized Coordinates

/
i

;Xly'izi}, which is fixed on body j (Fig. 4), and assume

We introduce a coordinate system {O

that the motion of coordinate system {O;;x;yiz;} relative to coordinate system {O!;xy'iz!
depends just on generalized coordinates
Ngri 17
i = [ 9% Gt g } ’ (4.1)
and quasi-velocities
— 12 Nori 17
Wi = [ Wi Wy o Wy } ) (42)

in which Ny, < Ng. Recall from the meaning of quasi-velocity [32] that this implies the
existence of two Ng.-by-N, matrices A, and B,i, both functions of q,;, which satisfy the
relations
d4i = Briwy, (4'3)
wi = Aid, (4.4)

38
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Figure 4: Kinematical Relationship Between Body i and its Inboard Body |

Note that this implies that the matrix product AIBH equals the Ny,i-by-N,,; identity matrix.
We also make use of the quasi-virtual displacement

WN 1T
5qr = [ Sqit oqr2 - 5qrinr' } , (4.5)
which, analogous to Eq. 4.4 is related to dq,; by

0q; = AIM;- (4.6)

In many cases, the motion of body i relative to body j will consist solely of rotation
about a single axis with direction fixed in the two bodies, in which case Ny = Ngi = 1 and
w,; = q,;- However, more general cases of relative rigid body motion are easily included in the
multibody system model by allowing wyi # q,; and Ny < Ngi. For example, in some cases
we may wish to use the components of the angular velocity of coordinate system {O;; xyiz; }
relative to coordinate system {O!;xly’zl} as components of w,, in which case w,; # q;.
Furthermore, in other cases we may want to use Euler parameters as components of q,;, so
that in this case Ny < Ngpi.
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We turn now to a consideration of the structure as a whole, and let

- . T - . T
@ = | o @ - @ | = la, ay - ay |, @7
A . T - T
de = | 9 9 oG | = [a% dh - 4w |, (48)
- T A T
=9 ¢ - g9 | =]4q a |, (4.9)
- T A T
w, = wh w2 e = | wi wh, - ow] . (4.10)
h T - . T
W= wh w2 whNwr = wl gl , (4.11)
A . T - . T
oa; = | oa;t oq® oo g | = | aqr dqry - dan |, (4.12)
- T A T
5q* = | 6q*' 0q*? .- SgtNw = | dq7 4q! | , (4.13)
in which ¢, g, ¢/, w, wi, dq¥ and dq* are scalars, and
qu = qul + qu2 + -+ quNa (414)
Nwr = Nwrl + Nwr2 +--+ NwrNa (415)
Ne — Ne1+Ne2+"'+NeN7 (416)
Ny = Ng +Ne, (4.17)
Ny = N+ N.. (4.18)
Furthermore, we define the Ng-by-N,, matrix
B = block-diag [Brl, B, ..., B, 1}, (4.19)

where in this case I equals the Ne-by-N, identity matrix, and point out that Eq. 4.3 and the
definitions of q and w imply that
qg = Bw. (4.20)
Finally, we let
T = [ T TR T }T (4.21)

ri

be the generalized force associated with the quasi-velocity wy, in which T:‘,’ is a scalar, and
define

T = [T:ﬁl T2 . TrNwr }T — [T:‘lT Ty o TR }T, (4.22)
T [T TR T }T — [T o }T, (4.23)

in which 0 represents the Ne-by-1 zero matrix, and T and T* are both scalars. Consequently,
the virtual work performed by the generalized force T is given by

W, = 0q; T5. (4.24)
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4.2 Recursive Relations

In this section we develop the transformation from q, w and w to R;, P, V;, {2, Vi and Qi,
required in formulating the equations of motion. To begin with, r; is the component matrix

—
of position vector r; = O;0; (Fig. 4), C; denotes the matrix of direction cosines of axes xyiz;
with respect to xjyjz; and quasi-velocities v; and wj are defined by the relations

vi = G, (4.25)
& = od, (4.26)

with associated quasi-virtual displacements given by

(SI’-* = C;5r;, (427

50F = GCoCl.

(No confusion should arise from the fact that the symbols r; and r; used here have a different
meaning than in Chapters 2 and 3.)

Based on the discussion of the preceding section, r; and C; depend only on qg, g, and
possibly t. An application of the chain rule implies that

vi = G,
- C 8r; . 4 8r; . 4 8r;
- i aq;li—qri aq jqej ot

8r; 8ri . 8ri
= i=—=Bui ri i j o 4.2
((:é)qI )W +<C8q-)qej+cat (4.29)

€J

where the last equality follows from Eq. 4.3; note, too, that a similar expression holds for
w;. Next, if we were to continue in this manner and calculate v; and w;, we would find that
the 6-by-1 matrix [v{ w']T can be written in the form

l vi 1 = haw, + heid, — di, (4.30)

Wi

with local quasi-virtual displacements satisfying the relation

orf o o _
[ 59?] = hdg; + heidqe, (4.31)

with h,; a 6-by-N,, matrix and hg a 6-by-N. matrix, with both dependent only on q,; and
t, and d; is a 6-by-1 matrix which depends only on q,;, w,; and t. The derivation of specific
formulas for h;, he; and d; must be carried out case by case, depending on the type of joint
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model involved, and is postponed to a later chapter. In a similar manner, since R; and P
are functions of q,, q, and t, we conclude that

l g] = Haw, + Hgd. — Di, (4.32)
oR ] \
l 5@I* ] = Hr;(Sqr + He;§qe, (433)

where H,; is a 6-by-N,,, matrix and He; is 6-by-N., with both dependent only on q,, q. and t,
and D; is a 6-by-1 matrix which depends only on q,, w,, q., 9. and t.

Recall now that the body inboard to body 1 is the inertial space (body 0), which implies
that

Ri = r, (4.34)
P, = (, (4.35)

\ v
lﬁﬂ —l@ﬂ, (4.36)
Hi = hn, (4.37)
Hei = her, (4.38)
D, = d,. (4.39)

These equations initiate the recursion process described next.

