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Abstract

Trypanosoma cruzi, is the causal agent and parasite of Chagas disease, a neglected
tropical disease transmitted mainly by blood-sucking triatomine insects in Latin Amer-
ica. Because of the unavailability of a cure for Chagas disease, disease control relies
on the control of the vector population. In this work, we developed deterministic and
stochastic mathematical models for the dynamics of bug infestation in a community
of houses. We used a Levins metapopulation approach in which houses are considered
to be patches that can be in one of three states: empty, infested, or treated. First, we
considered spatially implicit models for homogeneous and heterogenous populations.
We studied the e↵ect of di↵erences in housing quality in infestation dynamics and the
e↵ect of heterogeneity in the distribution of the houses. Then, we developed more real-
istic spatially explicit, agent-based, metapopulation models. The models were used to
assess the e↵ect of di↵erent control strategies on house infestation. The results show
that spraying only bad houses is more beneficial than spraying the whole community
while using the same treatment rate.

1 Introduction

More than 1 billion people all over the world are infected with neglected tropical diseases,
such as Chagas disease in Latin America [12]. Chagas disease, also known as American
trypanosomiasis, is caused by infection from the protozoan parasite Trypanosoma cruzi
(T. cruzi) and is a major vector-borne disease [1,4,21,22]. The organism T. cruzi and the
infection in humans were first described in 1909 by the Brazilian physician Carlos R. J.
Chagas [5]. T. cruzi is found in mammals and in a variety of bugs including blood-sucking
triatomine insects or “kissing bugs”. In most countries in the southern cone of South
America, triatoma infestans (T. infestans) are by far the main vector of T. cruzi [18]. An
important charachteristic of T. infestans is that this species has evolved into a primarily
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domestic vector preferring to live in and around homes [22]. T. infestans are nocturnal
predators that feed on mammals while they sleep, generally on their faces, thus the name
kissing bugs [12]. They hide during the day and come out during the night to bite and
feed on unsuspecting hosts [18].

The initial phase of Chagas disease is known as the acute phase, and lasts for roughly
two months post-infection with little or no symptoms [14,18,19]. Blood tests are important
for lowering the probability of infection through blood transfusions, which are a common
method of disease transmission in places where the test cannot be a↵orded [20]. In the
subsequent chronic phase, T. cruzi parasites primarily sequester in cardiac and digestive
tissues, potentially causing gradual but severe damage to organs [19]. It is also the main
cause of cardiopathy in the world [24]. Most cases of Chagas are caused by triatomines
when they gorge on a host and instantaneously defecate near the bite. The feces contains
the T. cruzi parasite, and when the host scratches the lesion, the contaminated feces
enters the lesion and results in transmission of the disease [14]. This phase last 6 to 8
weeks [18] and the infected individuals appear healthy. During this period, the parasite can
be detected only by serological or parasitological tests [18]. Several years after infection,
untreated patients may start developing lesions on certain organs, mainly the heart and
the digestive system.

Currently there are no vaccines available and there is no cure for Chagas disease.
Therefore, control measures are focused on controlling vector populations. This may be
achieved by di↵erent means like periodic insecticide spraying or improving the quality
of houses. Mud and thatched houses can gather a tremendous amount of T. infestans
over a long period of time [9, 11, 18]. Hay roofs and cracked walls provide an excellent
environment for T. infestans populations [16]. Improved houses, with plastered walls and
ceilings, provide significantly poorer conditions for the persistance of the T. infestans
population. In this work, these two types of houses will be called “bad houses” and “good
houses”, respectively. In ecological terms, the bad houses act as sources because the
environment is suitable for vector reproduction, while good houses act as sinks because
a vector population cannot be sustained here. In this work we will study a source-sink
metapopulation dynamic.

