Dynamics J. W. Eischen

Fundamentals of Engineering Exam Review

Other Disciplines FE Specifications

Topic: Dynamics 7-11 FE exam problems	Exam Problem Numbers
A. Kinematics	53,55
B. Linear motion(e.g. force, mass, acceleration)	54
C. Angular motion(e.g. torque, inertia, acceleration)	
D. Mass moment of inertia	56
E. Impulse and momentum(linear and angular)	58
F. Work, energy, and power	
G. Dynamic friction	
H. Vibrations	

We are grateful to NCEES for granting us permission to copy short sections from the FE Handbook to show students how to use Handbook information in solving problems. This information will normally appear in these videos as white boxes.

1. Which of the following statements best describes the area of study in Dynamics called Kinematics?
A) Kinematics is the study of how forces and couples act on rigid bodies.
B) Kinematics is the study of the interaction between multiple bodies to form more complex mechanisms.
C) Kinematics is the study of the geometry of motion.
D) Kinematics is the study of rigid bodies in 2D motion, whereas Kinetics is the study of bodies in 3D motion.

Solution - Problem 1

A) Kinematics is the study of how forces and couples act on rigid bodies. False
B) Kinematics is the study of the interaction between multiple bodies to form more complex mechanisms.

False

C) Kinematics is the study of the geometry of motion. True
D) Kinematics is the study of rigid bodies in 2D motion, whereas Kinetics is the study of bodies in 3D motion.

False
2. An object is moving to the right at $18 \mathrm{~m} / \mathrm{sec}$. Suddenly the object is subjected to a force that causes an acceleration of $3 \mathrm{~m} / \mathrm{sec}^{2}$ to the left. What is the position of the object 10 sec after the force is applied? How far has the object traveled in 10 sec ?

$\begin{array}{llll}\text { A) } 24 \mathrm{~m} & \text { B) } 30 \mathrm{~m} & \text { C) } 54 \mathrm{~m} & \text { D) } 78 \mathrm{~m}\end{array}$

Solution -Problem 2

Constant acceleration equations

$$
\begin{aligned}
& a(t)=a_{0} \\
& v(t)=a_{0}\left(t-t_{0}\right)+v_{0} \\
& s(t)=a_{0}\left(t-t_{0}\right)^{2} / 2+v_{0}\left(t-t_{0}\right)+s_{0}
\end{aligned}
$$

Problem data-

$$
t_{o}=0, s_{o}=0, v_{o}=+18 \mathrm{~m} / \mathrm{sec}, a_{o}=-3 \mathrm{~m} / \mathrm{sec}^{2}, t=10 \mathrm{sec}
$$

$$
\begin{aligned}
s(t) & =a_{0}\left(t-t_{0}\right)^{2} / 2+v_{0}\left(t-t_{0}\right)+s_{o} \\
s & =(-3)\left(10^{2}\right) / 2+(18)(10)=30 \mathrm{~m}
\end{aligned}
$$

Motion to the right (until 0 velocity)

$$
\begin{aligned}
& v(t)=-3 t+18 \text { note that when } t=6 s e c, v=0 \\
& s(t)=-\frac{3 t^{2}}{2}+18 t \text { so } s(6)=54 m \text { note that is position or distance traveled at } t=6 \text { sec }
\end{aligned}
$$

After 6 sec the object is moving to the left, v is negative for $t>6 \mathrm{sec}$

Motion to the left
$s(10)=30 \mathrm{~m}$ we already know that
So between $t=6 \mathrm{sec}$ and 10 sec the object has moved 24 m to the left

Conclusion :Total distance traveled is $54+24=78 \mathrm{mD}$)
3. A rifle aimed 5° above the horizon is fired. Neglecting air resistance and using $750 \mathrm{~m} / \mathrm{sec}$ as the speed of the bullet as it leaves the rifle, to what altitude will the bullet reach during its flight?

A) 220 m
B) 440 m
C) 880 m
D) $1,760 \mathrm{~m}$

Solution -Problem 3

Projectile Motion Equations

$$
\begin{aligned}
& v_{x}=v_{0} \cos \theta \\
& x=\left(v_{o} \cos \theta\right) t+x_{o} \\
& v_{y}=-g t+v_{0} \sin \theta \\
& y=-g t^{2} / 2+\left(v_{0} \sin \theta\right) t+y_{0}
\end{aligned}
$$

Problem Data

$$
\begin{aligned}
& v_{o}=750 \mathrm{~m} / \sec , \theta=5^{\circ}, y_{o}=0, g=9.8 \mathrm{~m} / \mathrm{sec}^{2} \\
& \text { at } y=y_{\max } v_{y}=0 \text { then from } v_{y}-g t+v_{o} \sin \theta \\
& \quad t=v_{o} \sin \theta / g=750\left(\sin 5^{\circ}\right) / 9.8=6.67 \mathrm{sec} \\
& \text { then } y=-(9.8)\left(6.67^{2}\right) / 2+\left(750 \sin 5^{\circ}\right)(6.67)=218 \mathrm{~m}
\end{aligned}
$$

4. For a wheel rolling without slipping on a horizontal surface, determine its angular speed (ω) if the velocity of the top of the wheel is a constant $2 \mathrm{~m} / \mathrm{sec}$.

