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Logistics

Before we start, here are some useful information.

Tutorials

– When: Thursdays, 13:45-15:15 and 15:30-17:00.

– Where: B6, 23-25, A3.02.

Niccolò Lomys

– Email: niccolo.lomys@gess.uni-mannheim.de.

– Office: L9, 7, 3rd floor, room 304.

– Office hours: Any time I am in the office.

Textbooks

There are many excellent textbooks that introduce probability theory from the measure-theoretic
viewpoint. Some of them are already referenced in the Lecture Notes. I would add the following
(and, of course, many other excellent treatments exist):

– Billingsley (1995), Probability and Measure. Wiley.

– Capiński and Kopp (2004), Measure, Integral and Probability. Springer.

– Gut (2005), Probability: A Graduate Course. Springer.

– Lévêque (2015), Lecture Notes in Advanced Probability. Manuscript available here.

– Ok (2016), Probability with Economic Applications. Manuscript available here.

– Pollard (2002), A User’s Guide to Measure Theoretic Probability. Cambridge University Press.

– Rosenthal (2006), A First Look at Rigorous Probability Theory. World Scientific.

I personally enjoy the treatment of Ok (2016) very much. The manuscript is advanced, but accessible,
crystal clear (as so is Ok’s book on real analysis), and contains all the relevant real analysis back-
ground. In style, it particularly fits the needs of the economic theory student. Gut (2005) develops
the theory with the ultimate aim of making a proper introduction to mathematical statistics, and
proves results in good detail. Rosenthal (2006) is concise, accessible and well-written, with clearly
proven results. A solution manual with answers to all even-numbered problems exists for this book.
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Lévêque (2015) is roughly at the same level of our course. Lévêque’s notes are short (but not sim-
plistic) and accurate (but without excessive technicalities), and so they are a good read. Capiński
and Kopp (2004) is particularly useful if you lack a solid real analysis background. It has solutions
to all problems and good intuitive explanations. Billingsley (1995) is encyclopedic, but I do not find
it too “user friendly” or particularly suited for self-study. Pollard (2002) offers an interesting and
deep point of view, but the treatment is a bit idiosyncratic. I would not recommend it as the main
reference unless you are taking a probability course with David Pollard.

For the mathematical statistics and the introduction to the linear regression model that we cover
in this course, I find the following references useful (in addition to those listed in the Lecture Notes):

– Casella and Berger (2001), Statistical Inference. Duxbury.

– Hansen (2016), Econometrics. Manuscript available here.

– Rohatgi and Saleh (2001), An Introduction to Probability and Statistics. Wiley.

Grading Policy for Problem Sets

Each problem set will contain six exercises and will be graded out of 100 points. Two exercises will
be starred, while the others will not. The two starred exercises will account for 60 points and will
be graded (almost) as carefully as your exam will be. This means that you will receive an accurate
feedback on them, so that you can get an idea about what we expect from you at the exam. However,
this also means that points will be cut any time a step of your solution is not sufficiently motivated
or your argument is loose. While I will be moderately tolerant at the beginning of the term, I will
become increasingly less so over time, so that you can adjust before the final exam. The remaining
four exercises will account for 10 points each and will be graded in a coarse way: 10 points if you
provide a satisfactory answer with only minor flaws; 6 points if your solution contains one or more
major problems; 2 points if you barely attempt to solve the exercise; 0 points if you do not answer
at all.
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Preliminaries

Throughout our exercise sessions, we will stick to the following conventions.

1. A set is a collection of objects we call elements. A class is a set of sets, and a family is a set
of classes. Please, try to be consistent.

2. The set of natural numbers is N WD f1; 2; : : : g, i.e., we exclude zero.

3. We say that two nonempty sets A and B in some universal set U are numerically equivalent,
or that A and B have the same cardinality, or that A and B have the same cardinal number,
if there exists a bijection f WA! B. In this case, we write A �card B.

Let N be the set of natural numbers, and set Nn WD f1; 2; 3; : : : ; ng for any n 2 N. For any
A � U we say:

(a) A is finite if A �card Nn for some natural number n;

(b) A is infinite if A is not finite;

(c) A is countably infinite if A �card N;

(d) A is countable if A is either finite or countably infinite;

(e) A is uncountable if A is not countable.

The empty set is considered to be finite and its cardinal number is zero.

4. The symbols
S1

iD1 and
S

i2N are used interchangeably to denoted countably infinite unions.
An analogous observation applies to countably infinite intersections.

5. The terms “algebra” and “field,” as well as “� -algebra” and “� -field,” are used interchangeably.

Algebras and �-Algebras

Definition 1. Let � be a nonempty set. A nonempty class A� of subsets of � is called an algebra
(or field) on � if

(i) ; 2 A�;

(ii) � n A 2 A� for all A 2 A�;

(iii) A [ B 2 A for all A;B 2 A�.

We say that A� is a finite algebra on � if it is an algebra on � such that jA�j <1.

In words, an algebra on a nonempty set � is a nonempty class of subsets of � that has the empty
set as one of its elements and is closed under complementation and taking pairwise (and thus finite1)
unions. A finite algebra on � is one that contains finitely many elements. Clearly, any algebra on a
finite set is a finite algebra on that set.

Definition 2. Let � be a nonempty set. A nonempty class A of subsets of � is called a �-algebra
(or �-field) on � if

(i) ; 2 A;

(ii) � n A 2 A for all A 2 A;

1Quiz: Why? In particular, why finite and not countably infinite unions?
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(iii)
S1

nD1 2 A whenever An 2 A for each n D 1; 2; : : : .

Any element of A is called an A-measurable set in �. If A is a �-algebra on �, we refer to the
pair .�;A/ as a measurable space.

That is, a � -algebra on � is a nonempty class of subsets of � that has the empty set as one of its
elements and is closed under complementation and taking countably infinite unions. Note that there
is no difference between an algebra and a � -algebra when the ground set � under consideration is
finite.2

Interpretation. We interpret the fundamental set � as the set of all possible outcomes (or real-
izations) ! of a given experiment whose result is uncertain. We call � the sample space. Given
the sample space �, it is important to describe what information one has on the outcomes of the
experiment. This notion of information is captured by the mathematical notion of � -algebra. The
sets belonging to a � -algebra A on � are the events that one can decide on whether they happened
or not, given the information A. That is, A is an event if and only if A 2 A. If one knows the
information A, then one is able to tell which events of A (D subsets of �) the realization of the
experiment ! belongs to. One may define many different � -algebras on a given sample space, so
what an “event” really is depends on the model one chooses to work with. We cannot, however,
be completely arbitrary when specifying a model because the notion of � -algebras imposes some
restrictions. First, we need to be able to say that nothing happens, which requires ; 2 A. Second,
if A is an event, then we need to be able to talk about this event not occurring, that is, to deem the
set � n A also as an event. This requires A be closed under complementation. Finally, we wish to
be able to talk about at least one of countably many events occurring, and this requires A be closed
under taking countable unions. Besides, the last two properties warrant that we can view “countably
many events occurring simultaneously” as an event as well.

Exercise 1 (Some Basic Properties of � -Algebras)

Let A be a � -algebra on a nonempty set �. Show that:

(a) � 2 A;

(b) If A1; : : : ; An 2 A for some n 2 N, then
Tn

kD1Ak 2 A;

(c) If A;B 2 A, then AnB 2 A.

Solution

For any A � �, define Ac WD � n A.

(a) Since A is a � -algebra on �, ; 2 A (by property (i) of � -algebras) and ;c 2 A (by property
(ii) of � -algebras). Observing that ;c D � completes the proof. �

(b) We first show that A is closed under finite unions. That is,˝
A1; : : : ; An 2 A for some n 2 N

˛
H)

n[
kD1

Ak 2 A: (1)

Let A1; : : : ; An 2 A. For any natural number m > n, define Am WD ;. By property (i) of
� -algebras, Am 2 A for any such m. By property (iii) of � -algebras,

S1
kD1Ak 2 A. Since

1[
kD1

Ak D

 
n[

kD1

Ak

!
[

 
1[

lDnC1

Al

!
D

n[
kD1

Ak [ ; D

n[
kD1

Ak;

2Quiz: Is there any redundant property in our definitions of algebra and �-algebras? If so, which one and why?
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the claim follows.

We now use the previous claim to show that

˝
A1; : : : ; An 2 A for some n 2 N

˛
H)

n\
kD1

Ak 2 A:

Let A1; : : : ; An 2 A. Property (ii) of � -algebras gives Ac
1; : : : ; A

c
n 2 A. By (1),

n[
kD1

Ac
k 2 A;

and so, again by property (ii) of � -algebras, 
n[

kD1

Ac
k

!c

2 A: (2)

By De Morgan’s laws,  
n[

kD1

Ac
k

!c

D

n\
kD1

�
Ac

k

�c
D

n\
kD1

Ak: (3)

The desired result follows from (2) and (3). �

(c) First, note that A n B D A \ Bc. Since A is a � -algebra and B 2 A, by property (ii) of
� -algebras we have Bc 2 A. As � -algebras are closed under pairwise intersections (Exercise
1-(b)) and A;Bc 2 A, A \ Bc 2 A. The desired result follows. �

Remark. Algebras are closed under pairwise unions (by definition) and under pairwise intersections
(by De Morgan’s laws); by induction, we have that algebras are closed under finite unions and inter-
sections. � -algebras are closed under countably infinite unions (by definition) and under countably
infinite intersections (by De Morgan’s laws). By (1), � -algebras are closed under pairwise unions, and
so any � -algebra on a nonempty set � is an algebra on �. It follows that � -algebras are closed under
countable unions and intersections, and that properties (a) and (c) in Exercise 1 hold for algebras as
well. We will use these facts as a routine during the course.

Exercise 2

Solve the following problems.

(a) Let � WD f1; 2; 3g. Explicitly describe the family of all possible � -algebras on �.

(b) Let N be the set of natural numbers and define

A WD fA � N W min fjAj ; jN n Ajg <1g ;

where jAj denotes the cardinal number of A � N. Is A an algebra on N? A � -algebra? Justify
your answers.

(c) Let � be a nonempty set and define

A WD fA � � W either A or � n A is countableg :

Is A an algebra on �? A � -algebra? Justify your answers.
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Solution

(a) The possible � -algebras on � WD f1; 2; 3g are:

A1 WD f;; �g ;

A2 WD f;; f1g ; f2; 3g ; �g ;

A3 WD f;; f2g ; f1; 3g ; �g ;

A4 WD f;; f3g ; f1; 2g ; �g ;

and A5 WD f;; f1g ; f2g ; f3g ; f1; 2g ; f1; 3g ; f2; 3g ; �g :

Hence, the family of all possible � -algebras on � is

fA1;A2;A3;A4;A5g :

Remark. How do we know we can stop looking for � -algebras on �? Since all � -algebras on
� are subsets of P .�/ D A5, we can start from A5 and check which of its proper subsets are
� -algebras on �. In our example, the cardinal number of � is just 3, so this is a simple task.
In general, it can be shown that on a nonempty finite set � there are as many � -algebras as
partitions of �. The total number of partitions of a set with cardinal number n is the Bell
number Bn. Bell numbers satisfy the recursion

BnC1 D

nX
kD0

 
n

k

!
Bk; with B0 D B1 D 1:

The first several Bell numbers are B0 D 1, B1 D 1, B2 D 2, B3 D 5, B4 D 15, B5 D 52, and
B6 D 203. �

(b) A is the class of all subsets A of N such that either A or Ac WD N n A is finite. We now show
that A is an algebra, but not a � -algebra, on N. It is called the cofinite algebra on N.

Claim 1. A is an algebra on N.

Proof. First, since ; is finite, ; 2 A. Second, let A 2 A; if A is finite, then Ac 2 A because
its complement .Ac/c D A is finite; if Ac is finite, then Ac 2 A because it is finite. Third, let
A;B 2 A. Then, we have four cases:

(i) A is finite and B is finite. Then, A [ B is finite (as the union of finite sets is finite), and
so it is in A.

(ii) A is finite and Bc is finite. Then, .A [ B/c D Ac \ Bc is finite (as Ac \ Bc � Bc and
every subset of a finite set is finite), and therefore A [ B 2 A.

(iii) Ac is finite and B is finite. Then, .A [ B/c D Ac \ Bc is finite (as Ac \ Bc � Ac and
every subset of a finite set is finite), and therefore A [ B 2 A.

(iv) Ac is finite and Bc is finite. Then, .A [ B/c D Ac \ Bc is finite (as Ac \ Bc � Ac and
every subset of a finite set is finite), and therefore A [ B 2 A.

This completes the proof that A is an algebra on N.

Claim 2. A is not a � -algebra on N.

Proof. We have f2ng 2 A for each n 2 N, but [n2N f2ng D f2; 4; : : : g 62 A (as the set of even
natural numbers is countably infinite, and so is the set of odd natural numbers, which is its
complement in N). So A is not closed under taking countably infinite unions. �
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(c) We show that A is a � -algebra, and hence an algebra, on �. It is called the cocountable
�-algebra on �.

For any A � �, let Ac WD � n A. First, since ; is finite, it is countable, and so it is in A.
Second, let A 2 A; then, either A or Ac is countable, implying that either Ac or .Ac/c D A is
countable; hence Ac 2 A. Third, suppose that An 2 A for each n 2 N. There are two cases:

(i) An is countable for each n 2 N. In this case,
S

n2NAn is countable, as the countable union
of countable sets is countable, and therefore

S
n2NAn 2 A.

(ii) Ac
j is countable for some j 2 N. In this case,

�S
n2NAn

�c
is countable and thereforeS

n2NAn 2 A. To see that
�S

n2NAn

�c
is countable, note the following:

1.  [
n2N

An

!c

D Ac
j \

0@ \
n2Nnfj g

Ac
n

1A � Ac
j ;

where the equality follow by De Morgan’s laws and the set inclusion by the properties
of intersection;

2. Every subset of a countable set is countable. �

Remark. Let A be the cocountable � -algebra on a nonempty set �. We can show that
A D P .�/ if and only if � is countable. You can prove it as an exercise.

Probability Measures

Definition 3. Let .�;P / be a measurable space. A function P WA! Œ0;1/ is said to be a proba-
bility measure on .�;P / if

(a) P.�/ D 1;

(b) If An 2 A for all n 2 N and An \ Am D ; for all m; n 2 N with m ¤ n, then

P

 
1[

nD1

An

!
D

1X
nD1

P.An/:

Property (b) is called �-additivity. If P is a probability measure on .�;A/, we refer to the triple
.�;A; P / as a probability space.3

Exercise 3 (Properties of Probability Measures)

Let .�;A; P / be a probability space. Prove the following statements.

(i) P.;/ D 0.

(ii) Finite additivity. Let n 2 N. If A1; : : : ; An 2 A and Ai \ Aj D ; for any i; j � n with i ¤ j ,
then

P

 
n[

kD1

Ak

!
D

nX
kD1

P.Ak/:

(iii) If A 2 A, then P.� n A/ D 1 � P.A/.

(iv) Monotonicity. If A;B 2 A and A � B, then P.A/ � P.B/.

3Quiz: How do we know that the infinite series appearing in property (b) is well-defined?
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(v) Bounded by 1. P.A/ � 1 for any A 2 A.

(vi) Subtractivity. If A;B 2 A,

P.B n A/ D P.B/ � P.A \ B/ D P.A [ B/ � P.A/:

(vii) Poincaré-Sylvester. If A;B 2 A and A � B,

P.A [ B/ D P.A/C P.B/ � P.A \ B/:

(viii) Continuity from below. Let fAng
1

nD1 be a sequence of events in A such that An � AnC1 for
each n (in which case we say that fAng

1

nD1 is an increasing sequence). Then,

lim
n!1

P.An/ D P

 
1[

kD1

Ak

!
:

(ix) Continuity from above. Let fAng
1

nD1 be a sequence of events in A such that An � AnC1 for
each n (in which case we say that fAng

1

nD1 is a decreasing sequence). Then,

lim
n!1

P.An/ D P

 
1\

kD1

Ak

!
:

(x) Sub-�-additivity. Let fAng
1

nD1 be a sequence of events in A. Then,

P

 
1[

nD1

An

!
�

1X
nD1

P.An/:

Solution

Let .�;A; P / be a probability space.

(i) Set A1 WD � and An WD ; for n D 2; 3; : : : . Clearly, fAng
1

nD1 is a sequence of pairwise disjoint
sets in A. Thus, by � -additivity,

P

 
1[

nD1

An

!
D

1X
nD1

P.An/: (4)

Since
S1

nD1An D �, (4) reads as

P.�/ D

1X
nD1

P.An/;

which is equivalent to
1X

nD2

P.;/ D 0 (5)

because
P1

nD1 P.An/ D P.�/ C
P1

nD2 P.;/. The equation in (5) implies P.;/ D 0 and
concludes the proof. �
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(ii) Set Am WD ; for any natural number m > n. Clearly, fAkg
1

kD1 is a sequence of pairwise disjoint
sets in A such that

S1
kD1Ak D

Sn
kD1Ak. Then,

P

 
n[

kD1

Ak

!
D P

 
1[

kD1

Ak

!

D

1X
kD1

P.Ak/

D

nX
kD1

P.Ak/C

1X
mDnC1

P.;/

D

nX
kD1

P.Ak/;

where the second equality follows by � -additivity, and the last equality holds true since P.;/ D
0 by Exercise 3-(i). �

(iii) Since � D A [ .� n A/, where A and � n A are disjoint subsets of A, finite additivity gives

P.�/ D P.A/C P.� n A/:

Since P.�/ D 1, the claim follows. �

(iv) If A � B, then B D A [ .B n A/, with A and B n A disjoint subsets of A. Then, by finite
additivity,

P.B/ D P.A [ .B n A// D P.A/C P.B n A/:

Since probability measures are non-negative, P.B n A/ � 0. The claim follows. �

(v) For any A 2 A, A � �. Then, by monotonicity (Exercise 3-(iv)),

P.A/ � P.�/ D 1: �

(vi) Since B D .B n A/ [ .A \ B/, with B n A and A \ B disjoint subsets of A, finite additivity
implies

P.B/ D P..B n A/ [ .A \ B// D P.B n A/C P.A \ B/;

which rearranged gives P.B n A/ D P.B/ � P.A \ B/.

Since A [ B D A [ .B n A/ , with A and B n A disjoint subsets of A, finite additivity implies

P.A [ B/ D P.A [ .B n A// D P.A/C P.B n A/;

which rearranged gives P.B n A/ D P.A [ B/ � P.A/. �

Remark. When A � B, subtractivity reads as P.B n A/ D P.B/ � P.A/.

(vii) The set A [ B is equal to

.A n .A \ B// [ .B n .A \ B// [ .A \ B/ ;

which is a union of pairwise disjoint sets in A. By finite additivity,

P.A [ B/ D P.A n .A \ B//C P.B n .A \ B//C P..A \ B//: (6)

Since A \ B � A and A \ B � B, subtractivity implies

P.A n .A \ B// D P.A/ � P.A \ B/ (7)

and
P.B n .A \ B// D P.B/ � P.A \ B/: (8)

The desired result follows by combining (6), (7) and (8). �
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(viii) Set B1 WD A1 and Bn WD An n An�1 for n D 2; 3; : : : , and note that Bn 2 A for each n by
Exercise 1-(c). By construction,

An D

n[
kD1

Bk (9)

for each n, and so
1[

kD1

Ak D

1[
kD1

Bk: (10)

Moreover, Bi \ Bj D ; holds by construction for any distinct i and j , and so fBkg
1

kD1 is a
sequence of pairwise disjoint sets in A. Then,

P

 
1[

kD1

Ak

!
D P

 
1[

kD1

Bk

!

D

1X
kD1

P.Bk/

D lim
n!1

nX
kD1

P.Bk/

D lim
n!1

P

 
n[

kD1

Bk

!
D lim

n!1
P.An/;

where: the first equality holds by (10); the second equality holds by � -additivity; the third
equality holds by definition of infinite series; the fourth equality holds by finite additivity; the
last equality holds by (9). �

(ix) Since fAng
1

nD1 is a decreasing sequence of events in A, fAc
ng
1

nD1 is an increasing sequence of
events in A. Continuity from below implies that

lim
n!1

P.Ac
n/ D P

 
1[

kD1

Ac
k

!
: (11)

In view of Exercise 3-(iii),

lim
n!1

P.Ac
n/ D lim

n!1
.1 � P.An// D 1 � lim

n!1
P.An/; (12)

and

P

 
1[

kD1

Ac
k

!
D 1 � P

  
1[

kD1

Ac
k

!c!
D 1 � P

 
1\

kD1

Ak

!
; (13)

where the last equality in (13) holds by De Morgan’s laws. The desired result follows from
(11), (12) and (13). �

(x) Set B1 WD A1 and Bn WD An n
Sn�1

iD1 Ai for n D 2; 3; : : : Clearly:

(a) Bn 2 A for each n;

(b)
S1

nD1An D
S1

nD1Bn;

(c) Bi \ Bj D ; for any i ¤ j , and so fBng
1

nD1 is a sequence of pairwise disjoint sets;

(d) Bn � An for each n.
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(Take a moment to convince yourself about the previous statements.) Then,

P

 
1[

nD1

An

!
D P

 
1[

nD1

Bn

!
D

1X
nD1

P.Bn/

�

1X
nD1

P.An/

where: the first equality holds by (b); the second equality holds by (a), (c) and � -additivity;
the inequality holds as, by (d) and monotonicity (Exercise 3-(iv)), P.Bn/ � P.An/ for all n. �

Exercise 4

Solve the following problems.

(a) Let .�;A; P / be a probability space and fAng
1

nD1 a sequence of events in A such that P.An/ D 0

for each n. Which value does P
�S1

nD1An

�
take?

(b) Is the set function P WP.R/! R defined by

P.A/ WD

(
0 if A is a finite set

1 else
;

a probability measure on the measurable space .R;P.R//? Justify your answer.

Solution

(a) Since P is a probability measure, it takes values in Œ0;1/, and so

P

 
1[

nD1

An

!
� 0: (14)

By sub-� -additivity,

P

 
1[

nD1

An

!
�

1X
nD1

P.An/: (15)

By assumption, P.An/ D 0 for each n, and so
P1

nD1 P.An/ D 0. This fact, combined with
with (15), gives

P

 
1[

nD1

An

!
� 0: (16)

Together, (14) and (16) imply

P

 
1[

nD1

An

!
D 0: �

(b) P is not a probability measure on .R;P.R// because it violates finite additivity (and hence
� -additivity). To see this, let A1 WD f1; 3; 5; : : : g and A2 WD f2; 4; 6; : : : g. A1 and A2 are in
P.R/ and are not finite; thus,

P.A1/C P.A2/ D 1C 1 D 2:
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Moreover, A1 [ A2 D N is in P.R/ and is not finite; hence,

P.A1 [ A2/ D 1:

Therefore,
P.A1 [ A2/ D 1 ¤ 2 D P.A1/C P.A2/: (17)

Since A1 and A2 are also disjoint, (17) contradicts finite additivity. �

Combinatorics, Laplace Experiments and Probabilities

Exercise 5

How many possible ways there exist to arrange 3 novels, 2math books and 1 econ book in a bookshelf,

(a) If the order is arbitrary?