With reference to Fig. 4, we see that the vector equation
Ri = Rj+r, (4.40)
written in terms of component matrices, takes the form
R = R+Pn (4.41)

Furthermore, based on the definitions of the matrices of direction cosines, P, P, and C;, we

also have that
P = GP. (4.42)

Now take derivatives with respect to time, yielding
Vi = PR
= G (R + PIyr + Pli)
= Ci(Vj — Fin) =+ vi, (4.43)

% = PH

= GR(FrC + P
= GOC +

= (Géj)+@i,
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which implies that
Qi = Cin =+ wj.

Combining Eqs. 4.43 and 4.44, we can write

where

Analogous to Eq 4.45 we also have that

R _ [ oR], [
sor | T T e; o0 |

Now take the time derivative of Eq. 4.45, to get that

o] mlal 2]l

where, making use of Eqs. 4.43 and 4.44, we see that

o) = [0 T

Qj i 0 —CT)iCi Qj
. [ —w;C;Vj + CD;CiFin — CiFin
N ~5GY,

: @GLMW
—GVi A+ B — (4 — w)

—wi Y
@ w v
B 0 @ || %]

so that L
I — BI X J I _ X*
o] - Ela )]
in which o
* Wi

[ —Wwj (V, + CiFin — Vi) + CT)iCiFin — ViCin

43

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

Next, we develop recursive relations which can be used to compute H,, He and D;. To

this end, combine Eqs. 4.30, 4.32 and 4.50 to get that
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V.
Hiw, + Heig. — Di = )
i e, o

- [3]+[2]-x ]

= Bi(Herr + Hejqe — DJ) —+ (hriWr + heiqe — dl) — Xi l Q. ]

« . « .. * |V
= (BiHrj + hri)Wr + (BiHej + hei)qe — (BiDj +d; + Xi l Q. 1) . (452)

The obvious solution, and the one we use, is to take

Hi = BTHrj + hri7 (453)
He = BiHg + he, (4.54)
D BiD; + d; + X l g ] : (4.55)

The recursive process is easily carried out by first requiring j < i (this places absolutely no
restrictions on the structure). Then, use Eqs. 4.34, 4.35, 4.36, 4.37, 4.38 and 4.39 to compute
the motion of body 1, and subsequently use Eqs. 4.41, 4.42, 4.45, 4.53, 4.54 and 4.55 to
compute the motion of bodies 2, 3, ..., N, in that order.

4.3 Discretized Equations of Motion

At this point we have enough information to develop the final form of the discretized equa-
tions of motion. To begin with, we note that the formula for R; given in Eq. 2.38 for a rigid
body has precisely the same form as the formula for R; given in Eq. 3.50 for a second-order
Rayleigh beam, provided that for the rigid body case we set Ng; = 0. In fact, this form of R;
is quite general, in that any other discretized beam model, or for that matter, any discretized
plate or shell model, would also result in the same form for R;. Consequently, we can proceed
by substituting Eq. 3.50 into Eq. 2.1, to get that

N

0= Zl{[ ORT 6677 | <|\/|rri l g ] + Myeidie; — Gri>

y N
+ (5q;ri (M:;; [ gl ] + Meei€ej — Gei)} — Z/(SZiTT:idA. (4.56)

=1 86oi

Recall that 75, which is the component matrix, along inertial axes X,Y¥ozo, of part of the
surface traction, is nonzero only on that part of body i which contacts another body in the

structure. However, we include here the forces acting between the base (body 1) and the
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inertial space (body 0) even in the case when there is no contact between the two bodies.
With this in mind, and referring back to Eq. 4.24, we conclude that

N N
3 / 52T ridS = Z(sq;ﬁ: (4.57-a)

=1 86oi
= 6q 7T (4.57-b)

Now substitute Eqs. 4.32, 4.33, and 4.57-b into Eq. 4.56 to get that

{(60;HE + 0alHE) [Mri (Havby + Haidi, — Di) + Mreiéig — Gl

T
o

i=1

+ 09, [ rei (Hiwy + Heide — Di) + MeeiG; — Ge ” 5q 7T

N
== 5qu { <Z HTMrrlHn) Wr <Z HTMrrlHe|> ZH:;—Mreidei
i=1 i=1
_ZHT MrrlD +Gr| _T } {( TMrriHri> Wr <Z HTMFFIH6I>
Y HIM s — Y HE M1+ Go) |+ (5Lt ) + (3 daIMER. )
i=1

N
+ Z 5ql—iMeeidei - Z(Sqel (M;I;lD + Gel)
i=1 i=1

= dq;" { (Z HTM".H”> W, + (Z HIM,iH,;

+[H Mt § H Mgy © oo HINMreN}) ZHT MiD; + Gyi) — j}
N
+5ql{(2 HIMiHyi+ [H Moy § HoMee & oo § H Moy ) <Z HIM iHei
+[HIMee i HEMeo - H\Moe] + [HE Mo S LMoo | - 0 H\Moen]
Mg O - 0 MY D; + Gy
N 0 M,'eez () ZHT MoiDi + Go) — MrezDg'—FGeg
0 0 o M My Dy + Gen

- oo s {[ e e T[] -TE]-[5 )

= 09T (M — G —T%), (4.58)
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in which
Mrr Mre
M = [ML Mee]’ (4.59-a)
G,
G = [ c ] , (4.59-b)
N
Mrr = ZH;I;MNHH) (459—(3)
i=1
N . . .
Me = 3 HIMHe+ [HiMeer § HiMeo & oo § HiMen, (4.59-d)
- : P

N
Mee — Z H;riMrrHei -+ blOCk-diag (M6617 Mee27 ey MeeN)
i=1

+[H1—1Mre1 H;I—QMreQ H;I—NMreN}
: : : T
+[H1—1Mre1 HIQMreQ HINMreN} 5 (459—6)
N
Gr = Z H;II— (MrriDi + Gri) 3 (459—f)
i=1
MIelDl + Ger
N MT D + Ge
Ge = Y HIMuDi+G)+| < % (4.59-g)
i=1

MnDn + Gen

As it stands, this equation is true for any structure, including those with nonholonomic
constraints. However, we restrict our attention to open-loop structures, in which case we
can claim that there are no constraint equations involving the components of dq*. Then,
combined with Eq. 4.20, the equations of motion for the flexible multibody structure are
given as

M = G+T7, (4.60-a)
§ = Bw. (4.60-b)



Chapter 5  Joint Models

In this chapter we discuss the motion of body i with respect to body j in more detail. There
are three cases of interest:

