

The
 Telephone Cable
 [Definition]

It is one of several other types of communication facilities or media which is generally made up of paired, insulated copper conductors called TIP [A] and RING [B].

A cable can consist a few pairs, hundreds of pairs or thousands of pairs and the conductors can be of different sizes or gauges depending upon system requirements.

Other types of Communication Facilities

> OPEN WIRE SYSTEMS [Telegraph]
> COAXIAL SYSTEMS [CATV]
> RADIO SYSTEMS [Microwave, Cellular
> COMMUNICATION SATELLITES [Disk]
> FIBER OPTIC SYSTEMS

The origin of the name Tip [A] and Ring [B]

Effect of Cable Resistance to Signal Transmission

っへへっへ几へへ
0 dBm
［ 1 mw ］

Note：

In a pure resistive circuit，the transmitted signal is only attenuated but its original shape is maintained．In other words， the signal is not distorted．

Tip［A］
为

Transmit

Receive

 Ring［B］

Cable Shield

RESISTANCE
 [Definition]

It is a natural characteristic of any conductor (i.e. Copper, Aluminum, Nickel, Silver, Gold, etc.) which opposes the flow of electrical current through it.

OHM Ω

Unit of measure for Resistance

Commonly used units:

Ohm

$$
=\quad 0 \text { to } 1
$$

Ohms
$=\quad 2$ to 999
Kilo-Ohms (\mathbf{K}) = 1000 to 999,999
Mega-Ohms (M) = 1,000,000 to 999,999,999

Electrical Length of a Conductor

It is the resistance of a conductor in OHMS measured at a certain temperature in ${ }^{\circ}$ Farenheit or ${ }^{\circ}$ Centigrade and then converted into DISTANCE (length).

Physical Length of a Conductor

It is the length measured with the use of a measuring device like a WHEEL or a RULER Tape.

Measuring Device

Conductor Resistance To Distance

 Conversion Table

Formulas:

1. For cable temperatures ABOVE $68{ }^{\circ} \mathrm{F}$ [200 C$]$:	$\mathrm{Ft}=\mathrm{Fa}[1-0.00218(t-68)]$
2. For cable temperature BELOW $68{ }^{\circ} \mathrm{F}$ [200 C$]$:	$F \mathbf{t}=\mathrm{Fa}[1+0.00218(t+68)]$
	Where:
	Ft = Feet / Meters per Ohm @ temperature t (${ }^{\circ} \mathrm{F} /{ }^{\circ} \mathrm{C}$)
	$\begin{aligned} \mathrm{Fa}= & \text { Feet } / \text { Meters per } \mathrm{Ohm} @ \text { temperature } 68{ }^{\circ} \mathrm{F} / 20^{\circ} \mathrm{C} \\ & \text { (see table above). } \end{aligned}$

Note:
The twisting of the conductors inside the cable makes the physical and electrical length of the pair about 3\% longer than cable. Ex.: If the electrical length of a pair is $\mathbf{1 0 3}$ feet or meters, this can be translated to $\mathbf{1 0 0}$ feet or meters of cable length.

Factors That Affect Resistance

1. Length:

The shorter the conductor, the lower its resistance.
The longer the conductor, the higher its resistance.
2. Gauge (Size):

The bigger the conductor, the lower its resistance.
The smaller the conductor, the higher its resistance.

3. Temperature:

The lower the conductor's temperature, the lower its resistance.
The higher the conductor's temperature, the higher its resistance.

Therefore:

The Length of a conductor is a factor of Gauge (Size) and Temperature.

Loop Resistance

Resistive Balance Test

Note: For a normal cable ---

a) Measurement \#1 should be equal to Measurement \#2 (If they differ by $\mathbf{1 0 \%}$ or more, a "partial open" exist in either Tip [A] or Ring [B] or both).
b) Measurement \#3 = Measurement \#1 + Measurement \#2

More About Resistors

Wheatstone Bridge
 [Precision Ohmmeter]

Conditions for NULL

Basic Wheatstone Bridge

CAPACITANCE

It is the electrical property of a device called "Capacitor" which is created when two or more metallic plates or conductors are placed close to but insulated from each other.