(b) If math books and novels are placed together?

(c) If only novels are to be placed together?

Solution

(a) If we arrange the 3C 2C 1 D 6 books in an arbitrary order, we have 6Š possible arrangements.

(b) Suppose the books of the same subject are all in a box, so that we have 3 boxes in total (one
for each subject). The numbers of arbitrary arrangements of books in the same box are: 3Š for
novels, 2Š for math books and 1Š for the econ book. Thus, we have 3Š2Š1Š arrangement of books
(3Š arrangements of novels for each of the 2Š arrangements of the math books for each of the 1Š
arrangements of the econ book) for each arrangement of the 3 boxes. As we have 3Š arbitrary
arrangements of the 3 boxes, the number of arrangements we are looking for is 3Š3Š2Š1Š.

(c) Let’s put the 3 novels in a box. In total, we have 4 objects: 3 books and 1 box. We can arrange
these 4 objects in 4Š ways. Since we can do this for each of the 3Š arrangements of the novels
in the box, the number of arrangements we are looking for is 4Š3Š. �

Exercise 6

A fair die is rolled for three times.

(a) What is the probability that no even number occurs?

(b) What is the probability to obtain an increasing sequence of numbers?

(c) What is the probability to obtain a strictly increasing sequence of numbers?

Briefly explain your reasoning.

Solution

The sample space for this experiment is � WD f1; 2; 3; 4; 5; 6g3. Since j�j D 63 D 216, the sample
space is finite. We choose P.�/ as � -field on �. The die is fair and rolls do not affect each other;
hence, it is safe to assume that elementary events are equally likely, i.e.,

P.f.!1; !2; !3/g/ D
1

j�j
for each .!1; !2; !3/ 2 �;

so that the underlying statistical experiment is a Laplace experiment.
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(a) Let
A1 WD f.!1; !2; !3/ 2 � W !i is odd 8i 2 f1; 2; 3gg :

Note that A1 D f1; 3; 5g
3, and so jA1j D 3

3 D 27. Therefore,

P.A1/ D
jA1j

j�j
D

27

216
D
1

8
;

where P.A1/ is the Laplace probability of event A1.

(b) Let
A2 WD f.!1; !2; !3/ 2 � W !1 � !2 � !3g :

In this case order does not matter (e.g., .1; 2; 3/ 2 A2, but .2; 1; 3/ 62 A2, so you do not want to
count it twice) but replacement is allowed because the sequence has only to be weakly increasing
(e.g., .1; 1; 2/ 2 A2) Therefore (rearrangement and replacement),

jA2j D

 
6C 3 � 1

3

!
D

8Š

3Š .8 � 3/Š
D 56:

Hence,

P.A2/ D
jA2j

j�j
D

56

216
D

7

27
;

where P.A2/ is the Laplace probability of event A2.

(c) Let
A3 WD f.!1; !2; !3/ 2 � W !1 < !2 < !3g :

In this case order does not matter and replacement is not allowed, as the sequence has to be
strictly increasing. Therefore (rearrangement but not replacement),

jA3j D

 
6

3

!
D

6Š

3Š .6 � 3/Š
D 20:

Hence,

P.A3/ D
jA2j

j�j
D

20

216
D

5

54
;

where P.A3/ is the Laplace probability of event A3. �
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Exercise 7

Solve the following problems.

(a) How many functions are there from f1; 2; : : : ; kg to f1; 2; : : : ; ng? How many of these are one-
to-one if k > n? How many of these are one-to-one if k � n? Briefly explain your reasoning.

(b) A sports class with 2N students is grouped randomly into two teams, with N players in each
team. What is the probability that two specific students (say, Bob and Tom) are in the same
team? Briefly explain your reasoning.

Solution

(a) A function f W f1; 2; : : : ; kg ! f1; 2; : : : ; ng is an assignment of exactly one integer in the
codomain to each of the integers in the domain. In other words, such function is specified
by the k-tuple .f .1/; : : : ; f .k//. Since each f .i/ could be any of the n integers in f1; 2; : : : ; ng
for each integer i in f1; 2; : : : ; kg, there are n � n � � �n (k times) D nk possible different assign-
ments in total.

A function f W f1; 2; : : : ; kg ! f1; 2; : : : ; ng is one-to-one if for each i; j 2 f1; 2; : : : ; kg with i ¤ j
we have f .i/ ¤ f .j /. Thus, if k > n there exists no one-to-one function from f1; 2; : : : ; kg
to f1; 2; : : : ; ng. If k � n, there are n possibilities for f .1/, n � 1 possibilities for f .2/ since
the first integer, f .1/, cannot be used again, n� 2 choices for f .3/ since the first two integers
cannot be used again, and so on. In total, there are

n � n � 1 � n � 2 � ::: � n � k C 1 D
nŠ

.n � k/Š

one-to-one functions from f1; 2; : : : ; kg to f1; 2; : : : ; ng. Note that there are k terms in the last
product. �

(b) Since there is a finite number of pairs of opposing teams and students are assigned randomly
to teams (so that pairs of opposing teams are equally likely), this is a Laplace experiment.
Suppose Bob and Tom are assigned to the two teams in that order (first Bob, then Tom), with
the rest of the students being assigned later. Whatever team Bob is assigned to, there are
N � 1 free spots on that team and 2N � 1 students yet to be assigned. The probability that
Bob is given one of these spots is .N � 1/=.2N � 1/. Hence, the (Laplace) probability that Bob
and Tom are in the same team is .N � 1/=.2N � 1/. �

1



*Exercise 8

Solve the following problems.

(a) Let X be a metric space, and denote with OX and CX the class of all open and closed subsets of
X , respectively. Is either OX or CX a field on X? A � -field? How about OX [CX? Justify your
answers. [Note. A positive answer needs a proof, while for negative answers a counterexample
suffices.]

(b) Let .�;A/ be a measurable space and pick any ! 2 �. Consider the function ı!WA ! f0; 1g
defined by

ı!.A/ WD

(
1 if ! 2 A

0 else
:

Show that ı! is a probability measure on .�;A/. It is called the Dirac (probability) measure
on .�;A/.

(c) (Borel-Cantelli Lemma) Let .�;A; P / be a probability space and fAng
1

nD1 a sequence of events
in A such that

P1
nD1 P.An/ <1. For each n, define Bn WD

S
m�nAm. Show that

P

 
1\

nD1

Bn

!
D 0:

Solution

(a) Claim 1. OX is not a field, hence not a � -field, on X .

Counterexample. Consider the metric space .R; d /, where d is the Euclidean distance. The
set .0;C1/ is open in .R; d /, and so .0;C1/ 2 OX . However, R n .0;C1/ D .�1; 0� is not
open1 in .R; d /, and so R n .0;C1/ 62 OX .

Claim 2. CX is not a field, hence not a � -field, on X .

Counterexample. Consider the metric space .R; d /, where d is the Euclidean distance. The
set .�1; 0� is closed in .R; d /, and so .�1; 0� 2 CX . However, R n .�1; 0� D .0;C1/ is not
closed2 in .R; d /, and so R n .�1; 0� 62 CX .

Claim 3. OX [ CX is not a field, hence not a � -field, on X .

Counterexample. Consider the metric space .R; d /, where d is the Euclidean distance. The
set .0; 1/ is open in .R; d /, and so .0; 1/ 2 OX [ CX . The set f1g is closed in .R; d /, and so
f1g 2 OX [ CX . However, .0; 1/ [ f1g D .0; 1� is neither open nor closed, and so .0; 1/ [ f1g 62
OX [ CX . �

(b) We show that the defining properties of probability measure (Definition 1.2 in the Lecture
Notes) are satisfied by ı!.

(o) ı!.A/ 2 f0; 1g � Œ0;1/ for all A 2 A by definition of ı!. Hence, ı!WA! Œ0;1/.

(i) Since ! 2 �, ı!.�/ D 1.

(ii) Let An 2 A for all n D 1; 2; : : : , with Ai \ Aj D ; for any i ¤ j . We distinguish two
cases:

1Quiz: Why?
2Quiz: Why?

2



1. ! 62 An for all n D 1; 2; : : : .
In this case, ı!.An/ D 0 for all n D 1; 2; : : : , and so

1X
nD1

ı!.An/ D 0:

Moreover, as ! 62 An for all n D 1; 2; : : : , ! 62
S1

nD1An 2 A, so that

ı!

 
1[

nD1

An

!
D 0:

Therefore,

ı!

 
1[

nD1

An

!
D

1X
nD1

ı!.An/:

2. ! 2 Ak for exactly one k.3

In this case, ı!.Ak/ D 1 and ı!.Aj / D 0 for any j ¤ k. Then,

1X
nD1

ı!.An/ D ı!.Ak/C
X
j¤k

ı!.Aj / D 1C 0 D 1:

Moreover, as ! 2 Ak, ! 2
S1

nD1An, so that

ı!

 
1[

nD1

An

!
D 1:

Therefore,

ı!

 
1[

nD1

An

!
D

1X
nD1

ı!.An/: �

(c) Since Bn 2 A and Bn � BnC1 for all n D 1; 2; : : : , fBng
1

nD1 is a decreasing sequence of events
in A. Then,

P

 
1\

nD1

Bn

!
D lim

n!1
P.Bn/

D lim
n!1

P

 
1[

mDn

Am

!
� lim

n!1

1X
mDn

P.Am/

D lim
n!1

"
1X

mD1

P.Am/ �

n�1X
mD1

P.Am/

#

D

1X
mD1

P.Am/ � lim
n!1

n�1X
mD1

P.Am/

D

1X
mD1

P.Am/ �

1X
mD1

P.Am/

D 0;

(1)

3Since the An’s are pairwise disjoint, there exists at most one k for which ! 2 Ak .

3



where: the first equality holds by continuity from above of P , the second equality holds by
definition of Bn, the inequality holds by sub-� -additivity of P , and the last equality holds
because the infinite series

P1
mD1 P.Am/ is convergent by assumption (i.e.,

P1
mD1 P.Am/ <1).

Moreover, by non-negativity of P , we have

P

 
1\

nD1

Bn

!
� 0: (2)

Together, (1) and (2) imply

P

 
1\

nD1

Bn

!
D 0;

as desired. �

Exercise 9 (Final Exam - Spring 2012)

Let P be a probability measure on .R;B.R//, where B.R/ denotes the Borel � -field on R, and define

A WD fA 2 B.R/ W P.A/ 2 f0; 1gg :

Show that A is a � -field on R.

Solution

We show that the defining properties of � -field (Definition 1.1 in the Lecture Notes) are satisfied by
A.

(o) A � B.R/ � P.R/. Hence, A is a class of subsets of R.

(i) Since P is a probability measure on .R;B.R//, P.;/ D 0. Hence, ; 2 A.

(ii) Let A 2 A. Since A � B.R/ and B.R/ is a � -field, Ac WD R n A 2 B.R/. Moreover, P.Ac/ is
well defined because P is a probability measure on .R;B.R//. We distinguish two cases:

1. P.A/ D 0. Then, P.Ac/ D 1 � P.A/ D 1 � 0 D 1, where the first equality follows by
Theorem 1.3.(iii) in the Lecture Notes. Hence, Ac 2 A.

2. P.A/ D 1. Then, P.Ac/ D 1 � P.A/ D 1 � 1 D 0, where the first equality follows by
Theorem 1.3.(iii) in the Lecture Notes. Hence, Ac 2 A.

(iii) Let An 2 A for all n D 1; 2; : : : . Clearly,
S1

nD1An 2 B.R/ and P
�S1

nD1An

�
is well defined.

We distinguish two cases:

1. P.An/ D 0 for all n D 1; 2; : : : . By non-negativity and sub-� -additivity of probability
measure P ,

0 � P

 
1[

nD1

An

!
�

1X
nD1

P.An/ D 0:

Then, P
�S1

nD1An

�
D 0, showing that

S1
nD1An 2 A.

2. P.An/ D 1 for some n. Since An �
S1

nD1An 2 A, by monotonicity of probability measure
P and the fact that P is bounded by 1,

1 D P.An/ � P

 
1[

nD1

An

!
� 1:

Then, P
�S1

nD1An

�
D 1, showing that

S1
nD1An 2 A. �
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*Exercise 10

Let � be a nonempty set and I a nonempty index set. Moreover, suppose that Ai is a � -algebra on
� for each i 2 I .

(a) Show that
T

i2I Ai is a � -algebra on �.

(b) Let A� be a nonempty class of subsets of �. Show that the smallest � -algebra on � generated
by A� is well-defined (i.e., show that it exists and that it is unique).

(c) Give an example to show that
S

i2I Ai need not be an algebra even if I is a finite set. Try to
come up with an example which is as simple as possible.

(d) Now suppose that I D N and that Ai � AiC1 for each i 2 N. Show that
S

i2N Ai is an
algebra on �, but it need not be a � -algebra. [Note. A much stronger statement is actually
true. Namely: if Ai � AiC1 for each i 2 N, where the inclusion is now proper, then

S
i2N Ai

can never be a � -algebra. You can try to establish this result, but it is not too trivial.]

Solution

(a) Let A WD
T

i2I Ai . We show that the defining properties of � -algebra (Definition 1.1 in the
Lecture Notes) are satisfied by A.

(o) Clearly, A is a class of subsets of �.

(i) Since Ai is a � -algebra on � for all i 2 I , ; 2 Ai for all i 2 I . Then, ; 2 A.

(ii) Let A 2 A. Then, A 2 Ai for all i 2 I . Since Ai is a � -algebra on � for all i 2 I ,
� n A 2 Ai for all i 2 I . Then, � n A 2 A.

(iii) Let An 2 A for all n D 1; 2; : : : . Then, for all i 2 I , An 2 Ai for n D 1; 2; : : : . As Ai is a
� -algebra on � for all i 2 I ,

S1
nD1An 2 Ai for all i 2 I . Then,

S1
nD1An 2 A. �

(b) First, note that there is at least a � -algebra on �, namely P.�/, which is sure to contain A�.
That is, the collection

† WD fA � P.�/ W A is a � -algebra on � such that A� � Ag

is nonempty. Furthermore, if we intersect all members of this family we again get a � -algebra
on � (by Exercise 10-(a)) that contains A� (by definitions of intersection and †). Obviously,
this � -algebra is a subset of any � -algebra on �, say C, that contains A�, as C is one of the
intersected members. Thus, there is a unique smallest algebra that contains A�, so �

�
A�
�

is
well-defined, and we have

�
�
A�
�
D

\
A2†

A: �

Remark. Exercise 10-(b) proves Lemma 1.6 in the Lecture Notes.

(c) Let � WD f1; 2; 3g. It is easy to see that

A1 WD f;; f1g ; f2; 3g ; �g

and
A2 WD f;; f2g ; f1; 3g ; �g

are � -algebras on �. However,

A WD A1 [A2 D f;; f1g ; f2g ; f1; 3g f2; 3g ; �g

is not an algebra on � because f1g ; f2g 2 A, but f1g [ f2g D f1; 2g 62 A. �

5



(d) Let A WD
S

i2N Ai . Note that, by definition of union, Ai � A for all n 2 N. We show that the
defining properties of algebra (Definition 1.9 in the Lecture Notes) are satisfied by A.

(o) Clearly, A is a class of subsets of �.

(i) Fix some index j 2 N. Since Aj is a � -algebra on �, ; 2 Aj . Since Aj � A, ; 2 A.

(ii) Let A 2 A. Then, there exists some j 2 N such that A 2 Aj . Since Aj is a � -algebra on
�, � n A 2 Aj . Since Aj � A, � n A 2 A.

(iii) Let A;B 2 A. Then, there exists some j; k 2 N such that A 2 Aj and B 2 Ak. Set
m WD max fj; kg. Since Ai � AiC1 for each i 2 N, A;B 2 Am. As Am is a � -field on �,
A [ B 2 Am. Then, A [ B 2 A because Am � A.

The following counterexample shows that
S

i2N Ai need not be a � -algebra. Set � WD N and,
for all i 2 N, let Ai be the � -algebra on N generated by the singletons fkg with k � i . Clearly,
Ai � AiC1 for all i 2 N. However,

S
i2N Ai is equal to the cofinite algebra on N (prove it!),

which we know it is not a � -algebra on N from Problem Set 1 (Exercise 2-(b)). �

Exercise 11

Define B as the � -field on R generated by the class of all open and bounded intervals .a; b/ of the
real line, with �1 < a < b <1. Furthermore, define B� as the � -field on R generated by the class
of all closed and bounded intervals Œa; b�, with �1 < a < b < 1. Show that B D B�. [Hint. You
have to show that B � B� and B� � B.]

Solution

Define
A WD set of all intervals of the form .a; b/; with �1 < a < b <1;

and
A� WD set of all intervals of the form Œa; b�; with �1 < a < b <1;

so that B WD �.A/ and B� WD �.A�/. We show that B � B� and B� � B, which imples B D B�.
(i) [B � B�]

It suffices to show that A � B�. This is so because, as B is the smallest � -field on R containing
A, hA � B�;B� � -field on Ri H) B � B�. Let .a; b/ 2 A and fix a natural number k >
2=.b � a/. Observe that

.a; b/ D

1[
nDk

�
aC

1

n
; b �

1

n

�
:

For each n � k, ŒaC 1=n; b � 1=n� 2 B� and so, since B� is a � -field,

1[
nDk

�
aC

1

n
; b �

1

n

�
2 B�:

Hence, .a; b/ 2 B�. Since .a; b/ was arbitrarily chosen in A, the desired result follows.

(ii) [B� � B]

For the same argument as in (i), it suffices to show that A� � B. Let Œa; b� 2 A�. Observe that

Œa; b� D

1\
nD1

�
a �

1

n
; b C

1

n

�
:

For each n, .a � 1=n; b C 1=n/ 2 B, and so, since B is a � -field,

1\
nD1

�
a �

1

n
; b C

1

n

�
2 B:

6



Hence, Œa; b� 2 B. Since Œa; b� was arbitrarily chosen in A�, the desired result follows. �

Remark. Exercise 11 proves (part of) Theorem 1.8 in the Lecture Notes.

Exercise 12

Let � WD f1; 2; 3; 4g and consider the function pW�! Œ0; 1� defined by p.!/ WD !=10.

(a) Show that P WP.�/ ! Œ0;1/, defined by P.A/ WD
P

!2A p.!/, defines a probability measure
on .�;P.�//.

(b) Determine the � -field on � generated by E WD fA 2 P.�/ W P.A/ D 1=2g.

Solution

(a) We show that the defining properties of probability measure are satisfied by P .

(o) By definition of P , P WP.�/! Œ0;1/ clearly holds true.

(i) P.�/ D
P

!2� p.!/ D 1=10C 2=10C 3=10C 4=10 D 1.

(ii) Let An 2 P.�/ for all n D 1; 2; : : : , with Ai \ Aj D ; for any i ¤ j . Then,

P

 
1[

nD1

An

!
D

X
!2

S1
nD1 An

p.!/

D

X
!2�

p.!/1S1
nD1 An

.!/

D

X
!2�

p.!/

1X
nD1

1An
.!/

D

1X
nD1

X
!2�

p.!/1An
.!/

D

1X
nD1

24X
!2An

p.!/

35
D

1X
nD1

P.An/;

where the first and the last equality hold by definition of P , and the third equality holds
because the set A1; A2; : : : are pairwise disjoint.

Remark. Part (ii) also proves Lemma 1.4 in the Lecture Notes.

(b) Note that E D ff1; 4g ; f2; 3gg, and � n f1; 4g D f2; 3g. Then,

�.E/ D f;; f1; 4g ; f2; 3g ; �g : �

7
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*Exercise 13

Solve the following problems.

(a) Let P be a probability measure on .R;B.R// and define the function F WR! Œ0; 1� as

F.b/ WD P
�
.�1; b�

�
for all b 2 R:

Show that:

(i) P
�
.a; b�

�
D F.b/ � F.a/ for all a; b 2 R with a < b;

(ii) F is non-decreasing, i.e.,˝
a; b 2 R with a � b

˛
H) F.a/ � F.b/I

(iii) F is continuous from the right, i.e.,˝
.bn/ 2 R1 with bn # b

˛
H) F.bn/! F.b/I

(Note. .bn/ 2 R1 simply means that fbngn2N is a sequence in R.)

(iv) 1. limx!�1 F.x/ D 0;

2. limx!C1 F.x/ D 1.

(b) Let the function f WR! R be defined as

f .x/ WD

8̂<̂
:
c.x C 2/ for � 2 � x < 0

c.2 � x/ for 0 � x < 2

0 else

:

Determine a real number c such that f is a probability density function.

Solution

(a) (i) Note that .a; b� D .�1; b� n .�1; a�. Then,

P
�
.a; b�

�
D P

�
.�1; b� n .�1; a�

�
D P

�
.�1; b�

�
� P

�
.�1; a�

�
D F.b/ � F.a/;

where the second equality holds by subtractivity of P (with .�1; a� � .�1; b� as a < b),
and the third equality holds by definition of F .

1



(ii) Let a; b 2 R, with a � b. Then, .�1; a� � .�1; b�. By monotonicity of P ,

P
�
.�1; a�

�
� P

�
.�1; b�

�
;

which is equivalent to
F.a/ � F.b/

by definition of F .

(iii) Let .bn/ 2 R1, with bn # b. Since bnC1 � bn, .�1; bnC1� � .�1; bn� for n D 1; 2; : : : .
Then, by continuity from above of P ,

lim
n!1

P
�
.�1; bn�

�
D P

 
1\
nD1

.�1; bn�

!
D P

�
.�1; b�

�
:

where the last equality holds because, as bn ! b,
T1
nD1.�1; bn� D .�1; b�. Observing

that P
�
.�1; bn�

�
D F.bn/ and P

�
.�1; b�

�
D F.b/ by definition of F , the desired result

follows.

(iv) 1. Let .bn/ 2 R1, with bn # �1. Then, .bn;C1/ � .bnC1;C1/ for n D 1; 2; : : : andS1
nD1.bn;C1/ D R. By continuity from below of P ,

lim
n!1

P
�
.bn;C1/

�
D P.R/ D 1: (1)

Since .�1; bn� D R n .bn;C1/, Theorem 1.3.(iii) in the Lecture Notes implies

P
�
.�1; bn�

�
D 1 � P

�
.bn;C1/

�
: (2)

Together, (1) and (2) give
lim
n!1

P
�
.�1; bn�

�
D 0:

By definition of F , P
�
.�1; bn�

�
D F.bn/. The desired result follows.

2. Let .bn/ 2 R1, with bn " C1. Then, .�1; bn� � .�1; bnC1� for n D 1; 2; : : : andS1
nD1.�1; bn� D R. By continuity from below of P ,

lim
n!1

P
�
.�1; bn�

�
D P.R/ D 1:

By definition of F , P
�
.�1; bn�

�
D F.bn/. The desired result follows. �

(b) The function f is continuous and so Riemann integrable on any interval of the form Œa; b�, with
�1 < a � b <1. To be a probability density function, f has to satisfyZ 1

�1

f .x/ dx D 1:

Note thatZ 1
�1

f .x/ dx D lim
n!1

Z �2
�n

0 dx C

Z 0

�2

c.x C 2/ dx C

Z 2

0

c.2 � x/ dx C lim
n!1

Z n

0

0 dx

D 0C c

Z 0

�2

.x C 2/ dx C c

Z 2

0

.2 � x/ dx C 0

D c

�
x2

2
C 2x

�ˇ̌̌̌
ˇ
0

�2

C c

�
2x �

x2

2

�ˇ̌̌̌
ˇ
2

0

D 2c C 2c

D 4c:
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Then, Z 1
�1

f .x/ dx D 1” c D
1

4

Moreover, when c D 1
4
, f .x/ � 0 for any x 2 R. Thus, we conclude that f is a probability

density function for c D 1
4
. �

*Exercise 14

Solve the following problems.