1. Body i does not come in contact with body j.
2. Body i is connected to body j by a revolute joint, with body j rigid.

3. Body i is connected to body j by a revolute joint, with body j a slender beam.

For future reference, we define

[ 1 0 0
Ci(6) = | 0 cosf sind |, (5.1)
| 0 —sinf@ cosf |
[ cosf® 0 —sinf |
Ca(0) = 0 1 0 |, (5.2)
| sinf 0 cosf |
cosf) sinf 0]
C3(0) = | —sinf cosf 0 |, (5.3)
L 0 1 .
[ cosBycosf; sinfs; 0
D = | —cosfysinfs cosfs 0 |, (5.4)
i sin 6, 0 1
cosf3/ cosby —sinfs/cosby 0
D! = sin 03 cos 03 01, (5.5)
| —tanfycosfl3  tanfysinf; 1

47
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[ 1—2(n5 +n3) 2(mn2 +nsna)  2(mns — 1214)

E = | 20mme—nsm) 1 =207 +13) 2(n2ms +mm) |, (5.6)
| 2(mms +n2ma)  2(n2ms —mng) 1 — 2(nf +n3)

[ T4 N3 —T2 —T

De = | =m M m M2 |- (5.7)
N2 —M Ny —73

Note that if C = C3(3)Cy(62)C1 (1), and w = [wywyws ] is defined by & = CCT, then D
has the property that w = D6, with § = [0, 0, 05]". Furthermore, E is a matrix of direction
cosines in terms of the Euler parameters n = [n1m2m3n4 |7, provided n? +n3 +n3 +n3 = 1,

and if Q = [Q,Q, Q,]7 is defined by 0= EET, then Dg has the property that €2 = 2Dgn).

5.1 Body i not connected with body j

If we know that the rotational position of axes xjyiz; relative to axes xjy;z; is fairly small, then
we can make use of 1-2-3 Euler angles #,, 65 and #5. On the other hand, if we expect the
relative rotational motion to be arbitrarily large, then, in order to avoid singularities, it is
advisable to use Euler parameters n = [n; 17213747 In this case, the motion of coordinate
system {Oi;xyizi} (Fig. 4) relative to coordinate system {Oj;X;yjz;} involves six degrees of
freedom. Furthermore, it makes sense to use quasi-velocities, which in this case means

components of r; and w;, both along body axes x;yiz;, in which r, = OJ—OT (Fig. 4) and wj; is the
angular velocity vector of axes Xiyiz; relative to axes x;yjz;. These comments are summarized
as follows. (Recall that r; is the component matrix, along axes x;yjz;, of vector r;, and wj is
the component matrix, along axes xyiz;, of vector w;.)

[ T
4 = Ix ry rz 91 92 93} y or
. T
= | Nz m oo 174} : (5.8-a)
Wi = | v Vy V, Wy Wy Wy }T, (5.8-b)
sqr = [ o o o o o6y o6 ) (5.8-¢)
Too= [ fmeom m] (5.8-d)
n = -Rx Ry Rz :|T7 (58-6)
Ci = C3(93)C2(92)C3(91), or
= E, (5.8-f)
Vi . ) ]
l (-Ui 1 - Wrn (58 g)

hi = [0ilesi0], (5.8-h)
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hg = 0, (5.8-)
di = 0, (58_J)
T
Bri = l ((:)I Dql 1 , Or
G o
_ l 0 1T ] . (5.8k)
2

5.2 Body i connected to body j by a revolute joint

In this case, the motion of body i with respect to body j involves both the elastic motion of
body j, as well as the rigid body motion of one body with respect to the other. We let r;

—
be the component matrix, along axes x'yiz. of position vector r; = O!0; and C,; the matrix

of direction cosines of axes xyiz; with respect to axes xly'iz; (Fig. 4). Likewise, r is the

—
component matrix, along axes x;yjz; of vector ri; = O;0;, and C; is the matrix of direction
cosines of axes x(y'izi with respect to axes x;yjz;. These definitions imply that

o= r:i—l—C:iTrri, (5.9)
G = GCiC. (5.10)

We also let w,; be the component matrix, along axes xyiz;, of the angular velocity vector of
axes x;yiz; with respect to axes xly’iz/ and 06;; the associated quasi-virtual displacement, so
that

on = CiCT (5.11)
505 = C.oC], (5.12)

and let the 3-by-N,,, matrix h,,; and 3-by-1 matrix d_,; satisfy the relations

u‘)ri = hwriwr_dwria (513)
(59?, = hwriéqf. (514)

For revolute joints, point O! on body j, and point O; on body i occupy the same location in
space, and consequently, r; = 0 and r; = r;.

There are several choices available for q,; and w,;, depending on the number of rotational
degrees of freedom at the joint. We display next those cases of immediate interest. The
particular example we consider in the next chapter has joints with one, two or three rotational
degrees of freedom. Furthermore, each degree of freedom is directly controlled by a separate
actuator, in the sense that if # is the rotational degree of freedom and T* is the torque effected
by the actuator, then T8 is the associated virtual work. We can actually cover all pertinent
cases simultaneously by considereing a joint with three degrees of rotational freedom. To be
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precise, there are three rotations in series, with the first a 1-rotation, the second a 2-rotation
and the third a 3-rotation. Equations which correspond to joints with one or two degrees of
freedom can be obtained by setting two, or one, of the angles to zero. Letting 6;, 6 and 03
be the rotational degrees of freedom and M;, My and M3 the corresponding control torques,
the pertinent equations take the form

A = |01 0y 0y }T, (5.15-a)

Wy = - 91 92 93 }T = qria (5'15‘b)
- T

da, = |66 00, 66> | = dag, (5.15-c)
- T

Too= |[Mi My My |, (5.15-d)

Cri = C3(93)C2(92)C1(91), (515—6)

Wyi = DWri, (515—f)
o sin 6, cos 63 - | cos 05 sin O | —cos 05

doi = 60105 —sinfysinfs | + 0,05 | cosbycosbls | + 0505 sinfz |, (5.15-h)

—cos 65 0 0
Ai = Isxs, (5.15-i)
Bi = Isxs. (5.15-))