Capacitance permits the storage of electrical energy which means that the capacitor can be charged or discharged similar to a rechargeable battery.

Basic Construction of a Capacitor

Factors Affecting Capacitance

Larger Plates

Smaller Plates

1. The Larger the plates, the higher the capacitance.
2. The closer the plates, the higher the capacitance.
3. Solid dielectric (insulation) materials increases capacitance compared to air.

How a Capacitor Works

More about Capacitors

Capacitances on a telephone pair

FARAD
 Unit of measure for capacitance

Commonly-used capacitance units:

Microfarad $(\mathbf{u F})=1$ millionth of a FARAD

Nanofarad ($\mathbf{n F}$) = 1 thousanths of a Microfarad

Picofarad $(\mathrm{pF})=1$ millionth of a Microfarad

Standard Capacitances Of Telephone Cables

Type	Mutual	Tip[A] / Ring[B] To Ground
Aircore	$0.083 \mathrm{uF} / \mathrm{Mile}$ $[0.052 \mathrm{uF} / \mathrm{Km}]$	$0.125 \mathrm{uF} / \mathrm{Mile}$ $[0.078 \mathrm{uF} / \mathrm{Km}]$
Jelly-Filled	$0.083 \mathrm{uF} / \mathrm{Mile}$ $[0.052 \mathrm{uF} / \mathrm{Km}]$	$0.140 \mathrm{uF} / \mathrm{Mile}$ $[0.087 \mathrm{uF} / \mathrm{Km}]$
2-Pair Drop	$0.083 \mathrm{uF} / \mathrm{Mile}$ $[0.052 \mathrm{uF} / \mathrm{Km}]$	$0.155 \mathrm{uF} / \mathrm{Mile}$ $[0.096 \mathrm{uF} / \mathrm{Km}]$
5-Pair Drop	$0.083 \mathrm{uF} / \mathrm{Mile}$ $[0.052 \mathrm{uF} / \mathrm{Km}]$	$0.150 \mathrm{uF} / \mathrm{Mile}$ $[0.093 \mathrm{uF} / \mathrm{Km}]$

How A Uniform Mutual Capacitance Of A Telephone Cable Pair Is Achieved Irrespective Of The Different Conductor Sizes (Gauges)

How A 965 "OPEN" Meter

Measures Capacitance

1. An electronic switch inside the unit closes, momentarily to discharge any existing capacitor charge.

2. As the switch opens, the unit turns ON a current source to charge up the capacitor until it reaches a fixed voltage level. This process is called "Electrometer" method of measuring capacitance. The "Charge" time is then monitored (see RED trace above).

3. Once the threshold voltage (7VDC) is reached, the current source reverses direction which causes the capacitor to discharge.
"Discharge" time is again monitored (see BLUE trace above).

Note: Capacitance is directly proportional to the TIME it takes to charge and discharge the capacitor.

How Length Of A Conductor Is Measured

With A 965 "OPEN" Meter

[Normal Mode]

Note: Normal mode is used to measure distance to complete "OPENS" only (not recommended for locating partial or dirty "OPENS").

How Length Of Tip[A] Is Measured With A 965 Open Meter

Note:
Length of 'Tip[A]' is the capacitance measured between the 'Tip [A]' conductor and 'Ground'. Also, the 'Ring[B]' conductor is shorted to 'Ground' through the switch inside the 965 unit (see illustration above). This eliminates $\boldsymbol{C 1}$ in the circuit and at the same time connects ' $\boldsymbol{C 2}$ ' in parallel to ' $\mathbf{C 3}$ ', as shown below.
The combined capacitances of ' $\boldsymbol{C} \mathbf{3}$ ' and ' $\boldsymbol{C 2}$ ' will then represent the capacitive length of ' $\boldsymbol{T i p}[\boldsymbol{A}]$ '.