(a) Let .�1;A1/ and .�2;A2/ be measurable spaces, and C a class of subsets of �2 such that
�.C/ D A2. Show that a function f W�1 ! �2 is A1-A2 measurable if and only if f �1.C/ � A1.
[Note. f �1.C/ WD

˚
B 2 P.�1/ W B D f �1.C /; C 2 C

	
.]

(b) Let .�;A; P / be a probability space and X a real-valued random variable on .�;A; P / such
that P.X > 0/ > 0. Show that there exists ı > 0 such that P.X � ı/ > 0.

Solution

Let F � P.�2/. Define

f �1.F/ WD
˚
E 2 P.�1/ W E D f �1.F /; F 2 F

	
:

Hence, for E � P.�1/, f �1.F/ � E means that f �1.F / 2 E for all F 2 F .

(a) Necessity.

Suppose that f W�1 ! �2 is A1-A2 measurable. Then, f �1.A2/ � A1. Since C � A2,
f �1.C/ � f �1.A2/. Hence, f �1.C/ � f �1.A2/ � A1, and the desired result follows.

Sufficiency.

Suppose that f �1.C / 2 A1 for all C 2 C. We need to show that f �1.A2/ � A1. Define

B WD
˚
B 2 P.�2/ W f �1.B/ 2 A1

	
By assumption, C � B, which also implies that B is nonempty. First, we show that B is
a � -algebra on �2. Let B 2 B. Then, f �1.B/ 2 A1 and, since A1 is a � -algebra on �1,
�1 n f

�1.B/ 2 A1. As
f �1.�2 n B/ D �1 n f

�1.B/;

it follows that �2 n B 2 B. Now let B1; B2; � � � 2 B. Then, f �1.B1/; f
�1.B2/; � � � 2 A1 and, as

A1 is a � -algebra on �1,
1[
nD1

f �1.Bn/ 2 A1:

As inverse images behave well with respect to taking unions, we have

f �1

 
1[
nD1

Bn

!
D

1[
nD1

f �1.Bn/;

and so
1[
nD1

Bn 2 B:

3



We conclude that B is a � -algebra on �2, as we claimed.1 Since C � B and B is a � -algebra
on �2, it follows that �.C/ D A2 � B, and so f �1.A2/ � f �1.B/. Since f �1.B/ � A1 by
construction, the desired result follows. �

Remark 1. Let .�;A/ be a measurable space. In principle, to verify that a function f W�!
Rk is a random variable on .�;A/ we need to show that f �1.B/ 2 A for every Borel subset B
of Rk. This is usually a too difficult task. Exercise 14-(a) tells us that there is a nice short-cut.
If we can find a collection C of subsets of Rk that generates B.Rk/ and if we manage to verify
that f �1.C / 2 C for every C 2 C, we may then conclude that f is an Rk-valued random
variable. For instance, if f �1.O/ 2 A for every open subset O of Rk, or f �1.C / 2 A for every
closed subset C of Rk, then f is an Rk-valued random variable.2

Remark 2. (The Good Set Technique) Exercise 14-(a) is an application of the so called “good
set technique,” an extremely useful tool in measure theory.

The fact that there is often no way of giving an explicit description of a generated � -algebra
is a source of discomfort. In particular, this often makes it difficult to check whether or not
all members of a given � -algebra satisfy a property of interest. There is, however, a method
of settling such problems in which we utilize the definition of the “� -algebra generated by C”
directly.

Suppose we wish to verify that all members of a given � -algebra A on a nonempty set � satisfy
a certain property. Let us call any one member of P.�/ that satisfies this property a good set,
and let

G WD the class of all good sets:

The problem at hand is thus to show that A � G. Now suppose we know a bit more about A,
namely, we know that it is generated by a nonempty collection C of subsets of �. It is often
easy to verify that all members of C are good sets (otherwise A � G cannot be true anyway).
So suppose we proved C � G. The point is that this is enough to conclude that all members
of A are good sets, that is, A � G, provided that the class G of all good sets is a � -algebra on
�. In sum, “the good set technique” transforms the problem at hand into checking whether or
not G is closed under complementation and taking countable unions.

(b) Set
A WD

˚
X > 0

	
WD
˚
! 2 � W X.!/ > 0

	
WD X�1

�
.0;C1/

�
and

An WD

�
X �

1

n

�
WD

�
! 2 � W X.!/ �

1

n

�
WD X�1

 �
1

n
;C1

�!
for all n 2 N:

Since X is a real-valued random variable on .�;A; P /, A;An 2 A for all n 2 N. Moreover,
An � AnC1 for all n 2 N holds by construction. Therefore, fAng

1

nD1 is an increasing sequence
of events in A. By continuity from below of P , we have

lim
n!1

P.An/ D P

 
1[
nD1

An

!
: (3)

In addition, observe that

1[
nD1

An D

1[
nD1

X�1

 �
1

n
;C1

�!
D X�1

 
1[
nD1

�
1

n
;C1

�!
D X�1

�
.0;C1/

�
D A: (4)

1Quiz: Why don’t we need to show that ; 2 B?
2Quiz: You see why, right?
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Together, (3) and (4) imply that

lim
n!1

P.An/ D P.A/: (5)

As P.A/ > 0 by assumption, (5) implies that there exists N 2 N such that

P.An/ > 0 for all n 2 N with n � N:

In particular, we have P.AN / > 0. Set ı WD 1
N

to obtain the desired result. �

Exercise 15

For a probability measure P on .R;B.R// suppose that its cumulative distribution function F is
strictly increasing and continuous. Define on .R;B.R/; P / the random variable X as X.x/ WD F.x/

for all x 2 R. Show that PX is the uniform distribution on Œ0; 1� (i.e., a density of PX is equal to 1
on Œ0; 1� and vanishes outside this interval).

Solution

Let FX be the cumulative distribution function of the probability measure PX . For any b 2 .0; 1/,
we have

FX.b/ D P
X
�
.�1; b�

�
(FX is the cdf of PX)

D P
�
fx 2 R W X.x/ � bg

�
(PX is the distribution of X)

D P
�
fx 2 R W F.x/ � bg

�
(definition of X)

D P
�˚
x 2 R W F �1.F.x// � F �1.b/

	�
(F �1 strictly increasing and F continuous)

D P
�˚
x 2 R W x � F �1.b/

	�
(F is strictly increasing)

D P
��
�1; F �1.b/

��
D F

�
F �1.b/

�
(F is the cdf of P)

D b: (F is continuous)

Note: (i) F �1 is strictly increasing because it is the inverse function of a strictly increasing function;
(ii) Continuity of F implies that .0; 1/ � F.R/, so that F �1.b/ is well defined for any b 2 .0; 1/ and

P
�
fx 2 R W F.x/ � bg

�
D P

�
fx 2 R W P..�1; b� � bg

�
D b:

Since F.R/ � Œ0; 1�, for b < 0 we have

FX.b/ D P
�
fx 2 R W F.x/ � bg

�
D P.;/ D 0;

and for b > 1
FX.b/ D P

�
fx 2 R W F.x/ � bg

�
D P.R/ D 1:

Finally, the previous observations, together with continuity of F , imply that F.0/ D 0 and F.1/ D 1.3

Therefore, FX WR! Œ0; 1� is given by

FX.b/ D

8̂<̂
:
0 if b < 0

b if 0 � b � 1

1 if b > 1

:

3Quiz: Can you prove it?
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Now, let fX be a probability density function of PX . We know that the Riemann integrable function
fX WR! Œ0;1/ has to satisfy

F 0X.b/ D fX.b/

at any b 2 R where FX is continuously differentiable. Note that FX is continuously differentiable in
R n f0; 1g, with F 0X.b/ D 1 if b 2 .0; 1/ and F 0X.b/ D 0 if b 2 R n Œ0; 1�. Since fX can take arbitrary
finite values at finitely many elements in its domain, we conclude that a density of PX is

fX.b/ D

8̂<̂
:
0 if b < 0

1 if 0 � b � 1

0 if b > 1

;

which gives the desired result. �

Remark 1. (On the role of continuity of F ) Suppose that 0 is the only point of discontinuity of F ,
with limx!0� F.x/ D 1=3 and F.0/ D 2=3. Find the distribution PX .

Remark 2. One application of the result in the previous exercise is in the generation of random
samples from a particular distribution. If it is required to generate an observation Y from a population
with cdf FY , we only need to generate a uniform random number U , between 0 and 1, and solve
for y in the equation FY .y/ D u, where u denotes the realization of U . From the computational
viewpoint, this method is often not too efficient, but it is generally applicable.

Exercise 16

Let T be an arbitrary index set, and suppose that fXtgt2T is a collection of independent real-valued
random variables on a common probability space .�;A; P /. Moreover, suppose that ft WR ! R,
t 2 T , are B.R/-B.R/ measurable functions. Show that fft.Xt/gt2T is a collection of independent
real-valued random variables on .�;A; P /.

Solution

For any t 2 T , define gt WD ft ı Xt . First, we show that fgtgt2T is a collection of real-valued
random variables on .�;A; P /. Let B 2 B.R/. Since ft is B.R/-B.R/ measurable by assumption,
f �1t .B/ 2 B.R/. Since Xt is A-B.R/ measurable by assumption, X�1t

�
f �1t .B/

�
2 A. Then,

g�1t .B/ D X
�1
t

�
f �1t .B/

�
2 A:

We now establish independence. Consider any nonempty and finite index set I0 � T and, for each
t 2 I0, let Qt 2 B.R/ be arbitrarily chosen. Then

P

 \
t2I0

g�1t .Qt/

!
D P

 \
t2I0

X�1t
�
f �1t .Qt/

�!
D

Y
t2I0

P
�
X�1t

�
f �1t .Qt/

��
D

Y
t2I0

P
�
g�1t .Qt/

�
;

where the second equality holds because fXtgt2T is a collection of independent real-valued random
variables on .�;A; P / and f �1t .Qt/ 2 B.R/ because each ft is B.R/-B.R/ measurable. The desired
result follows. �

Exercise 17

Consider the measurable space .Œ0; 1�;B.Œ0; 1�//, where B.Œ0; 1�/ is the Borel � -field on Œ0; 1�, and let
PL be the Lebesgue probability measure on .Œ0; 1�;B.Œ0; 1�//. Let Q be the set of all rational numbers
in Œ0; 1� and I the set of all irrational numbers in Œ0; 1�.
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(i) Which value does PL.Q/ take?

(ii) A friend of yours, say Claudio, used the following way to compute the Lebesgue probability
measure of irrationals in Œ0; 1�:

PL.I / D
X
x2I

PL
�
fxg

�
:

Since the Lebesgue probability measure of fxg is zero, he concludes that PL.I / D 0. Is Claudio’s
calculation right? If yes, explain why; if not, explain why and find the correct PL.I /.

Solution

We need first to understand what the probability space .Œ0; 1�;B.Œ0; 1�/; PL/ is. Roughly speaking, the
Lebesgue probability measure PL on .Œ0; 1�;B.Œ0; 1�// is the probability measure on .Œ0; 1�;B.Œ0; 1�//
which on the intervals coincides with their length.

One way to go is to notice that

B.Œ0; 1�/ D fS 2 P.Œ0; 1�/ W S 2 B.R/g : (6)

Then, we can define PL as the restriction of �1 to B.Œ0; 1�/, where �1 is the Lebesgue measure on
.R;B.R//. To proceed this way, we need to verify that the equality among classes in (6) holds true (see
Ok (2016), Chapter B, Exercise 1.20), and that PL defines a probability measure on .Œ0; 1�;B.Œ0; 1�//.
Alternatively, we might construct the probability space .Œ0; 1�;B.Œ0; 1�/; PL/. Define

A WD set of all intervals of the form .a; b�; with 0 � a � b � 1;

and
A� WD A [ f0g :

Moreover, let B.Œ0; 1�/ WD �
�
A�
�

be the Borel � -field on Œ0; 1�. Clearly, every singleton, and hence
every countable, subset of Œ0; 1� belongs to B.Œ0; 1�/.4
On the semialgebra5 A�, define the probability pre-measure PLWA� ! Œ0; 1� as

PL
�
.a; b�

�
WD b � a;

with PL.f0g/ WD 0 and PL
�
Œ0; 1�

�
WD 1. It can be shown that PL satisfies � -additivity.6 Thus,

Carathéodory’s Extension Theorem7 tells us that PL can be extended uniquely to a probability
measure on B.Œ0; 1�/. This is the Lebesgue probability measure on .Œ0; 1�;B.Œ0; 1�//.8

The Lebesgue probability measure of a singleton set is zero. Indeed, for or any x 2 .0; 1�, we have

PL
�
fxg

�
D PL

 
1\
nDk

�
x �

1

n
; x

�!
D lim

n!1
PL

��
x �

1

n
; x

��
D lim

n!1

1

n
D 0; (7)

where k WD min fm 2 N W m > 1=xg, while PL
�
f0g
�
D 0 holds by definition of PL. Note that the

second equality in (7) holds by continuity from above of PL.

We are now ready to answer the two questions.

4Quiz: Why? Make sure you are able to prove it.
5Definition. Let � be a nonempty set and S a class of subsets of �. We say that S is a semialgebra on � if (i)

both ; and � belong to S; (ii) S is closed under taking finite intersections, and (iii) for any S 2 S, the set � n S can
be written as the union of a collection of finitely many pairwise disjoint elements of S . Remark. An algebra on � is a
semialgebra on �. Quiz: Is A� an algebra? Make sure you understand why the set of all intervals of the form .a; b/,
with 0 � a < b � 1 is not a semialgebra on Œ0; 1�.

6See Ok (2016), Chapter B, pages 39-42, to get an idea.
7For a statement of Carathéodory’s Extension Theorem, see Ok (2016), Chapter B, page 32. The statement in Ok

(2016) is slightly more general than the one in the Lecture Notes, and it suits better the present framework.
8Quiz: Let QA WD set of all intervals of the form .a; b/; with 0 � a < b � 1. Clearly, �

�
QA
�
D B.Œ0; 1�/. Can you see

why I did not use QA to generate B.Œ0; 1�/?
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(i) Since Q is a countably infinite set, it can be written as the countably infinite union of the
pairwise disjoint sets in ˚

fqg 2 P.Œ0; 1�/ W q 2 Q
	
:

That is,

Q D
[
q2Q

fqg :

Since PL is a probability measure on .Œ0; 1�;B.Œ0; 1�//, by � -additivity we have

PL.Q/ D PL

 [
q2Q

fqg

!
D

X
q2Q

PL
�
fqg
�
: (8)

Observing that PL
�
fqg
�
D 0 for all q 2 Q, we conclude from (8) that

PL.Q/ D 0:

(ii) Since I can be written as the union of the pairwise disjoint sets in˚
fxg 2 P.Œ0; 1�/ W x 2 I

	
;

that is as
I D

[
x2I

fxg ;

Claudio thinks that, by � -additivity of PL,

PL.I / D
X
x2I

PL
�
fxg

�
:

Since X
x2I

PL
�
fxg

�
´ sup

8<:X
x2 QI

PL
�
fxg

�
W QI � I and

ˇ̌
QI
ˇ̌
<1

9=;
and the Lebesgue probability measure of a singleton set is zero, he concludes that PL.I / D 0.

Claudio’s reasoning is wrong because the set I is uncountable, while � -additivity of probability
measures only holds for countably infinite unions of pairwise disjoint sets. Since I WD Œ0; 1�nQ 2
B.Œ0; 1�/, we have

PL.I / D PL
�
Œ0; 1� nQ/ D PL.Œ0; 1�

�
� PL.Q/ D 1 � 0 D 1;

where the second equality holds by Theorem 1.3.(iii) in the Lecture Notes, and the third equality
holds because PL.Œ0; 1�/ WD 1 and PL.Q/ D 0 by part (i). �

Exercise 18

Solve the following problems.

(a) Let X be a geometrically distributed random variable with parameter � 2 .0; 1/, X � Geo.�/.

(i) Show that the cumulative distribution function is

F.x/ D 1 � .1 � �/bxc; x 2 Œ1;1/;

where bxc is the largest integer smaller than or equal to x.

8



(ii) Show that

EŒX� D
1

�
:

(b) Let X1; : : : ; Xn be i.i.d. random variables with Xi � Exp.�/, � > 0, for all i . Find the
distribution of the random variable mn defined as

mn WD min
1�i�n

Xi :

Solution

(a) Let X � Geo.�/, with � 2 .0; 1/. The random variable X is discrete, with support SX D N.
Its distribution takes values PX.fig/ D .1 � �/i�1� at each i 2 SX .

(i) Let x 2 SX . We have

PX.X > x/ D PX.X � x C 1/

D

1X
iDxC1

.1 � �/i�1�

D �

1X
iDxC1

.1 � �/i�1

D �

�
.1 � �/x

�

�
D .1 � �/x

Then, at any x 2 SX ,

F.x/ D PX.X � x/ D 1 � PX.X > x/ D 1 � .1 � �/x:

The desired result follows by noting that PX..a; b// D 0 if .a; b/ \ SX D ;. �

(ii) We have

EŒX� WD
X
i2SX

PX.fig/

D

1X
iD1

i.1 � �/i�1�

D �

1X
iD1

i.1 � �/i�1

D �

"
1X
iD1

�
�
d

d�
.1 � �/i

�#

D �

"
d

d�

 
�

1X
iD1

.1 � �/i

!#
D �

d

d�

1C �

�

D
1

�
;

where the interchange of summation and differentiation is justified because convergent
power series converge uniformly on compact subsets of the set of points where they con-
verge. �
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(b) Let Pmn be the distribution of mn and PX the distribution of X1; : : : ; Xn. Fix t 2 R. Note
that

mn > t”
˝
X1 > t ^X2 > t ^ � � � ^Xn > t

˛
:

Therefore, for t � 0,

Pmn.mn > t/ D P
mn.X1 > t;X2 > t; : : : ; Xn > t/

D PX.X1 > t/P
X.X2 > t/ � � �P

X.Xn > t/

D e��te��t � � � e��t

D e�n�t ;

where the second equality holds because X1; : : : ; Xn are i.i.d. random variables, and the third
equality holds because Xi � Exp.�/ for i D 1; 2; : : : ; n, and Pmn.mn > t/ D 1 if t < 0. Thus,

Fmn
.t/ WD Pmn.mn � t / D

(
1 � e�n�t if t � 0

0 if t < 0
:

We conclude that mn � Exp.n�/. �
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Exercise 19

Let X be a continuous real-valued random variable on a probability space .�;A; P / with pdf fX WR!
Œ0;C1/ defined by

fX.x/ WD
1
p
2�
e�x

2=2:

Find a pdf fY of the random variable Y defined as Y WD X2.

Solution

Let g.X/ WD X . In this case, g0.x/ D 2x, which is > 0 for x > 0 and < 0 for x < 0, so g is not
invertible on R and the density transformation formula cannot be applied directly. However, we can
proceed as follows. Let FY be the cdf of Y . For y > 0,

FY .y/ WD P
�
Y � y

�
D P

�
�
p
y � X �

p
y
�
D FX

�p
y
�
� FX

�
�
p
y
�
;

where FX is the cdf of X . Moreover, Y is nonnegative by definition and so FY .y/ D 0 for y < 0,
Since the cdf of Y is continuously differentiable on R n f0g, a pdf fY WR ! Œ0;1/ of Y satisfies
fY .y/ D F

0
Y .y/ at any y 2 R n f0g and can take an arbitrary finite value at y D 0. Therefore,

fY .y/ D

(
1

2
p
y

�
fX
�p
y
�
C fX

�
�
p
y
��

if y > 0

0 if y � 0
;

where we set fY .0/ WD 0. It follows that

fY .y/ D

(
1

2
p
�y
e�y=2 if y > 0

0 if y � 0
: �

Exercise 20

Let X and Y be real-valued random variables on some probability space .�;A; P / with joint pdf
fXY WR2 ! Œ0;1/ defined as

fXY .x; y/ WD

(
c
�
x2 C xy

�
for .x; y/ 2 Œ0; 1� � Œ0; 1�

0 otherwise
;

where c is a positive real constant to be determined.

(i) Determine c such that fXY is a pdf, and find the joint cdf FXY .

(ii) Find marginal pdf’s fX and fY and the marginal cdf’s FX and FY .

1



(iii) Find E.X/ and Var.X/.

(iv) Find the covariance between X and Y .

Solution

The function fXY is piecewise-continuous, hence Riemann integrable. Therefore, the integrals below
are well defined.

(i) We have Z C1
�1

Z C1
�1

fXY .x; y/ dxdy D

Z 1

0

Z 1

0

c
�
x2 C xy

�
dydx

D c

Z 1

0

�
x2 C

x

2

�
dx

D c

�
1

3
C
1

4

�
D
7c

12
:

Then, Z C1
�1

Z C1
�1

fXY .x; y/ dxdy D 1” c D
12

7

Moreover, when c D 12
7

, fXY .x; y/ is non-negative. Thus, fXY is a probability density function

for c D 12
7

.