In this work we developed and studied several mathematical models on the dynamics
of populations of houses. In the models, houses may be in one of three states: empty,
infested, or treated. First, we considered a simple homogeneous case where the houses
in a single community are all of the same quality and are randomly mixed. Next, we
considered houses of two types of quality; bad and good. In the first scenario bad and good
houses are distributed randomly in a single community. Then, we considered a segregated
community where all of the bad houses are separated from the good houses. In all cases, we
developed continuous-time Markov-chain models. Finally, we developed spatially-explicit,
stochastic individual based models for the three di↵erent cases. Realizations of this model
were compared with the solutions of the population level models.
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2 Population Level Models

In this section we study house infestation dynamics following an implicit-space Levins
metapopulation approach [13]. Each house in the community is considered as a patch
which may be in only one of three states: empty, infested or treated [7]. In this simple
framework, within house triatomine population dynamics is ignored. We assume that
an infested house has some potential to spread the infestation to other houses in the
community. We also consider that a house’s bug population has some probability per
unit of time of becoming extinct, and that houses may be treated (with insecticide, for
example). Insecticide is assumed to provide protection against re-infestation for some
period of time. We also explored the e↵ect of house heterogeneity on population dynamics.
First we considered the case in which the improved houses are randomly distributed.
Then we considered the case in which improved houses are all in the same sector, or
“neighborhood” of the community.

2.1 Basic Model for a Homogeneous Population

In this first scenario, there is a single community composed of houses of the same quality.
The rate of house infestation depends on the number of infested houses as well as the
proportion of empty houses in the village. More specifically we assume that infested
houses spread the infestation at the rate c. Under the homogeneous mixing assumption
only the fraction E/N of the houses is susceptible to infestation. Infested houses become
extinct at the rate ✏. Infested houses are treated at the rate ⌧ and the protection conferred
is lost at the rate ↵. In Figure 1 we show a transfer diagram of our compartmental model.

Figure 1: Compartment Model of a Community of Empty(E), Infested(I), and Treated Houses(T)

If E, I and T represent the number of empty, infested and treated houses respectively,
then our first model becomes:
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Model 1

dE

dt
= �cEI

N
+ ✏I + ↵T (1)

dI

dt
=

cEI

N
� (✏+ ⌧)I (2)

dT

dt
= ⌧I � ↵T (3)

2.2 House Heterogeneity

In this section we consider two scenarios. In the first scenario, there is a community of good
and bad houses which are randomly distributed. In the second scenario the community is
composed of good and bad houses separated into two neighborhoods, one containing only
good houses and the other containing only bad houses. Mud and thatch roof houses are
considered “bad” houses as they may sustain high levels of triatomine infestation [9, 10].
Improved houses do not provide well enough conditions for the bug population to survive
and are therefore labeled as “good” houses. We consider that bad houses act as sources,
while good houses act as sinks. The reproductive number R0 will be greater than one for
a population of bad houses and less than one for a population of good houses. Because
the bug population is substantially higher in bad houses it assumed that cb > cg and that
✏b < ✏g.

2.2.1 Bad and Good Houses Randomly Distributed

When houses are randomly distributed, each house has the same probability to contact
bad or good houses. A straightforward modification of Model 1 leads to:

Model 2

dEg

dt
= �cgEgIg

N
� cbEgIb

N
+ ✏gIg + ↵gTg (4)

dIg
dt

=
cgEgIg

N
+

cbEgIb
N

� (✏g + ⌧g)Ig (5)

dTg

dt
= ⌧gIg � ↵gTg (6)

dEb

dt
= �cbEbIb

N
� cgEbIg

N
+ ✏bIb + ↵bTb (7)

dIb
dt

=
cbEbIb
N

+
cgEbIg
N

� (✏b + ⌧b)Ib (8)

dTb

dt
= ⌧bIb � ↵bTb (9)

where the variables denote the total number of houses in the corresponding state and the
subindices g and b are used to label good and bad houses respectively. The total number
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of good and bad houses is given by Ng = Eg+Ig+Tg and Nb = Eb+Ib+Tb, while the total
number of houses is N = Nb+Ng. Again, we assume both Ng and Nb are constant and
the parameter values used in the simulation are shown in table 1.