5.2.1 Body j rigid

In this case, since body j is rigid, r and C; are both constant, so that w; = C;d =

ei
Cr;C:i(CZiT ct Wyi) = wyi. Consequently,

no= r (% a constant) (5.16)
G = G, (C: a constant) (5.17)
Vi . [ 0

l W 1 - i Wri 1 ) (518)
o]

hri o i hwri | ’ (519)

hg = 0, (5.20)
o T

d = 4 | (5.21)
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5.2.2 Body j a slender beam

In this case, points O;, O! and Ocjyngj (Figs. 2 and 4) coincide, so that ri = rq(¢;) and
C.; = E4(4;). Referring to Egs. 3.3, 5.9 and 5.10, we see that

rn = I’Cj(gj) = Kje1+ucj(€j), (522)
Ci = CriEcj(gj)' (523)

(To simplify matters, we drop the “(¢;)” for most of the following derivations.) Consequently,

Vi = Cil"i

— Cr;Ecjl'ch, (524)
CT); - C,CT

= Ciq |ES(Deiq) G + ESCH )

= Tilde(CiDejtbg + wri), (5.25)

where we have used Eqs. 3.7 and 5.23, so that
wi = CiDqjthe + wri- (5.26)
Next, computing time derivatives of Egs. 5.24 and 5.26 results in
U = CuEgiig — Bnvi — Ca(Degtle Eqg
= CiEqii — Gavi — Tilde (CiDejibg) CrEqyii

= CriEchcj — WiV — ((Di - C<~Jri)Vi

= GiEgig — wivi, (5.27)
wp = CriDcﬂﬁcj + Wi — Wri(wi — wyi) + Crichw‘cj
= Crichlﬁcj + hwriwr - (dwri + J)riwi - Crichw‘cj)' (528)

Combining Eqgs. 5.24 and 5.26, and then Eqs. 5.27 and 5.28, we can write

M - [Co cOHHSZ?iZMH’ (529)

l s ] - l 0 C ] l Deiths ] * l hori ] e l Qs+ Bs — Cabygilg | O30
Regardless of the discretization method in use, we can identify a 6-by-N. matrix ®; and a
6-by-1 matrix dZ;, so that

ej’

Ecjucj * .
. = ®rq,, 5.31
l chwcj 1 Jq ( )

Ecjijcj o * e *
l Dq]r(ﬁq ] — ®J qe dej. (5.32)
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Combining the previous four equations, and comparing the result with Eq. 4.30, we conclude

that

At this point we derive specific formulas for ug(¢;), E(¥)),

[ Ci 0 ] ...

~ |0 Cr.lq)jqeﬁ[ ]

o [oo

a L hwri ’
[ Ci 0 ],

o {Divl . . ]"’ l Cri 0 ]d*
| duri + wriwi — CiDgjilg 0 GCi| ¥

®! and dr

(5.33)
(5.34)
(5.35)

(5.36)

for the dis-

cretized, second-order Rayleigh beam. Making use of Eqs. 3.37-a, 3.45-a, 3.45-b, 3.45-c,
3.52-n and 3.52-0 we see that

¢
U (6) = _%/J [q;dyj(S)w'ij(S)qyj "’quj(P,zj(S)(P,ZJT(S)qu ds
0
- _% (q;-l\_/ly/y/quj + qZle\_/lz/zqqzj),
so that
[ —%(q% MY’Y’quj + qujl\_/lz'z’jqzj)
ugj(6) = vy (6)ay; :
L (pl}(gj)qzj
_qu MY’y’quj - qZTjI\_/lz/z/quj
Ugj () = yi(3)dy; :
90sz (gj)qzj
| —q; My’Y’jdyj - qujMZ’Z’jdzj - q%'\_/ly’y’quj - quj'\_/Iz’z’jqzj
g (6) = w5 (4)dy;
L ()O;G(gj)dzj
Likewise, referring to Eqs. 3.37-b and 3.37-c, we see that
[ QOIJ' (gj)qxj
bg(l) = | =9 (6)ag + 59504(6) ey (G)ay; |,
L el (G)ay + 5950 (6)9] (6)ay
i s (6)ag
V() = |~ (6)ay + gqum(ﬁ)wg(&)qyj + Jagl (6o (6)ag |
L 2 (G)ay; + 5969 (6) @ (6)d, + 39505 (6)eg (6)ay

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)
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Ve(l) = | = (6)dy + 5amx(6) ) (6)dy; + 5525 (6w (G + 5y (6) el (6)ay,
@i (0)d,; + 3950 ()i (6)8, + 39525 (6) 0% (6)dg + 5850 (4)es (6)dy

(5.43)

Now, referring to Egs. 3.38-a and 3.38-b, we compute Egugj, Egligj, ch¢cj and Eqiﬁq, and
then compare the results with Eqgs. 5.31 and 5.32 to obtain

(040 qfi(@em — Myys)  af (el — Marzy)
-0 Oy G x4 03;
0---0 —qT o7 T
o = v RN R (5.44-2)
Py 342j Pz Pyj —20yPyj ¥z
0---0 APl —
| 0---0 el AP0
\ / . .T_ . A
q;z My’y’quj + qszZ’z’quj
0
. 0
dy = . : (5.44-D)

Finally, we note that the required formula for E; is obtained by substituting Eqgs. 3.45-a,
3.45-b and 3.45-c into Eq. 3.38-a.



Chapter 6 Numerical Example

The equations developed in this paper were used to create a general purpose computer
program which was applied to a robot consisting of two flexible links — bodies 1 and 2 —
with a rigid end effector — body 3 — as shown in Fig. 5. To simplify the mathematical
model somewhat, we assume that the joints have no mass and are dimensionless, which
implies that the three axes of joint 1 intersect in a common point and that the three axes of
joint 3 intersect in a common point. We have also assumed that the robot base is fixed in
the inertial space. Although this is certainly not the case for a space-based robot, keep in
mind that for the space shuttle for example, the ratio of robot arm mass to shuttle mass is
approximately .0035, so that for the duration of the maneuvers we consider here (30 s), the
motion of the base should have a minimal effect.