To find the joint cdf FXY , consider first .x; y/ 2 Œ0; 1� � Œ0; 1�. We have

FXY .x; y/ WD P.X � x; Y � y/

D

Z x

�1

Z y

�1

fXY .u; v/ dudv

D
12

7

Z x

0

Z y

0

�
u2 C uv

�
dvdu

D
12

7

Z x

0

�
u2y C

uy2

u

�
du

D
12

7

�
x3y

3
C
x2y2

4

�
:

Then, FXY WR2 ! Œ0; 1� is given by

FXY .x; y/ D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

0 if x < 01 or y < 1
12
7

�
x3y

3
C

x2y2

4

�
if .x; y/ 2 Œ0; 1� � Œ0; 1�

12
7

�
x3

3
C

x2

4

�
if x 2 Œ0; 1� and y > 1

12
7

�
y

3
C

y2

4

�
if y 2 Œ0; 1� and x > 1

1 if x > 1 and y > 1

:

(ii) We first find the marginal pdf’s. For x; y 2 Œ0; 1�, we have

fX.x/ D

Z 1
�1

fXY .x; y/ dy

D

Z 1

0

12

7

�
x2 C xy

�
dy

D
12

7

�
x2 C

x

2

�
;

2



and, similarly,

fY .y/ D

Z 1
�1

fXY .x; y/ dx D
12

7

�
1

3
C
y

2

�
:

Therefore, a pdf fX WR! Œ0;1/ of X is given by

fX.x/ WD

(
12
7

�
x2 C x

2

�
for x 2 Œ0; 1�

0 otherwise
;

and a pdf fY WR! Œ0;1/ of Y is given by

fY .y/ WD

(
12
7

�
1
3
C

y

2

�
for y 2 Œ0; 1�

0 otherwise
:

We now find the marginal cdf’s. For x; y 2 Œ0; 1�, we have

FX.x/ D

Z x

�1

fX.x/ dx D
12

7

�
x3

3
C
x2

4

�
and

FY .y/ D

Z y

�1

fY .y/ dy D
12

7

�
y

3
C
y2

4

�
:

Therefore, the cdf FX WR! Œ0; 1� of X is given by

FX.x/ WD

8̂̂<̂
:̂
0 for x < 1
12
7

�
x3

3
C

x2

4

�
for x 2 Œ0; 1�

1 for x > 1

;

and the cdf FY WR! Œ0; 1� of Y is given by

FY .y/ WD

8̂̂<̂
:̂
0 for y < 1
12
7

�
y

3
C

y2

4

�
for y 2 Œ0; 1�

1 for y > 1

:

(iii) We have

E.X/ D

Z C1
�1

xfX.x/ dx

D
12

7

Z 1

0

x

�
x2 C

x

2

�
dx

D
12

7

�
1

4
C
1

6

�
D
5

7
;

and

E.X2/ D

Z C1
�1

x2fX.x/ dx D
39

70
:

Hence,

Var.x/ D E.X2/ � .E.X//2 D
39

70
�
25

49
D

23

490
:
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(iv) We have

E.Y / D

Z C1
�1

yfY .y/ dy

D
12

7

Z 1

0

y

�
1

3
C
x

2

�
dy

D
4

7
;

and

E.XY / D

Z C1
�1

Z C1
�1

xyfXY .x; y/ dxdy

D
12

7

Z 1

0

Z 1

0

xy
�
x2 C xy

�
dxdy

D
17

42
:

Thus,

Cov.X; Y / D E.XY / �E.X/E.Y / D
17

42
�
5

7

4

7
D
17

42
�
20

49
D �

1

294
: �

Expectation: A Brief Review

Let X be a real-valued random variable on some probability space .�;A; P /. We introduce the
expectation of X , denoted by EŒX�, in three steps.

1. Discrete Random Variables

Let X W�! R be a discrete random variable with range

RX WD fx 2 R W x D X.!/ for some ! 2 �g:

(i) If RX is finite, the expectation of X is defined as

EŒX� WD
X
x2RX

xP.X D x/ D
X
x2RX

xP
�
f! 2 � W X.!/ D xg

�
D

X
x2RX

xPX
�
fxg

�
;

where:

– The first equality holds because

P.X D x/ WD P
�
f! 2 � W X.!/ D xg

�
I

– The second equality holds because

P
�
f! 2 � W X.!/ D xg

�
WD PX

�
fxg

�
:

Note that EŒX� is finite.

(ii) If RX is countably infinite, we distinguish two cases:
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1. If RX � Œ0;C1/, the expectation of X is defined as

EŒX� WD
X
x2RX

xP.X D x/ D
X
x2RX

xP
�
f! 2 � W X.!/ D xg

�
D

X
x2RX

xPX
�
fxg

�
;

where:

� The first equality holds because

P.X D x/ WD P
�
f! 2 � W X.!/ D xg

�
I

� The second equality holds because

P
�
f! 2 � W X.!/ D xg

�
WD PX

�
fxg

�
:

Note that EŒX� can be either finite or infinite.

2. If RX is arbitrary, the expectation of X is defined as

EŒX� WD E
�
XC

�
�E

�
X�

�
;

provided that E
�
XC

�
and E

�
X�

�
are not both infinite. If E

�
XC

�
D C1 D E

�
X�

�
,

we say that the expectation of X does not exist. Note that EŒX� can be either finite or
infinite.

If EŒX� exists and is finite, we write X 2 L1
d
.�;A; P /.

2. Non-Negative Random Variables

Let X W� ! R be a non-negative random variable (i.e., with values in Œ0;C1/). For each n 2 N
define

Dn.X/.!/ WD
k

n
if

k

n
� X.!/ <

k C 1

n

for k 2 N [ f0g. For each n, Dn.X/ is a discrete non-negative random variable on .�;A; P / with
range RDn.X/ � N [ f0g. The expectation of X is defined as

EŒX� WD lim
n!1

E
�
Dn.X/

�
D lim

n!1

X
k2RDn.X/

k

n
P

�
Dn.X/ D

k

n

�
:

Note that EŒX� can be either finite or infinite. If EŒX� exists and is finite, we writeX 2 L1nn.�;A; P /.

3. General Random Variables

Let X W�! R be an arbitrary random variable. The expectation of X is defined as

EŒX� WD E
�
XC

�
�E

�
X�

�
;

provided that E
�
XC

�
and E

�
X�

�
are not both infinite. If E

�
XC

�
D C1 D E

�
X�

�
, we say that the

expectation of X does not exist. Note that EŒX� can be either finite or infinite. If EŒX� exists and
is finite, we write X 2 L1.�;A; P /.

Remark 1. X 2 L1.�;A; P / if and only if XC; X� 2 L1nn.�;A; P /.

Remark 2. L1
d;C
.�;A; P / � L1nn.�;A; P / � L1.�;A; P /, where

L1d;C.�;A; P / WD
˚
X 2 L1d .�;A; P / W X � 0

	
;

5



and L1
d
.�;A; P / � L1.�;A; P /.

Remark 3. X 2 L1.�;A; P / if and only if jX j 2 L1.�;A; P /.
Proof. Suppose X 2 L1.�;A; P /. Then, XC; X� 2 L1.�;A; P /. Since jX j D XCCX�, by linearity
of expectation we have EŒjX j� D E

�
XC

�
CE

�
X�

�
< C1, and so jX j 2 L1.�;A; P /. Now suppose

that jX j 2 L1.�;A; P /. Then, EŒXCCX�� <1. Since EŒXCCX�� D E
�
XC

�
CE

�
X�

�
and both

terms are non-negative, we have that they are also both finite.1 Thus, X 2 L1.�;A; P /. �

Remark 4. Together, the previous remarks say that

X 2 L1.�;A; P /” XC; X� 2 L1.�;A; P /”jX j 2 L1.�;A; P /:

Similarly, we have

X 2 L1d .�;A; P /” XC; X� 2 L1d .�;A; P /”jX j 2 L1d .�;A; P /:

*Exercise 21

Let X; Y;Z be real-valued random variables on some probability space .�;A; P /, and suppose that
X; Y 2 L1.�;A; P /. Prove the following statements.

(i) If X � Z � Y , then Z 2 L1.�;A; P /, and

EŒX� � EŒZ� � EŒY �:

(ii) jEŒX�j � EŒjX j�.

[Note. When you are asked to prove a statement from the Lecture Notes, you can use all the results
that come before (but not after) that statement in the Lecture Notes.]

Solution

(i) Step 1. X; Y;Z discrete and non-negative random variables.

Assume that X; Y 2 L1
d
.�;A; P /, and that

X.!/ � Z.!/ � Y.!/ for all ! 2 �: (1)

We want to show that Z 2 L1
d
.�;A; P /, and that

EŒX� � EŒZ� � EŒY �:

Define
�y WD f! 2 � W Y.!/ D yg for all y 2 RY ;

and
�z WD f! 2 � W Z.!/ D zg for all z 2 RZ:

Note that f�ygy2RY
and f�zgz2RZ

are countable partitions of �. Consider the finer partition
of �, f�yzgy2RY ;z2RZ

, where

�yz WD �y \�z for all y 2 RY and z 2 RZ:

1To say that EŒXCCX�� D E
�
XC

�
CE

�
X�

�
I use that additivity of expectation of nonnegative random variables

also holds if the corresponding expectations are infinite.
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We have

EŒZ� WD
X
z2RZ

zP.�z/

D

X
z2RZ

zP.�z \�/

D

X
z2RZ

zP

 
�z \

 [
y2SY

�y

!!

D

X
z2RZ

zP

 [
y2SY

.�z \�y/

!

D

X
z2RZ

zP

 [
y2SY

�yz

!
D

X
z2RZ

z
X
y2RY

P.�yz/

D

X
z2RZ

X
y2RY

zP.�yz/

D

X
y2RY

X
z2RZ

zP.�yz/;

where: the fifth equality holds by � -additivity of P ; the last equality follows by the discrete
version of Tonelli’s Theorem (cf. Ok (2016), Appendix 1, page 9) and the fact that zP.�yz/ � 0
for all y and z. Similarly, we find

EŒY � D
X
y2RY

X
z2RZ

yP.�yz/:

Then,

EŒZ� D
X
y2RY

X
z2RZ

zP.�yz/ �
X
y2RY

X
z2RZ

yP.�yz/ D EŒY �;

where the inequality holds because (1) implies that z � y whenever �yz ¤ ;. That is, we have

EŒZ� � EŒY � < C1; (2)

where the strict inequality holds because Y 2 L1
d
.�;A; P /. Moreover, as the sum of non-

negative terms is non-negative, we have

0 � EŒZ�: (3)

Together, (2) and (3) give that Z 2 L1
d
.�;A; P /. That EŒX� � EŒZ� is proven analogously.

Step 2. X; Y;Z discrete random variables.

Assume that X; Y 2 L1nn.�;A; P /, and that

X.!/ � Z.!/ � Y.!/ for all ! 2 �: (4)

We want to show that Z 2 L1nn.�;A; P /, and that

EŒX� � EŒZ� � EŒY �:
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Let Dn.X/;Dn.Y /;Dn.Z/ be the discrete approximations of X; Y;Z on a 1=n grid, with n 2 N.
From (4) and the definition of Dn.X/;Dn.Y /;Dn.Z/, we have

Dn.X/.!/ � Dn.Z/.!/ � Dn.Y /.!/ for all ! 2 �: (5)

Step 1., together with (5), gives

EŒDn.X/� � EŒDn.Z/� � EŒDn.Y /� for all n 2 N:

Therefore, by the sandwich theorem for limits of sequences,

�1 < EŒX� WD lim
n!1

EŒDn.X/� � lim
n!1

EŒDn.Z/� � lim
n!1

EŒDn.Y /� WD EŒY � < C1;

where the strict inequalities hold because X; Y 2 L1nn.�;A; P /. The desired result follows
noting that

EŒZ� WD lim
n!1

EŒDn.Z/�:

Step 3. X; Y;Z arbitrary random variables.

Assume that X; Y 2 L1.�;A; P /, and that

X.!/ � Z.!/ � Y.!/ for all ! 2 �: (6)

We want to show that Z 2 L1.�;A; P /, and that

EŒX� � EŒZ� � EŒY �:

From (6), we have
XC.!/ � ZC.!/ � Y C.!/ for all ! 2 �: (7)

and
Y �.!/ � Z�.!/ � X�.!/ for all ! 2 �: (8)

Step 2., together with (7) and (8), gives

EŒXC� � EŒZC� � EŒY C�;

and
EŒY �� � EŒZ�� � EŒX��:

Therefore,
�1 < EŒX� WD EŒXC� �EŒX�� � EŒZC� �EŒZ�� WD EŒZ�;

and
EŒZ� WD EŒZC� �EŒZ�� � EŒY C� �EŒY �� WD EŒY � < C1;

where the strict inequalities hold because X; Y 2 L1.�;A; P /. The desired result follows. �

(ii) Since X 2 L1.�;A; P /, XC; X�; jX j 2 L1.�;A; P / and jEŒX�j is a non-negative real number.
Then, we have

jEŒX�j D
ˇ̌
E
�
XC

�
�E

�
X�

�ˇ̌
�
ˇ̌
E
�
XC

�ˇ̌
C
ˇ̌
E
�
X�

�ˇ̌
D E

�
XC

�
CE

�
X�

�
D E

�
XC CX�

�
D EŒjX j�;

8



where: (i) the first equality holds by definition of EŒX�; (ii) the inequality holds by triangle
inequality; (iii) the second equality holds because XC and X� are non-negative, and so E

�
XC

�
and E

�
X�

�
are non-negative2; (iv) the third equality holds by linearity of expectation and

XC; X� 2 L1.�;A; P /; (v) the last equality holds because jX j D XC C X�. The desired
result follows.

Exercise 22

Prove the following statements.

(i) Let X be a non-negative real-valued random variable on some probability space .�;A; P /.
Then, EŒX� D 0 if and only if P.X D 0/ D 1.

(ii) Let X and Y be real-valued random variables on some probability space .�;A; P /, and suppose
that X; Y 2 L2.�;A; P /. Then, X; Y;X � Y 2 L1.�;A; P /.

Solution

(i) Claim 1. P.X D 0/ D 1 H) EŒX� D 0.

Step 1. X non-negative and discrete.

If X.!/ D 0 for all ! 2 �, then �0 WD f! 2 � D X.!/ D 0g D � and

EŒX� WD 0 � P.�0/ D 0 � 1 D 0:

If X D 0 a.s., P.�0/ D 1, and P.�x/ D 0 for any x 2 RX n f0g, where �x WD f! 2 � D
X.!/ D xg. Then,

EŒX� WD 0 � P.�0/C
X

x2RXnf0g

xP.�x/ D 0 � 1C 0 D 0:

Step 2. X non-negative.

For each n 2 N, we have P.Dn.X/ D 0/ D 1. Then, by step 1, E
�
Dn.X/

�
D 0, and so

EŒX� WD lim
n!1

E
�
Dn.X/

�
D lim

n!1
0 D 0:

Claim 2. EŒX� D 0 H) P.X D 0/ D 1.

Step 1. X non-negative and discrete.

By assumption X
x2RX

xP.�x/ D 0:

The fact that the sum of non-negative terms can be equal to 0 if and only if all terms are equal
to 0 forces one of x and P.�x/ to be equal to zero for every x 2 RX n f0g. In particular, we
must have P.�x/ D 0 for any non-zero x, which shows that P.�0/ D 1.

3

Step 2. X non-negative.

For any n 2 N, set

�n WD

�
! 2 � W X.!/ �

1

n

�
:

2We will prove that X � 0 H) EŒX� � 0 after Exercise 22.
3Quiz: You see why, right?
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Then,
1

n
1�n

.!/ � Dn.X/.!/1�n
.!/ � X.!/;

so that, by monotonicity and linearity of expectation,

1

n
P.�n/ � E

�
Dn.X/1�n

�
� EŒX� D 0;

which forces P.�n/ D 0 for all n 2 N. The desired result follows (recall Exercise 14-(b) in
Problem Set 3).

(ii) We only need to show that X; Y 2 L2.�;A; P / implies X � Y 2 L1.�;A; P /. Then, setting
Y.!/ WD 1 (X.!/ WD 1) for all ! 2 � shows that X 2 L2.�;A; P / (Y 2 L2.�;A; P /) implies
X 2 L1.�;A; P / (Y 2 L1.�;A; P /).
Suppose that X; Y 2 L2.�;A; P /. For any ! 2 �, we have

0 � jX.!/ � Y.!/j �
X2.!/

2
C
Y 2.!/

2
:

Then, monotonicity and linearity of the expectation give

EŒ0v� � EŒjX � Y j� �
1

2

h
E
�
X2
�
CE

�
Y 2
�i
;

where 0v.!/ WD 0 for all ! 2 �. Since EŒ0v� D 0 by Exercise 22-(i) and E
�
X2
�
CE

�
Y 2
�
< C1

because X2; Y 2 2 L1.�;A; P /, we have that jX � Y j 2 L1.�;A; P /, which is equivalent to
X � Y 2 L1.�;A; P / from Remark 4. �

Remark. Monotonicity of expectation and Exercise 22-(i) give˝
X 2 L1.�;A; P / ^X � 0

˛
H) EŒX� � 0:

Exercise 23

A pdf fX WR! Œ0;C1/ of the standard Cauchy distribution is defined by

fX.x/ WD
�
�
�
1C x2

���1
;

where � is a strictly positive real constant. Does the expectation of the Cauchy distribution exist?
Justify your answer.

Solution

We show that E
�
XC

�
D C1 D E

�
X�

�
, and thus the expectation of a Cauchy random variable does

not exists.
Note that f is piecewise continuous, and so Riemann integrable. We have

E
�
XC

�
D

Z C1
�1

max f0; xg
1

�
�
1C x2

� dx

D

Z 0

�1

0

�
�
1C x2

� dx C

Z C1
0

x

�
�
1C x2

� dx

D
1

2�
ln
�
1C x2

�ˇ̌̌̌C1
0

D C1� 0

D C1:
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That E
�
X�

�
D C1 is shown similarly. �

*Exercise 24

Let .Xn/n, .Yn/n, X and Y be Rk-valued random variables on a common probability space .�;A; P /.
Prove the following statements:

(i)
D
Xn

a:s:
�! X ^ Yn

a:s:
�! Y

E
H) Xn C Yn

a:s:
�! X C Y ;

(ii)
D
Xn

P
�! X ^ Yn

P
�! Y

E
H) Xn C Yn

P
�! X C Y .

Solution

(i) Define

�XCY WD
n
! 2 � W Xn.!/C Yn.!/ �!

n!1
X.!/C Y.!/

o
:

We need to show that P
�
�XCY

�
D 1.

Set
�X WD

n
! 2 � W Xn.!/ �!

n!1
X.!/

o
and

�Y WD
n
! 2 � W Yn.!/ �!

n!1
Y.!/

o
;

and note that �X \�Y � �XCY , asD
Xn.!/ �!

n!1
X.!/ ^ Yn �!

n!1
Y
E
H) Xn.!/C Yn.!/ �!

n!1
X C Y:

Then, by monotonicity of P , the claim follows if P
�
�X \�Y

�
D 1 or, equivalently, if P

�
� n�

�X \�Y
��
D 0 (as P

�
� n

�
�X \�Y

��
D 1 � P

�
�X \�Y

�
by Theorem 1.3.(iii)).

Note that

0 � P
�
� n

�
�X \�Y

��
D P

��
� n�X

�
[
�
� n�Y

��
� P

�
� n�X

�
C P

�
� n�Y

�
D
�
1 � P

�
�X

��
C
�
1 � P

�
�Y

��
D 0;

where: the first inequality holds by non-negativity of P ; the first equality holds by De Mor-
gan’s laws; the second inequality holds by sub-� -additivity of P ; the second equality holds by

Theorem 1.3.(iii); the last equality holds because Xn
a:s:
�! X and Yn

a:s:
�! Y by assumption, and

so P
�
�X

�
D P

�
�Y

�
D 1. The desired result follows. �

(ii) Let " > 0. We need to show that

lim
n!1

P
�˚
! 2 � W



�Xn.!/C Yn.!/� � �X.!/ � Y.!/�

 > "	� D 0:
Fix n 2 N. By triangle inequality,

�Xn.!/C Yn.!/� � �X.!/ � Y.!/�

 � 

Xn.!/ �X.!/

C 

Yn.!/ � Y.!/


holds for any ! 2 �. Therefore, by monotonicity of P ,

P
�˚
! 2 � W



�Xn.!/C Yn.!/� � �X.!/ � Y.!/�

 > "	�
� P

�˚
! 2 � W



Xn.!/ �X.!/

C 

Yn.!/ � Y.!/

 > "	�: (9)
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Moreover,

Xn.!/�X.!/

C 

Yn.!/� Y.!/

 > " H) D 

Xn.!/�X.!/

 > "

2
_


Yn.!/� Y.!/

 > "

2

E
;

and so ˚
! 2 � W



Xn.!/ �X.!/

C 

Yn.!/ � Y.!/

 > "	
is a subset of˚

! 2 � W


Xn.!/ �X.!/

 > "=2	 [ ˚! 2 � W 

Yn.!/ � Y.!/

 > "=2	 :

Therefore, by monotonicity and sub-� -additivity of P ,

P
�˚
! 2 � W



Xn.!/ �X.!/

C 

Yn.!/ � Y.!/

 > "	�
� P

�˚
! 2 � W



Xn.!/ �X.!/

 > "=2	�
C P

�˚
! 2 � W



Yn.!/ � Y.!/

 > "=2	�:
(10)

Together with non-negativity of P , (9) and (10) imply

0 � P
�˚
! 2 � W



�Xn.!/C Yn.!/� � �X.!/ � Y.!/�

 > "	�
� P

�˚
! 2 � W



Xn.!/ �X.!/

 > "=2	�
C P

�˚
! 2 � W



Yn.!/ � Y.!/

 > "=2	�
(11)

for all n 2 N. By assumption, Xn
P
�! X and Yn

P
�! Y , and so the right hand side of (11)

converges to zero as n!1. The desired result follows by the sandwich theorem for limits of
sequences. �
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Exercise 25

Let X be a real-valued random variable on some probability space .�;A; P /, and let a; b 2 R such
that a � b.

(i) Let X be discrete. Show by definition: If a � X � b, then X 2 L1
d
.�;A; P / and a � EŒX� � b.

Use only statements up to page 55 in the Lecture Notes.

(ii) Show by definition: If a � X � b, then X 2 L1.�;A; P / and a � EŒX� � b. Use only
statements up to page 60 in the Lecture Notes.

(iii) Suppose that P.a � X � b/ D 1 and EŒX� D b. Show that P.X D b/ D 1.

Solution

(i) Since �1 < a � b < C1, we only need to show a � EŒX� � b. That X 2 L1
d
.�;A; P /

follows. We distinguish three cases.

Case 1: 0 � a � b.

Let RX be the range of X . For all x 2 RX , define �x WD f! 2 � W X.!/ D xg. Note that
f�xgx2RX

is a countable partition of �. Then, we have

a D
X
x2RX

aP.�x/ �
X
x2RX

xP.�x/ �
X
x2RX

bP.�x/ D b; (1)

where the two inequalities hold because

a � X.!/ � b for all ! 2 �” a � x � b for all x 2 RX :

Since
EŒX� WD

X
x2RX

xP.�x/;

(1) gives
a � EŒX� � b;

as desired.

Case 2: a < 0 � b.

Since 0 � XC � b and 0 � X�, by case 1 we have EŒXC� � b and 0 � EŒX��. But then

EŒX� WD EŒXC� �EŒX�� � b: (2)

1



Moreover, since 0 � X� � �a and 0 � XC, by case 1 we have EŒX�� � �a or, equivalently,
a � �EŒX�� and 0 � EŒXC�. But then

a � �EŒX��CEŒXC� D EŒXC� �EŒX�� WD EŒX�: (3)

The desired result follows from (2) and (3).

Case 3: a � b < 0.

In this case, X D �X�, �X D X�, and so EŒX� WD �EŒX�� D �EŒ�X�. Note that a � X �
b < 0” 0 < �b � �X � �a. Then, by case 1,

�b � EŒ�X� � �a

or, equivalently,
a � EŒ�X� � b;

which gives the desired result. �

(ii) Since �1 < a � b < C1, we only need to show a � EŒX� � b. That X 2 L1.�;A; P /
follows.

Let Dn.X/ be the discrete approximation of X on a 1=n grid, with n 2 N. For each n, we have

a �
1

n
� Dn.X/ � b

by the assumption a � X � b and construction of Dn.X/.
1 By part (i) of this exercise,

a �
1

n
� EŒDn.X/� � b

holds for all n 2 N, and so
a � lim

n!1
EŒDn.X/� � b

by the sandwich theorem for limits of sequences (note that limn!1.a � 1=n/ D a). Since
EŒX� WD limn!1EŒDn.X/�, the desired result follows. �

(iii) For any ! 2 �, set Z.!/ WD X.!/�b. Our assumptions, together with linearity of expectation,
give P.Z � 0/ D 1 and E.Z/ D 0. We need to show that P.Z D 0/ D 1.