How Length Of Ring[B] Is Measured With A 965 Open Meter

Note:

Length of ‘Ring [B]' is the capacitance measured between the 'Ring [B]' conductor and 'Ground'. Also, the 'Tip [A]' conductor is shorted to 'Ground' through the switch inside the 965 unit (see illustration, above). This eliminates ' $\boldsymbol{C} 3$ ' in the circuit and puts ' $\boldsymbol{C} \mathbf{2}$ ' in parallel to ' $\boldsymbol{C 1}$ ', as shown in below. The combined capacitances of ' $\boldsymbol{C 1}$ ' and ' $\boldsymbol{C} \mathbf{2}$ ' will then represent the capacitive length of ‘Ring [B]’.

How Mutual Length Is Measured With A 965 Open Meter

Note:
'Mutual' length is the capacitance measured between 'Tip [A]' and 'Ring[B]' with the cable 'Shield' floating (see switch illustration in the 965 unit).
Also, ' $\boldsymbol{C 1}$ ' and ' $\boldsymbol{C 2}$ ' are connected in series through the cable shield, as shown below. The 'Mutual' capacitance will then be the series capacitances of ' $\boldsymbol{C 1}$ ' and ' $\boldsymbol{C} \mathbf{3}^{\prime}$ in parallel to ' $\boldsymbol{C} \mathbf{2}^{\prime}$.

A. Resistance Faults:

1. Ground
2. Short
3. Cross
4. Battery Cross
B. Capacitance Faults:
5. Complete Open
6. Partial Open
7. Dirty Open
8. Split

B: Capacitance Faults

1. Complete OPEN:

A fault where a conductor is cut off completely.

2. Partial OPEN:

A fault where a high resistance path developed on a conductor. (Ex. Corroding splice)

B: Capacitance Faults (con't)

3. Dirty OPEN:

Any combination of a 'RESISTANCE' and 'CAPACITANCE' faults

B: Complete OPEN and a GROUND
Tip [A]

air \# 1

Pair \# 2

D: Partial OPEN and a SHORT
Tip [A]

Tip [A]

E: Partial OPEN and a GROUND

Ring [B] \qquad

Schematic diagram

B: Capacitance Faults (con't)

4. SPLIT:

A splicing error where one conductor of a pair (normally ‘Tip [A]’ because they the same color) is spliced to 'Tip [A]’ of another pair.

Cable Fault-Locating Procedure

1. Fault Analysis:

- Analyze symptoms carefully.
- Determine the category and type of fault or faults.

2. Fault Locate to a Cable Section:

- Determine the faulted cable section and isolate other sections without fault.
- From a measured fault location, always consider the nearest access point (Splice, X-Connect box, or a Terminal) as the prime suspect.

3. Fault Locate (Pinpoint).

- Determine the exact physical length of the cable section under test and calibrate the test set to that length. (i. e. If the section length is 500 feet or meters, select "DTS (Distance-To-Strap) Known" in RFL Setup and enter this length).
- Use a separate good pair, as much as possible.

Note:
For short cable sections it is better to run your own "good pair" using a roll of MDF jumper wire rather than look for one in the cable.
4. Repair or Fix the Fault or Faults.
5. Verify that the line works.

Cable Fault Analysis Procedure

1. Check and Measure possible Voltages (AC \& DC) on the line:
a) between $\operatorname{Tip}[A]$ and Ring[B]
b) between Ring[B] and Ground
c) between $\operatorname{Tip}[A]$ and Ground
2. Check and Measure Insulation (Leakages) Resistances
a) between $\operatorname{Tip}[A]$ and $\operatorname{Ring}[B]$
b) between Ring[B] and Ground
c) between $\operatorname{Tip}[A]$ and Ground

3. Perform a Resistance Balance Test:

a) Strap Tip[A] and Ring[B] to Shield/Ground at the far-end.
b) Measure Tip[A] to Shield/Ground Resistance.
c) Measure Ring[B] to Shield/Ground Resistance.
d) Measure Loop Resistance (Tip[A] + Ring[B] ohms)

Note:

Measurements (b) and (c) should be equal or within 10%, otherwise an "open" or a "partial open" exists.

