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Introduction

Some models developed using Samcef/Mecano



2

Rigid & flexible joints

Special elements

Rigid & flexible bodies

Multibody system

Force elements

Finite element simulation library

Commercial simulation tools

Multibody dynamics approach

� MSC ADAMS

� LMS VIRTUAL LAB MOTION

� SIMPACK

� RECURDYN

General approach for 

nonlinear flexible systems

Linear flexibility effects

using the floating frame 

of reference method

Finite element approach

� SAMCEF MECANO

� OOFELIE
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Mechatronic design

Mechanism
Actuator

Sensor
Control

Integrated mechatronic design

Integrated simulation software for mechatronic systems 

⇒ relevant basis for the development of optimization tools

Manipulator 

(Georgia Tech)

Active 

suspension

� Introduction

� Modelling of multibody & mechatronic systems

� Modelling of flexible multibody systems

� Modelling of coupled mechatronic systems

� Application to a semi-active car suspension

� Application to a wind turbine

� Time integration algorithms

Outline
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Absolute nodal coordinates

� translations & rotations

� geometric nonlinearities

index-3 DAE with rotation variables

Modelling of flexible multibody systems

Finite element approach [Géradin & Cardona 2001]

Kinematic joints & rigidity conditions

� algebraic constraints

� Timoshenko-type geometrically exact model

� Two nodes A and B

� Nodal translations and rotations

� Strain energy: bending, torsion, traction and shear

� Kinetic energy: translation and rotation

A

A

B

B

Modelling of flexible multibody systems

Flexible beam element
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� Two nodes A (on body 1) and B (on body 2)

� Nodal translations (                and rotations

� 5 kinematic constraints

Hinge element

Modelling of flexible multibody systems

Co-simulation between 

2 software packages

� Software interface

� Critical communication 

strategy between solvers

Mechanics

(FE/MBS solver)

Control

(Simulink solver)

Simulation of coupled mechatronic systems

Solver

Mechanics Control

Coupled model

Assembly

Monolithic approach

� Unified software:

modelling + solver

� No software interface

� Strong (tight) coupling
Mechatronic 

software

Displ, vel, 

acc…

Forces
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Flexible Mechanism

(FE formalism)

Control System

(Block diagram language)

Strongly coupled Eqns

Time integration
FE code

Control unitsHydraulics

Electronics

Numerical assembly

Flexible bodies

Joints

Rigid bodies

Modular and monolithic FE approach

Modelling of coupled mechatronic systems

Block diagram language in a FE code

�Generic blocks : gain, integrator, transfer function… 

⇒ “special” elements

�Control state/output variables ⇒ “special” dofs

� Interconnexions ⇒ variable sharing

�Numerical assembly according to the FE procedure

Modelling of coupled mechatronic systems
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Mechanism

Control 

System

Coupled equations:

Modelling of coupled mechatronic systems

Time-integration scheme for coupled 1st/2nd order DAE ?

� Classical ODE solvers : multistep & Runge-Kutta methods

� Generalized-α time integration scheme

Semi-active car suspension

Work in collaboration with KULeuven-PMA and UCL-CEREM (PAI5/6)

�Hydraulic actuators with electrical valves

�Accelerometers on the car body

Controller

model

Mechanical

model

Actuators

model
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Mechanical model

�Car-body (rigid)

�Suspension mechanisms (rigid) 

and passive springs

�Slider-crank direction mechanism

�Wheel-ground contact

⇒ 600 dofs, but sparse matrices !

Semi-active suspension

Full dynamic model

�Valves: 

nonlinear relation flow / ∆p

�Chambers: 

isentropic compression

�Available as C-functions

⇒

Semi-active suspension
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Controller [Lauwerys et al, 2004]

�Feedback linearization

(Compensation of the actuator nonlinearity)

�Sky-hook modal controller (roll, pitch, heave)

�Block diagram model developed with Simulink

Semi-active suspension

Semi-active car suspension
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Electrical current in the valves (A)

(rear-left wheel)
Hydraulic pressures (Pa)

(rear-left wheel)

Semi-active car suspension

Computer-aided analysis for wind turbines

�Existing software: GH Bladed, Simpack Wind etc.

� Importance of dynamic loads + amplification effects

�Samcef for Wind Turbines (S4WT) since 2004

GUI

Front view

Back view

(Courtesy: Samtech)

Mechatronic modelling of wind turbines
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S4WT is based on SAMCEF/MECANO

�Aeroelastic beam model of the blades

�Drive-train models based on a dedicated gear element

Generator and control system: two modelling approaches 

�weak coupling with a DLL exported from Simulink

�monolithic approach using control elements in Samcef

(Courtesy: Samtech)

Mechatronic modelling of wind turbines

Vector control scheme 

and grid synchronization

Tapia, G. et al. Methodology for smooth 

connection of doubly fed induction generators to 

the grid. IEEE Transactions on Energy 

Conversion, 24,4(2009), 959-971

Mechatronic modelling of wind turbines

DFIG generator 

model

 

Measured & desired 

speed 

Measured & desired 

reactive power 

Measured & desired 

dc voltage 

rotor-side 

converter 

grid-side 

converter 

irq ird iline 
Pitch angle 

Grid 

DFIG 

Gearbox 

Pitch Torque VAR Line current Controllers: 
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Mechatronic modelling of wind turbines

Grid synchronization control results

Simulation on Samcef

Experiment from 

Tapia et al

� Mechanical equations are obtained using the finite element 

technique (rigid bodies, elastic bodies & kinematic joints)