The claim follows if we show that P.Z < 0/ D 0. For each n 2 N, set

�n WD

�
! 2 � W Z.!/ < �

1

n

�
:

Then,

Z.!/ �

�
Dn.Z/.!/C

1

n

�
1�n

.!/ � �
1

n
1�n

.!/;

for all ! 2 �, so that, by monotonicity and linearity of expectation,

0 D EŒZ� � E

��
Dn.Z/C

1

n

�
1�n

�
� �

1

n
P.�n/;

which forces P.�n/ D 0 for all n 2 N. The desired result follows (recall Exercise 14-(b) in
Problem Set 3). �

1Recall that Dn.X/ � X � Dn.X/C 1=n for all n 2 N.
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Exercise 26

Let .Xn/n be a sequence of i.i.d. real-valued random variables on some probability space .�;A; P /
with unknown cumulative distribution function FX . An estimator for FX based on the random
variables X1; : : : ; Xn is the so-called empirical distribution function, defined as

bF n.z/ WD 1

n

nX
kD1

1.Xk � z/; �1 < z < C1:

Calculate the mean and the variance of bF n.z/. Show that bF n.z/ P
�! FX.z/.

Solution

To begin, observe the following: since .Xn/n is a sequence of i.i.d. random variables, the indicator
function is B.R/-B.R/ measurable and measurable transformations of independent random variables
are independent (Exercise 16), .1.Xn � z//n is a sequence of i.i.d. random variables on .�;A; P /.
Now, fix arbitrary n 2 N and z 2 R. To compute the expectation of bF n.z/, note first that

E
�
1.Xk � z/

�
D P.Xk � z/ D FX.z/ for all k 2 N:

Since E
�
1.Xk � z/

�
is finite, 1.Xk � z/ 2 L

1.�;A; P / for all k. Thus, by linearity of expectation
we have

E
hbF n.z/i WD E�1

n

nX
kD1

1.Xk � z/

�
D
1

n

nX
kD1

E
�
1.Xk � z/

�
D
1

n

nX
kD1

P.Xk � z/

D
1

n

nX
kD1

FX.z/:

D FX.z/:

To compute the variance of bF n.z/, note first that
�
1.Xk � z/

�2
D 1.Xk � z/, and so

E
h�
1.Xk � z/

�2i
D FX.z/ for all k 2 N:

Then

Var
�
1.Xk � z/

�
D E

h�
1.Xk � z/

�2i
�

�
E
�
1.Xk � z/

��2
D FX.z/ � .FX.z//

2

D FX.z/.1 � FX.z//;

which is finite. Thus, we have

Var
�bF n.z/� D Var

�
1

n

nX
kD1

1.Xk � z/

�
D

1

n2

nX
kD1

Var
�
1.Xk � z/

�
3



D
1

n2

nX
kD1

FX.z/.1 � FX.z//

D
1

n
FX.z/.1 � FX.z//;

where the second equality holds because the 1.Xk � z/’s are independent.
Finally, since .1.Xk � n//n is a sequence of i.i.d. random variables with finite expectation E

�
1.Xk �

z/
�
D FX.z/, by the weak law of large numbers (Theorem 2.7) we have

1

n

nX
kD1

1.Xk � z/
P
�! FX.z/;

as desired. �

*Exercise 27

Solve the following problems.

(a) Let .Xn/n and X be Rk-valued random variables on a common probability space .�;A; P /.
Show that Xn

P
�! X if and only if kXn �Xk

P
�! 0.

(b) Let .Xn/n be a sequence of Rk-valued random variables on a common probability space .�;A; P /,
and let a 2 Rk. Show that Xn

P
�! a if and only if Xn

d
�! a.

Solution

(a) For all n 2 N, ! 2 � and " > 0, we have

Xn.!/ �X.!/

 > "” ˇ̌̌

Xn.!/ �X.!/

 � 0 ˇ̌̌ > ":
The desired result immediately follows by definition of convergence in probability. �

(b) By Theorem 2.15, Xn
P
�! a H) Xn

d
�! a. Thus, we only need to prove that

Xn
d
�! a H) Xn

P
�! a:

Thus, assume that Xn
d
�! a. Let i 2 f1; 2; : : : : ; kg and " > 0. Moreover, let FXn;i

be the
marginal cdf of Xn;i , for all n 2 N, and Fai

the marginal cdf of ai . Since joint convergence in
distribution implies marginal convergence in distribution, FXn;i

.x/ �!
n!1

Fai
.x/ at all continuity

points x of Fai
. Note that

Fai
.x/ D

(
0 if x < ai

1 if x � ai
;

which is continuous everywhere but at x D ai . Then,

P
�˚
! 2 � W jXn;i.!/ � ai j > "

	�
D 1 � P

�˚
! 2 � W ai � " � Xn;i.!/ � ai C "

	�
D 1 � FXn;i

.ai C "/C FXn;i
.ai � "/

� P
�˚
! 2 � W Xn;i.!/ D ai � "

	�
� 1 � FXn;i

.ai C "/C FXn;i
.ai � "/

�!
n!1

1 � Fai
.ai C "/C Fai

.ai � "/

4



D 1 � 1C 0

D 0;

since Fai
is continuous at x D ai ˙ ", and so FXn

.ai C "/ �!
n!1

Fai
.ai C "/ D 1, FXn

.ai �

"/ �!
n!1

Fai
.ai � "/ D 0. Apply Lemma 2.13 to obtain the desired result. �

Exercise 28

Solve the following problems.

(a) Suppose that X1 D X2 D : : : are standard normally distributed random variables. Show that

Xn
d
�! �X1, but .Xn/n does not converge in probability to �X1.

(b) Let .Xn/n and .Yn/n be two sequences of real-valued random variables on a common probability

space .�;A; P /. Suppose that Xn
P
�! 0 and Yn

P
�! 0. Show that

maxfjXnj; jYnjg
P
�! 0

by using the definition of convergence in probability.

Solution

(a) Claim 1. Xn
d
�! �X1.

For all n 2 N, let FXn
be the cdf of Xn. By Theorem 2.14, it is enough to show that

FXn
.x/ �!

n!1
F�X1

.x/ at all continuity points of F�X1
. Let x be a continuity point of F�X1

.

Note that

FX2
.x/ WD P.X2 � x/

D P.X2 � �x/

D P.X1 � �x/

D P.�X1 � x/

WD F�X1
.x/;

(4)

where the first equality holds because X2 is standard normally distributed and so its distribution
is symmetric about zero, and the second equality holds because X1 D X2. Since X2 D X3 D : : : ,
FX2
D FX3

D : : : , and so .FXn
.x//n�2 is a constant sequence. Therefore, FXn

.x/ �!
n!1

F�X1
.x/

trivially follows from (4). Since x 2 R was arbitrarily chosen, the claim follows.

Claim 2. .Xn/n does not converge in probability to �X1.

For " WD 2 > 0 we have

P.jX2 � .�X1/j > 2/ D P.jX1 CX2/j > 2/

D P.j2X2j > 2/

D P.jX2j > 1/

� 2 � 0:1587

¤ 0;

where the second equality holds because X1 D X2. Since X2 D X3 D : : : ,

P.jXn � .�X1/j > 2/ D 2 � 0:1587 > 0

5



holds true for all n � 2, and so

P.jXn � .�X1/j > 2/ �!
n!1

2 � 0:1587 > 0:

The claim follows. �

(b) Let " > 0. We need to show that

lim
n!1

P
�
f! 2 � W maxfjXn.!/j; jYn.!/jg > "g

�
D 0:

Note that
f! 2 � W maxfjXn.!/j; jYn.!/jg > "g

is equal to
f! 2 � W jXn.!/j > "g [ f! 2 � W jYn.!/jg > "g :

for all n 2 N. Then, by non-negativity and sub-� -additivity of P we have

0 � P
�
f! 2 � W maxfjXn.!/j; jYn.!/jg > "g

�
� P

�
f! 2 � W jXn.!/j > "g

�
C P

�
f! 2 � W jYn.!/j > "g

� (5)

for all n 2 N. By assumption, Xn
P
�! 0 and Yn

P
�! 0, and so the right hand side of (5)

converges to zero as n!1. The desired result follows by the sandwich theorem for limits of
sequences. �

Exercise 29

Solve the following problems.

(a) Let X � Po.�/, with � > 0. Show that EŒX� D �.

(b) Let X be a Gamma-distributed random variables with parameters ˛ > 0 and ˇ > 0; in signs
X � �.˛; ˇ/. That is, X is continuous with density fX WR! Œ0;C1/ defined as

fX.x/ WD
ˇ˛

�.˛/
x˛�1e�ˇx1.0;C1/.x/:

Show that EŒX� D ˛=ˇ. [Hint. �.˛ C 1/ D ˛�.˛/ for any ˛ > 0.]

Solution

(a) Answer: EŒX� D �. Details are omitted.

(b) Answer: EŒX� D ˛=ˇ. Details are omitted.

*Exercise 30

Solve the following problems.

(a) Let .Xn/n, X and Y be Rk-valued random variables on a common probability space .�;A; P /.
Suppose that Xn

P
�! X and Xn

P
�! Y . Show that X D Y almost surely.

(b) Suppose that for Rk-valued random variables .Xn/n, .Yn/n, X and Y we have Xn
d
�! X and

Yn
d
�! Y . Does this imply Xn C Yn

d
�! X C Y ? Justify your answer.

6



Solution

(a) Since


X.!/ � Y.!/

 D 0 if and only if X.!/ D Y.!/ for all ! 2 �, the desired claim follows

if we show that
P
�˚
! 2 � W



X.!/ � Y.!/

 > 1=k	� D 0
for all k 2 N.

Fix an arbitrary k 2 N. For any n 2 N, triangle inequality gives

X.!/ � Y.!/

 � 

X.!/ �Xn.!/

C 

Y.!/ �Xn.!/


for any ! 2 �. Therefore, by non-negativity, monotonicity and sub-� -additivity of P ,

0 � P
�˚
! 2 � W



X.!/ � Y.!/

 > 1=k	�
� P

�˚
! 2 � W



X.!/ �Xn.!/

 > 1=2k	�
C P

�˚
! 2 � W



Y.!/ �Xn.!/

 > 1=2k	�
(6)

holds for all n 2 N. By assumption, Xn
P
�! X and Xn

P
�! Y , and so the right hand side of

(6) converges to zero as n!1. The desired result follows by the sandwich theorem for limits
of sequences. �

(b) We show that the statement is false by providing a counterexample. For each n 2 N, let

Xn � N.0; 1/ and set Yn WD Xn. Trivially, we have Xn
d
�! X � N.0; 1/ and Yn

d
�! �X (recall

Exercise 28-(a)). However, XnCYn D 2Xn � N.0; 4/ for all n, which clearly does not converge
in distribution to X C .�X/ D 0. �
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*Exercise 31

Solve the following problems.

(a) Let X be a real-valued random variable, and Yn, Zn real-valued discrete random variables for
all n 2 N. Assume that

jX � Ynj � Zn; lim
n!1

EŒZn� D 0; and lim
n!1

EŒYn� D a;

with a 2 R, hold for all n, Show that X 2 L1.�;A; P /, and EŒX� D a.

(b) Let .Xn/n be a sequence of real-valued random variables, and a 2 R. Show thatD
EŒXn� �!

n!1
a and Var.Xn/ �!

n!1
0
E
” Xn

L2
�! a:

(c) Let .Xn/n, .Yn/n, .Zn/n and X be real-valued random variables on a common probability space
.�;A; P / such that Xn � Zn � Yn for all n 2 N. Show thatD

Xn
P
�! X and Yn

P
�! X

E
H) Zn

P
�! X:

(d) Let .Xn/n, .Un/n, .Wn/n and X be Rk-valued random variables on a common probability space
.�;A; P /. Prove the following statements.

(i) Xn D Op.1/ ” limC!C1 lim supn!1 P.kXnk > C/ D 0

(ii) Suppose that Xn D op.1/, Un D Op.1/ and Wn D Op.1/. Then,

1. Un CWn D Op.1/;

2. XnUn D op.1/ (assume that .Xn/n, .Un/n are real-valued for simplicity).

[Note. If you are asked to prove a statement from the Lecture Notes, you can use all the results that
come before (but not after) that statement in the Lecture Notes.]

Solution

(a) We show that EŒX� D a. That X 2 L1.�;A; P / follows because �1 < a < C1.

As jX � Ynj � Zn,
�Zn � X � Yn � Zn;

or, equivalently,
Yn �Zn � X � Yn CZn (1)

1



for all n 2 N. Let Dn.X/ be the discrete approximation of X on a 1=n grid, with n 2 N. Since
Dn.X/ � X � Dn.X/C 1=n, (1) gives

Yn �Zn �
1

n
� Dn.X/ � Yn CZn

for all n 2 N. Linearity and monotonicity of expectation for discrete random variables yields

EŒYn� �EŒZn� �
1

n
� EŒDn.X/� � EŒYn�CEŒZn�

for all sufficiently large n1, and so, by the sandwich theorem for limits of sequences (and the
algebra of limits),

lim
n!1

EŒYn� � lim
n!1

EŒZn� � lim
n!1

1

n
� lim
n!1

EŒDn.X/� � lim
n!1

EŒYn�C lim
n!1

EŒZn�: (2)

By our assumptions and the fact that EŒX� WD limn!1EŒDn.X/�, (2) reads as

a � EŒX� � a;

thus completing the proof. �

(b) [H)]

We need to show that
E
�
jXn � aj

2
�
�!
n!1

0:

For sufficiently large n, we have

E
�
jXn � aj

2
�
D E

�
.Xn � a/

2
�

D E
�
X2
n C a

2
� 2aEŒXn�

�
D EŒX2

n �C a
2
� 2aEŒXn�

D Var.Xn/C
�
EŒXn�

�2
C a2 � 2aEŒXn�

D Var.Xn/C
�
EŒXn� � a

�2
�!
n!1

0C .a � a/2 D 0;

(3)

where: the third equality holds by linearity of expectation; the fourth equality holds because

Var.Xn/ D EŒX2
n � �

�
EŒXn�

�2
; convergence follows by our assumptions and continuity of the

function f WR! R, x 7! .x � a/2. The desired result obtains.

[(H]

We need to show that
Var.Xn/ �!

n!1
0 and EŒXn� �!

n!1
a:

From (3) we have

E
�
jXn � aj

2
�
D Var.Xn/C

�
EŒXn� � a

�2
(4)

for sufficiently large n. Since Var.Xn/ � 0 and
�
EŒXn� � a

�2
� 0 for all n 2 N, we have from

(4)
0 � Var.Xn/ � E

�
jXn � aj

2
�

1By assumption, limn!1EŒZn� D 0 and limn!1EŒYn� D a. Therefore, there exist natural numbers NZ and NY
such that Zn 2 L

1
d
.�;A; P / for all n > NZ , and Yn 2 L

1
d
.�;A; P / for all n > NY , By “sufficiently large n” we mean

n > max fNZ ; NY g, so that both EŒYn� and EŒZn� are finite, and using monotonicity and linearity of expectation is
justified.

2



and
0 �

�
EŒXn� � a

�2
� E

�
jXn � aj

2
�

for all sufficiently large n. As E
�
jXn � aj

2
�
�!
n!1

0 by assumption, the sandwich theorem for

limits of sequences gives

Var.Xn/ �!
n!1

0 and
�
EŒXn� � a

�2
�!
n!1

0;

that is,
Var.Xn/ �!

n!1
0 and EŒXn� �!

n!1
a;

which proves the claim. �

(c) Let " > 0 be arbitrary. We need to show that

P
�
Zn �X < �" _ Zn �X > "

�
�!
n!1

0:

Since Xn � Zn � Yn for all n 2 N, we have

Zn �X < �" H) Xn �X < �";

and
Zn �X > " H) Yn �X > ":

Thus,

0 � P
�
Zn �X < �" _ Zn �X > "

�
� P

�
Xn �X < �" _ Yn �X > "

�
� P

�
Xn �X < �"

�
C P

�
Yn �X > "

�
;

(5)

where: the first inequality holds by non-negativity of P ; the second inequality holds by mono-

tonicity of P ; the third inequality holds by sub-� -additivity of P . Since Xn
P
�! X and

Yn
P
�! X ,

P
�
Xn �X < �"

�
�!
n!1

0 and P
�
Yn �X > "

�
�!
n!1

0: (6)

The desired result follows from (5), (6) and the sandwich theorem for limits of sequences. �

(d) (i) [H)]

We need to show that
lim

C!C1
lim sup
n!1

P.kXnk > C/ D 0;

i.e., that for any " > 0, there exists C" such that

lim sup
n!1

P.kXnk > C/ � " for all C > C":

Fix " > 0. Since Xn D Op.1/, there exist C" and N" such that

P.kXnk > C"/ � " for all n � N":

Hence,
sup
k�n

P.kXkk > C"/ � "

for all n � N". Thus, by monotonicity of P , for any C > C" we have

P.kXkk > C/ � P.kXkk > C"/;

3



and so
sup
k�n

P.kXkk > C/ � "

for all n � N". It follows that

lim sup
n!1

P.kXnk > C/ � ";

completing the proof.

[(H]

Fix " > 0. We need to show that there exist C" > 0 and N" > 0 such that

P.kXnk � C"/ � 1 � " for all n > N":

By assumption, limC!C1 lim supn!1 P.kXnk > C/ D 0. Then, by Theorem 1.3.(iii),
limC!C1 lim supn!1 P.kXnk � C/ D 1. Therefore, there exists C " > 0 such that for all
C > C " we have

lim sup
n!1

P.kXnk � C/ � 1 �
"

2
:

In particular, for C" WD C " C 1 we have

lim sup
n!1

P.kXnk � C"/ � 1 �
"

2
;

that is,

lim
n!1

sup
k�n

P.kXkk � C"/ � 1 �
"

2
:

But then, there exists N" > 0 such that, for all n > N",

sup
k�n

P.kXkk � C"/ � 1 � ";

and so, for all n > N",
P.kXnk � C"/ � 1 � ": �

(ii) 1. Fix " > 0. Since Un D Op.1/ and Wn D Op.1/, there exist C";U > 0, C";W > 0 and
n";U , n";W such that

P.kUnk > C";U=2/ � "=2 for all n � n";U (7)

and
P.kWnk > C";W =2/ � "=2 for all n � n";W : (8)

Set C" WD max fC";U ; C";W g. Then, for all n � n" WD max fn";U ; n";W g, we have

P.kUn CWnk > C"/ � P.kUnk C kWnk > C"/

� P.kUnk > C"=2/C P.kWnk > C"=2/

� P.kUnk > C";U=2/C P.kWnk > C";W =2/

� "=2C "=2

D ";

where: the first inequality holds by triangle inequality of the Euclidean norm and
monotonicity of P ; the second inequality holds by monotonicity and sub-� -additivity
of P ; the third inequality holds by the fact that C WD max fC";U ; C";W g and mono-
tonicity of P ; the fourth inequality holds by (7) and (8) and the fact that n � n".
The claim follows. �
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2. Let "; ı > 0 be arbitrary. We want to show that there exists N";ı such that for n 2 N,
n > N";ı , we have

P.jXnUnj > "/ < ı:

Since Un D Op.1/, there exist Cı and Nı such that

P.jUnj > Cı/ �
ı

2
(9)

for all n > Nı . Moreover, as Xn D op.1/, there exists N"=Cı;ı such that

P.jXnj > "=Cı/ <
ı

2
(10)

for all n > N"=Cı;ı . Observe that

jXnUnj > " H)
˝
jXnj > "=Cı _ jUnj > Cı

˛
: (11)

Then, for n > N";ı WD max
˚
N"=Cı;ı ; N�;ı

	
P.jXnUnj > "/ � P.jXnj > "=Cı _ jUnj > Cı/

� P.jXnj > "=Cı/C P.jUnj > Cı/

< ı=2C ı=2

D ı;

where: the first inequality holds by monotonicity of P and (11); the second inequality
holds by sub-� -additivity of P ; the last inequality holds by (9) and (10) and the fact
that n > N";ı . The desired result follows. �

Exercise 32

Solve the following problems.

(a) Let X � B.n; �/ and Y � Po.�/.

(i) Find the characteristic functions of X and Y .

(ii) Use the characteristic function of X to compute EŒX� and Var.X/.

(b) Let X � Po.�/; Y � Po.�/, with �;� > 0, and assume that X and Y are independent. Show
that .X C Y / � Po.�C �/.

(c) Let Xn � B.n; �n/ for all n 2 N, Y � Po.�/ and suppose that limn!1 n�n D �. Show that

Xn
d
�! Y .

Solution

(a) (i) For all t 2 R, we have (omitting details)

'X.t/ WD E
�
eitX

�
D

nX
kD0

eitk

 
n

k

!
�k.1 � �/n�k D

�
�eit C .1 � �/

�n
;

and

'Y .t/ WD E
�
eitY

�
D

1X
kD0

eitk
�k

kŠ
e�� D e�.e

it�1/:

5



(ii) We have (omitting details)

EŒX� D i�1'
.1/
X .0/ D n�;

EŒX2� D i�2'
.2/
X .0/ D n�..n � 1/� C 1/;

and so
Var.X/ D n�..n � 1/� C 1/ � n2�2 D n�.1 � �/: �

(b) The characteristic functions of X and Y are 'X.t/ D e�.e
it�1/ and 'Y .t/ D e�.e

it�1/. Since X
and Y are independent,

'XCY .t/ D 'X.t/'Y .t/ D e
�.eit�1/e�.e

it�1/
D e.�C�/.e

it�1/;

which is the characteristic function of a discrete random variable with Poisson distribution with
parameter �C �. Hence, .X C Y / � Po.�C �/ by Lemma 1.43. �

(c) By Levy’s continuity theorem (Corollary 2.17 in the Lecture Notes), it is enough to show that

'Xn.t/ �!
n!1

'Y .t/

for all t 2 R. Let t 2 R be arbitrary. We have

lim
n!1

'Xn.t/ D lim
n!1

�
�ne

it
C .1 � �n/

�n
D lim

n!1

�
1C

n�n.e
it � 1/

n

�n
D lim

n!1
exp

 
n ln

�
1C

n�n.e
it � 1/

n

�!
D exp

 
lim
n!1

n ln

�
1C

limn!1 n�n.e
it � 1/

limn!1 n

�!
D exp

 
lim
n!1

n ln

�
1C

�.eit � 1/

limn!1 n

�!
D exp

 
lim
n!1

n ln

�
1C

�.eit � 1/

limn!1 n

�!
D exp

 
lim
n!1

n ln

�
1C

�.eit � 1/

limn!1 n

�!
D lim

n!1
exp

 
ln

�
1C

�.eit � 1/

n

�!
D lim

n!1

�
1C

�.eit � 1/

n

�n
D e�.e

it�1/

D 'Y .t/;

where we used the fact that, for a continuous function f , limn!1 f .xn/ D f .limn!1 xn/,
the assumption that limn!1 n�n D �, and the fact that limn!1

�
1C x

n

�n
D ex for any real

number x. �

6



Exercise 33

Let .Xn/n and .Yn/n be sequences of Rk-valued random variables such that Xn
d
�! X and Yn

d
�! Y .