6.1 Shape Functions

In order to determine an appropriate choice of shape functions we first note that, relative
to coordinate system {O;; xyyiz;} (Fig. 2), beam i should behave similar to a cantilever beam

with a mass attached at the far end, where x = ¢;, i = 1, 2. This dictates that the geometric
boundary conditions are given by
uyi(0) = uz(0) = 13(0) = uj;(0) = u;(0) = 0. (6.1)

The dynamic boundary conditions are not time-invariant, as would be the case if coordinate
system {O;; xyyiz;} was fixed in the inertial space and there was simply a rigid-body fixed on
the far end of the beam. Specific, albeit extremely complicated, expressions for the dynamic
boundary conditions could be obtained from substituting Eq. 3.44, for i = 1,2, and Eq. 2.38,
for i = 3, into Eq. 2.1. The equations are complicated by the fact that [R5’ 603"]|T involves
Suy(£1), Suz (1), 0the (£1), Suly(£1) and duly (¢), and [SRET 605T]T involves duyi(£;), Suy(£),

o4
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Figure 5: Model of a Flexible Robot

0yi(4i), ul;(6) and Suj(4), for i = 1,2. The choice of shape functions, however, does not
require explicit knowledge of the dynamic boundary conditions.

The discretization process is carried out by the hierarchical finite element method, of
which a special case is the p-version of the finite element method [35]. According to the
p-version of the finite element method, for bending vibration the first four interpolation
functions over a finite element are Hermite cubics (Fig. 6-a), with accuracy improved by
adding higher-degree polynomials (the p-version) to the same element, rather than refining
the mesh (the h-version).

In the hierarchical finite element method, the higher-degree interpolation functions f;(¢)
do not affect the nodal displacements, i.e., fi(a) = fi(b) = fi(a) = f/(b) = 0, where a and b
denote the endpoints of the element. Hence, the nodal displacements are defined by the
Hermite cubics alone. A standard set of hierarchical functions consists of polynomials [35]

i
i@ =C0-9JI1-1-i9, o<e<l, =12, (6.2)
J=2
in which £ = (x —a)/(b — a), and chosen so that f;(§) has i — 1 equally spaced zeros in the
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Figure 6: Shape Functions for Bending, (a) Hermite Cubics, (b) Fixed-Fixed
Euler-Bernoulli Beam Eigenfunctions

interval 0 < ¢ < 1.

Another set of hierarchical functions, first used by Meirovitch and Stemple [46] to model
framed structures, consists of the sequence of fized-fized FEuler-Bernoulli beam eigenfunc-
tions (Fig. 6-b). We point out that a useful computational formula for these shape functions
is

fi(§) = (cosAi+sin)\ — e_)‘i) sin i€ + (cos A\ — sin A — 6_)”) cos i€
+(eNcos A — 1)e U0 4 (sin e ™, 0<E<1, i=1,2,..., (6.3)
where ); satisfies the characteristic equation cos A;cosh A; = 1. That is, the functions f;(§)

satisfy the differential equation f!”(£) — u*f;(€) = 0, with boundary conditions f;(0) = f/(0) =
fi(1) = f/(1) = 0. The quantity x? is the nondimensional natural frequency of the beam.

(As an aside, we note that the eigenfunctions for the fized-free Euler-Bernoulli beam have
a similar form, given by

fi(&) = (cos A+ sin\ + e ) sin M 4 (cos A — sin \j + e~ ) cos A€
_|_(€_)‘i CcoS )\i + 1)6_)‘i(1_§) -+ (sin )\;)6_)“5, 0 < 5 < 17 i = 17 27 sy (64)
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with ); satisfying the characteristic equation cos \;cosh \; = —1, and with boundary condi-
tions fi(0) = £{(0) = f{'(1) = f{"(1) = 0.)

Unlike the standard set of hierarchical functions, the fixed-fixed shape functions are
orthogonal, in the sense that

[ @t = [ f©on©d =0 =12 i) (©.5)

In addition, if n;(§), i = 1,2, 3,4, are the four Hermite cubics, then it can be shown that

/01 f;"(é“)nj"(é“)dé“ =0, i=12..., J =1,2,3,4. (6'6)

These facts imply that the mass and stiffness matrices are substantially sparser than would
be the case if polynomials were used for the hierarchical functions.

We also need to consider the discretization process for the torsional motion of the beam.
Recall that the torsional equation of motion for the linear case is simply the 1-dimensional
wave equation accompanied by the appropriate boundary conditions. Consequently, the first
two interpolation functions over a finite element are the linear interpolation functions (Fig. 7-
a). Taking a cue from the previous discussion concerning the lateral motion of the beam,
we choose the sequence of eigenfunctions for the fixed-fixed torsional beam as heirarchical
functions, with formula given by

hi(¢) =sin(mié), 0<¢<1, i=1,2,..., (6.7)

and shown in Fig. 7-b.

6.2 Control Forces

From an analytical viewpoint, the actuators which control rigid-body motions are relatively
simple. Each of the angles 6, i = 1,2,...,7, (Fig. 5) is controlled by a separate control
torque T;. In order to demonstrate the simulation of the robotic structure, we assume that
a particular desired trajectory, #(t), 0 < t < tr, which satisfies 67(0) = 6*(tg) = 0, is
associated with each of the angles 6;. The open-loop control torques T (t), 0 < t < tg, are
the joint torques required to force the structure, assumed rigid, to follow the trajectories
g (t). It is sufficient to assume that the feedback control torque T; responds only to the
error in the angular position #; and angular velocity 0;, so that the actual control torques are
given by

Tio(t) — ailfi(t) — 67 (1)) = Bl6i(t) — 67 (1)), <0 _
THt) = ‘ , i=12,...,7, (6.8)
—ailbi(t) — 07 ()] — BOi() — 0 ], t>tr
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Figure 7: Shape Functions for Torsion, (a) Linear Interpolation Functions,
(b) Fixed-Fixed Rod Eigenfunctions

in which a; and ; are constant feedback gains.

