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October 13, 2016

Logistics
Before we start, here are some useful information.
Tutorials
— When: Thursdays, 13:45-15:15 and 15:30-17:00.
— Where: B6, 23-25, A3.02.

Niccolo Lomys
— Email: niccolo.lomys@gess.uni-mannheim.de.
— Office: 1.9, 7, 3rd floor, room 304.
— Office hours: Any time I am in the office.

Textbooks

There are many excellent textbooks that introduce probability theory from the measure-theoretic
viewpoint. Some of them are already referenced in the Lecture Notes. I would add the following
(and, of course, many other excellent treatments exist):

— Billingsley (1995), Probability and Measure. Wiley.

— Capinski and Kopp (2004), Measure, Integral and Probability. Springer.

— Gut (2005), Probability: A Graduate Course. Springer.

— Léveque (2015), Lecture Notes in Advanced Probability. Manuscript available here.

— Ok (2016), Probability with Economic Applications. Manuscript available here.

— Pollard (2002), A User’s Guide to Measure Theoretic Probability. Cambridge University Press.
— Rosenthal (2006), A First Look at Rigorous Probability Theory. World Scientific.

[ personally enjoy the treatment of Ok (2016) very much. The manuscript is advanced, but accessible,
crystal clear (as so is Ok’s book on real analysis), and contains all the relevant real analysis back-
ground. In style, it particularly fits the needs of the economic theory student. Gut (2005) develops
the theory with the ultimate aim of making a proper introduction to mathematical statistics, and
proves results in good detail. Rosenthal (2006) is concise, accessible and well-written, with clearly
proven results. A solution manual with answers to all even-numbered problems exists for this book.
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Lévéque (2015) is roughly at the same level of our course. Lévéque’s notes are short (but not sim-
plistic) and accurate (but without excessive technicalities), and so they are a good read. Capinski
and Kopp (2004) is particularly useful if you lack a solid real analysis background. It has solutions
to all problems and good intuitive explanations. Billingsley (1995) is encyclopedic, but I do not find
it too “user friendly” or particularly suited for self-study. Pollard (2002) offers an interesting and
deep point of view, but the treatment is a bit idiosyncratic. I would not recommend it as the main
reference unless you are taking a probability course with David Pollard.

For the mathematical statistics and the introduction to the linear regression model that we cover
in this course, I find the following references useful (in addition to those listed in the Lecture Notes):

— Casella and Berger (2001), Statistical Inference. Duxbury.
— Hansen (2016), Econometrics. Manuscript available here.

— Rohatgi and Saleh (2001), An Introduction to Probability and Statistics. Wiley.

Grading Policy for Problem Sets

Each problem set will contain six exercises and will be graded out of 100 points. Two exercises will
be starred, while the others will not. The two starred exercises will account for 60 points and will
be graded (almost) as carefully as your exam will be. This means that you will receive an accurate
feedback on them, so that you can get an idea about what we expect from you at the exam. However,
this also means that points will be cut any time a step of your solution is not sufficiently motivated
or your argument is loose. While I will be moderately tolerant at the beginning of the term, I will
become increasingly less so over time, so that you can adjust before the final exam. The remaining
four exercises will account for 10 points each and will be graded in a coarse way: 10 points if you
provide a satisfactory answer with only minor flaws; 6 points if your solution contains one or more
major problems; 2 points if you barely attempt to solve the exercise; 0 points if you do not answer
at all.
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Preliminaries

Throughout our exercise sessions, we will stick to the following conventions.

1. A set is a collection of objects we call elements. A class is a set of sets, and a family is a set
of classes. Please, try to be consistent.

2. The set of natural numbers is N := {1,2,...}, i.e., we exclude zero.

3. We say that two nonempty sets A and B in some universal set U are numerically equivalent,
or that A and B have the same cardinality, or that A and B have the same cardinal number,
if there exists a bijection f: A — B. In this case, we write A ~¢..q B.

Let N be the set of natural numbers, and set N,, := {1,2,3,...,n} for any n € N. For any
A C U we say:

a)

b)

c) A is countably infinite if A ~carqa N;
)

)

(a) A is finite if A ~carqa N, for some natural number n;
(b) A is infinite if A is not finite;

(
(d

(e) A is uncountable if A is not countable.

A is countable if A is either finite or countably infinite;

The empty set is considered to be finite and its cardinal number is zero.

4. The symbols | J72, and |J,;cy are used interchangeably to denoted countably infinite unions.
An analogous observation applies to countably infinite intersections.

5. The terms “algebra” and “field,” as well as “o-algebra” and “o-field,” are used interchangeably.

Algebras and o-Algebras

Definition 1. Let Q be a nonempty set. A nonempty class A* of subsets of Q is called an algebra
(or field) on Q if

(1) & € A*;
(1)) Q\ A e A* for all A € A*;
(iii) AU B € A for all A, B € A*.
We say that A* is a finite algebra on Q2 if it is an algebra on Q such that |A*| < oo.

In words, an algebra on a nonempty set €2 is a nonempty class of subsets of  that has the empty
set as one of its elements and is closed under complementation and taking pairwise (and thus ﬁnit&ﬂ)
unions. A finite algebra on 2 is one that contains finitely many elements. Clearly, any algebra on a
finite set is a finite algebra on that set.

Definition 2. Let Q be a nonempty set. A nonempty class A of subsets of Q is called a o-algebra
(or o-field) on Q2 if

(i) 3 € A;
(i) Q\ A e A forall A e A

L Quiz: Why? In particular, why finite and not countably infinite unions?



(iii) \Ure, € A whenever A, € A for eachn =1,2,....

Any element of A is called an A-measurable set in Q2. If A is a o-algebra on 2, we refer to the
pair (2, A) as a measurable space.