Suppose that Xn and Yn are independent for all n and that X and Y are independent. Show that

Xn C Yn
d
�! X C Y .

Solution

By Levy’s continuity theorem (Corollary 2.17 in the Lecture Notes), the claim follows if we show
that

'XnCYn.t/ �!
n!1

'XCY .t/ for all t 2 Rk:

Let t 2 Rk be arbitrary. Since Xn and Yn are independent for all n, and so are and X and Y , we
have

'XnCYn.t/ D 'Xn.t/'Yn.t/ (12)

for all n, and
'XCY .t/ D 'X.t/'Y .t/ (13)

(cf. Proposition 1.42 in the Lecture Notes). As Xn
d
�! X and Yn

d
�! Y , Levy’s continuity theorem

gives
'Xn.t/ �!

n!1
'X.t/ and 'Yn.t/ �!

n!1
'Y .t/;

and so, from the algebra of limits,

'Xn.t/'Yn.t/ �!
n!1

'X.t/'Y .t/: (14)

The desired result follows by combining (12), (13) and (14). �

*Exercise 34

Solve the following problems.

(a) Suppose that .Xn/n is a sequence of i.i.d. real-valued random variables with known expectation
�1 < � < C1, unknown variance 0 < �2 < C1, and finite fourth moments. Apply the
delta-method to derive the limit distribution of

p
n.Sn��/, where Sn is the following estimator

of � :

Sn WD

vuut1

n

nX
kD1

.Xk � �/
2:

(b) Suppose that .Xn/n is a sequence of i.i.d. real-valued random variables with EŒX4
1 � < C1.

Define Yn WD n�1
Pn
kD1 jXkj, Zn WD n�1

Pn
kD1X

2
k
, and Tn WD .Yn; Zn/

0. Show that
p
n.Tn �

�/
d
�! N..0; 0/0; †/ and identify � and † in terms of moments of X1.

(c) For i 2 f1; : : : ; kg, let Zi be i.i.d. with Zi � N.0; 1/, and define Z WD .Z1; : : : ; Zk/. Let � 2 Rk
and A be a k � k real matrix. Compute the mean, the variance and the characteristic function
of the random variable X WD �C AZ.

7



Solution

(a) Set Yn WD .Xn � �/
2 for all n. Since .Xn/n is a sequence of i.i.d. random variables, so is .Yn/n.

Moreover,
EŒYn� WD E

�
.Xn � �/

2
�
D �2;

and

Var.Yn/ WD E
h�
Yn � �

2
�2i

D E
h�
.Xn � �/

2
� �2

�2i
D E

�
.Xn � �/

4
�
� �4;

where we use linearity of expectation and the fact that �4 is finite. Set S2 WD E
�
.Xn � �/

4
�
��4.

As Xn has finite fourth moments, we have 0 < S2 < C1.2 Thus, from the central limit theorem
for i.i.d. real-valued random variables,Pn

iD1 Yi � n�
2

p
n

d
�! Z � N.0; S2/;

or, by setting Tn WD
1
n

Pn
iD1 Yi ,

p
n
�
Tn � �

2
� d
�! Z � N.0; S2/:

The function �W Œ0;C1/! R, �.x/ WD
p
x, is differentiable at any x > 0, and so in particular

at x D �2, with

�.Tn/ D Sn;

�.�2/ D �;

and
�
� 0.�2/

�2
D

1

4�2
:

Applying the delta-method we obtain

p
n
�
�.Tn/ � �.�

2/
� d
�! N

�
0; S2

�
� 0.�2/

�2�
;

that is,
p
n.Sn � �/

d
�! N

 
0;
E
�
.Xn � �/

4
�
� �4

4�2

!
;

which answers the question. �

(b) Set Sn WD .jXnj; X
2
n/ for all n. Since .Xn/n is a sequence of i.i.d. random variables, so is .Sn/n.

Define

�1 WD EŒjX1j�; (15)

�2 WD EŒX
2
1 �; (16)

and � WD .�1; �2/
0: (17)

Clearly, EŒSn� D � for all n. Let † denote the covariance matrix of S1. We have

E
h�
jX1j �EŒjX1j�

�2i
D E

�
jX1j

2
�
� �21 D �2 � �

2
1 ;

2Quiz: Why 0 < S2?
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E
h�
X2
1 �E

�
X2
1

��2i
D EŒX4

1 � � �
2
2 ;

and
E
h�
jX1j � �1

��
X2
1 � �2

�i
D E

�
jX1jX

2
1

�
� �1�2 D E

�
jX1j

3
�
� �1�2:

Since EŒX4
1 � < C1 by assumption, all previous moments are finite, and using linearity of

expectation is correct. Therefore, we have

† D

�
�2 � �

2
1 E

�
jX1j

3
�
� �1�2

E
�
jX1j

3
�
� �1�2 EŒX4

1 � � �
2
2

�
; (18)

which is finite. Then, by the multivariate central limit theorem,

1
p
n

� nX
iD1

Si � n�

�
d
�! Z � N..0; 0/0; †/:

Observing that

1
p
n

� nX
iD1

Si � n�

�
D
p
n.Tn � �/

completes the proof. That � and † are identified in terms of moments of X1 follows from (15),
(16), (17) and (18). �

(c) (Detailed sketch) Since the Zi ’s are i.i.d. with Zi � N.0; 1/, we have Z � N.0k; Ik/, where Ik
(D Var.Z/ D E

�
ZZ0

�
) denotes the k � k identity real matrix. We have

EŒX� WD EŒ�C AZ� D �C AEŒZ� D �CEŒZ� D �C 0k D �

by linearity of expectation, and

Var.X/ WD Var.�C AZ/

WD E
h�
�C AZ �EŒ�C AZ�

��
�C AZ �EŒ�C AZ�

�0i
D E

�
AZZ0A0

�
D AE

�
ZZ0

�
A0

D AIkA
0

D AA0:

Moreover, for all t 2 Rk,
'Z.t/ WD E

�
eit
0Z
�
D e�t

0t=2:

Since '�CAZ.t/ D e
i�0t'Z.A

0t / (cf. Proposition 1.42 in the Lecture Notes), we get

'X.t/ D exp.i�0t / exp.�t 0AA0t=2/ D exp.i�0t � t 0AA0t=2/

for all t 2 Rk. �

Exercise 35

Let X be a real-valued random variable, and let 'X be its characteristic function. Show that 'X is

real if and only if X
d
D �X .

9



Solution

Fix t 2 R. First, we show that
'X.t/ D 'X.�t / D '�X.t/: (19)

To see this, we simply let the minus sign wander through the exponent:

eixt D cos xt C i sin xt

D cos xt � i sin xt

D cos.x.�t //C i sin.x.�t // .D eix.�t//

D cos..�x/t/C i sin..�x/t/

D ei.�x/t :

Now, if 'X is real, then 'X.t/ D 'X.t/. If follows from (19) that '�X.t/ D 'X.t/, which means that
X and �X have the same characteristic function, and, hence, by uniqueness (Lemma 1.43 in the
Lecture Notes), the same distribution.

If, on the other hand, X
d
D �X , then 'X.t/ D '�X.t/ (again by Lemma 1.43). Together with (19),

this yields 'X.t/ D 'X.t/, that is, 'X is real. �

Exercise 36

Let .Xn/n be a sequence of i.i.d. random variables, with Xn � Exp.�/. Define Oƒn WD 1=Xn, with
Xn WD

1
n

Pn
kD1Xk. Find �2 (as a function of �) such that

p
n. Oƒn � �/

d
�! Z � N.0; �2/:

Solution

For each i , we have

EŒXi � D
1

�
and Var.Xi/ D

1

�2
:

By the central limit theorem for i.i.d. sequences of real-valued random variables,

p
n

�
Xn �

1

�

�
d
�! N

�
0;
1

�2

�
:

The function �W .0;C1/ ! R, �.x/ WD 1=x, is differentiable at all x on its domain, and so in
particular at x D 1=�, with

�.Xn/ D Oƒn;

�.1=�/ D �;

and
�
� 0.1=�/

�2
D �4:

Applying the delta-method we obtain

p
n
�
�.Xn/ � �.1=�/

� d
�! N

�
0;
1

�2

�
� 0.1=�/

�2�
;

that is,
p
n
�
Oƒn � �

� d
�! N.0; �2/;

which answers the question, with �2.�/ D �2. �
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Exercise 37

Let Y be a real-valued random variable on some probability space .�;A; P /, with Y 2 L2.�;A; P /.
Show that � WD EŒY � is the unique minimizer of the function GWR ! Œ0;C1/ defined as G.c/ WD
E
�
.Y � c/2

�
.

Solution

Note that

G.c/ WD E
�
.Y � c/2

�
D EŒY 2

C c2
� 2cY �

D EŒY 2�C c2
� 2cEŒY �;

where the last equality holds by linearity of expectation and the fact that Y 2 L2.�;A; P / and
c 2 R. We need to solve the following minimization problem:

min
c2R

�
EŒY 2�C c2

� 2cEŒY �
�
:

The objective function is twice continuously differentiable (in c) on R. The first order condition is

@G.c/

@c
D 0 ” 2c � 2EŒY � D 0 ” c D EŒY �:

The second order condition is
@2G.c/

@c2
D 2 > 0;

which shows that the objective function is strictly convex on R. Thus, � WD EŒY � is the unique
minimizer of G.c/. �

*Exercise 38

Solve the following problems.

(a) Find a sequence of random vectors ..Xn; Yn/
0/n and a random vector .X; Y /0 such that Xn

d
�!

X , Yn

d
�! Y , but not ..Xn; Yn/

0/n
d
�! .X; Y /0.

(b) Let .Xn/n, with Xn WD .Xn;1; : : : ; Xn;k/ for all n, be a sequence of Rk-valued random variables,

and X WD .X1: : : : ; Xk/ an Rk-valued random variable. Suppose that Xn

d
�! X . Show that

Xn;i

d
�! Xi for all i 2 f1; : : : ; kg.

1



Solution

(a) Let X � N.0; 1/, Y � .0; 1/, and assume that X and Y are independent. Then,

.X; Y /0 � N..0; 0/0; I2/;

where I2 is the 2� 2 real identity matrix. Now, for all n, let Xn � N.0; 1/, and set Yn WD �Xn,

Clearly, Xn

d
�! X , and Yn

d
�! Y (cf. Exercise 28-(a)). However,

.Xn; Yn/
0 d
�! .X;�X/0 � N..0; 0/0; †/;

with

† D

�
1 �1

�1 1

�
:

As .X;�X/0
d

¤ .X; Y /0, ..Xn; Yn/
0/n does not converge in distribution to .X; Y /0. �

(b) Consider an arbitrary i 2 f1; : : : ; kg, and let ei the i -th vector of the standard basis of Rk (i.e.,

ei is the vector in Rk with a 1 in the i -th coordinate and 0’s elsewhere). Since Xn

d
�! X , by

the Cramér-Wold device (Theorem 2.18 in the Lecture Notes) we have

e0iXn

d
�! e0iX

Since e0iXn D Xn;i for all n, and e0iX D Xi , the desired result follows. �

Exercise 39

A real-valued random variable X is standard Cauchy distributed if it is continuous with density
fX WR! Œ0;C1/ defined by

fX.x/ WD
1

� .1C x2/
;

where � is a strictly positive real constant. The characteristic function of X is 'X.t/ D e�jt j.
Suppose that X1; : : : ; Xn are i.i.d. standard Cauchy distributed random variables. Show that Xn WD

n�1
Pn

iD1Xi is standard Cauchy distributed.

Solution

For all t 2 R, we have

'Xn
.t/ WD ' 1

n

Pn
iD1 Xi

.t/

D 'Pn
iD1 Xi

�
t

n

�
D

nY
iD1

'X

�
t

n

�
D

�
'X

�
t

n

��n

D

h
e�

jtj

n

in

D e�jt j

D 'X.t/;

2



where the first equality holds by Proposition 1.42 in the Lecture Notes, and the second equality holds
by Proposition 1.42 and the fact that X1; : : : ; Xn are i.i.d. standard Cauchy random variables. Thus,
'Xn
D 'X , and so Xn is standard Cauchy distributed by Lemma 1.43 in the Lecture Notes. �

Exercise 40

Solve the following problems.

(a) (Final Exam - Spring 2013) Suppose that �1 and �2 are two nonempty sets, and that f W�1 !

�2 is a function. Further, let A2 be a � -field on �2. Show that the class

A1 WD ff
�1.A/ 2 P.�1/ W A 2 A2g

is a � -field on �1. [Note. For each A 2 P.�2/, f
�1.A/ WD f! 2 �1 W f .!/ 2 Ag, i.e. f �1 .A/

denotes the inverse image of A under f .]

(b) Let X be a real-valued random variable on some probability space .�;A; P /. Show that X is
independent of itself if and only if X is constant almost surely.

Solution

(a) We show that the defining properties of � -field (Definition 1.1 in the Lecture Notes) are satisfied
by A1.

(o) By definition, A1 is a class of subsets of �1.

(i) Since A2 is a � -field, ; 2 A2. By definition of A1, f �1.;/ 2 A1. As

f �1.;/ WD f! 2 �1 W f .!/ 2 ;g D ;;

we have ; 2 A1.

(ii) Let B 2 A1. Then, by definition of A1, there exists A 2 A2 such that B D f �1.A/. Since
A2 is a � -field on �2, �2 n A 2 A2. By definition of A1, f �1.�2 n A/ 2 A1. As

f �1.�2 n A/ D �1 n f
�1.A/ D �1 n B;

we conclude that A1 is closed under complementation.

(iii) Let B1; B2; � � � 2 A1. Then, by definition of A1, there exist A1; A2; � � � 2 A2 such that
B1 D f

�1.A1/; B2 D f
�1.A2/; : : : . Since A2 is a � -field,

S1
nD1An 2 A2. By definition of

A1, f �1
�S1

nD1An

�
2 A1. As

f �1
� 1[

nD1

An

�
D

1[
nD1

f �1.An/ D

1[
nD1

Bn;

we conclude that A1 is closed under taking countably infinite unions. �

Remark. Note that A1 is the � -algebra on �1 generated by f W�1 ! �2 (cf. Exercise 48).

(b) First, suppose that P.X D c/ D 1 for some c 2 R. For any A 2 B.R/, we have

P.X 2 A/ D 1 ” c 2 A;

and therefore,
P.X 2 A/ D 1A.c/:

3



Then, for any A1; A2 2 B.R/,

P.X 2 A1; X 2 A2/ D P.X 2 .A1 \ A2//

D 1A1\A2
.c/

D 1A1
.c/1A2

.c/

D P.X 2 A1/P.X 2 A2/;

which shows that X is independent of itself.

Now, suppose that X is independent of itself. Then, for any x 2 R,

P.X � x/ D P.X � x;X � x/ D ŒP.X � x/�2:

This means that P.X � x/ can only equal 0 or 1 for any x 2 R. Since limx!�1 P.X � x/ D 0,
limx!C1 P.X � x/ D 1, and P.X � x/ is non-decreasing in x, there must be a c 2 R such
that P.X � c/ D 1 and P.X < c/ D 0, which shows that P.X D c/ D 1. �

*Exercise 41

Solve the following problems

(a) Let X be an Rk-valued random variable on some probability space .�;A; P / and c a real
constant. Show by definition of conditional expectation that EŒc j X� D c almost surely.

(b) Let Y be a real-valued random variable on some probability space .�;A; P /, Y 2 L2.�;A; P /,
and c a constant in Rk. Show that EŒY j c � D EŒY �.

(c) Let Y be a real-valued random variable, X an Rk-valued random variable, and Z an Rm-valued
random variable all defined on the same probability space .�;A; P /. Let Y 2 L1.�;A; P /.
Show by definition of conditional expectation that:

(i) EŒEŒY j X�� D EŒY �;

(ii) EŒEŒY j X� j X;Z� D EŒY j X� almost surely;

(iii) EŒY jX; f .X/� D EŒY j X� almost surely for any B.Rk/-B.Rm/ measurable function
f WRk ! Rm.

Solution

(a) Since EŒc� D c 2 R, we have c 2 L1.�;A; P /, and the conditional expectation of c given X
exists by Theorem 3.4 in the Lecture Notes. Let g.X/ be a version of EŒc j X�. By definition,
g.X/ satisfies

EŒch.X/� D EŒg.X/h.X/�;

or, equivalently, using linearity of expectation,

EŒ.c � g.X//h.X/� D 0 (1)

for every bounded and Borel measurable function hWRk ! R. By way of contradiction, suppose
that g.X/ D c almost surely does not hold. Then, there exist "1; �1 > 0 such that

P.c � g.X/ � "1/ � �1 > 0;

or there exist "2; �2 > 0 such that

P.g.X/ � c � "2/ � �2 > 0;

4



or both. Assume without loss of generality that

P.c � g.X/ � "/ � � > 0; (2)

for some "; � > 0, and define hWRk ! R as

h.X/ WD 1fc�g.X/�"g:

Clearly, h is bounded and Borel measurable. However,

E
��
c � g.X/

�
1fc�g.X/�"g

�
� E

�
"1fc�g.X/�"g

�
D "E

�
1fc�g.X/�"g

�
D "P.c � g.X/ � "/

� "�

> 0;

(3)

where: the first inequality holds by monotonicity of expectation; the first equality holds by
linearity of expectation; the second inequality holds by (2). Since (3) contradicts (1), the
desired result follows. �

(b) By Lemma 3.6, if the measurable function gWRk ! R minimizes E
�
.Y � g.c//2

�
, then g.c/ D

EŒY j c� almost surely. Since c is a constant in Rk, g.c/ is a real constant for any measurable
function gWRk ! R, and so we can use the standard calculus approach to find g.c/. Set
a WD g.c/. We want to solve

min
a2R

E
�
.Y � a/2

�
:

By Exercise 37, we know that a D EŒY � is the unique solution to the previous minimization
problem. The desired result follows. �

(c) (i) By definition, EŒY j X� satisfies

EŒYh.X/� D EŒEŒY j X�h.X/�

for any bounded and Borel measurable function hWRk ! R. Define h as h.x/ WD 1 for all
x 2 Rk. Clearly, h is bounded and Borel measurable. Then, we have

EŒY � 1� D EŒEŒY j X� � 1�;

that is
EŒY � D EŒEŒY j X��;

which gives the desired result. �

(ii) Let g.X;Z/ be a version of the conditional expectation of EŒY j X� given X and Z. Then,
we have

EŒEŒY j X�h.X;Z/� D EŒg.X;Z/h.X;Z/�;

or, equivalently, using linearity of expectation,

E
��
EŒY j X� � g.X;Z/

�
h.X;Z/

�
D 0 (4)

for every bounded and Borel measurable function hWRk �Rm ! R. By way of contradic-
tion, suppose that g.X;Z/ D EŒY j X� almost surely does not hold. Then, there exist
"1; �1 > 0 such that

P.EŒY j X� � g.X;Z/ � "1/ � �1 > 0;
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or there exist "2; �2 > 0 such that

P.g.X;Z/ �EŒY j X� � "2/ � �2 > 0;

or both. Assume without loss of generality that

P.EŒY j X� � g.X;Z/ � "/ � � > 0; (5)

for some "; � > 0, and define hWRk � Rm ! R as

h.X;Z/ WD 1fEŒY jX��g.X;Z/�"g:

Clearly, h is bounded and Borel measurable. However,

E
��
EŒY j X� � g.X;Z/

�
1fEŒY jX��g.X;Z/�"g

�
� E

�
"1fEŒY jX��g.X;Z/�"g

�
D "E

�
1fEŒY jX��g.X;Z/�"g

�
D "P.EŒY j X� � g.X;Z/ � "/

� "�

> 0;

(6)

where: the first inequality holds by monotonicity of expectation; the first equality holds
by linearity of expectation; the second inequality holds by (5). Since (6) contradicts (4),
the desired result follows. �

(iii) Let g.X/ be a version of the conditional expectation of Y given X . We want to show that
g.X/ is also a version of the conditional expectation of Y given X and f .X/; that is,

EŒY Qh.X; f .X//� D EŒg.X/ Qh.X; f .X//�

for every bounded and Borel measurable function QhWRk �Rm ! R. Consider an arbitrary
such Qh. Since g.X/ be a version of EŒY j X�, we have

EŒYh.X/� D EŒg.X/h.X/�;

for every bounded and Borel measurable function hWRk ! R. In particular, define hWRk !

R as h.x/ D Qh.x; f .x// for all x 2 Rk. Note that such h is bounded because Qh is so, and
is measurable because the identity function and f are so. Then, we have we have

EŒY Qh.X; f .X//� WD EŒYh.X/� D EŒg.X/h.X/� WD EŒg.X/ Qh.X; f .X//�;

Since Qh, was chosen arbitrarily, the desired result follows. �

Exercise 42

Let .X; Y /0 be a jointly continuous R2-valued random variable with joint density fXY WR2 ! Œ0;C1/

defined as

fXY .x; y/ WD

(
1
y

if 0 < x < y < 1

0 otherwise
:

(i) Determine the conditional density of X given Y . What is the cdf of X given Y D y?

(ii) Determine EŒY �, EŒX j Y �, and EŒX2 j Y �.

6



Solution

(i) We briefly answer the question omitting details. We have

fX jY .x jy/ WD
fXY .x; y/

fY .y/

for any y such that fY .y/ > 0. Note that for 0 < y < 1 we have

fY .y/ D

Z C1
�1

fXY .x; y/ dx D

Z y

0

1

y
dx D

1

y

Z y

0

dx D
1

y
x
ˇ̌̌y
xD0
D 1;

and fY .y/ D 0 otherwise. Therefore,

fX jY .x jy/ D

(
1
y

if 0 < x < y < 1

any density otherwise
:

Moreover, for x 2 .0; y/ we have

FX jY .x jy/ D

Z x

0

1

y
ds D

1

y
s
ˇ̌̌x
sD0
D
x

y
;

FX jY .x jy/ D 0 for x � 0, and FX jY .x j y/ D 1 for x � y.

(ii) We have

EŒY � D

Z C1
�1

yfY .y/ dy D

Z 1

0

y dy D
y2

2

ˇ̌̌̌
ˇ
1

yD0

D
1

2
:

Moreover,

EŒX j Y D y� D

Z C1
�1

xfX jY .x j y/ dx D

Z y

0

x
1

y
dx D

x2

2y

ˇ̌̌̌
ˇ
y

xD0

D
y

2
:

Finally,

EŒX2
j Y D y� D

Z C1
�1

x2fX jY .x j y/ dx D

Z y

0

x2 1

y
dx D

x3

3y

ˇ̌̌̌
ˇ
y

xD0

D
y2

3
: �
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Exercise 43

Solve the following problems.

(a) Let Y1; Y2 be real-valued random variables and X an Rk-valued random variable on the same
probability space .�;A; P /, with Y1:Y2 2 L

1.�;A; P /, and let ˛1; ˛2 2 R. Show that EŒ˛1Y1C
˛2Y2 j X� D ˛1EŒY1 j X�C ˛2EŒY2 j X� almost surely.