The first and second terms in equations (4) and (5) model infestation from bad and
good infested houses. Infested good houses become extinct at the rate ✏g. Infested good
houses are treated at the rate ⌧g and the protection conferred is lost at the rate ↵g. A
similar description follows for bad houses.

2.2.2 Two Patch Model

In this case a further level of heterogeneity is incorporated because we assume that bad
and good houses are in di↵erent locations of the community. We assume that infested
houses are more likely to spread infestation within their own neighborhood. From the
potential infestations that a bad house may produce, we assume that only a fraction p
takes place among good houses. In general the situation is not symmetrical, we consider
that good houses may infest at most a fraction q of bad houses. With this assumption we
arrive to the following model:

Model 3

dEg

dt
= �cbqEgIb

Ng
� cg(1� p)EgIg

Ng
+ ✏gIg + ↵gTg (10)

dIg
dt

=
cbqEgIb

Ng
+

cg(1� p)EgIg
Ng

� (✏g + ⌧g)Ig (11)

dTg

dt
= ⌧gIg � ↵gTg (12)

dEb

dt
= �cb(1� q)EbIb

Nb
� cgpEbIg

Nb
+ ✏bIb + ↵bTb (13)

dIb
dt

=
cb(1� q)EbIb

Nb
+

cgpEbIg
Nb

� (✏b + ⌧b)Ib (14)

dTb

dt
= ⌧bIb � ↵bTb (15)

where p 2 [0, Nb
N ] and q 2 [0, Ng

N ]; A significant feature of Model 3 is that it reduces to

Model 2 for p = Nb
N and q = Ng

N .
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Table 1: Parameters for Model 1,2, & 3
Parameter Definition Value
c Rate of Colonization 0.8 year�1
⌧ Rate of Treatment 0.2 year�1
↵ Removal Rate from Treatment 3 year�1
✏ Extinction Rate 0.5 year�1
cg Colonization Rate from a Good House 0.2 year�1
✏g Extinction Rate of the Vectors in a Good House 0.4 year�1
↵g Rate it Takes to Become Empty after Being Treated for Good Houses 3 year�1
⌧g Treatment Rate of the Good Houses [0,.05] year�1
cb Colonization Rate from a Bad House 0.5 year�1
✏b Extinction Rate of the Vectors in a Bad House 0.2 year�1
↵b Rate it Takes to Become Empty after Being Treated for Bad Houses 3 year�1
⌧b Treatment Rate of the Bad Houses [0,.1] year�1
q Probability of Infestation from Bad to Good Community .1
p Probability of Infestation From Good to Bad Community .1
� Rate of Infestation Per Contact .137 year�1
�b Rate of Infestation Per Contact of a Bad House .04 year�1
�g Rate of Infestation Per Contact of a Good House .075 year�1
R0g Basic Reproductive Number of Good Houses With no Treatment .5
R0b Basic Reproductive Number of Bad Houses With no Treatment 2.5

2.3 Continuous-Time Markov Chain Models

As we are dealing with relatively small populations, stochastic e↵ects are expected to
be relevant. We developed Continuous Time Markov Chain models for each of the
three scenarios described previously (Model 1, 2, and 3). Processes are defined on a
continuous time scale, t 2 [0,1), but the states E(t), I(t), and T (t) are discrete ran-
dom variables, E(t), I(t), T (t) 2 0, 1, 2, ..., N . The Prob(I(tn + 1)|I(t0), I(t1), ..., I(tn)) =
Prob(I(tn+1)|I(tn)) for any sequence of real numbers satisfying 0 < t0 < t1 < ... < tn <
tn+1. The transition probability at time tn+1 only depends on the most recent time tn.
The transition probabilities are defined for a small time interval dt. For the simple case
of an homogenous population without treatment the model is defined by:

6



P (I(t+ �t) = j|I(t) = i) =

8
>>>><

>>>>:

cEI
N �t j = i+ 1

✏I�t j = i� 1

1� ( cEI
N + ✏I)�t j = i

0 j 6= i, i� 1, i+ 1

(16)

P (E(t+ �t) = j|E(t) = i) =

8
>>>><

>>>>:

cEI
N �t j = i� 1

✏I�t j = i+ 1

1� ( cEI
N + ✏I)�t j = i

0 j 6= i, i� 1, i+ 1

(17)

Where parameters c, ⌧ and ✏ have the same meaning as in model 1. In this model E
and I are discrete variables taking only positive integer values or zero. The time inter-
val between consecutive events is a continuous random variable exponentially distributed
with mean 1

( cEI
N +✏I)

. The rates of infestation cEI
N , and extinction ✏I, are known as the

transition rates and give the probability per unit of time of occurrence of each one of
the di↵erent events: infestation and extinction. Stochastic versions of models 2 and 3,
including treatment, were developed in a similar way.

The numerical simulations for these systems were performed using the Gillespie method
[8]. This is a generic algorithm that can be applied to any Markov Chain system. The
first step is to initialize the number of E, I, and T houses in the system.The time interval

between consecutive events is computed as �t =
log( 1r )
TR where r 2 (0, 1) is a random

number uniformly distributed in (0, 1) and TR = cEI
N + ✏I is the total transition rate.

Then events are selected at some probability that is proportional to their transition rates.
The variables are updated according to the event selected. For example in the case of
infestation E ! E � 1, I ! I + 1. The process is iterated until desired.

3 Stability Analysis and Basic Reproduction Numbers

In this section we study the local stability of the equilibrium for each deterministic model.
We also computed the basic reproductive numbers using the next generation operator
method [2]. Details are provided in Appendix A.

3.1 Basic Model

Basic reproduction number computed for Model 1 is

R
(1)
0 =

c

✏+ ⌧
(18)
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which has a straight forward interpretation as the number of secondary cases produced
by one infested house in a population of empty houses. In this case houses are infested at
rate c while 1

✏+⌧ is the mean infestation period.
Model 1 has two equilibrium points, the infestation free equilibrium E1 = (N, 0, 0),

and the endemic equilibrium:

E2 = (
N(✏+ ⌧)

c
,
↵N(c� ✏� ⌧)

c(⌧ + ↵)
,
(N⌧)(c� ✏� ⌧)

c(⌧ + ↵)
) = (

N

R0
,
↵N

↵+ ⌧
(R0 � 1),

⌧N

↵+ ⌧
(R0 � 1)).

This expression shows explicitly that endemic equilibrium exists only for R0 > 1. The
infestation free equilibrium is stable for R0 < 1 and it is unstable for R0 > 1 (see Appendix
A for details).

3.2 Randomly Distributed Houses in the Same Community

For Model 2 the basic reproduction number can be expressed as the weighted average

R
(2)
0 =

Nb

N
R0b +

Ng

N
R0g (19)

where R0b =
cb

✏b+⌧b
and R0g = cg

✏g+⌧g
are the basic reproductive numbers of Model 1 for the

cases of only bad and only good houses. In our simulations we considered that in absence

of treatment R0g = .5 and R0b = 2.5, and then R
(2)
0 = 1.5. A low treatment rate of ⌧b = .1

(and ⌧g = 0) is then enough to put infestation under control as in this case R2
0 ⇡ 1.

Endemic

In festation Free

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

10

20

30

40

R0

Ib

Figure 2: Bifurcation diagram of basic reproduction number vs. equilibrium value of Ib of model

2. When R0 = 1, the endemic equilibrium becomes stable and the disease free equilibrium becomes

unstable. This was done in a similar fashion for model 3 with the same qualitative behavior.