That is, a o-algebra on 2 is a nonempty class of subsets of €2 that has the empty set as one of its
elements and is closed under complementation and taking countably infinite unions. Note that there

is no difference between an algebra and a o-algebra when the ground set €2 under consideration is
finite ]

Interpretation. We interpret the fundamental set Q as the set of all possible outcomes (or real-
izations) w of a given experiment whose result is uncertain. We call Q the sample space. Given
the sample space €2, it is important to describe what information one has on the outcomes of the
experiment. This notion of information is captured by the mathematical notion of o-algebra. The
sets belonging to a o-algebra A on 2 are the events that one can decide on whether they happened
or not, given the information A. That is, A is an event if and only if A € A. If one knows the
information .4, then one is able to tell which events of A (= subsets of Q) the realization of the
experiment @ belongs to. One may define many different o-algebras on a given sample space, so
what an “event” really is depends on the model one chooses to work with. We cannot, however,
be completely arbitrary when specifying a model because the notion of o-algebras imposes some
restrictions. First, we need to be able to say that nothing happens, which requires @ € A. Second,
if A is an event, then we need to be able to talk about this event not occurring, that is, to deem the
set 2\ A also as an event. This requires A be closed under complementation. Finally, we wish to
be able to talk about at least one of countably many events occurring, and this requires A be closed
under taking countable unions. Besides, the last two properties warrant that we can view “countably
many events occurring simultaneously” as an event as well.

Exercise 1 (Some Basic Properties of o-Algebras)
Let A be a o-algebra on a nonempty set . Show that:

(a) Q€ A;
(b) If Ay,..., Ay € Afor some n € N, then ();_, 4k € A;
(c) If A, B € A, then A\B € A.

Solution

For any A C Q, define A° := Q\ A.

(a) Since A is a o-algebra on Q, # € A (by property (i) of o-algebras) and @¢ € A (by property
(ii) of o-algebras). Observing that #¢ = Q completes the proof. B

(b) We first show that A is closed under finite unions. That is,
n
(Al,...,AnGAforsomeneN): UAke.A. (1)
k=1

Let Aq,...,A, € A. For any natural number m > n, define A, := @. By property (i) of
o-algebras, A, € A for any such m. By property (iii) of o-algebras, | J;—, Ax € A. Since

GAk:<LnJAk)U( D Al):kL:JIAkUQZIQIAk,

I=n+1

2Quiz: Is there any redundant property in our definitions of algebra and o-algebras? If so, which one and why?
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the claim follows.

We now use the previous claim to show that

n
(Al,...,AneAforsomeneN):> ﬂAkeA.
k=1

Let Ay,..., A, € A. Property (ii) of o-algebras gives A{,..., A5 € A. By (1),
U AS € A,
k=1

and so, again by property (ii) of o-algebras,

n c
(U A;) e A. (2)
k=1
By De Morgan’s laws,

n ¢ n n

(U A'cf) = (40" = ) 4. 3
k=1 k=1 k=1

The desired result follows from and ([3). W

(c) First, note that A\ B = A N B°. Since A is a o-algebra and B € A, by property (ii) of
o-algebras we have B¢ € A. As o-algebras are closed under pairwise intersections (Exercise
1-(b)) and A, B¢ € A, AN B¢ € A. The desired result follows. B

Remark. Algebras are closed under pairwise unions (by definition) and under pairwise intersections
(by De Morgan’s laws); by induction, we have that algebras are closed under finite unions and inter-
sections. o-algebras are closed under countably infinite unions (by definition) and under countably
infinite intersections (by De Morgan’s laws). By , o-algebras are closed under pairwise unions, and
so any o-algebra on a nonempty set €2 is an algebra on Q. It follows that o-algebras are closed under
countable unions and intersections, and that properties (a) and (c) in Exercise 1 hold for algebras as
well. We will use these facts as a routine during the course.

Exercise 2

Solve the following problems.
(a) Let © := {1,2,3}. Explicitly describe the family of all possible g-algebras on .
(b) Let N be the set of natural numbers and define
A:={ACSN:min{|A|,|N\ 4]} < oo},

where |A| denotes the cardinal number of A C N. Is 4 an algebra on N7 A o-algebra? Justify
your answers.

(c) Let © be a nonempty set and define
A= {4 C Q :either 4 or Q\ 4 is countable} .

Is A an algebra on 27 A o-algebra? Justify your answers.



Solution

(a) The possible o-algebras on Q = {1,2, 3} are:

Ay = 1{0,Q},
Az = 1{0.{1}.{2.3} .},
Az = 1{0.{2} . {1,3}.Q},
Aqg = 1{0,{3},{1,2},Q},
and As = 1{0,{1},{2},{3},{1,2},{1,3},{2,3},Q}.

Hence, the family of all possible o-algebras on €2 is

{AI’ AZ’ A3’ A4, AS} .

Remark. How do we know we can stop looking for o-algebras on 7 Since all o-algebras on
Q are subsets of P (2) = As, we can start from As and check which of its proper subsets are
o-algebras on 2. In our example, the cardinal number of €2 is just 3, so this is a simple task.
In general, it can be shown that on a nonempty finite set 2 there are as many o-algebras as
partitions of Q. The total number of partitions of a set with cardinal number n is the Bell
number B,. Bell numbers satisfy the recursion

n
Bipi =Y. (Z)Bk, with By = By = .

k=0

The first several Bell numbers are B =1, By =1, B, =2, B3 =5, B4 = 15, Bs = 52, and
Bs =203. 1

A is the class of all subsets 4 of N such that either A or A° ;== N\ A4 is finite. We now show
that A is an algebra, but not a o-algebra, on N. It is called the cofinite algebra on N.

Claim 1. A is an algebra on N.

Proof. First, since @ is finite, @ € A. Second, let A € A; if A is finite, then A € A because
its complement (A¢)° = A is finite; if A° is finite, then A° € A because it is finite. Third, let
A, B € A. Then, we have four cases:

(i) A is finite and B is finite. Then, A U B is finite (as the union of finite sets is finite), and
so it is in A.
(i) A is finite and B¢ is finite. Then, (AU B) = A° N B¢ is finite (as A° N B¢ € B¢ and
every subset of a finite set is finite), and therefore A U B € A.
(iii) A€ is finite and B is finite. Then, (AU B) = A° N B¢ is finite (as A° N B¢ C A° and
every subset of a finite set is finite), and therefore A U B € A.
(iv) A€ is finite and B¢ is finite. Then, (A U B)® = A° N B is finite (as A° N B¢ € A° and
every subset of a finite set is finite), and therefore A U B € A.

This completes the proof that A is an algebra on N.

Claim 2. A is not a o-algebra on N.