The elastic motion of the beams is controlled with actuators capable of producing torques
about the y, and z; axes. We assume that the actuators come in pairs, with the individual
actuators of a given pair separated by a short distance, and producing torques of equal
magnitude but opposite sign (Fig. 8). This type of setup can be used to model the effect of
piezoelectric patches [14], although in this case, it is probably more practical to assume that
control-moment-gyros are used to produce the torques. In this case it makes sense to feed
back the curvature and its time derivative of the point midway between the two actuators,
so that

rﬁ;i (t) = acyiugi (Xtyh t) + ﬁcyiu,z,i (Xtyh t)? k=1,2,..., NCyh (6'9)
) = i) A0t k=12 Na =12 (610)

This implies that the distributed control forces and torques defined in Eqs. 2.75-a and 2.75-b
are given by

~ ~ ~

'in(X,t) = fyi(X,t) = fzi(X,t) = I’ﬁxi(X,t) = 0, (611)
Ncyi

My, t) = > A0 + Fhey — 2) — (xS — hei — o)), (6.12)
k=1
chi

A o ~ k k 1 k 1

mai(x,t) = — ) myu(t)[0(x5 + 5he — ) = 6(x& — ghes — 2))], (6.13)
k=1

in which §(x) is the Dirac delta function. Note that the sign difference in the formulas for
myi(x,t) and my(x,t) arises from the fact that in Fig. 8-a the y;-axis points into the paper,
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Figure 8: Actuator Pairs for Controlling Beam Vibrations, (a) About the y;-
axis, (b) About the z-axis

and in Fig. 8-b the z-axis points out of the paper. Now substitute Eqgs. 6.11, 6.12 and 6.13
into Eqs. 3.51-0, 3.54-a, 3.54-b, 3.54-c, 3.54-d, 3.54-e and 3.54-f to obtain

0
FCi(t) = ZkCZI A ) (t)[(p;i(xléli - %hCZ') ()Oyl( l<§z| + %hczi)}—r 5 (614)
ch)" e (t)[gp/u (Xléyi - %hc)") gpm( Léyl + ;hcyl)}
in(t) = Fyi(X, t) = in(X, t) = 0, (615)
cy|
MXi(t) = _qyl Z ()Oyl cy| - %hcyi) - (IO;I( cyi + hCy')}
L NCZI Lh +1h 6.16
_§qzi ; ( )[gpm( CZI ) CZI) gpu( CZI 5 CZi)L ( . )
1 Nezi
M}’i(t) = _q;l(—l T k( )[me( CZI + %hCZI) ()OXI( CZI - %hCZi)L (617)

2 k=1
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cy|

MZi t = _qXI Z myl (pX' cyl + hCyl) (pX'( cyl - %hCyi)}' (618)

6.3 Simulation Results

As mentioned earlier, we consider a flexible space robot comprised of two slender beams and
a rigid end-effector (Fig. 5). Furthermore, the first and third joints have three degrees of
freedom, with the motion described by a 1-rotation, 2-rotation, and 3-rotation, in series,
and the second joint, which has one degree of freedom, is described by a 2-rotation, so that
Ngr = Nwr = 7. The system parameters for the structure are given as follows:

l,=4m, pg=21.6kg/m, i=1,2,

foi = 9.84 x 1070 m?, Iy =1, =492x10°m!, i=1,2,
my = 62.1kg, Jos = diag[35.6, 85.4, 115.0] kg-m?

For the particular numerical example under consideration, we use only one finite element
per beam, with six hierarchical functions for lateral motion, and four hierarchical functions
for torsional motion. Due to the nature of the the geometric boundary conditions, Eq. 6.1,
the first two Hermite cubics 71(§) and n(§) (Fig. 6-a), and the first linear interpolation
function ¢(€) (Fig. 7-a), are not required. Consequently, Ny; = 5 and Ny; = N, = 8, for
i = 1, 2. Considering also that the first and third joints have three degrees of freedom, and the
second joint one degree of freedom, we conclude that the structural model has N = N,, = 49
degrees of freedom.

The feedback gains for joint control were chosen to be

a; = 1000, G = 2000, i=1,2,...,7, (6.19)
with four actuator pairs on each of the two beams to control the elastic motion. That is,
Nei = Nei = 2, with locations xCyl xL. =.15m, xgyi x2. = 3.75 m, separation distances
heyi = hezi = .1 m, i = 1,2 and feedback gains given by

ak; = o = 15,000, ;= B = 22,500, k=1,2,3,4, i=12. (6.20)

The desired joint angle trajectories were chosen to be

O 27t . (27t

rt) = |—— — 0<t<t 6.21
() =52 | —sin ()], o< (6:21)
in which 0 = 6 (tg). Note that this function satisfies the conditions ¢(0) = 0, ¢} (tr) = 0,
and is rather smooth, in the sense that 67(0) = 67(0) = 0/ (tp) = 6*(tr) = 0. The total
simulation time was 30 s, with tg = 20 s and

01 = —1rad, 0O =—.5rad, 0Or3=.5rad, 60r = 1.5rad,

Ors = 1.25 rad, Or¢ = .5 rad, 6Oy = —.75 rad. (6.22)
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Plots of the functions 6(t) are shown with open circles in Fig. 9.

The system of ordinary differential equations, Eqs. 4.60-a and 4.60-b, were integrated
using the IMSL subroutine DIVPAG, which uses the BDF method, also known as Gear’s
stiff method, with the results plotted in Figs. 9, 10, 11 and 12. Three different simulations
were performed. In the first case, the structure is assumed to be rigid, with all feedback
gains set to zero. The resulting angular and flexible displacements are simply the desired
trajectories, and are shown with open circles. In the second case, the flexibility of the beams
is included, but with all of the feedback gains still equal to zero. These results are shown
with a dotted line. And finally, in the third case, the feedback gains are as indicated earlier,
with the results shown with a solid line. Figure 9 shows time histories of the joint angles,
Fig. 10 shows time histories of the beam tip angular, axial and lateral displacements, 1, (¢;),
Ui (€;), uyi(4;) and ugy(¢;), i = 1,2, the joint control torques are shown in Fig. 11, and the
actuator pair control torque time histories are shown in Fig. 12.
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Figure 9: Time Histories of Robot Joint Angles
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Figure 12: Time Histories of Elastic Torques
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Chapter 7 Summary and Conclusions

An efficient technique for generating equations of motion for flexible multibody structures,
carried out by means of the Principle of Virtual Work, has been presented. The resulting
formulation is quite general, and can be used to model the dynamics of a large class of
multibody structures. In particular, open-loop structures comprised of rigid bodies and
slender beams connected by any type of revolute joint can be modeled. The structure can
have one body fixed in the inertial space, or be freely floating. Furthermore, the joints can
be actively controlled, governed by the action of torsional springs and dampers, or torque
free. The model also allows for any type of control force or torque to be acting on the surface
of the bodies.