Figure 2 shows the bifurcation diagram for infested houses. This behavior is qualita-
tively the same for the two patch model but with di↵erent quantitative values.
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3.3 Two Patch Model

When heterogeneity in house distribution is considered the basic reproduction number
becomes

R
(3)
0 =

R0g(1� p) +R0b(1� q) +
q
(R0g(1� q) +R0b(1� q))2 � 4R0gR0b(1� p� q)

2
.

(20)

When p = Nb
N and q = Ng

N , R(3)
0 coincides with the expression for R

(2)
0 as expected. For

p = q = 0.1 and ⌧b = 0.1, we obtain R0 = 1.51. In the previous section, we observed
that the infestation was under control (R2

0 ⇡ 1) with ⌧b = .1. However, when there are
separate patches infestation is well above the threshold. A higher constant rate of spraying

of ⌧b = 0.25 is needed in order to obtain R
(3)
0 ⇡ 1. This is a more than double of the per

infested hose rate needed to control infestation in a randomly mixed community.

4 The E↵ect of Di↵erent Treatment Regimes: An assess-
ment by Numerical Simulations

We explored the e↵ect of di↵erent control strategies for the di↵erent scenarios under study
using models 2 & 3. In all cases, we considered a village of 1024 houses1. Because of the
small population size of the village, stochastic factors are expected to play a significant
role on the dynamics [6, 15].

4.1 Randomly Distributed Houses in the Same Community

Without treatment, house infestation reaches its equilibrium values monotonically. Figure
3A displays typical solutions. As expected, the deterministic solution presents an initial
phase of exponential growth which is not apparent in some stochastic simulations (which
show an almost linear growth). The e↵ect of treatment at a constant rate is shown in
Figure 3B where the initial conditions correspond to the equilibrium values of the model
without treatment.

1
Later we will consider spatial arrangements of L⇥L houses. A population of 1024 houses corresponds

to the case L = 32
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Figure 3: Figure A: Infested houses with a treatment of ⌧b = 0 and an initial value of 111 houses.
Figure B: Infested houses with a treatment of ⌧b = .1 and an intial value of 183 houses

In Figure 3, we compare the solutions obtained with ⌧b = 0 and ⌧b = .1.

4.2 Two Patch Model

Again, we look at solutions of infested houses with the same initial conditions. The focus
is now on a community with bad and good houses grouped separately.
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Figure 4: Figure A: Infested houses with a treatment of ⌧b = 0 and an initial value of 54 houses.
Figure B: Infested houses with a treatment of ⌧b = .1 and an intial value of 286 houses

As in the previous case we first consider the dynamics in absence of treatment. The in-
fested population rises exponentially after the introduction of infestation in the population
then it reaches the equilibrium monotonically (see Figure 4A). Using these equilibrium val-
ues as initial conditions we studied the e↵ect of treating only bad houses at a constant rate.
In Figure 4B we show the results obtained for ⌧b = 0.1 (⌧g = 0). Treatment is significantly
less e↵ective in this case than for the community with randomly mixed houses.

4.3 Insecticide Spray use: bad houses vs whole community

One question that may be asked is focusing on the bad houses in case of spray or the whole
community including the good houses while keeping the percentage of pesticide used the
same. An analysis is done on both the bad and good randomly distributed houses and the
two patch model. We first spray only the bad houses, then the whole community with the
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same amount of pesticide to see which way is more e�cient.

Figure 5: A. Equally spray with ⌧b = .05 and ⌧g = .05 vs. spray of only bad houses with ⌧b = .05
in randomly mixed community B. Equally spray with ⌧b = .05 and ⌧g = .05 vs. spray of only bad
houses with ⌧b = .05 in two pacthes

Using the equilibrium values obtained without treatment we compared the e↵ect of
treating only bad houses or both types of houses. In the first case we used a constant rate
⌧b = 0.1 (and ⌧g = 0) while in the second we used ⌧b = 0.5 and ⌧b = 0.05. Simulations
displayed in Figure 5 A and Figure 5 B show that concentrating the treatment on only
the bad houses is more e�cient. Should be noticed that because Ig < Ib for all time we
are not simulating the use of the same amount of insecticide in both cases.
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5 Spatially Explicit Models