Proof. We have {2n} € A for each n € N, but U,en{2n} = {2,4,...} € A (as the set of even
natural numbers is countably infinite, and so is the set of odd natural numbers, which is its
complement in N). So A is not closed under taking countably infinite unions. l



(¢c) We show that A is a o-algebra, and hence an algebra, on Q. It is called the cocountable
o-algebra on Q.

For any A C Q, let A° := Q \ A. First, since @ is finite, it is countable, and so it is in A.
Second, let A € A; then, either 4 or A€ is countable, implying that either A€ or (4°)° = A4 is
countable; hence A¢ € A. Third, suppose that A4, € A for each n € N. There are two cases:

A, is countable, as the countable union
A, € A
(ii) A§ is countable for some j € N. In this case, (UneN An)c is countable and therefore
Unen 4n € A. To see that ({,ey 4n)" is countable, note the following:
1.

(i) An is countable for each n € N. In this case, |, ey

of countable sets is countable, and therefore | J, oy

c
(UA,,) =450 [ 45 < 4.

neN neN\{j}

where the equality follow by De Morgan’s laws and the set inclusion by the properties
of intersection;

2. Every subset of a countable set is countable. B

Remark. Let A be the cocountable o-algebra on a nonempty set Q. We can show that
A =P () if and only if Q is countable. You can prove it as an exercise.

Probability Measures

Definition 3. Let (2, P) be a measurable space. A function P: A — [0,00) is said to be a proba-
bility measure on (2, P) if

(a) P(Q)=1;
(b) If A, € A for alln e N and A, N Ay = @ for allm,n € N with m # n, then

(00) -5 ruo

Property (b) is called o-additivity. If P is a probability measure on (2, .A), we refer to the triple
(R, A, P) as a probability space.E]

Exercise 3 (Properties of Probability Measures)

Let (2, A, P) be a probability space. Prove the following statements.
(i) P(®) =0.
(ii) Finite additivity. Let n e N. If Ay,..., A, € Aand A; N A; =@ forany i, j <n withi # j,

then
n n
P(U Ak) =Y P(4).
k=1 k=1
(iii) If A € A, then P(R\ 4) = 1 — P(A).
(iv) Monotonicity. If A,B € Aand A C B, then P(A) < P(B).

3 Quiz: How do we know that the infinite series appearing in property (b) is well-defined?
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(v) Bounded by 1. P(A) <1 for any A € A.
(vi) Subtractivity. If A, B € A,

P(B\ A) = P(B)— P(AN B) = P(AU B) — P(A).

(vil) Poincaré-Sylvester. If A,B € A and A C B,

P(AU B) = P(A) + P(B) — P(AN B).

(viii) Continuity from below. Let {A,}ro, be a sequence of events in A such that A, € A,4; for
each n (in which case we say that {4,},~, is an increasing sequence). Then,

lim P(4,) = P(U Ak).
k=1

(ix) Continuity from above. Let {A,}no, be a sequence of events in A such that A, D A,4; for
each n (in which case we say that {4,},- is a decreasing sequence). Then,

o0
lim P(A,) = P (ﬂ Ak).
k=1
(x) Sub-o-additivity. Let {A,}r-, be a sequence of events in A. Then,

P( A,,) <Y P(Ay).
n=1 n=1

Solution

Let (2, A, P) be a probability space.

(i) Set A; = Q and A, =@ for n = 2,3,.... Clearly, {A,},—, is a sequence of pairwise disjoint
sets in A. Thus, by o-additivity,

P (U An) =) P(4). (4)

=1

Since ne, An = Q, reads as
o0
P(Q) =) P(4y).
n=1

which is equivalent to

Y P@ =0 (5)

because Y oo, P(4,) = P(Q) + Yoo, P(¥). The equation in implies P(@) = 0 and
concludes the proof. B



(ii) Set A, := @ for any natural number m > n. Clearly, {Ax}z—, is a sequence of pairwise disjoint
sets in A such that | J7—, Ax = ;- Ax. Then,

(U) =04

=) P(4p)
k=1
=Y P4+ Y P®)
k=1 m=n-+1
=) P(4p),
k=1

where the second equality follows by o-additivity, and the last equality holds true since P(@) =
0 by Exercise 3-(i). &

(iii) Since = AU (2 \ A), where 4 and Q \ A are disjoint subsets of A, finite additivity gives
P(Q2) = P(A) + P(2\ A).
Since P(£2) = 1, the claim follows. W

(iv) If A € B, then B = AU (B\ A), with A and B \ A disjoint subsets of A. Then, by finite
additivity,
P(B) = P(AU(B\ A) = P(A) + P(B\ A).

Since probability measures are non-negative, P(B \ A) > 0. The claim follows. B
(v) For any A € A, A € Q. Then, by monotonicity (Exercise 3-(iv)),
P(A) < P(Q)=1. [
(vi) Since B = (B\ A) U (AN B), with B\ A and A N B disjoint subsets of A, finite additivity
implies
P(B)=P((B\A)U(ANB)) =PB\A)+ P(ANB),
which rearranged gives P(B \ A) = P(B) — P(AN B).
Since AUB = AU (B \ A) , with A4 and B \ A disjoint subsets of A, finite additivity implies
P(AUB)=P(AU(B\ A) = P(A)+ P(B\ A),
which rearranged gives P(B \ A) = P(AU B)— P(A). 1
Remark. When A C B, subtractivity reads as P(B \ A) = P(B) — P(A).
(vii) The set A U B is equal to
(A\(ANB)U(B\(ANB)U(ANB),

which is a union of pairwise disjoint sets in .A. By finite additivity,

P(AUB)=P(A\(ANB))+ P(B\ (AN B))+ P((AN B)). (6)
Since AN B C A and AN B C B, subtractivity implies
P(A\ (AN B))=P(A)— P(ANB) (7)
and
P(B\ (AN B)) = P(B)— P(AN B). (8)

The desired result follows by combining @, and . ]
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(viii) Set By := Ay and B, = A, \ Ap—y for n = 2,3,..., and note that B, € A for each n by

(x)

Exercise 1-(c). By construction,
n
k=1

for each n, and so

o0 [e.®]
) 4 = B«. (10)
k=1 k=1

Moreover, B; N B; = @ holds by construction for any distinct i and j, and so {Bk}r=, is a
sequence of pairwise disjoint sets in A. Then,

where: the first equality holds by (10)); the second equality holds by o-additivity; the third
equality holds by definition of infinite series; the fourth equality holds by finite additivity; the
last equality holds by (9). W