Factors that can cause errors in fault locate measurements

1. Poor Connections will affect RFL measurements.
a) Test Leads
b) Strap

Note:
A $1 / 4(0.25) \mathrm{ohm}$ resistance introduced into a $22 \mathrm{AWG}(\mathbf{0 . 6 1 m m})$ conductor will constitute and error of about 16 feet (5 meters).
2. Incorrect assumption of conductor gauge (size) will affect RFL measurements.

A one gauge higher or lower assumption will result into a $\mathbf{4 0 \%}$ to $\mathbf{5 0 \%}$ error.
3. In equalities of conductor resistances will affect RFL measurements.
a) Variations of gauge created during the cable manufacturing process.
b) Unequal twisting of pairs.
c) Resistances introduces by connectors used during splicing.
d) Inequalities of temperature along the cable length.
4. Random distribution of moisture or water in the cable will affect OPEN measurements.
5. Induced currents (from Power lines, lighting and traction circuits) during the fault locate process will affect both RFL and OPEN measurements.

CRAFTSMAN'S GOLDEN RULE

$$
\sum_{n}^{59 \%}
$$

OF ALL TELEPHONE CABLE FAULTS ARE LOCATED IN AN ACCESS POINT
(ex: Splices, Terminals, Cross-Connect Boxes, etc.)
AND THE OTHER

$$
\sum_{2}^{5 \%}
$$

CAN BE IN MID-SPAN.

CABLE FAULT LOCATING

\& It is "NOT" an "EXACT SCIENCE".
es It is an "ART".
\& The name of the game is "SKILL".

RFL SETUP \& TEST LEADS HOOKUP SHEET

RFL SETUP:

- UNIT MEASURE DTS
- DTS KNOWN
- DISPLAY IN METERS OR FEET
- DISPLAY IN OHMS
- CABLE TEMPERATURE \qquad ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
- GAUGE / SIZE \qquad Millimeters or AWG
- DISTANCE TO STRAP (DTS) Feet or Meters
- SEPARATE GOOD PAIR
- SINGLE PAIR

TEST RESULTS:

DTF $=\ldots$	Meters or Feet
STF $=\ldots$	Meters or Feet
DTS $=\ldots$	Meters or Feet

Resistance Fault Locate

[R F L]

Hookups
RFL Hookups

Option B: Single Pair (Single Good Conductor)

RFL Hookups (con't)

RFL Hookups (con't)

Option B: Ring [B] conductors of each pair can be used as a GOOD pair if they are clean (no faults).

RFL Hookups (con't)

C. Cross:

Option C: Using a Single Good Conductor


```
RFL Hookups (con't)
```

4. Battery Cross:

RFL Hookups (con't)

4. Battery Cross:

Fault Locating Tips

RFL:

1. Always draw a diagram of the faulted pair for better fault analysis.

2 . There are always three factors to be considered in Resistance Fault Locating - Gauge, Length and Temperature of the cable. Cable temperature is the most difficult factor to determine.
The best approach is to know the 'Gauge and Length' of the cable section under test. This information can be entered into the computer during 'SETUP' and the test equipment will compute the cable temperature.
3. Always use a 'Separate Good Pair Hookup' if possible.
4. A pair that has some faults in it can be used as a 'Good Pair' as long as it is at least 200 times better than the faulted one.
5. A 'Good Pair' can be of any other gauge or length which is different to the faulted pair and can also come from another cable.
6. Sectionalize a long cable. Go to the middle of a long section and open the pair under test. Check for the fault in one direction and then the other and then isolate the clean side. Repeat the process until the the cable section is short enough where the length of the section can be precisely determined by physical measurement. Also, a short cable section will allow the technician to use his/her own good pair without going into cable.
7. For short cable sections 1000 feet (300 meters), use your own "GOOD PAIR" a roll of \#24 gauge CO jumper wire.
8. The procedure in locating a 'Battery Cross' and a 'Ground' fault is the same.
9. In a 'Single Pair Hookup', the best good conductor to use is the mate of the faulted one and the next best is any good conductor from any of the pairs in the same group.
10. If DTF and DTS are equal, the fault is either at the strap or beyond.

Fault Locating Tips

OPENS Locate:

1. The GREEN clip must always be connected to the cable shield (ground) when locating opens.
2. 'Normal' mode should only be used in 'complete opens'.
3. 'Special' mode is primarily used for 'partial and dirty opens' and is limited to no more than 6000 feet (1800 meters) of cable .
4. Cable gauge and temperature will not affect cable capacitance.
5. For most accurate OPENS measurement, calibrate the unit to a good pair in the same cable as the faulted one.
6. OPENS Locate does not require a strap. Use it first in analyzing cable faults.
7. If 'MUTUAL' measurement is longer than Tip [A] or Ring [B], the cable shield can be open.

Note: Since the RED and GREEN leads are used, consider the Ring [B] measurement only.

Requirement: Length of cable section under test must be known.

Procedure:

1. Connect the 965 unit as shown in the illustration and make the "A" measurement.
2. Move the 965 unit to the far-end and make the " B " measurement.
3. Calculate distance to the open using the formula, below:
$\mathbf{d}=\frac{(\mathbf{A} \text { or } \mathbf{B}) \times \mathbf{D}}{\mathbf{C}}$ meters to open
Where:
d $=$ Distance-To-Open
(A or B) means whichever is shorter.
D = Length of cable section under test.
$\mathbf{C}=\mathbf{A}+\mathbf{B}$
Example:
$\mathbf{D}=290 \mathrm{~m}$
$\mathbf{A}=110 \mathrm{~m}$
B $=240 \mathrm{~m}$
$\mathbf{C}=\mathbf{A}+\mathbf{B}=110+240=350 \mathrm{~m}$
$\mathrm{d}=\frac{\mathrm{A} \times \mathrm{D}}{\mathrm{C}}=\frac{110 \times 290}{350}=91.14 \mathrm{~m}$

Estimating Cable Temperatures

Aerial Cable:

1. If cable is not in direct sunlight. Add $20^{\circ} \mathrm{F}$ or $15^{\circ} \mathrm{C}$ whichever is used, to the air temperature.
2. If cable is in direct sunlight. Add $40^{\circ} \mathrm{F}$ or $30^{\circ} \mathrm{C}$ whichever is used, to the air temperature.

Buried Cable:

1. Use temperature of tap water. Let water flow out of a water faucet for several minutes.
2. In cold climates, use soil temperature at cable depth.

How To Determine Length of Cable In A Reel

Option \#2:

1. Short the pair at the far-end and connect the 965 test clips, as shown below.
2. Press the RFL key and do the following:
a) Press the "\#" key to change setups.
b) Select the options:

UNIT MEASURE DTS
DISPLAY IN FEET
TEMPERATURE (Enter cable temperature).
GAUGE (Select)
SINGLE PAIR
3. Press the ${ }^{(*)}$ star key to use new setup.
4. The DTS (Distance-To-Strap) reading will be the length of the cable.

Measuring Distance To A Solid Short

Note: This procedure only applies to a solid "short" (0 ohm) resistance.