In this section we explore the consequences of space on the dynamics of infestation. In
all cases we consider a square arrangement of L ⇥ L houses, in which all the houses are
equally spaced apart from each other. In a period �t an infested house may become empty
with probability pe = 1 � e�✏�t. In a similar fashion we assume that an empty house in
contact with one infested house may become infested with probability pI = 1 � e��i�t

where �i is the rate of infestation per contact. Probability of infestation of an empty
house in contact with n infested houses is given then by 1 � (1 � pI)n. Treated houses
may become susceptible to re-infestation with probability pe = 1� e�⌧i�t.

5.1 Spatial Spread Dynamics in a Homogeneous Population

In the following we will consider a square arrangement of L ⇥ L houses. Except in the
borders, each house is surrounded by eight closest neighbors. We will assume that infes-
tation may take place only from those neighbors. Figure 6 illustrates the smaller scale of
a community of only infested and empty houses.

Figure 6: White squares are infested and black squares are empty. The center square can be
infested by the top three, directly right, directly down and bottom left squares.

While the parameters ✏, ⌧ and ↵ have the same meaning and values than those used in
the population level models, the probability of infestation per house and per unit of time,
�, is di↵erent (but related) to the infestation rate c.
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Figure 7: The case of only bad houses the infestation is increasing exponentially for the deter-
ministic and linearly for the spatial model

The value of � was chosen by fitting the deterministic solutions of Model 1 (for good
and bad houses). In figure 7 we show the solution of model 1 together with a realization of
the stochastic spatial model. Since the spatial model allows only for infestation between
neighboring houses, the number of infested houses does not show the initial phase of
exponential growth characteristic of homogeneous mixing models (like Model 1).

5.2 House Heterogeneity and Infestation Dynamics in Spatially Explicit
Models

We are modeling the same situation as in Models 2 and 3, but considering now the spatial
distribution of houses.

5.2.1 Randomly Distribution of Di↵erent Quality Houses

Here it is assumed that Ng good houses are located at random throughout a village with
a total of N houses.
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Figure 8: The blue squares denote empty good quality houses. The red squares denote empty bad
quality houses. White denotes infested houses and green denotes treated houses and “G” denotes
good quality and “B” denotes bad quality houses.

The probability of house infestation is computed taking into account that neighboring
infested houses may be ‘good’ or ‘bad’. If ng and nb are the number of good and bad
infested houses in contact with an empty house then the probability of infestation in a
time interval �t is given by 1� (1�e��b�t)nb(1�e��g�t)ng where �b and �g were estimated
in the same fashion described in Section 5.1. A good treated house can go into an empty
state with probability 1� e�↵dt and a bad treated house with probability 1� e�⌧bdt.

5.2.2 Two Patch Model

It is a plausible assumption that all houses good and bad are mixed in the same village.
But it is also possible that for example, the people that are more wealthy have better
houses and are separated from the rest of the bad houses.
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Figure 9: The blue squares denote empty good quality houses. The red squares denote empty bad
quality houses. White denotes infested houses and green denotes treated houses and “G” denotes
good quality and “B” denotes bad quality houses.

In the two patch model bad and god houses are in contact with each other only in the
boundary between the two neighborhoods. In this case good houses are less likely to be
infested from bad houses compared with the case of randomly mixed houses.

On the other hand, when houses are randomly mixed bad houses are less likely to
infest other bad houses.

5.3 Treatment in a Spatial Context

Now we will assess the e↵ect of treatment using the spatial models. First we simulated
the spread of infestation without treatment for the randomly mixed and two-patch cases.
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Figure 10: A. Randomly mixed spatial Infested Houses when ⌧b = 0 B. Two patches spatial
Infested Houses when ⌧b = 0

In all cases we ran 100 simulations with the same initial conditions for a population of
32 ⇥ 32 = 1024 houses. We calculated the averages and standard deviations for the final
value of infested good and bad houses (after transients). The parameter values are listed
in Table 1.