Since {A,},—; is a decreasing sequence of events in A, {A45}°2 is an increasing sequence of
events in A. Continuity from below implies that

o0
c c
I PO = P (U Ak), (m)
k=1
In view of Exercise 3-(iii),

lim P(AS) = lim (1= P(4y) = 1 — lim P(4,), (12)

Q) A(@e)) )

where the last equality in holds by De Morgan’s laws. The desired result follows from

(1), (12) and (13). =

Set By :== A; and B, := A, \ U;:ll A; forn =2,3,... Clearly:

and

(a) B, € A for each n;

) Uy An = U2, Ba

(c) BiN B = @ for any i # j, and so {B,},—; is a sequence of pairwise disjoint sets;
(d) B, € A, for each n.
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(Take a moment to convince yourself about the previous statements.) Then,

where: the first equality holds by (b); the second equality holds by (a), (¢) and o-additivity;
the inequality holds as, by (d) and monotonicity (Exercise 3-(iv)), P(B,) < P(A,) for alln. B

Exercise 4

Solve the following problems.
(a) Let (€2,.A, P) be a probability space and {4, },-, a sequence of events in A such that P(4,) =0
for each n. Which value does P (U:‘;1 A,,) take?
(b) Is the set function P:P(R) — R defined by

0 if A is a finite set

P(A) =
(4) 1 else

a probability measure on the measurable space (R, P(R))? Justify your answer.

Solution

(a) Since P is a probability measure, it takes values in [0, 00), and so

o
P (U A,,) > 0. (14)
n=1
By sub-o-additivity,
o o0
P (U An) <Y P(4y). (15)
n=1 n=1

By assumption, P(4,) = 0 for each n, and so Y o, P(A,) = 0. This fact, combined with

with , gives
o0
P (U An) < 0. (16)
n=1

Together, (14) and imply

P(QAn) = 0. |

(b) P is not a probability measure on (R, P(R)) because it violates finite additivity (and hence
o-additivity). To see this, let Ay := {1,3,5,...} and A, = {2,4,6,...}. A; and A, are in
P(R) and are not finite; thus,

P(A) + P(A) =1+1=2.
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Moreover, A; U A, = N is in P(R) and is not finite; hence,

Therefore,
P(A1UAy) =1#2= P(A;) + P(A,). (17)

Since A; and A, are also disjoint, contradicts finite additivity. l

Combinatorics, Laplace Experiments and Probabilities
Exercise 5
How many possible ways there exist to arrange 3 novels, 2 math books and 1 econ book in a bookshelf,
(a) If the order is arbitrary?
(b) If math books and novels are placed together?

(c) If only novels are to be placed together?

Solution
(a) If we arrange the 342+ 1 = 6 books in an arbitrary order, we have 6! possible arrangements.

(b) Suppose the books of the same subject are all in a box, so that we have 3 boxes in total (one
for each subject). The numbers of arbitrary arrangements of books in the same box are: 3! for
novels, 2! for math books and 1! for the econ book. Thus, we have 3!12!1! arrangement of books
(3! arrangements of novels for each of the 2! arrangements of the math books for each of the 1!
arrangements of the econ book) for each arrangement of the 3 boxes. As we have 3! arbitrary
arrangements of the 3 boxes, the number of arrangements we are looking for is 3!312!1!.

(c) Let’s put the 3 novels in a box. In total, we have 4 objects: 3 books and 1 box. We can arrange
these 4 objects in 4! ways. Since we can do this for each of the 3! arrangements of the novels
in the box, the number of arrangements we are looking for is 4!3!. l

Exercise 6

A fair die is rolled for three times.

(a) What is the probability that no even number occurs?

(b) What is the probability to obtain an increasing sequence of numbers?

(c) What is the probability to obtain a strictly increasing sequence of numbers?
Briefly explain your reasoning.

Solution

The sample space for this experiment is Q = {1,2,3,4,5,6}°. Since || = 63 = 216, the sample
space is finite. We choose P(2) as o-field on 2. The die is fair and rolls do not affect each other;
hence, it is safe to assume that elementary events are equally likely, i.e.,

1
P{{(w1, s, w3)}) = ﬁ for each (w1, w;,w3) € 2,

so that the underlying statistical experiment is a Laplace experiment.
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(a) Let
Ay == {(w1,wy,w3) € QL :w; is odd Vi € {1,2,3}}.

Note that A; = {1,3,5}>, and so |A;| = 3% = 27. Therefore,

4 27 1
PA = ———— = _——— = -,
(A1) Q] ~ 216 8

where P(A;) is the Laplace probability of event Aj;.
(b) Let
Az = {(0)1,0)2,603) eQ: w; <wy < (,()3}.

In this case order does not matter (e.g., (1,2,3) € A,, but (2, 1,3) & A,, so you do not want to
count it twice) but replacement is allowed because the sequence has only to be weakly increasing
(e.g., (1,1,2) € A,) Therefore (rearrangement and replacement),

64+3—1 8!
4y = (0T = =56
3 31(8 —3)!

42| 56 7
P A == = —,
(42) Q] ~ 216 27

where P(A,) is the Laplace probability of event A,.

Hence,

(c) Let
A3 = {(601,(1)2,603) eQ: w1 < wy < (1)3}.

In this case order does not matter and replacement is not allowed, as the sequence has to be
strictly increasing. Therefore (rearrangement but not replacement),

6 6!
|43 = SR — 1))
3] 7 31(6-13)!

P(A)_|A2|_ 20 5
YTQ) 216 54

where P(A3) is the Laplace probability of event A;. W

Hence,
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E 703: Advanced Econometrics [
Solutions to Problem Set 2

Niccolo Lomys

October 20, 2016

Exercise 7

Solve the following problems.

(a)

(b)

How many functions are there from {1,2,...,k} to {1,2,...,n}? How many of these are one-
to-one if k > n? How many of these are one-to-one if k < n? Briefly explain your reasoning.

A sports class with 2N students is grouped randomly into two teams, with N players in each
team. What is the probability that two specific students (say, Bob and Tom) are in the same
team? Briefly explain your reasoning.