A) 20 rpm
B) 40 rpm
C) 60 rpm
D) 80 rpm

Solution -Problem 4

The kinematics of rolling contact that relates the linear velocity of the center of disk to its angular velocity is used to solve this problem

From kinematics of rolling contact

$$
\mathrm{r} \omega=\mathrm{V}_{\text {center of disk }}=\mathrm{V}_{\mathrm{c}}
$$

since horizontal velocity increases linearly
from instantaneous center of rotation then

$$
\begin{align*}
& v_{c}=1 \mathrm{~m} / \mathrm{sec} \quad \text { and } \\
& \omega=\frac{v_{c}}{r}=\frac{(1 \mathrm{~m} / \mathrm{sec})}{(0.25 \mathrm{~m})} \frac{(60 \mathrm{sec})}{(1 \mathrm{~min})} \frac{(1 \mathrm{rev})}{(2 \pi \mathrm{rad})}=38.2 \mathrm{rpm}
\end{align*}
$$

5. What is the acceleration (a) of a box that is placed onto a moving conveyor until the box reaches the speed of the conveyor. The box weighs 200 N . The coefficient of static friction is 0.4 and the coefficient of dynamic friction is 0.2 . (use $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$)

A) $1 \mathrm{~m} / \mathrm{sec}^{2}$
B) $2 \mathrm{~m} / \mathrm{sec}^{2}$
C) $3 \mathrm{~m} / \mathrm{sec}^{2}$
D) $4 \mathrm{~m} / \mathrm{sec}^{2}$

Solution -Problem 5

The weight is accelerated to the right by a friction force due to the sliding of the weight relative to the conveyor until velocities are equal.

Apply Newton's 2nd law

$$
\begin{align*}
& \sum F_{y}=0 \quad N-W=0 \\
& \sum F_{x}=\frac{W}{g} a \quad \mu_{d} N=\mu_{d} W=\frac{W}{g} a \\
& \quad \Rightarrow \quad a=\mu_{d} g=(0.2)(9.8)=1.96 \mathrm{~m} / \mathrm{sec}^{2}
\end{align*}
$$

6. If a mass of 5 kg is rotating in a horizontal plane at the end of a cable at a constant 100 rpm , then what is the tension in the cable?

$\begin{array}{llll}\text { A) } 1,100 \mathrm{~N} & \text { B) } 3,650 \mathrm{~N} & \text { C) } 8,300 \mathrm{~N} & \text { D) } 10,750 \mathrm{~N}\end{array}$

Solution -Problem 6

(Page 79 - Ref. Handbook)

An object traveling in a circular path at a constant velocity is subject to an acceleration directed toward it center of rotation. This requires a radial force on the object.

Apply Newton's 2nd law in radial direction

$$
\sum F_{r}=m a_{r} \quad \text { where } a_{r}=r \omega^{2}
$$

so that

$$
\begin{align*}
& \mathrm{T}=\mathrm{mr} \omega^{2}=(5 \mathrm{~kg})(2 \mathrm{~m})\left[\left(100 \frac{\mathrm{rev}}{\mathrm{~min}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{sec}}\right)\left(\frac{2 \pi \mathrm{rad}}{\mathrm{rev}}\right)\right]^{2} \\
& \mathrm{~T}=1095 \frac{\mathrm{~kg} \mathrm{~m}}{\mathrm{sec}^{2}}=1095 \mathrm{~N}
\end{align*}
$$

7. If a 5 kg object is dropped from a height of 10 m , what is its velocity just before it hits the ground? (use $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$)

A) $7 \mathrm{~m} / \mathrm{sec}$
B) $14 \mathrm{~m} / \mathrm{sec}$
C) $21 \mathrm{~m} / \mathrm{sec}$
D) $28 \mathrm{~m} / \mathrm{sec}$

Solution -Problem 7

 (Page $\square 8$ - Ref. Handbook)

A falling body undergoes constant acceleration due to the force of gravity. Hence constant cceleration equations of motion apply.

Equations of motion (at $t=0, v=0, s=0$)

$$
\begin{align*}
v & =a_{0} t \\
s & =a_{0} t^{2} / 2 \Rightarrow 10(\mathrm{~m})=9.8\left(\mathrm{~m} / \mathrm{sec}^{2}\right) \mathrm{t}^{2} / 2 \\
\Rightarrow \mathrm{t} & =\sqrt{20 / 9.8}=1.43(\mathrm{sec}) \text { so that } \\
v & =9.8\left(\mathrm{~m} / \mathrm{sec}^{2}\right) \times 1.43(\mathrm{sec})=14(\mathrm{~m} / \mathrm{sec})
\end{align*}
$$

Solution - Problem 7 (alternate solution)

A falling body undergoes constant acceleration due to the force of
gravity. Hence cons tant cceleration equations of motion apply.