Due to the modular nature of the computer program, it would be a simple exercise to
extend the setup to include structures with prismatic joints, as well as structures moving in
a gravitational field. As far as flexibiltiy models are concerned, the beams are modeled as
second-order Rayleigh beams. Not much work would be required, however, to extend the
program to include second-order Timoshenko beam models in the class of structures which
can be modeled.

The equations of motion are initially presented in hybrid variational form. That is,
they include both generalized coordinates and quasi-velocities, which involve the rigid body
motions, as well as functions of time and space which model the elastic motions of the flexible
bodies in the structure. A form of the hierarchical finite element method, which, for bending,
uses the sequence of fixed-fixed Euler-Bernoulli eigenfunctions instead of polynomials for the
hierarchical functions, was used to carry out the discretization process. In general, the
hierarchical finite element method requires substantially fewer degrees of freedom than the
usual, or h-version, of the finite element method. Furthermore, there are also advantages
to using eigenfunctions, as opposed to polynomials, as hierarchical functions. For one, the
eigenfunctions by themselves are orthogonal, but also, when combined with the Hermite
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cubics they enjoy a certain amount of additional orthogonality. The end result, of course, is
that the mass and stiffness matrices are substantially sparser. Another advantage to using
eigenfunctions, as opposed to polynomials, arises from what happens when the number of
hierarchical functions is increased. When using polynomials, there is a limit to the number
of hierarchical functions which can be used, since increasing this number causes the mass
matrix to become more singular, causing the system to become numerically unstable. This
phenomenon is postponed consideraby when using eigenfunctions as hierarchical functions.
To be more precise, the hierarchical finite element method was applied to a four story
framed structure comprised of Euler-Bernoulli beams [46]. Using more than six polynomials
as hierarchical functions resulted in numerical instability, whereas when using eigenfunctions,
there was no practical limit to the number of hierarchical functions which could be used.

We have also introduced a practical application of the exponential form of a proper
orthogonal matrix, which was used in converting general nonlinear slender beam equations
to a form involving up through second-order terms in the functions used to measure the
displacement of a cross-section relative to body axes. The exponential form of the orthogonal
matrix is ideally suited to this operation, since the Taylor series of the exponential function
is straightforward and easily truncated.

A numerical example, which involves the motion of a flexible robot arm, was included
to demonstrate the effectiveness of the computer program. The structure consists of a rigid
base with two flexible arms and a rigid end-effector. However, since the main interest was in
the maneuvering of a payload from one location to another, the base was assumed fixed in
the inertial space. The joint control torques consist of an open loop plus closed loop torque.
The open loop control torques were determined by requiring the structure, assumed rigid,
to move in such a way that the joint angles follow specified trajectories. The closed loop
portion of the control torque was determined locally. That is, for each of the joint angles,
the closed loop control torque associated with that joint angle responded to the error in the
desired angular position and angular velocity:.

The elastic motion of the beams was controlled with actuators capable of producing
torques about the y, and z; axes. The actuators are arranged in pairs, with the individual
actuators of a given pair separated by a short distance, and producing torques of equal
magnitude but opposite sign. The control again is local, with the magnitude of the torque
of a given actuator pair responding to the curvature and time rate of change of curvature of
the point midway between the two actuators. Four actuator pairs were located on each of
the two beams, all situated at the ends of the beams, with two pairs exerting torques about
the y, axis, and two pairs exerting torques about the z; axis. An examination of the plots
of joint angle time histories and elastic displacement time histories shows that the control
strategy certainly had the desired effect.



Appendix A  Matrix Operations

If r is a 3-by-1 matrix and F is a 3-by-3 matrix, then it is convenient to use the notation

r
r = [n] = ry (A.1)
rs
and
Fi1 Fi2 Fys
F = [ij} = Fgl Fgg F23 (A2)
Fsi F3a Fss

to indicate the components of r and F. When using [r,] or [Fj], it will be understood that
the indices j and k range from 1 to 3. In the event that we require a matrix which is neither
3-by-1 nor 3-by-3, the components will be listed explicitly.

The gradient of r(x) = [r1(x) ra(x) - rn(x)]T with respect to x = [x; xy - x,]7 is de-
noted by
Or1/0x; 0r/0xa ... Or1/0%,
or Ory/Ox; Ory/Oxa ... Ory/0%,
8? - (A3)
Orm/0xy Orm/0xg ... Orn/0x,

Consequently, if r = Bx, where the m-by-n matrix B does not depend on x, then

ar; 0 n
-0 - 2 B. = B. A4
5 - v (Ee) - as
so that 5 5(Bx)
r X
axt T o B (A.5)
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Furthermore, if r depends on x (but not necessarily linearly, as above), and x depends on

y=1[y1 Y2 ---¥s| ., then
8r; n 8r; an

— = _— (A.6)
8yj = O 8yj
so that the chain rule takes the form
0 dr 0
A (A.7)
oy’ OxT OyT
If a = [ay], then the 3-by-3 skew-symmetric matrix Tilde(a) = a is defined by
0 —as ao
Tilde(a) = a = ag 0 —a (A.8-a)
—adg ai 0
= [(g)Jk} = —€jkmam, (A8—b)
where €jkm is the permutation symbol, i.e., €193 = €312 = €931 — 1, €391 = €132 = €913 — —1,

€ijk = 0 if i x jx k # 6, and we have made use of the Einstein summation convention. If B is
any 3-by-3 matrix, then it is a simple exercise to show that

(Ba) = (TrB)a—B"a— 3B, (A.9)

where Tr stands for trace. Furthermore, if c is another 3-by-1 matrix, then letting B = ¢ in
Eq. A.9 implies that

(Ca) = ¢&a—ac. (A.10)
Multiplying on the right by ca results in the left side equaling the 3-by-3 zero matrix, so that
daca = ac’a. (A.11)
Another easily verified fact is

aca = —(a'0)a, (A.12)

which can then be used to prove that
"t = (=1)"(aTa)"3, (A.13-a)
"t = (=D)"(a"a)"a*, n=0,1,2,.... (A.13-b)

The description of the motion of one coordinate system with respect to another is of
central importance in the dynamics of multibody systems. To begin with, let orthonormal
basis {e1, €3, e3} be associated with a coordinate system with axes x;xox3 and origin A, and
orthonormal basis {by, by, b3} be associated with a coordinate system with axes y,y,y; and
origin B. Next, define the time derivative of vector r with respect to axes xyxox3 by

. d d d
r = a(l’ . el)el + a(r . 62)62 + a(r : 33)33' (A14)
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—
And then, let R = AB be the position vector of point B with respect to point A and €2 the
angular velocity of axes y,y,y; with respect to axes x;xaXs.