Solution

(a)

A function f:{1,2,...,k} — {1,2,...,n} is an assignment of exactly one integer in the
codomain to each of the integers in the domain. In other words, such function is specified
by the k-tuple (f(1),..., f(k)). Since each f(i) could be any of the n integers in {1,2,...,n}
for each integer i in {1,2,...,k}, there are n-n---n (k times) = n* possible different assign-
ments in total.

A function f:{1,2,...,k} = {1,2,...,n}isone-to-oneif foreachi, j € {1,2,...,k} withi # j
we have f(i) # f(j). Thus, if k > n there exists no one-to-one function from {1,2,...,k}
to {1,2,...,n}. If k < n, there are n possibilities for f(1), n — 1 possibilities for f(2) since
the first integer, f(1), cannot be used again, n — 2 choices for f(3) since the first two integers
cannot be used again, and so on. In total, there are

n!
(n —k)!

n-n—1-n=-2-....n—-k+1=

one-to-one functions from {1,2,...,k} to {1,2,...,n}. Note that there are k terms in the last
product. W

Since there is a finite number of pairs of opposing teams and students are assigned randomly
to teams (so that pairs of opposing teams are equally likely), this is a Laplace experiment.
Suppose Bob and Tom are assigned to the two teams in that order (first Bob, then Tom), with
the rest of the students being assigned later. Whatever team Bob is assigned to, there are
N — 1 free spots on that team and 2N — 1 students yet to be assigned. The probability that
Bob is given one of these spots is (N —1)/(2N —1). Hence, the (Laplace) probability that Bob
and Tom are in the same team is (N —1)/2N —1). &



*Exercise 8

Solve the following problems.

(a)

(c)

Let X be a metric space, and denote with Ox and Cx the class of all open and closed subsets of
X, respectively. Is either Ox or Cx a field on X? A o-field? How about Ox UCx? Justify your
answers. [Note. A positive answer needs a proof, while for negative answers a counterexample
suffices.]

Let (£2,.A) be a measurable space and pick any w € Q. Consider the function 6,:.4 — {0, 1}
defined by
1 fweAd

0 else

00 (A) ==

Show that &, is a probability measure on (2,.4). It is called the Dirac (probability) measure
on (2, A).

(Borel-Cantelli Lemma) Let (€2, .4, P) be a probability space and {4, },-; a sequence of events
in A such that Y>>, P(A4,) < co. For each n, define B, := |

A,,. Show that
o0
P (ﬂ B,,) =0.
n=1

m>n

Solution

(a)

Claim 1. Oy is not a field, hence not a o-field, on X.

Counterexample. Consider the metric space (R, d), where d is the Euclidean distance. The
set (0, +00) is open in (R, d), and so (0, +00) € Ox. However, R \ (0, +00) = (—00, 0] is not
openf|in (R,d), and so R\ (0, +00) ¢ Ox.

Claim 2. Cx is not a field, hence not a o-field, on X.

Counterexample. Consider the metric space (R, d), where d is the Euclidean distance. The
set (—00,0] is closed in (R, d), and so (—o00,0] € Cx. However, R\ (—o0,0] = (0, +00) is not
closed?] in (R, d), and so R\ (—o0,0] & Cyx.

Claim 3. Ox U Cyx is not a field, hence not a o-field, on X.

Counterexample. Consider the metric space (R, d), where d is the Euclidean distance. The
set (0,1) is open in (R,d), and so (0,1) € Ox UCx. The set {1} is closed in (R, d), and so
{1} € Ox UCx. However, (0,1) U {1} = (0, 1] is neither open nor closed, and so (0,1) U {1} ¢
OxUCx. R

We show that the defining properties of probability measure (Definition 1.2 in the Lecture
Notes) are satisfied by §.

(0) 8,(A) € {0,1} € [0,00) for all A € A by definition of §,. Hence, §,:.4 — [0, 00).

(i) Since w € Q, 6,(2) = 1.

(i) Let A, € Aforallnm = 1,2,..., with 4; N A; = @ for any i # j. We distinguish two
cases:

L Quiz: Why?
2Quiz: Why?



. wog A, foralln =1,2,....
In this case, §,(A4,) =0foralln =1,2,..., and so

5" 8uAn) = 0.
n=1

Moreover, as w € A, foralln =1,2,..., 0 & U:ozl A, € A, so that

5([] A,,) “o

aa,(u An) 3 b0,
n=1

n=1

Therefore,

2. w € Ay for exactly one k[
In this case, 6,(Ax) = 1 and 6,(A4;) = 0 for any j # k. Then,

D Su(An) = 8u(A0) + ) Su(4) =1+0=1.
n=1 j#k

Moreover, as @ € Ag, w € | J7—, An, so that

5([] An) -

Therefore,
5w<U A,,) =) 8u(4,). W
n=1 n=1
(c) Since B, € A and By, 2 By4q for alln = 1,2,..., {By}re, is a decreasing sequence of events
in A. Then,

o0
' (ﬂ B”) = Jim, P(Bn)
o0
= nlglolo P (mt_Jn Am)

< lim Y P(An)

oo n—1
— nlggo[z P(Ap)— > P(Am)} @
m=1 m=1

o

n—1
P(Am) = lim > P(Ap)
m=1

1

3
Il

o

Il
—

I
S 3

’

3Since the A4,’s are pairwise disjoint, there exists at most one k for which @ € Ay.

3



where: the first equality holds by continuity from above of P, the second equality holds by
definition of B,, the inequality holds by sub-o-additivity of P, and the last equality holds
because the infinite series Y >, P(A,,) is convergent by assumption (i.e., > > P(Ay) < 00).
Moreover, by non-negativity of P, we have

P (ﬁ B,,) > 0. (2)

PU%%):Q

n=1

Together, (1)) and (2)) imply

as desired. W

Exercise 9 (Final Exam - Spring 2012)
Let P be a probability measure on (R, B(R)), where B(R) denotes the Borel o-field on R, and define

A:={A € BR): P(A) €{0,1}}.
Show that A is a o-field on R.

Solution

We show that the defining properties of o-field (Definition 1.1 in the Lecture Notes) are satisfied by
A.

(o) AC B(R) € P(R). Hence, A is a class of subsets of R.
(i) Since P is a probability measure on (R, B(R)), P(4) = 0. Hence, @ € A.