Equations of motion (at $t=0, v=0, s=0$)

$$
\begin{aligned}
v & =a_{0} t=g t \\
s & =g t^{2} / 2 \\
\Rightarrow t & =\sqrt{2 \mathrm{~s} / \mathrm{g}} \\
v & =g \sqrt{2 \mathrm{~s} / \mathrm{g}}=\sqrt{2 \mathrm{gs}}=\sqrt{2(9.8)\left(\mathrm{m} / \mathrm{sec}^{2}\right)(10)(\mathrm{m})}=14(\mathrm{~m} / \mathrm{sec})
\end{aligned}
$$

B)
8. What is the impulse imparted to a 200 gram baseball if the velocity the baseball arrives from the pitcher is $40 \mathrm{~m} / \mathrm{sec}$ and leaves the bat towards the pitcher at $60 \mathrm{~m} / \mathrm{sec}$?

$\begin{array}{llll}\text { A) } 4 \mathrm{~N} \cdot \mathrm{sec} & \text { B) } 10 \mathrm{~N} \cdot \mathrm{sec} & \text { C) } 16 \mathrm{~N} \cdot \mathrm{sec} & \text { D) } 20 \mathrm{~N} \cdot \mathrm{sec}\end{array}$

Solution -Problem 8

Assume inbound and outbound line of action is colinear and apply impulse momentum principle.

Linear impulse momentum principle

$$
\mathrm{Fdt}=\mathrm{m} \int_{1}^{2} \mathrm{dv}=\mathrm{m}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)
$$

$F \mathrm{dt}(\mathrm{N} \mathrm{sec})=200(\mathrm{gram})\left(\frac{\mathrm{kg}}{1000 \mathrm{gr}}\right)[60(\mathrm{~m} / \mathrm{sec})-(-40)(\mathrm{m} / \mathrm{sec})]$
$\mathrm{Fdt}(\mathrm{N} \mathrm{sec})=20(\mathrm{~kg} \mathrm{~m} / \mathrm{sec})=20(\mathrm{Nsec})$
9. If a 45 gram golf ball is dropped from a height of 1.50 m onto a grassy surface and bounces back upward 0.06 m , then determine the coefficient of restitution between the golf ball and the surface. (use $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$)

A) 0.04
B) 0.08
C) 0.1
D) 0.2

Solution -Problem 9

The coefficient of restitution "e" is a measure of the energy dissapated when a body impacts a surface and then rebounds.
$\mathrm{e}=-\frac{\mathrm{v}_{\text {bal }}^{\text {iust ater }}}{\mathrm{v}_{\text {ball }}^{\text {iuftefore }}}$ impacting stationary surface
where $v_{\text {bal }}^{\text {just afer }}=-\sqrt{2 g h_{2}}, \quad v_{\text {ball }}^{\text {iust before }}=\sqrt{2 g h_{1}}$

$$
\Rightarrow \quad e=\frac{\sqrt{2 g h_{2}}}{\sqrt{2 g h_{1}}}=\sqrt{\frac{h_{2}}{h_{1}}}=\sqrt{\frac{0.06 m}{1.5 m}}=0.2
$$

10. What is the natural period of the spring-mass system shown? The mass (m) is 2 kg and the spring constant (k) is $10 \mathrm{~N} / \mathrm{m}$. The static deflection (δ_{st}) is 2 m . (use $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$)

A) 2.8 sec
B) 3.8 sec
C) 4.8 sec
D) 5.8 sec

Solution - Problem 10

Period is one over the frequency.
Calculate frequency for single degree mass on weightless spring.

Single degree of freedom frequency

$$
\begin{align*}
& \omega=\sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \text { or } \omega=\sqrt{\frac{\mathrm{g}}{\delta_{\mathrm{st}}}} \\
& \omega=\sqrt{\frac{10(\mathrm{~N} / \mathrm{m})}{2(\mathrm{~kg})}}=\sqrt{5}\left(\frac{\mathrm{rad}}{\mathrm{sec}}\right), \omega=\sqrt{\frac{9.8\left(\mathrm{~m} / \mathrm{sec}^{2}\right)}{2(\mathrm{~m})}} \approx \sqrt{5}\left(\frac{\mathrm{rad}}{\mathrm{sec}}\right) \\
& \text { Period } \mathrm{T}=\frac{1}{\omega}=\frac{1}{\sqrt{5}}\left(\frac{\mathrm{sec}}{\mathrm{rad}}\right)\left(\frac{2 \pi \mathrm{rad}}{\text { cycle }}\right)=2.8 \mathrm{sec}
\end{align*}
$$