� The generalized-α time integrator is used to solve 

the strongly coupled problem

Summary

Strongly coupled simulation of mechatronic systems:

� Control equations are formulated in the FE code using the 

block diagram language
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Liège - Belgium

Liège-Guillemins

train station

Campus of

Sart-Tilman

� Introduction

� Modelling of multibody & mechatronic systems

� Time integration algorithms

� Generalized-α method

� Kinematic constraints

� Controller dynamics

� Rotation variables

Outline
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Numerical time-integration methods

� Standard integrators: multistep, Runge-Kutta

� Methods from structural dynamics (Newmark, HHT, g-α)

� Energy conserving/decaying schemes

Generalized-α method [Chung & Hulbert 1993]

� One step method for 2nd ODEs

� 2nd order accuracy

� Unconditional stability (A-stability) for linear problems 

� Controllable numerical damping at high frequencies

� Computational efficiency for large and stiff problems

⇒ Extensions of the g-α method to deal with kinematic 

constraints, controller dynamics and rotation variables?

Generalized-α method

2nd order ODE system:

Newmark implicit formulae:

Generalized-α method  [Chung & Hulbert, 1993]

To be solved with :

Generalized-α method

� Two kinds of acceleration variables:

� Algorithmic parameters:

2nd order accuracy & numerical damping



15

Direct integration of the index-3 DAE problem using g-α

� Linear stability analysis demonstrates the importance of 

numerical damping [Cardona & Géradin 1989]

� Scaling of equations and variables reduces the sensitivity 

to numerical errors [Bottasso, Bauchau & Cardona 2007]

� Global convergence is demonstrated  [Arnold & B. 2007]

Reduced index formulations 

[Lunk & Simeon 2006; Jay & Negrut 2007; Arnold 2009]

Kinematic constraints

Controller dynamics

To be solved with :

Order conditions:

Coupled dynamic equations:
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Rotation variables

Rotation parameters, e.g. Cartesian rotation vector

ODE on a 

Lie group

where

ODE on a 

vector space

Rotation variables at the core of the FE method for flexible MBS

�Orientation of a rigid body

�Orientations of nodes at a joint

�Orientation of beam cross-sections & shell director vectors

Rotation parameterization difficulties

� Complexity of parameterized equations of motion

� Singularities of minimal parameterizations

We are interested in simplified codes

How to avoid parameterization singularities?

� Redundant parameterization + kinematic constraints 

[Betsch & Steinmann 2001]

� Rotationless formulation, e.g. ANCF [Shabana]

� Minimal parameterization + updated Lagrangian point of 

view [Cardona & Géradin 1989] 

� Lie group time integrator without a priori parameterization 

[Simo & Vu-Quoc 1988; B., Cardona & Arnold 2010] 
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Can we avoid rotation parameters?

� Can we solve the non-parameterized form of the 

equations of motion? (which only involves R and ΩΩΩΩ)

� Standard time integrators work for ODEs/DAEs on a 

vector space, but not for equations on a Lie group

� Lie group integration methods can solve ODEs on a Lie 

group [Crouch & Grossman 1993; Munthe-Kaas 1995,1998] and also 

[Simo & Vu-Quoc 1988; Bottasso & Borri 1998] 

We study a method to solve ODEs and DAEs on Lie 

groups for MBS, based on the generalized-α scheme

Configuration space as a Lie group

The configuration evolves on the k-dimensional Lie group

with the composition such that

with

Nodal configuration variables
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Constrained equations of motion

Joints and rigidity conditions ⇒ m kinematic constraints

⇒ Submanifold of dimension k-m

Semi-discretized equations of motion (DAE on a Lie group)

X

Lie group generalized-α method

1. Non-parameterized equations of motion at time n+1

2. Nonlinear integration formulae (composition & exponential)

3. For a vector space ⇒ classical generalized-α algorithm

4. Newton iterations involve k+m unknowns [B. & Cardona 2010]

+ h-scaling
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The scheme by [Simo & Vu-Quoc,1988] is a special case 

when

Analytical expression of the exponential map

Single translation system :

Single rotation system :

General case : component-wise definition ⇒ numerical effort 

scales linearly with the number of rotational variables

where

Proof of second-order accuracy for DAEs

� Baker-Campbell-Hausdorff (BCH) formula

� Local errors:

Global errors are O(h2) for fixed step-sizes in all components if 

� Magnus expansion of the exact solution

,

and

� Global error recursion: see multistep methods for DAEs 

with higher order error terms from the BCH formula

� Local and global errors analysis in the Lie algebra
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Benchmark 1: Spinning top

Nodal coordinates of the CM:

x1

x2

x3
CM

O

Gen-α method 

ρ = 0.9

h = 0.002 s

Benchmark 1: Spinning top
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Benchmark 2: Rightangle flexible beam

10 elements 

HHT method 

α = 0.05

h = 0.125 s

Summary

The generalized-α integration method combines

� Second-order accuracy (demonstrated for ODEs)

� Adjustable numerical damping

� Computational efficiency for large and stiff problems

Extension to coupled DAEs on Lie groups with a consistent

and simplified treatment of:

� Kinematic constraints

� Rotational variables in SO(3)

� Control state variables

It is a promising approach for the analysis, control & 

optimization of large scale flexible multibody systems
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Current challenges

Transmission lines

�Gear pairs

�Unilateral contact with high stiffness

�Friction 

�Backlash

Regularization, event-driven or time stepping approaches?

Torsen type-C differential

Thank you for your attention!

Numerical solution of DAEs in flexible multibody dynamics with 

applications in control and mechatronics
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