(ii) Let A € A. Since A C B(R) and B(R) is a o-field, A° := R\ A € B(R). Moreover, P(A¢) is
well defined because P is a probability measure on (R, B(R)). We distinguish two cases:

1. P(A) = 0. Then, P(A°) = 1— P(A) = 1 -0 = 1, where the first equality follows by
Theorem 1.3.(iii) in the Lecture Notes. Hence, A € A.

2. P(A) = 1. Then, P(A°) = 1—- P(A) = 1 —1 = 0, where the first equality follows by
Theorem 1.3.(iii) in the Lecture Notes. Hence, A¢ € A.

(iii) Let A, € A for alln = 1,2,.... Clearly, ;—, 4, € B(R) and P(|,—; An) is well defined.
We distinguish two cases:

1. P(A,) = 0 for all n = 1,2,.... By non-negativity and sub-o-additivity of probability

measure P,
[e.e]
0<P (U A,,) <
n=1 n

Then, P(Uf;l An) = 0, showing that (=, A, € A.

K

P(4,) = 0.
1

2. P(A,) = 1 for some n. Since 4, € |J,-, A» € A, by monotonicity of probability measure
P and the fact that P is bounded by 1,
A,,) -1

Then, P(Uzo:l An) = 1, showing that  J,=, 4, € A. A

= i <

iCe

4



*Exercise 10

Let © be a nonempty set and I a nonempty index set. Moreover, suppose that A; is a o-algebra on
Q foreachi € 1.

(a) Show that ();c; Ai is a o-algebra on Q.

iel

(b) Let A* be a nonempty class of subsets of Q. Show that the smallest o-algebra on  generated
by A* is well-defined (i.e., show that it exists and that it is unique).

(c) Give an example to show that | J;c; Ai need not be an algebra even if [ is a finite set. Try to
come up with an example which is as simple as possible.

(d) Now suppose that I/ = N and that A; € A;4; for each i € N. Show that | J;yAi is an
algebra on €, but it need not be a o-algebra. [Note. A much stronger statement is actually
true. Namely: if A; C A;4; for each i € N, where the inclusion is now proper, then [,y A
can never be a g-algebra. You can try to establish this result, but it is not too trivial.]

Solution

(a) Let A := ),y Ai. We show that the defining properties of o-algebra (Definition 1.1 in the
Lecture Notes) are satisfied by A.

(o) Clearly, A is a class of subsets of .
(i) Since A; is a o-algebra on Q foralli € I, @ € A; for alli € I. Then, 0 € A.

(ii) Let A € A. Then, A € A; for all i € I. Since A; is a o-algebra on Q for all i € I,
Q\Ae€Aforalli e I. Then, 2\ 4 € A

(iii) Let A, € Aforalln =1,2,.... Then, foralli € I, A, € A; forn =1,2,.... As A; is a
o-algebra on Q for alli € I, U,C;OZIA,, € A; for alli € I. Then, U:ozl A, e A R

(b) First, note that there is at least a o-algebra on Q, namely P(€2), which is sure to contain A*.
That is, the collection

Y :={ACP(Q): Ais acg-algebra on Q such that A* C A}

is nonempty. Furthermore, if we intersect all members of this family we again get a o-algebra
on  (by Exercise 10-(a)) that contains A* (by definitions of intersection and X). Obviously,
this o-algebra is a subset of any o-algebra on €2, say C, that contains A*, as C is one of the
intersected members. Thus, there is a unique smallest algebra that contains A*, so G(.A*) is
well-defined, and we have
o(A*) = ﬂ A. [ |
Aex

Remark. Exercise 10-(b) proves Lemma 1.6 in the Lecture Notes.
(c) Let Q= {1,2,3}. It is easy to see that
Ay =1{0,{1},{2,3},Q2}

and

Az = {0.{2}.{1.3}.Q;}

are o-algebras on 2. However,
A:=A,UA4, ={0,{1}.{2},{1,3} {2,3},Q}
is not an algebra on Q because {1},{2} € A, but {1} U{2} ={1,2} £ A. N

>



(d) Let A:=|J;cyAi- Note that, by definition of union, A; € A for all n € N. We show that the
defining properties of algebra (Definition 1.9 in the Lecture Notes) are satisfied by .A.

(o) Clearly, A is a class of subsets of €.
(i) Fix some index j € N. Since A; is a o-algebra on Q, 9 € A;. Since A; C A, 0 € A
(i) Let A € A. Then, there exists some j € N such that A € A;. Since A; is a o-algebra on
Q,Q\Ae€Aj. Since A; CA Q\AeA
(i) Let A4, B € A. Then, there exists some j,k € N such that 4 € A; and B € Ag. Set
m = max{j,k}. Since A; € A;4; foreachi e N, A, B € A,,. As A,, is a o-field on ,
AUB € A,,. Then, AU B € A because A,, C A.

The following counterexample shows that | ;A need not be a o-algebra. Set € := N and,
for all i € N, let A; be the o-algebra on N generated by the singletons {k} with k <i. Clearly,
A; € Ajqq for all i € N. However, |,y Ai is equal to the cofinite algebra on N (prove it!),
which we know it is not a o-algebra on N from Problem Set 1 (Exercise 2-(b)). B

Exercise 11

Define B as the o-field on R generated by the class of all open and bounded intervals (a, b) of the
real line, with —oo < a < b < co. Furthermore, define B* as the o-field on R generated by the class
of all closed and bounded intervals [a, b], with —oco < a < b < co. Show that B = B*. [Hint. You
have to show that B € B* and B* C B.]

Solution
Define
A := set of all intervals of the form (a,b), with —oco <a < b < 00,
and
A* := set of all intervals of the form [a,b], with —o0 <a < b < o0,
so that B := 0(A) and B* := o (A*). We show that B C B* and B* C B, which imples B = B*.
(i) [B < B”]

It suffices to show that A € B*. This is so because, as B is the smallest o-field on R containing
A, (A C B*,B* o-field on R) = B C B*. Let (a,b) € A and fix a natural number k >

2/(b —a). Observe that
b) = —b——1.
(a.b) = | ][a+n n]

n=k
For eachn >k, [a 4+ 1/n,b —1/n] € B* and so, since B* is a o-field,

o0
1 1
U [a+—,b——] € B*.
n n
n=k
Hence, (a,b) € B*. Since (a, b) was arbitrarily chosen in A, the desired result follows.
(i) [B* < B]
For the same argument as in (i), it suffices to show that A* C B. Let [a, b] € A*. Observe that

[a.b] = ﬁ (a—%,b—l—%).

n=1

For each n, (a — 1/n,b + 1/n) € B, and so, since B is a o-field,
o0
1 1
m(a——,b+—) eB.
n n
n=1

6



Hence, [a, b] € B. Since [a, b] was arbitrarily chosen in A*, the desired result follows.