(b) Let X and Y be real-valued random variables on some probability space .�;A; P /, with Y 2
L2.�;A; P /. Show that P.jY j � ı j X/ � ı�2EŒY 2 j X� almost surely for any ı > 0.

Solution

(a) We want to show that

EŒ.˛1Y1 C ˛2Y2/h.X/� D E
�
.˛1EŒY1 j X�C ˛2EŒY2 j X�/h.X/

�
for every bounded and Borel measurable function hWRk ! R. Consider an arbitrary such h.
We have

EŒ.˛1Y1 C ˛2Y2/h.X/� D EŒ˛1Y1h.X/C ˛2Y2h.X/�

D ˛1EŒY1h.X/�C ˛2EŒY2h.X/�

D ˛1E
�
EŒY1 j X�h.X/

�
C ˛2E

�
EŒY2 j X�h.X/

�
D E

�
˛1EŒY1 j X�h.X/C ˛2EŒY2 j X�h.X/

�
D E

�
.˛1EŒY1 j X�C ˛2EŒY2 j X�/h.X/

�
;

where: the second and fourth equality holds by linearity of expectation and the fact that
˛1; ˛2 2 R, and Y1; Y2; h.X/ 2 L

1.�;A; P /; the third equality holds because, by definition of
conditional expectation of Yk given X , k D 1; 2, we have EŒYkh.X/� D EŒEŒYk j X�h.X/� for
the bounded and measurable function hWRk ! R. Then,

EŒ˛1Y1 C ˛2Y2 j X� D ˛1EŒY1 j X�C ˛2EŒY2 j X� a.s.

by uniqueness of conditional expectation. �

(b) Note that
ı21fjY j�ıg � Y

2:

Then, by monotonicity and linearity of conditional expectation, as Y 2 L2.�;A; P /,

ı2E
�
1fjY j�ıg j X

�
� EŒY 2 j X� a.s.;

1



i.e.,

E
�
1fjY j�ıg j X

�
�
EŒY 2 j X�

ı2
a.s.

Observing that
E
�
1fjY j�ıg j X

�
D P.jY j � ı j X/;

the desired result follows. �

*Exercise 44

Let Y be a real-valued random variable andX an Rk-valued random variable on a common probability
space .�;A; P /, with Y 2 L2.�;A; P /.

(a) Show that Var.Y jX/ D EŒY 2 j X� � .EŒY j X�/2 almost surely.

(b) Suppose that X and Y are independent. Show that Var.Y jX/ D Var.Y / almost surely.

(c) Show that Var.Y / D EŒVar.Y jX/�C Var.EŒY j X�/.

Solution

(a) As Y 2 L2.�;A; P /, we have

Var.Y jX/ WD E
�
.Y �EŒY j X�/

2
j X

�
D E

�
Y 2 � 2YEŒY j X�C .EŒY j X�/

2
j X

�
D EŒY 2 j X� � 2EŒYEŒY j X� j X�CEŒ.EŒY j X�/

2
j X� a.s.

D EŒY 2 j X� � 2EŒY j X�EŒY j X�CE
�
.EŒY j X�/

2
j X

�
a.s.

D EŒY 2 j X� � 2.EŒY j X�/
2
C .EŒY j X�/

2 a.s.

D E
�
Y 2 j X

�
� .EŒY j X�/

2
;

where: the second equality holds by linearity of conditional expectation; the third and fourth
equalities hold by the law of iterated expectations (Theorem 3.10-(iv) in the Lecture Notes).
The claim follows. �

(b) As Y 2 L2.�;A; P /, we have

Var.Y jX/ D EŒY 2 j X� � .EŒY j X�/2 a.s.

D EŒY 2� � .EŒY �/2 a.s.

D Var.Y /;

where: the first equality holds by part (a); the second equality holds by independence of X
and Y and Proposition 3.11 in the Lecture Notes. The claim follows. �

(c) As Y 2 L2.�;A; P /, we have

EŒVar.Y jX/�C Var.EŒY j X�/ D E
�
EŒY 2 j X� � .EŒY j X�/

2
�

CE
�
.EŒY j X�/

2
�
�
�
EŒEŒY j X��

�2
D EŒEŒY 2 j X�� �E

�
.EŒY j X�/

2
�

CE
�
.EŒY j X�/

2
�
� .EŒY �/2

D EŒY 2� � .EŒY �/2

D Var.Y /;

where: the first equality follows by part (a); the second equality holds by linearity of conditional
expectations and the law of iterated expectations; the third equality holds by the law of iterated
expectations. �
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Exercise 45

Let X � U.�1; 1/, and define Y WD X2.

(i) Is .X; Y /0 jointly discrete or jointly continuous?

(ii) Determine EŒY j X� by using Lemma 3.6 in the Lecture Notes.

(iii) Determine EŒX j Y �.

Solution

(i) Note that the range of .X; Y /0, that we denote with R
�
.X; Y /0

�
, always lies on the curve y D x2,

with �1 � x � 1. The graph of this function is a subset of Œ�1; 1� � Œ0; 1� of zero (Lebesgue)
measure. That is, if G WD

˚
.x; y/ 2 Œ�1; 1� � Œ0; 1� W y D x2

	
denotes the graph of this function,

�L.G/ D 0, where �L is the Lebesgue measure on .Œ�1; 1� � Œ0; 1�;B.Œ�1; 1� � Œ0; 1�//. Suppose
.X; Y /0 is jointly continuous. Then, .X; Y /0 has a density, i.e., there exists a function fXY WR2 !
Œ0;C1/ such that

P
�
R
�
.X; Y /0

�
2 G

�
D

Z Z
G

fXY .x; y/ d�L.x; y/:

But the integral of a function over a set of zero Lebesgue measure is always zero, contradicting
that P..X; Y /0 2 G/ D 1. Thus, .X; Y /0 cannot have a density, and so is not jointly continuous.
Moreover, as the range of .X; Y /0 is uncountable, .X; Y /0 cannot be jointly discrete either.

(ii) By Lemma 3.6 in the Lecture Notes, if we find a Borel measurable function gWR ! R that
minimizes

E
�
.Y � g.X//2

�
; (1)

then g.X/ D EŒY j X�. As Y WD X2, minimizing (1) with respect to g.X/ is equivalent to
minimize

E
�
.X2
� g.X//

2�
:

with respect to g.X/. Since .X2 � g.X//
2
� 0, by monotonicity of expectation we have

E
�
.X2
� g.X//

2�
� 0

for any Borel measurable gWR! R, and

E
�
.X2
� g.X//

2�
D 0

if g.X/ D X2. Note that g.X/ D X2 is Borel measurable.1 Thus, we conclude that EŒY j
X� D X2 WD Y almost surely.

(iii) Since Y WD X2, and X � U.�1:1/, for any y 2 Œ0; 1� we have

EŒX j Y D y� D EŒX j X2
D y�

D �
p
yP.X < 0/C

p
yP.X � 0/

D �
p
y
1

2
C
p
y
1

2

D 0:

Then, EŒX j Y � D 0. �

1Quiz: Why?

3



Exercise 46

Let X1; : : : ; Xn be i.i.d. real-valued random variables, with EŒXi � D � 2 R and Var.Xi/ D �2 2 R.
Let Xn WD n

�1
Pn
iD1Xi be the sample mean. An estimator for �2 is the sample variance

S2n WD
1

n � 1

nX
iD1

.Xi �Xn/
2
:

Show that S2n is unbiased for �2.

Solution

We have

E
�
S2n
�
WD E

"
1

n � 1

nX
iD1

.Xi �Xn/
2

#

D
1

n � 1
E

"
nX
iD1

X2
i C

nX
iD1

X
2

n � 2Xn

nX
iD1

Xi

#
D

n

n � 1
E
�
X2
i

�
C

1

n � 1

�
nE
h
X
2

n

i
� 2nE

h
X
2

n

i�
D

n

n � 1

�
E
�
X2
i

�
�E

h
X
2

n

i�
:

(2)

Moreover,

Var.Xn/ D Var

 
1

n

nX
iD1

Xi

!
D

1

n2
Var

 
nX
iD1

Xi

!
D

1

n2
nVar.Xi/ D

�2

n
D
E
�
X2
i

�
� �2

n
;

where the third equality holds because X1 � � � ; Xn are i.i.d. Since Var
�
Xn

�
D E

h
X
2

n

i
�
�
E
�
Xn

��2
,

E
h
X
2

n

i
D Var

�
Xn

�
C
�
E
�
Xn

��2
D
E
�
X2
i

�
� �2

n
C �2 D

E
�
X2
i

�
C .n � 1/�2

n
; (3)

where we used that E
�
Xn

�
D �. Plugging (3) into (2), we have

E
�
S2n
�
D

n

n � 1

 
E
�
X2
i

�
�E

h
X
2

n

i!
D

n

n � 1

 
E
�
X2
i

�
�
E
�
X2
i

�
� .n � 1/�2

n

!
D

n

n � 1

 
.n � 1/

�
E
�
X2
i

�
� �2

�
n

!
D

n

n � 1

.n � 1/�2

n

D �2;

which shows that S2n is unbiased for �2. �
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*Exercise 47

Solve the following problems.

(a) Let .Xn/n be a sequence of i.i.d. random variables, with Xn � Exp.�/. By using Lemma 4.7
in the Lecture Notes, construct an asymptotic .1 � ˛/-confidence interval for �.

(b) Let .Xn/n be a sequence of i.i.d. binomially distributed random variables with parameters n 2 N
and p 2 .0; 1/. Determine the method of moments estimators for the parameters n and p.

Solution

(a) Define OTn WD 1=Xn, with Xn WD
1
n

Pn
kD1Xk. By Exercise 36, we know that

p
n. OTn � �/

d
�! Z � N.0; �2/:

Since Var.X1/ D 1=�
2, and the sample variance OS2n WD .n � 1/

�1Pn
iD1 .Xi �Xn/

2
is a consistent

estimator for Var.X1/, by the continuous mapping theorem for convergence in probability we
have that 1= OSn is a consistent estimator for �. By Lemma 4.7 in the Lecture Notes, an
asymptotic .1 � ˛/-confidence interval for � is"

OTn � z1�˛=2
1= OSn
p
n
; OTn C z1�˛=2

1= OSn
p
n

#
;

where

OTn WD
1

Xn

and OSn WD

sPn
iD1 .Xi �Xn/

2

n � 1
;

and z1�˛=2 is the .1 � ˛=2/-quantile of Z � N.0; 1/. �

(b) Since m1 WD EŒX1� D np, and m2 WD EŒX
2
1 � D np.1 � p/C n

2p2, solving(
m1 D np

m2 D np.1 � p/C n
2p2

for n and p we find

n D
m21

m1 �m2 Cm
2
1

and p D
m1 �m2 Cm

2
1

m1
:

Let Om1 WD n
�1
Pn
iD1Xi and Om2 D n

�1
Pn
iD1X

2
i be the empirical moments, which are consistent

estimators of the respective population moments by the weak law of large numbers and the con-
tinuous mapping theorem for convergence in probability. The method of moments estimators
for n and p, denoted as On and Op, are given by

On D
Om21

Om1 � Om2 C Om
2
1

and Op D
Om1 � Om2 C Om

2
1

Om1
: �

Exercise 48

Solve the following problems.

(a) Let .�;A/ be a measurable space and X a real-valued random variable on .�;A/. The � -
field generated by X , denoted as �.X/, is the smallest � -field † on � such that X is †-B.R/
measurable.
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(i) Suppose that X is a constant random variable on .�;A/ (i.e., X.!/ WD c 2 R for all
! 2 �). What is �.X/?

(ii) Let A 2 A. What is �.1A/, where 1A is the indicator function of A?

(iii) Let � WD f1; : : : ; 6g, A WD P.�/, and X such that X.!/ WD ! for all ! 2 �. What is
�.X/?

(iv) Suppose that X is a real-valued random variable on .�;A/. Show that

�.X/ D �
�
fX�1.C / 2 P.�/ W C 2 Cg

�
for any collection C of subsets of R such that �.C/ D B.R/. [Hint. Good set technique.]

(b) Let .�;A/ be a measurable space, and suppose that X and Y are real-valued random variables
on .�;A/. Show that X C Y and XY are (real-valued) random variables on .�;A/.

Solution

(a) (i) We have �.X/ D f;; �g.

(ii) We have �.X/ D f;; A;� n A;�g.

(iii) We have �.X/ D P.�/.
(iv) Set

T WD �
�
fX�1.C / 2 P.�/ W C 2 Cg

�
:

We want to show that
�.X/ D T :

Œ�� By Exercise 40-(a),

�.X/ D fX�1.B/ 2 P.�/ W B 2 B.R/g:

Since C � B.R/,

fX�1.C / 2 P.�/ W C 2 Cg � fX�1.B/ 2 P.�/ W B 2 B.R/g:

That T � �.X/ immediately follows.

Œ�� Consider the following class of subsets of R:

G WD fS 2 B.R/ W X�1.S/ 2 T g:

First, we show that G is a � -field on R that contains C. To see that C � G, consider an
arbitrary C 2 C. Then, X�1.C / 2 T by definition of T , and so C 2 G by definition of G.
Since C ¤ ;, it follows that G ¤ ;. To see that G is closed under complementation, let
G 2 G. Then, X�1.G/ 2 T by definition of G. Since T is a � -field on �, � n X�1.G/ D
X�1.R n G/ 2 T . But then, R n G 2 G by definition of G. To see that G is closed under
taking countably infinite unions, let G1; G2; � � � 2 G. Then, X�1.G1/ 2 T ; X�1.G2/ 2
T ; : : : by definition of G. Since T is a � -field,

1[
nD1

X�1.Gn/ D X
�1

� 1[
nD1

Gn

�
2 T :

But then,
S1
nD1Gn 2 G by definition of G. We conclude that G is a � -field on R that

contains C, as we claimed. Therefore, B.R/ D �.C/ � G. Since G � B.R/ by definition of
G, we have B.R/ D G. That is, for any B 2 B.R/, X�1.B/ 2 T . But then, �.X/ � T , as
we wanted to show. �
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(b) We first show that XCY is A-B.R/ measurable. By Exercise 14-(a), it is enough to show that,
for each a 2 R,

A WD .X C Y /�1..�1; a// WD f! 2 � W X.!/C Y.!/ < ag 2 A:

Fix a 2 R. Suppose that all the rationals are arranged in a sequence fqngn2N. Now, note that

A D
[
n2N

f! 2 � W X.!/ < qn; Y.!/ < a � qng :

[We decomposed the half plane below the line x C y D a into a countable union of bounded
boxes f.x; y/ 2 R2 W x < qn; y < a � qng.] Clearly,

f! 2 � W X.!/ < qn; Y.!/ < a � qng D f! 2 � W X.!/ < qng \ f! 2 � W Y.!/ < a � qn/g

D X�1..�1; qn// \ Y
�1..�1; a � qn//

is an element of A as an intersection of sets in A (X and Y are A-B.R/ measurable). Hence
A 2 A as a countable union of elements of A.

Next, we show that XY is A-B.R/ measurable. Note that if Y is A-B.R/ measurable, then so
is �Y (prove it!). Hence, X � Y D X C .�Y / is A-B.R/ measurable. Then as

XY D
1

4

˚
.X C Y /2 � .X � Y /2

	
;

it will suffice to prove that the square of A-B.R/ measurable functions is A-B.R/ measurable.
So let ZW� ! R be an arbitrary A-B.R/ measurable function, fix an arbitrary a 2 R, and
consider the set

˚
! 2 � W Z2.!/ > a

	
. For a < 0, this set is � 2 A, and for a � 0˚

! 2 � W Z2.!/ > a
	
D
˚
! 2 � W Z.!/ >

p
a
	
[
˚
! 2 � W Z.!/ < �

p
a
	
:

Both sets on the right hand side are elements of A, as Z is A-B.R/ measurable. Hence, we have
shown that Z2 is A-B.R/measurable. Apply this with Z WD XCY and Z WD X�Y respectively
to conclude that XY is A-B.R/ measurable. It follows that cX is A-B.R/ measurable for any
real constant c. �

Remark. Exercise 48-(b) tells us that the class of real-valued random variables on some measurable
space .�;A/ is a vector space under (pointwise) addition.

Exercise 49 (Optional - Not Graded)

Solve the following problems.

(a) Construct a probability space .�;A; P / and a sequence of random variables .Xn/n on .�;A; P /
with Xn.!/ �!

n!1
0 for all ! 2 �, but where EŒXn� does not converge to zero. Which insight

can you draw from this example?

(b) Let .Uk/k2N be a sequence of i.i.d. uniformly distributed random variables over Œ0; 1�, and define

Yn WD .
Qn
kD1 Uk/

�1=n
. Show that

p
n.Yn � e/

d
�! N.0; e2/. [Hint. Set Xk WD � lnUk and use

the delta method.]

7



Solution

(a) Set � WD Œ0; 1�, A WD B.Œ0; 1�/, and let P be the unique probability measure on the measurable
space .Œ0; 1�;B.Œ0; 1�// induced by the pdf of the uniform distribution over Œ0; 1� (cf. Corollary
1.18 in the Lecture Notes). Consider the sequence of discrete real-valued random variables
.Xn/n2N on .Œ0; 1�;B.Œ0; 1�/; P / where, for each n, Xn is defined as

Xn.!/ WD

(
n if 0 < ! � 1

n

0 otherwise
:

Clearly, limn!1Xn.!/ D 0 for all ! 2 Œ0; 1�, and therefore EŒlimn!1Xn� D 0. However, for
each n we have

EŒXn� D 0 � P.Xn D 0/C n � P.Xn D n/ D 0 �
n � 1

n
C n �

1

n
D 1:

Therefore, as EŒXn� D 1 for all n, limn!1EŒXn� D 1 ¤ 0.

This exercise shows that, in general, limn!1Xn.!/ D X.!/ for all ! 2 � is not suffi-
cient for limn!1EŒXn� D EŒX�. That is, we need additional assumptions to assure that
EŒlimn!1Xn� D limn!1EŒXn� (cf. Monotone Convergence Theorem and Dominated Conver-
gence Theorem). �

(b) Set Xk WD � lnUk for all k 2 N. Then,

lnYn WD ln

 
nY
kD1

Uk

!�1=n
D �

1

n

nX
iD1

lnUi WD
1

n

nX
iD1

Xi D Xn;

and so Yn D exp.Xn/. Since .Uk/k2N is sequence of i.i.d. random variables, so is .Xk/k2N.2

Moreover, we have

EŒX1� WD EŒ� lnU1� D

Z 1

0

� lnu du D �u.lnu � 1/
ˇ̌1
uD0
D 1;

and

EŒX2
1 � WD E

�
.� lnU1/

2
�
D EŒ�2 lnU1� D 2EŒ� lnU1� D 2;

and therefore,
Var.X1/ D EŒX

2
1 � � .EŒX1�/

2
D 2 � 1 D 1:

By the central limit theorem for i.i.d. sequences of random variables we have

p
n.Xn � 1/

d
�! Z � N.0; 1/:

The function �WR! R, �.x/ WD ex, is differentiable at all x on its domain, and so in particular
at x D 1, with

�.Xn/ D exp.Xn/;

�.1/ D e;

and
�
� 0.1/

�2
D e2:

Applying the delta-method we obtain

p
n
�
�.Xn/ � �.1/

� d
�! N

�
0;
�
� 0.1/

�2�
;

that is,
p
n
�

exp.Xn/ � e
� d
�! N.0; e2/:

As exp.Xn/ D Yn, the desired result follows. �

2Quiz: Why?
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Exercise 50

Solve the following problems.

(a) For a square matrix C WD .ci;j /1�i;j�m, the trace of C is defined as tr.C / WD
Pn
iD1 ci;i . Let

Z WD .Zi;j /1�i;j�m be a random square matrix, i.e., Zi;j are real-valued random variables on a
common probability space .�;A; P /. Assume that Zi;j 2 L

1.�;A; P / for all i; j D 1; : : : ; m.
The expectation of Z is defined as EŒZ� WD .EŒZi;j �/1�i;j�m. Show that EŒtr.Z/� D tr.EŒZ�/.

(b) Let .Zn/n, Z be random m�m matrices, and suppose that Zn
P
�! Z. Show that det.Zn/

P
�!

det.Z/, where det.C / denotes the determinant of the square matrix C .

Solution

(a) We have

EŒtr.Z/� D E

"
mX
iD1

Zi;i

#
D

mX
iD1

EŒZi;i � D tr.EŒZ�/;

where the second equality holds by linearity of expectation and the fact that Zi;i 2 L
1.�;A; P /

for all i D 1; : : : ; m. �

(b) Endow the space Rm � Rm of real-valued m � m matrices with the Euclidean distance. As
detWRm�m ! R is a continuous function, the claim follows by Lemma 2.12 in the Lecture Notes
(continuous mapping theorem for convergence in probability). �

Exercise 51

Solve the following problems.

(a) Let F WR�R! R be a continuous function. Moreover, assume that f; gWR! R are B.R/-B.R/
measurable functions. Show that hWR2 ! R, defined as h.x/ WD F.f .x/; g.x// is B.R2/-B.R/
measurable.

(b) Let Y be a real-valued random variable, with Y 2 L1.�;A; P /, and let n 2 N. Show that

E
�
Y 1Œn;1/.Y /

�
�!
n!1

0:

(c) Let Y be a real-valued random variable, and X be an Rk-valued random variable on a common
probability space .�;A; P /. Suppose that Y 2 .�;A; P /. Show that

jEŒY j X�j � EŒ jY j j X� almost surely:

1



(d) Let X1; : : : Xn be i.i.d. random variables with finite expectation, and let S WD
Pn
kD1Xk. Show

that EŒX1 j S� D S=n almost surely.