Note that €2 is given by

2 bg)bl + (i))g . bl)bg —+ (f)l . bg)bg (A15—a)

Q =
%Eijk(bj : bk)bi, (A15'b)

which endows it with the usual property,

o

bk = OQx bk, k = 1, 2, 3. (A16)

We also introduce the four component matrices

[Re] = [R-e], (A.17)
[Px] = [b;-ex], (A.18)
V = [Vi] = [R-by]. (A.19)
Q =[] = [Q b, (A.20)

where we recognize that R contains the components of position vector R, along axes x;xoxs,
P is the matrix of direction cosines of axes y,y,y; with respect to axes x;xox3, and V and
]

Q) contain, respectively, the components of velocity vector R and angular velocity vector €2,
both along axes y,y,y;. Note that this definition of P implies that the 3-by-1 matrix PR
contains the components of vector R, along axes y,y,y;, and furthermore that

ey = (ek-bj)bj = ijbj. (A21)

Then, making use of the easily verified fact that for any two vectors a and b, d(a-b)/dt =
a-b+a-b, we see that

R =[R) = [dR-e)/dt] = [R-e] = [R-(Pub)] = [PuV]]

= PV, (A.22)
P = [P = [dbj-e)/dt] = [bj-e] = [(2xb)-e

= [(bxe) 2 = [(byxPuby) Q] = [Pucumbn -]

= [Puc€iomOn] = —[(=Gamm)Poc] = —[(€2);nPox]

= —QP. (A.23)

Multiply Eq. A.22 on the left by P, and then rearrange Eq. A.23 by taking the transpose of
both sides, and then multiplying on the left by P, to get that
V = PR, (A.24)

Q = PP (A.25)
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Two comments are in order. First, if we are given the matrices R and P, we can use
Eqgs. A.24 and A.25 to define V and €2, without regard to the physical meaning as components

of R and €2. Secondly, we can replace the “dot” in Egs. A.24 and A.25 with another operator.
For example, we can define the quasi-virtual displacements 0R* and §©* by

SR* = POR, (A.26)
50" = PP (A.27)

We will have occasion to use some facts related specifically to matrices of direction
cosines. Recall that the matrix of direction cosines P is a proper orthogonal matrix, i.e.,
PTP = PP" = and det P = 1. Furthermore, it is well known that

P = I—(sin ¢)§+ (1 — cos gb)éz, (A.28)

in which ¢ is a scalar and € = [& & &3]7 satisfies & + &2 + &2 = 1. In fact, ¢ is the angle of
rotation about the axis defined by unit vector £ = &e; = &by, If a = [a; agaz|" is any 3-by-1
matrix, then Eqgs. A.12 and A.28 can be used to verify the identity

(Pa) = PaP". (A.29)

Introducing the Taylor series for sin ¢ and 1 — cos ¢ into Eq. A.28, we get that

oo (_1)k9k ~
P = > o = exp(—0), (A.30)
k=0
in which the 3-by-1 matrix § = ¢ = [¢& ¢ ¢&]T.
Next we assume that the orthogonal matrix P is a function of 6 = [6;62605]". Then,

since PPT = I, we have that P(9PT/06x) + (OP/00,)PT = 0, k = 1, 2, 3. This implies that
P(OPT/06,) is a 3-by-3 skew-symmetric matrix, which allows the introduction of a 3-by-1
matrix S = [ Bix ok O3k ] defined by

~ oPT
= P—, k=1,23. A.31
ﬁk 89k ) ) 4 ( )
Furthermore, the chain rule implies that
. 3. HpT. 3 _ . 3
PPT = Z P—Qk = Z ﬁka = Tilde (Z ﬁk9k>
o 96k k=1 k=1
= (D6), (A.32)
in which
L Bu P2 Bis
D = [ﬁl N 53} = | Ba B Pa |- (A.33)

631 632 633
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Applying this procedure to the characterization of P given in Eq. A.28 and taking into
account that £ = [01/¢ 0o/¢ 03/0]7 where ¢ = /07 + 03 + 03, it can be shown that

in ¢ ¢ —sin ¢ 1 —coso.
Sl¢ ex + Ok e 0 + o é

which, when substituted into Eq. A.33 can be shown to yield the formula

Bk = K, (A.34)

1= cos¢9~+ o — singbéz'
¢? ¢?
This closed-form expression for D is akin to that given for P in Eq. A.28. Introducing Taylor

series expansions for (1 — cos¢)/¢? and (¢ — sin ¢)/¢* into Eq. A.35 and making use also of
Eqgs. A.13-a and A.13-b, we get that the Taylor series expansion for D is given by

D = I (A.35)

b LU

= (k+ 1)

(A.36)

which, except for the k+ 1 in the denominator, is identical to the Taylor series formula for P.
It is also possible to verify the identity of Eq. A.32 directly from the Taylor series formulas
for P (Eq. A.30) and D (Eq. A.36), although the proof is not particularly straightforward.

There are two facts concerning the trace of a square matrix which will be required. If A
and B are both n-by-n matrices, then it is easy to verify that

Tr[AB] = Tr[BA], (A.37)
and if S and W are n-by-n matrices, with S symmetric and W skew-symmetric, then

Tr[SW] = 0. (A.38)

Finally, we will also need a simple formula related to the component matrix of the gradient
of a vector valued function z(r). Let z = [z] be the component matrix of z, along axes
x1Xox3, and r = [ry| the component matrix of r, along axes y,y,y;. Suppose we are given
z = [z as a function of r = [r,], so that it is straightforward to compute 9z/9r", but require
the component matrix F of the gradient Vz with respect to axes x;xox3. Recall that by
definition [16], F = 0z/Jf", in which ¥ = P'r is the component matrix of r, along axes x;xx3
and P is the matrix of direction cosines of axes y,y,y; with respect to axes xjxoxs. This
implies that r = Pr, and consequently,

0z 0z Or 0z O(Pr) 0z
or’ orT or’ orT orT orT 7 ( )

which is the desired formula.
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