Remark. Exercise 11 proves (part of) Theorem 1.8 in the Lecture Notes.

Exercise 12
Let Q = {1,2,3,4} and consider the function p: Q2 — [0, 1] defined by p(w) = @/10.

(a) Show that P:P(2) — [0,00), defined by P(A4) := >, .4 P(w), defines a probability measure
on (2, P(R)).

(b) Determine the o-field on Q generated by £ := {4 € P(Q) : P(A) = 1/2}.
Solution

(a) We show that the defining properties of probability measure are satisfied by P.

(o) By definition of P, P:P(2) — [0, co) clearly holds true.
(i) P(R) =) ,ecq (@) =1/10+2/104+3/10+4/10 = 1.
(ii) Let A, € P(Q) for allm =1,2,..., with A; N A; = @ for any i # j. Then,

P(QAn)= Y. p)

welUyZ An

= p@)Iye, 4, ()

weR

=) p@)) 14,
n=1

wER
(%)

3 p@)la, ()

n=1we

oo

PRI

n=1 | weA,

o0
=) P(4n).
n=1
where the first and the last equality hold by definition of P, and the third equality holds
because the set Ay, A,, ... are pairwise disjoint.

Remark. Part (ii) also proves Lemma 1.4 in the Lecture Notes.
(b) Note that & = {{1,4},{2,3}}, and Q \ {1,4} = {2,3}. Then,

o(&) =1{0,{1,4},{2,3},Q}. |
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*Exercise 13

Solve the following problems.
(a) Let P be a probability measure on (R, B(R)) and define the function F:R — [0, 1] as
F(b) = P((—oo,b]) for all b € R.
Show that:

(i) P((a,b]) = F(b) — F(a) for all a,b € R with a < b;

(ii) F is non-decreasing, i.e.,
(a.b € R with a < b) = F(a) < F(b);
(iii) F is continuous from the right, i.e.,
((bn) € R® with b, | b) = F(b,) — F(b);

(Note. (by) € R* simply means that {b,},cy is a sequence in R.)
(iv) 1. limy_,_o F(x) = 0;
2. limy 400 F(x) = 1.

(b) Let the function f:R — R be defined as

c(x+2) for —2<x<0
J(x):=93c2—x) for0<x<2
0 else

Determine a real number ¢ such that f is a probability density function.
Solution
(a) (i) Note that (a,b] = (—o00,b] \ (—00,a]. Then,

P((a,b]) = P((—oo, b] \ (—oo,a]) = P((—oo,b]) — P((—oo,a]) = F(b) — F(a),

where the second equality holds by subtractivity of P (with (—oo,a] C (—o0,b] asa < b),
and the third equality holds by definition of F.



(ii) Let a,b € R, with a < b. Then, (—o0,a] € (—oo, b]. By monotonicity of P,
P((—00,a]) < P((—o0,b]),

which is equivalent to
F(a) < F(b)
by definition of F.

(iii) Let (by) € R*®, with b, | b. Since b,4; < by, (—00,by11] € (—00,by,] for n = 1,2,....
Then, by continuity from above of P,

lim P ((—00,by]) = P(ﬂ(—oo,bn]) = P((—o0,b]).

where the last equality holds because, as b, — b, (\re,(—00, by] = (—00,b]. Observing
that P((—oo, bn]) = F(b,) and P((—oo, b]) = F(b) by definition of F, the desired result
follows.

(iv) 1. Let (by) € R*®, with b, | —oco. Then, (b,, +0) € (bp+1,+00) forn =1,2,... and
e (b, +00) = R. By continuity from below of P,

lim P ((by, +00)) = P(R) = 1. (1)
Since (—o0, b,] = R\ (b, +00), Theorem 1.3.(iii) in the Lecture Notes implies
P((—00,bu]) = 1= P((bn, +00)). (2)

Together, and give
lim P((—oo,bn]) = 0.
n—oo

By definition of F, P((—oo, bn]) = F(b,). The desired result follows.
2. Let (b,) € R*®, with b, 1 +00. Then, (—o0,b,] C (—00,by41] for n = 1,2,... and
U2, (=00, by] = R. By continuity from below of P,

lim P((—o0,b,]) = P(R) = 1.

n—>oo
By definition of F, P((—oo, bn]) = F(b,). The desired result follows. B

(b) The function f is continuous and so Riemann integrable on any interval of the form [a, b], with
—00 < a < b < o00. To be a probability density function, f has to satisfy

f_:f(x)dx = 1.

Note that

00 -2 0 2 n
f f(x)dx = lim/ de—l—/ c(x+2)dx+/ c(2—x)dx + lim 0dx
—00 n—=00 J_p -2 0

n—>0o0 0

0 2
:O—l—c/ (x—|—2)dx—|—c/(2—x)dx—|—0
-2 0

x2 ° x2 2
[T wefr-3]

0
=2c+ 2c
= 4c.




Then,
o 1
/ f(x)dx=1<:>c:z

Moreover, when ¢ = %, f(x) = 0 for any x € R. Thus, we conclude that f is a probability
[ |

density function for ¢ = i.

*Exercise 14

Solve the following problems.

(a) Let (21,.4;) and (£2,,.43) be measurable spaces, and C a class of subsets of €, such that
0(C) = A,. Show that a function f:Q; — Q, is A;-A, measurable if and only if f~1(C) C A;.
[Note. f~(C):={B eP(Q1):B=f"YC).C eC}]

(b) Let (2, A, P) be a probability space and X a real-valued random variable on (£2,.4, P) such
that P(X > 0) > 0. Show that there exists § > 0 such that P(X > §) > 0.

Solution
Let F € P(R23). Define

STNF)={EePQ):E=f"'(F),FcF}.
Hence, for £ € P(y), f~1(F) € £ means that f~1(F) € & for all F € F.