Solution

(a) By Exercise 14-(a), it is enough to show that

h�1..a;C1// 2 B.R2/

for any a 2 R. Fix a 2 R, and note that

h�1..a;C1// WD
˚
x 2 R2 W h.x/ > a

	
D
˚
x 2 R2 W .f .x/; g.x// 2 Ga

	
;

where
Ga WD

˚
.u; v/ 2 R2 W F.u; v/ > a

	
WD F �1..a;C1//:

Suppose first that Ga is an open rectangle of the form

Ga D .a1; b1/ � .c1; d1/

for some real numbers a1; b1; c1; d1. Then,

h�1..a;C1// D
˚
x 2 R2 W .f .x/; g.x// 2 Ga

	
D
˚
x 2 R2 W .f .x/; g.x// 2 .a1; b1/ � .c1; d1/

	
D
˚
x 2 R2 W f .x/ 2 .a1; b1/ and g.x/ 2 .c1; d1/

	
D
˚
x 2 R2 W f .x/ 2 .a1; b1/

	
\
˚
x 2 R2 W g.x/ 2 .c1; d1/

	
D f �1..a1; b1// \ g

�1..c1; d1//:

Since f and g are Borel measurable functions and .a1; b1/; .c1; d1/ 2 B.R/, f �1..a1; b1// and
g�1..c1; d1// are in B.R2/. Thus, f �1..a1; b1// \ g

�1..c1; d1// 2 B.R2/ because the � -algebra
B.R2/ is closed under taking finite intersections. It follows that h�1..a;C1// 2 B.R2/. Now,
suppose that the set Ga is not a rectangle. In this case, we decompose Ga into the countable
union of rectangles. Since F is continuous, Ga is an open subset of R2 (endowed with the
Euclidean distance). Hence, it can be written as

Ga D

1[
nD1

Rn;

where Rn are open rectangles of the form .an; bn/ � .cn; dn/. Therefore,

h�1..a;C1// D
˚
x 2 R2 W .f .x/; g.x// 2 Ga

	
D

(
x 2 R2 W .f .x/; g.x// 2

1[
nD1

.an; bn/ � .cn; dn/

)

D

(
x 2 R2 W f .x/ 2

1[
nD1

.an; bn/ and g.x/ 2

1[
nD1

.cn; dn/

)

D

(
x 2 R2 W f .x/ 2

1[
nD1

.an; bn/

)
\

(
x 2 R2 W g.x/ 2

1[
nD1

.cn; dn/

)
D f �1

� 1[
nD1

.an; bn/

�
\ g�1

� 1[
nD1

.cn; dn/

�
2



D

 
1[
nD1

f �1..an; bn//

!
\

 
1[
nD1

g�1..cn; dn//

!
D

1[
nD1

�
f �1..an; bn// \ g

�1..cn; dn//
�
;

where we used that inverse images behave well with respect to taking unions. As f and g are
Borel measurable and B.R2/ is closed under countable intersections and unions, we conclude
that h�1..a;C1// 2 B.R2/. �

(b) Omitted.

(c) Recall that Y D Y C � Y �, and jY j D Y C C Y �. Then,

jEŒY j X�j D jEŒY C � Y � j X�j

D jEŒY C j X� � ŒY � j X�j almost surely

� jEŒY C j X�j C jEŒY � j X�j

D EŒY C j X�CEŒY � j X�

D EŒY C C Y � j X� almost surely

D EŒ jY j j X�;

where: The second and fourth equality holds by linearity of conditional expectation, and the fact
that Y C; Y � 2 L1.�;A; P / as Y 2 L1.�;A; P /; the inequality follows by triangle inequality
for absolute value; the third equality holds because Y C and Y � are non-negative, and so are
their conditional expectations. The claim follows. �

(d) Since X1; : : : Xn are i.i.d. random variables,

EŒX1 j S� D EŒX2 j S� D � � � D EŒXn j S�;

and so
nX
kD1

EŒXk j S� D nEŒX1 j S�: (1)

Moreover, as the Xk’s have finite expectations,

nX
iD1

EŒXi j S� D E

"
nX
iD1

Xi
ˇ̌
S

#
D EŒS j S� D S a.s.; (2)

where: the first equality holds almost surely by linearity of conditional expectation; the second
equality holds by definition of S ; the third equality holds almost surely by the law of iterated
expectations (Theorem 3.10.(iv) in the Lecture Notes). From (1) and (2), we have

nEŒX1 j S� D S;

and therefore

EŒX1 j S� D
S

n
a.s.

The claim follows. �
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Exercise 52

Solve the following problems.

(a) Let X � Exp.�/. Find the characteristic function of X , and use it to compute EŒXk�, for
k D 1; 2; 3; : : : .

(b) Let .Xn/n be a sequence of i.i.d. random variables, with Xn � Exp.�/. Construct an asymptotic
.1 � ˛/-confidence interval for � based on

O�2;n WD

 
2Š

1
n

Pn
iD1X

2
i

!1=2
:

Solution

(a) Let 'X WR! C be the characteristic function of X . For each t 2 R,

'X.t/ WD E
�
eitX

�
D

Z C1
�1

eitx�e��x1Œ0;C1/.x/dx D
�

it � �
e.it��/x

ˇ̌̌̌C1
xD0

D
�

� � i t
:

For k D 1; 2; 3; : : : , we know that

EŒXk� D i�k'
.k/
X .0/:

By induction on k, it is easy to show (do it!) that

'
.k/
X .t/ D

ikkŠ�

.� � i t/kC1
;

and so

'
.k/
X .0/ D

ikkŠ

�k
:

Therefore,

EŒXk� D i�k'
.k/
X .0/ D i�k

ikkŠ

�k
D
kŠ

�k

for k D 1; 2; 3; : : : . �

(b) For each i , we have (using part (a) of this exercise)

EŒX2
i � D

2

�2
and Var.X2

i / D EŒX
4
i � � .EŒX

2
i �/

2
D
24

�4
�
4

�4
D
20

�4
:

Since .Xn/n is a sequence of i.i.d. random variables, so is .X2
n/n.

1. Then, by the central limit
theorem for i.i.d. sequences of real-valued random variables,

p
n

 
1

n

nX
iD1

X2
i �

2

�2

!
d
�! N

�
0;
20

�4

�
:

The function �W .0;C1/ ! R, �.x/ WD .2=x/1=2, is differentiable at all x on its domain, and
so in particular at x D 2=�2, with

�

 
1

n

nX
iD1

X2
i

!
D O�2;n;

1Quiz: Why?
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�.2=�2/ D �;

and
�
� 0.2=�2/

�2
D
�6

16
:

Applying the delta-method we obtain

p
n

 
�

 
1

n

nX
iD1

X2
i

!
� �.2=�2/

!
d
�! N

�
0;
20

�4

�
� 0.2=�2/

�2�
;

that is,
p
n
�
O�2;n � �

� d
�! N

�
0;
5�2

4

�
:

Since

E

 
2

1
n

Pn
iD1X

2
i

!
D �2;

by the weak law of large numbers we have that

2
1
n

Pn
iD1X

2
i

P
�! �2;

and so, by the continuous mapping theorem for convergence in probability (observing that
f W Œ0;C1/! R, f .x/ WD

p
5x=4, is a continuous function),

p
5 O�2;n

2

P
�!

p
5�

2
:

Hence, by Lemma 4.7 in the Lecture Notes, an asymptotic .1 � ˛/-confidence interval for � is"
O�2;n � z1�˛=2

p
5 O�2;n

2
p
n
; O�2;n C z1�˛=2

p
5 O�2;n

2
p
n

#
;

where z1�˛=2 is the .1 � ˛=2/-quantile of Z � N.0; 1/. �

Exercise 53

Solve the following problems.

(a) Let .Xn/n be a sequence of i.i.d. log-normally distributed random variables with pdf f W .0;C1/!
Œ0;C1/ defined by

f .x/ WD
1

p
2��x

exp

�
�
.log x � �/2

2�2

�
;

where � 2 R and � > 0. Determine method of moments estimators for the parameters � and

�2. [Hint. The following holds true for all k 2 N:

Z 1
�1

1
p
2��2

e
ky� .y��/2

2�2 dy D ek�C
k2�2

2 .]

(b) Let X1; : : : ; Xn be an i.i.d. sample of random variables, with Xi uniformly distributed over
the closed interval Œ0; ��, i.e. Xi � U.Œ0; ��/. We want to estimate the unknown (boundary)
parameter � > 0. Let Xn WD n

�1
Pn
iD1Xi be the sample mean.

(i) Show that 2Xn is a consistent and unbiased estimator for � . Determine its variance.

(ii) Determine O�MLE , the maximum likelihood estimator for �?

5



(iii) Determine a cdf of O�MLE , its expectation and its variance.

Solution

(a) We have

m1 WD EŒX1� D

Z C1
0

x
1

p
2��x

exp

�
�
.log x � �/2

2�2

�
dx

D

Z C1
0

1
p
2��

exp

�
�
.log x � �/2

2�2

�
dx

D

Z C1
�1

1
p
2��

eye
�
.y��/2

2�2 dy

D e�C�
2=2;

where: the third equality holds via integration by substitution, with y D log x; the fourth
equality follows by the hint. Similarly,

m2 WD EŒX
2
1 � D

Z C1
0

x2
1

p
2��x

exp

�
�
.log x � �/2

2�2

�
dx

D

Z C1
0

x
p
2��

exp

�
�
.log x � �/2

2�2

�
dx

D

Z C1
�1

1
p
2��

e2ye
�
.y��/2

2�2 dy

D e2.�C�
2/:

Solving (
m1 D e

�C�2=2

m2 D e
2.�C�2/

for � and �2, we obtain

� D 2 log.m1/ �
1

2
log.m2/ and �2 D log.m2/ � 2 log.m1/:

Let Om1 WD n�1
Pn
iD1 and Om2 D n�1

Pn
iD1X

2
i be the empirical moments, which are consistent

estimators of the respective population moments by the weak law of large numbers and the con-
tinuous mapping theorem for convergence in probability. The method of moments estimators
for � and �2, denoted as O� and O�2, are given by

O� D 2 log. Om1/ �
1

2
log. Om2/ and O�2 D log. Om2/ � 2 log. Om1/: �

(b) (i) Since the sample mean in an unbiased estimator for the population mean, we have
E
�
Xn

�
D EŒX1� D �=2. Using linearity of expectation, we deduce that E

�
2Xn

�
D

2E
�
Xn

�
D � , which shows that 2Xn is an unbiased estimator for � . Moreover, as

Xn

P
�! EŒX1� D �=2, that 2Xn is consistent for � follows by the continuous mapping the-

orem for convergence in probability (noting that f WR ! R, f .x/ WD 2x, is a continuous
function). Finally, we have

Var
�
2Xn

�
D 4Var

�
Xn

�
D
4

n
Var.X1/ D

4

n
�
�2

12
D
�2

3n
:

6



(ii) First, note that a pdf of X1 is f .x j �/ D 1
�

for 0 � x � � , and f .x j �/ D 0 otherwise.
The likelihood function is

L.� j .X1; : : : ; Xn// D

nY
iD1

f .Xi j �/

D

nY
iD1

1

�
1.Xi 2 Œ0; ��/

D
1

�n
1.max fX1; : : : ; Xng � �/:

The previous derivation shows that

L.� j .X1; : : : ; Xn// D 0 if � < max fX1; : : : ; Xng

and

L.� j .X1; : : : ; Xn// D
1

�n
if � � max fX1; : : : ; Xng :

Therefore, as � > 0 and 1
�n

is a decreasing function of � , we have O�MLE D max fX1; : : : ; Xng.
2

(iii) We have

O�MLE D max fX1; : : : ; Xng � x”
˝
X1 � x ^X2 � x ^ � � � ^Xn � x

˛
:

Since X1; : : : ; Xn
i:i:d:
� U.Œ0; ��/, it follows that a cdf of O�MLE is

F O�MLE .x/ D P
�
O�MLE � x

�
D

8̂<̂
:
0 if x < 0

.x=�/n if 0 � x � �

1 if x > �

:

Differentiating the cdf with respect to x, we obtain the pdf of O�MLE :

f O�MLE .x/ D

(
nxn�1=�n if 0 � x � �

0 otherwise
:

Therefore,

E
�
O�MLE

�
D

Z �

0

x
nxn�1

�n
dx D

n

nC 1
�:

Analogously, E
�
O�2MLE

�
D .n=.nC 2//�2, which gives

Var
�
E
�
O�MLE

��
D

n�2

.nC 1/2.nC 2/
: �

Exercise 54

Let .Xn/n and .Zn/n be two sequences of real-valued random variables on a common probability
space .�;A; P /, and let c be a strictly positive real constant. Prove the following statements.

(i) If Zn
P
�! C1 and Xn

P
�! c, then XnZn

P
�! C1.

2Quiz: Suppose that Xi � U.Œ0; �//, i.e., Xi is uniformly distributed over the interval Œ0; �/. Does the maximum
likelihood estimator for � exist? Discuss.
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(ii) If Zn
P
�! C1 and Xn D OP .1/, then Xn CZn

P
�! C1.

Solution

(i) Fix C > 0 and � > 0. We want to show that there exists NC;� > 0 such that3

P
�
XnZn > C

�
> 1 � �

for all positive integers n > NC;�. Fix " > 0. Since Xn
P
�! c, there exists N";� > 0 such that

P.Xn � c � "/ <
�

2
(3)

for all positive integers n > N";�. As Zn
P
�! C1, there exists NC=.c�"/;� > 0 such that

P.Zn � C=.c � "// <
�

2
(4)

for all positive integers n > NC=.c�"/;�. Moreover, note that�
Xn > c � " ^ Zn >

C

c � "

�
H) XnZn > C: (5)

Then, for all positive integers n > NC;� WD max
˚
N";�; NC=.c�"/;�

	
P
�
XnZn > C

�
� P

�
Xn > c � ";Zn >

C

c � "

�
� 1 � P

�
Xn � c � "

�
� P

�
Zn �

C

c � "

�
> 1 �

�

2
�
�

2

> 1 � �;

where: The first inequality holds by (5); the second inequality holds by De Morgan’s laws,
Theorem 1.3.(iii) in the Lecture Notes, and sub-� -additivity of P ; the third inequality holds
by (3) and (4). The desired result follows. �

(ii) Fix C > 0 and � > 0. We want to show that there exists NC;� > 0 such that

P
�
Xn CZn > C

�
> 1 � �

for all natural numbers n > NC;�. Since Xn D OP .1/, there exist real numbers C� and N� > 0
such that

P.Xn < �C�/ <
�

2
(6)

for all positive integers n > N�. As Zn
P
�! C1, there exists NC�C�;� > 0 such that

P.Zn � C � C�/ <
�

2
(7)

3Since probability measures are bounded from above by 1, a limit exists if and only if “lim inf D lim sup,” and
“lim inf � lim sup” always holds true, we have

lim inf
n!1

P.XxZn > C/ D 1” lim
n!1

P.XnZn > C/ D 1:

8



for all positive integers n > NC�C�;�. Moreover, note that˝
Xn � �C� ^ Zn > C � C�

˛
H) Xn CZn > C: (8)

Then, for all natural numbers n > NC;� WD max
˚
N�; NC�C�;�

	
> 0

P
�
Xn CZn > C

�
� P

�
Xn � �C�; Zn > C � C�

�
� 1 � P

�
Xn < �C�

�
� P

�
Zn � C � C�

�
> 1 �

�

2
�
�

2

> 1 � �;

where: The first inequality holds by (8); the second inequality holds by De Morgan’s laws,
Theorem 1.3.(iii) in the Lecture Notes, and sub-� -additivity of P ; the third inequality holds
by (6) and (7). The desired result follows. �

Exercise 55

Solve the following problems.

(a) A sample of size 1 is taken from a population distribution Po.�/, where � > 0. To test
H0 W � D 1 against H1 W � D 2, consider the non-randomized test '.X/ D 1 if X > 3, and
'.X/ D 0 if X � 3. Find the probabilities of type I and type II errors and the power of the
test against � D 2. If it is required to achieve a size equal to 0:05, how should one modify the
test '?

(b) A traditional medicament attains an effect in 50% of all cases. We examine the effect of a
new medicament in a study with n D 20 test persons. The result is that in 15 cases the new
medicament attains a positive effect. Consider the hypotheses H0 W The new medicament is
equally effective as the traditional one, against H1 W The new medicament is more effective.

(i) Construct a level-˛ D 0:05 test. Would you reject the null hypothesis given the 15 positive
effects?

(ii) Determine (an expression for) the probability of type II error if the new medicament has
a rate of 60% of positive effects.

[Hint. For the cdf F of a Bin.20; 1=2/-distributed random variable, we have F.14/ � 0; 979,
F.13/ � 0; 942.]

(c) Let Xn be the sample mean of an i.i.d. sample of size n from N.�; 16/. Find the smallest
sample size n such that .Xn � 1;Xn C 1/ is a 0:90-confidence interval for �.

(d) Let X1; X2
i:i:d:
� U.�; � C 1/. For testing H0 W � D 0 versus H1 W � > 0, we have two competing

tests: '1.X1/ rejects H0 if X1 > 0:95 (and does not otherwise); '2.X1; X2/ rejects H0 if
X1 CX2 > C (and does not otherwise) for some real number C � 1.

(i) Find the value of C so that '2 has the same size as '1.

(ii) Calculate the power function of each test. Draw a well-labeled graph of each power
function.

(iii) Prove or disprove: '2 is a more powerful test that '1.

(iv) Show how to get a test that has the same size but is more powerful than '2.
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Solution

(a) Let X � Po.�/ be our random sample. A type I error occurs when H0 is true, but rejected.
The probability of type I error (size) for test ' is

P�D1
�
' rejects H0

�
D P�D1.'.X/ D 1/

D P�D1.X > 3/

D 1 � P�D1.X � 3/

D 1 �

3X
kD0

1ke�1

kŠ

D 1 �
1

e

�
1C

1

1
C
1

2
C
1

6

�
� 0:019:

A type II error occurs when H1 is true, but rejected. The probability of type II error for test
' is

P�D2
�
' rejects H1

�
D P�D2.'.X/ D 0/

D P�D2.X � 3/

D

3X
kD0

2ke�2

kŠ

D
1

e2

�
1C

2

1
C
4

2
C
8

6

�
� 0:857:

The power is the probability of rejecting H0 when H1 is true. For test ', the power is

P�D2
�
' rejects H0

�
D 1 � P�D2

�
' rejects H1

�
� 1 � 0:857 D 0:143:

The size of a non-randomized test Q' such that Q'.X/ D 1 if X > 2, and '.X/ D 0 if X � 2
is approximately equal to 0:08, which is larger that 0:05. To achieve a size equal to 0:05, we
might use a randomized test that always rejects H0 if X > 3, and rejects H0 with probability

 if X D 3, where 
 solves

0:05 D 
P�D1.X D 3/C P�D1.X > 3/:

The previous equation gives 
 � 0:51. �

(b) A binomial model is suitable. Denote X1; : : : ; Xn random variables which are i.i.d. with
Xi � Bin.1; p/. The test statistic T is the number of positive effects in a sample of size
n D 20. That is, T WD

P20
iD1Xi , with T � Bin.20; p/. We test H0 W p D 1=2 against

H1 W p > 1=2.

(i) We determine the critical value c for the non-randomized test

'.X1; : : : ; X20/ D

(
0 if T � c

1 if T > c
:

For ˛ D 0:05, we find c as

c WD min
˚
k 2 N [ f0g W PpD0:5.T > k/ � 0:05

	
D min

(
k 2 N [ f0g W

20X
iDk

 
20

i

!
.1=2/20 � 0:05

)
;
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and deduce that c D 14 from the hint. For this sample, T D 15 > 14 D c, and so we
reject the null hypothesis.

(ii) A type II error occurs when H1 is true, but rejected. The probability of type II error for
test ' is

PpD0:6
�
' rejects H1

�
D 1 � PpD0:6

�
' does not reject H1

�
D 1 �EpD0:6Œ'.X1; : : : ; X20/�

D 1 � PpD0:6.'.X1; : : : ; X20/ D 1/

D 1 � PpD0:6.T > 14/: �

(c) We want to determine the smallest sample size n such that

P
�
Xn � 1 < � < Xn C 1

�
� 0:9:

As Xn � N.�; �2=n/, we have Xn��

�=
p
n
� N.0; 1/. Let z1�˛=2 denote the 1 � ˛=2-quantile of

Z � N.0; 1/. Then,

P

�
� z1�˛=2 <

Xn � �

�=
p
n
< z1�˛=2

�
D 1 � ˛;

from which we obtain

P

�
Xn � z1�˛=2

�
p
n
< � < Xn C z1�˛=2

�
p
n

�
D 1 � ˛:

For ˛ D 0:1, we have z1�˛=2 � 1:645. Then, as � D 4, to determine n we solve

Xn C 1:645
4
p
n
D Xn C 1;

for n or, equivalently,
1:645 � 4 D

p
n;

which gives n D 43. �

(d) The density function of Y WD X1 CX2 is given by4

fY .yI �/ WD

8̂<̂
:
y � 2� if 2� � y � 2� C 1

2� C 2 � y if 2� C 1 < y � 2� C 2

0 otherwise

:

(i) A type I error occurs when H0 is true, but rejected. The size of a test is the associated
probability of type I error. The size of '1 is

P�D0
�
'1 rejects H0

�
D P�D0

�
'1.X1/ D 1

�
D P�D0.X1 > 0:95/ D 1 � 0:95 D 0:05:

The size of '2 is

P�D0
�
'2 rejects H0

�
D P�D0.'2.X1; X2/ D 1/ D P�D0.X1 CX2 > C/:

4Let X1 and X2 be two independent real valued random variables with density functions fX1 and fX2 . Then, the
sum Y WD X1 CX2 is a random variable with density function fY , where fY is the convolution of fX1 and fX2 , i.e.,

fY .y/ D

Z C1
�1

fX1.y � x2/fX2.x2/dx2 D

Z C1
�1

fX2.y � x1/fX1.x1/dx1:
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For 1 � C � 2, we have

P�D0.X1 CX2 > C/ D P�D0.Y > C/

D

Z 2

C

fY .yI � D 0/dy

D

Z 2

C

.2 � y/dy

D
.2 � C/2

2
:

Now, solving
.2 � C/2

2
D 0:05

for C we obtain C D 2 �
p
0:1 � 1:68.

(ii) The power function of a test ' is the map ˇ' W‚ ! Œ0; 1� defined as ˇ'.�/ WD E� Œ'.X/�.
The power function for test '1 is

ˇ1.�/ WD E� Œ'1.X1/�

D P�.'1.X1/ D 1/

D P�.X1 > 0:95/

D

8̂<̂
:
0 if � � �0:05

� C 0:05 if � 0:05 < � � 0:95

1 if 0:95 < �

:

The power function for test '2 is

ˇ2.�/ WD E� Œ'2.X1; X2/�

D P�.'2.X1; X2/ D 1/

D P�.X1 CX2 > C/

D P�.Y > C/

D

8̂̂̂<̂
ˆ̂:
0 if � � C=2 � 1

.2� C 2 � C/2=2 if C=2 � 1 < � � .C � 1/=2

1 � .C � 2�/2=2 if .C � 1/=2 < � � C=2

1 if C=2 < �

:

(iii) From the graph (draw it!) it is clear that '1 is more powerful for � near 0, but '2 is more
powerful for larger � ’s. Thus, '2 is not uniformly more powerful than '1.

(iv) If either X1 � 1 or X2 � 1 (or both), we should reject H0 because P�D0.Xi < 1/ D 1 for
i D 1; 2. Now, consider a new test, 'new, with the rejection region given by˚

.x1; x2/ 2 R2 W x1 C x2 > C
	
[
˚
.x1; x2/ 2 R2 W x1 > 1

	
[
˚
.x1; x2/ 2 R2 W x2 > 1

	
The first set is the rejection region for '2. The new test, 'new, has the same size as '2
because the last two sets both have probability 0 if � D 0. But for 0 < � < C � 1, the
power function of 'new is strictly larger than ˇ2.�/. Indeed, for 0 < � < C � 1, '2 does
not reject H0 ('2.X1; X2/ D 0) with positive probability despite either X1 > 1 or X2 > 1,
while the new test rejects H0 (i.e., 'new.X1; X2/ D 1) for the same realization of X1 and
X2. That is, P�.'new.X1; X2/ � '2.X1; X2/ D 1/ > 0. If C � 1 � � , this test and '2 have
the same power as, for those values of � , P�.'new.X1; X2/ � '2.X1; X2/ D 1/ D 0. �
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