For the case of randomly distributed houses, average infestation of bad houses is about
75 with a standard deviation of 43.2 while good houses infestation is about 42 with a
standard deviation of 25. When the village is divided into two patches, mean infestation
of bad and good houses are 311 and 7 with standard deviations of 16.4 and 2.6 respectively.
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Figure 11: A. Randomly mixed spatial Infested Houses when ⌧b = .1 B. Two patches spatial
Infested Houses when ⌧b = .1

Using the average infestation levels as initial conditions we explored the e↵ect of a
constant rate of treatment of bad houses (⌧b = .1). From Figure 11 we see that extinc-
tion of infested populations is common for the randomly mixed case but not for the two
patch model case. We estimated the probability of extinction for both models from 100
simulations. For the two-patch model infested populations never became extinct while for
randomly distributed houses extinction was observed in 89 out of 100 simulations.

6 Discussion and conclusion

The transmission dynamics of Chagas is complex and varies on geographic location and
economic factors [22]. In this work we used a simple metapopulation approach to under-
stand the dynamics of house infestation in di↵erent settings. Stochastic continuous time
Markov chain simulations were used to add realism to the deterministic models. Given
that there are a relatively small number of houses, demographic stochasticity can be an
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important factor influencing extinction probabilities, even in a constant environment [17].
However seasonality is an important driver of population dynamics [3] and we expect that
stochasticity will play an even more significant role in models including seasonality. Com-
parison of the results obtained with the spatially-explicit, agent-based models with those
obtained with simple population levels models show that these last ones provide a good
first approximation. Main di↵erences are observed in the transient dynamics were spatial
spread leads to an almost linear growth of the infested population while population-level,
homogenous-mixing models exhibit a characteristic initial phase of exponential growth.

It is well known that house improvement greatly decrease levels of infestation. In
this work we explored the consequences of improving a fraction of the houses of a given
community. Two cases were considered: improved houses distributed randomly in the
community or all of them in the same sector. The results obtained from both spatial
and non spatial models show that house infestation is more controllable in a randomly
mixed community. The models also predicted that spraying only the bad houses is more
e�cient than treating just part of the total houses at random or spraying the whole
community. This result is consequence of the assumed reduced infestation potential of
good houses respect to bad houses, and is apparent from the respective expressions of the
basic reproduction numbers.

We take into account di↵erent quality type of houses and developed a flexible frame-
work which include spatial distribution of houses in an explicit way. The infestation spread
model may be improved by including distance-dependent probabilities of bug dispersal.
Actual house distributions, for specific villages, may be straightforwardly incorporated.
In this case houses are allocated in some cells in the grid leaving the rest as ’empty space’
with null probability of colonization.

7 Future Work

In this section, we briefly describe some new ideas for future work. For more realistic case,
it would be beneficial to collect real biological data for better parameter estimation. A
further level of realism can be achieved by considering di↵erent level of infestation. One
question that can be derive from this is to see the e↵ect of infestation in the community
when very low percentage of pesticide are applied to low infested houses. Because of
their short life span of the T. infestans [18], one may also incorporate the life cycle of the
vector in the model and look at the period of time that the pesticide take a↵ect on the
vector population and when it mostly a↵ect the vectors and decrease infestation in the
community. Finally we may include seasonality since the vector population growth takes
place almost exclusively during spring and summer.
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Appendix A

Reproduction numbers and sub-threshold endemic equilibria for compartmental models of
disease transmission P. van den Driessche, James Watmough, Mathematical Biosciences
180 (2002) 2948.