1. Connect the 965 test clips, as shown below.
2. Press the RFL key and do the following:
a) Press the "\#" key to change setups.
b) Select the options:

UNIT MEASURE DTS
DISPLAY IN FEET
TEMPERATURE (Enter cable temperature).
GAUGE (Select)
SINGLE PAIR
3. Press the (*) star key to use new setup.
4. The DTS (Distance-To-Strap) reading will be the length of the cable.

Dynatel 965DSP
 Subscriber Loop Testing \& Analysis

Why analyze a Subscriber Loop?

A: To evaluate a cable pair before it is put into service.

Generally Accepted Criteria for POTS (Plain Old Telephone Service)

Parameter		Acceptable	Marginal	Unacceptable
Voltage	$=$	48 to 52VDC		
Loop Current	$=$	-23 mA or more	-20 mA to $<-23 \mathrm{~mA}$	<-20 mA
Circuit Loss	$=$	-8.5 dBm or less	-	$>-8.5 \mathrm{dBm}$
Power Influence	$=$	80 dBrnC or less	$>-80 \mathrm{dBrnC} \text { to }<-90 \mathrm{dBrnC}$	-90 dBrnC or more
Circuit Noise	$=$	$20 \mathrm{dBrnC}$	$>\mathbf{2 0} \mathbf{d B r n C}$ to < $\mathbf{3 0} \mathbf{~ d B r n C}$	- $\mathbf{3 0} \mathrm{dBrnC}$ or more
Balance	$=$	60 dB	$>50 \mathrm{~dB} \text { to }<60 \mathrm{~dB}$	50 dB or less
Station Ground Resistance	$=$	25 ohms or less		> 25 ohms
Slope	$=$	7.5 dB or less		$>7.5 \mathrm{~dB}$
Parameter		Insulation Good	Light Fault (Service Affected)	Heavy Fault (Out Of Service)
Insulation Resistance		3.3 Meg or more	> 2.8 K ohms to < 3.3 Meg	2.8 K ohms or less

Why analyze a Subscriber Loop?

B: To identify and isolate the cause of a problem on a partially working cable pair..

Common Subscriber complaints:

1. No dial tone.
2. Continuous dial tone.
3. Signal is too weak can not hear on long distance calls.
4. Occasionally get wrong numbers.
5. Line is too noisy.

Resistance Zones and CO Equipment

Note:
This example shows distances of the RZs based on a 22AWG ($\mathbf{0 . 6 4 m m}$) cable.
If the Engineers undergauge, RZ18 could start as close as 18Kft. $\mathbf{(5 , 4 8 6 m}$).

Resistance Design Examples

Load Coil

Noise and Power Influence Measurements

Fig. 1:Circuit Noise (Noise Metallic) is measured between Tip[A] \& Ring[B]

Circuit Noise Basics

I_{P} - Current flowing through the power line.
I_{T} - Induced current on the Tip[A] conductor from the power line.
I_{R} - Induced current into the Ring[B] conductor from the power line.

1. Influence - depends on power utility load; therefore it varies during the day.
2. Coupling - depends on the length of exposure and separation between Telco and Power utility.
3. Susceptibility - depends on cable pair balance, shield continuity and low resistance grounds. If the pair is well-balanced, I_{T} and I_{R} will be equal and self-cancellation occurs and Noise $=0$.
Note: $1 \& 2$ above, usually are beyond the control of the Telco and rarely can they do anything about them.

Circuit Noise Basics
 (con't)

I_{P} - Current flowing through the power line.
$I_{S P}$ - Induced current on the cable shield from the power line.
I_{T} - Induced current on the $\operatorname{Tip}[A]$ conductor from the power line.
I_{R} - Induced current into the Ring $[B]$ conductor from the power line.

Note: 1. If the pair is well balanced, the opposing currents $I_{T} v I_{R}$ and $I_{T S} v s I_{R S}$ will be equal and therefore cancel out.
2. A perfectly balanced pair can be noise-free even without a cable shield.
3. A good shield continuity and low resistance grounds can reduce Power Influence by 15 dBrnC .