Following van den Driessche and Watmough [23] we computed the matrices F and V
to compute basic reproductive number for the di↵erent models. For the basic Model 1 we
obtain

F =

✓
c
0

◆
(21)

V =

✓
✏+ ⌧
0

◆
(22)

For the Randomly Mixed Model (Model 2) F and V matrices are given by

F =

 
Ngcg
N

Ngcb
N

Nbcg
N

Nbcb
N

!
(23)

V =

✓
✏g + ⌧g 0

0 ✏b + ⌧b

◆
(24)

Finally for the Two-Patch Model

F =

 
cgNg⇤(1�p)

N
cbNgq
N

cgpNb
N

cbNb(1�q)
N

!
(25)

V =

✓
✏g + ⌧g 0

0 ✏b + ⌧b

◆
(26)
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Appendix B

Model 3⇤

Considering a similar but di↵erent assumptions of Model 3 where there are two types
of houses in two di↵erent patches: one composed entirely by bad houses and the other
composed entirely by good houses. The system if presented in the following form.

dEg

dt
= �cgEgIg

Ng
� cbEgIbQ

Ng
+ ✏gIg + ↵gTg (27)

dIg
dt

=
cgEgIg
Ng

+
cbEgIbQ

Ng
� (✏g + ⌧g)Ig (28)

dTg

dt
= ⌧gIg � ↵gTg (29)

dEb

dt
= �cbEbIb

Nb
+ ✏bIb + ↵bTb (30)

dIb
dt

=
cbEbIb
Nb

� (✏b + ⌧b)Ib (31)

dTb

dt
= ⌧bIb � ↵bTb (32)

where Q = e�d/d0 is a function of the distance d between the two patches. As the
distance between the patches increase Q tends to zero, thus for large distances infestation
between patches is not possible. Q is a coupling parameter which model the fact that
good houses are spatially separated from bad houses. Also it is assumed that the vectors
are only going in the direction of the bad neighborhood to the good neighborhood. Thus
the term cgEbIg

Ng
from equation (9) and (10) that describes the vectors going from good

houses to bad houses in Model 2 is not present in this model.
Model 4⇤ : Low and High infestation in two separate community
It is known that in an infested community, all the houses will not have the same

level of infestation. Thus it is appropriate to consider di↵erent level of infestation. Two
levels of infestation assumed in this section in the bad neighborhood, the low infestation
and bad infestation. The infestation in the good neighborhood are grouped into one (low
infestation) since the houses are well constructed and it is more di�cult for the T. infestans
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to infest at higher levels. the mathematical model for this situation is presented below.

dEb

dt
= �cbEb(qLb +Hb)

Nb
+ �bTb + ✏Lb Lb + ✏Hb Hb (33)

dLb

dt
=

cbEbqLb

Nb
� �bLb � ↵2Lb � ✏Lb Lb (34)

dHb

dt
= �bLb � ↵1Hb � ✏Hb Hb +

cbEbHb

Nb
(35)

dTb

dt
= ↵1Hb + ↵2Lb � �bTb (36)

dEg

dt
= �cgEgQ(qLb +Hb)

Ng
� cgEgLg

Ng
+ �gTg + ✏Lg Lg (37)

dLg

dt
=

cgEgQ(qLb +Hb)

Ng
+

cgEgLg

Ng
� ↵3Lg � ✏Lg Lg (38)

dTg

dt
= ↵3Lg � �gTg (39)

where
Eb, Eg, Tb, Tg have the same explanation as in model 3 and
Lb = Low infestation for bad houses
Hb = High infestation for bad houses
Lg = Low infestation for good houses

For this model R0 = max{ cb
↵1+✏hb

,
cg

✏Lg +↵3
, cb
✏Lb +↵2+�b

) and again if treatment is ignored

then R0 = cb
↵1+✏hb

. Since bad houses with high infestation are the ones who sustain the

most vectors it makes sense that the R0 for this model depends on the individual R0 for
the high infested bad houses. The resources for spraying could be optimized if we spray
only the houses that are highly infested and then the low infested bad houses from what
the R0 says.
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