(a) Necessity.
Suppose that f:Q; — Q5 is A;-A, measurable. Then, f~!(A4,) € A;. Since C C A,,
F7HC) € f7H(Ap). Hence, f71(C) C f'(A2) C Ay, and the desired result follows.
Sufficiency.
Suppose that f~1(C) € A; for all C € C. We need to show that f~!(A,) € A;. Define

B:={BeP(Q): f'(B)e A}

By assumption, C € B, which also implies that B is nonempty. First, we show that B is
a o-algebra on ,. Let B € B. Then, f~!(B) € A; and, since A, is a o-algebra on i,
Q1 \ f7UB) € A;. As

[T\ B)=Qi\ f71(B),

it follows that Q, \ B € B. Now let By, B,--- € B. Then, f~Y(B;), f~'(B,),--- € A; and, as
A is a o-algebra on 1,

U /7 (B € Ar
n=1

As inverse images behave well with respect to taking unions, we have

f_l(U Bn) = U f_l(Bn),
n=1 n=1
and so

o0
U B, € B.
n=1



We conclude that B is a o-algebra on 2, as we claimed[]] Since C € B and B is a o-algebra
on €5, it follows that o(C) = A, € B, and so f~1(A;) € f~1(B). Since f~1(B) € A, by
construction, the desired result follows. W

Remark 1. Let (2,.4) be a measurable space. In principle, to verify that a function f:Q —
R* is a random variable on (€2, .4) we need to show that f~!(B) € A for every Borel subset B
of R¥. This is usually a too difficult task. Exercise 14-(a) tells us that there is a nice short-cut.
If we can find a collection C of subsets of RF that generates B(R¥) and if we manage to verify
that f~1(C) € C for every C € C, we may then conclude that f is an R¥-valued random
variable. For instance, if f~1(0) € A for every open subset O of R¥ or f~1(C) € A for every
closed subset C of R¥, then f is an R¥-valued random variable.

Remark 2. (The Good Set Technique) Exercise 14-(a) is an application of the so called “good
set technique,” an extremely useful tool in measure theory.

The fact that there is often no way of giving an explicit description of a generated o-algebra
is a source of discomfort. In particular, this often makes it difficult to check whether or not
all members of a given o-algebra satisfy a property of interest. There is, however, a method
of settling such problems in which we utilize the definition of the “o-algebra generated by C”
directly.

Suppose we wish to verify that all members of a given o-algebra A on a nonempty set 2 satisfy
a certain property. Let us call any one member of P(€2) that satisfies this property a good set,
and let

G := the class of all good sets.

The problem at hand is thus to show that A € G. Now suppose we know a bit more about A,
namely, we know that it is generated by a nonempty collection C of subsets of Q. It is often
easy to verify that all members of C are good sets (otherwise A C G cannot be true anyway).
So suppose we proved C € G. The point is that this is enough to conclude that all members
of A are good sets, that is, A C G, provided that the class G of all good sets is a o-algebra on
Q. In sum, “the good set technique” transforms the problem at hand into checking whether or
not G is closed under complementation and taking countable unions.

Set
A={X>0}={weQ: X >0}:=X"((0,+00))

and

1 1 1
Ay = {X > —; = {w €Q: X(w) > —} = X_l([—,+00)) for all n € N.
n n n

Since X is a real-valued random variable on (2, A, P), A, A, € A for all n € N. Moreover,
An € Ay4q for all n € N holds by construction. Therefore, {A4,},2, is an increasing sequence
of events in A. By continuity from below of P, we have

lim P(A,) = P (U An). (3)

In addition, observe that

@An = @X—I(E, -l—oo)) = X—1< O: [% +oo)) = X"'((0,+00)) = A.  (4)

L Quiz: Why don’t we need to show that ¢ € B?
2Quiz: You see why, right?



Together, and imply that
lim P(A,) = P(A). (5)
n—00

As P(A) > 0 by assumption, implies that there exists N € N such that

P(A,) >0 foralln € Nwithn > N.

In particular, we have P(Ay) > 0. Set § := % to obtain the desired result. B

Exercise 15

For a probability measure P on (R, B(R)) suppose that its cumulative distribution function F is
strictly increasing and continuous. Define on (R, B(R), P) the random variable X as X(x) := F(x)
for all x € R. Show that P¥X is the uniform distribution on [0, 1] (i.e., a density of P¥X is equal to 1
on [0, 1] and vanishes outside this interval).

Solution

Let Fy be the cumulative distribution function of the probability measure PX. For any b € (0, 1),
we have

Fx(b) = P*((—00,b]) (FX is the cdf of P¥)

= P({x eR: X(x) <b}) (P is the distribution of X)

{x eR: F(x) < b}) (definition of X)

(F

(

P(
P({x eR: F Y (F(x)) < F~ (b)}) ~! strictly increasing and F continuous)
P({x eER:x < F~ 1(b)}) F is strictly increasing)
— (o0 F'0))
= F(F~' (b)) (F is the cdf of P)
= b. (F is continuous)

Note: (i) F~! is strictly increasing because it is the inverse function of a strictly increasing function;
(ii) Continuity of F implies that (0,1) € F(R), so that F~1(b) is well defined for any b € (0, 1) and

P({xeR: F(x) <b}) = P({x e R: P((—00,b] < b}) =b.
Since F(R) C [0, 1], for b < 0 we have
Fx(b)=P({x eR: F(x) <b}) = P(¥) =0,

and for b > 1
Fx(b)=P({x eR: F(x) <b}) = P(R) = 1.

Finally, the previous observations, together with continuity of F, imply that F(0) = 0 and F(1) = 1]
Therefore, Fx:R — [0, 1] is given by

0 ifb<0
Fx(h)=1<b ifO0<b<l1
1 ifb>1

3 Quiz: Can you prove it?



Now, let fx be a probability density function of PX. We know that the Riemann integrable function
fx:R — [0, 00) has to satisfy

Fx(b) = fx(b)
at any b € R where Fy is continuously differentiable. Note that Fy is continuously differentiable in
R\ {0, 1}, with Fy(b) = 1if b € (0,1) and Fy(b) =01if b € R\ [0, 1]. Since fx can take arbitrary
finite values at finitely many elements in its domain, we conclude that a density of PX is

0 ifb<0
fxh)=41 if0o<b<l |,
0 ifb>1

which gives the desired result. Il

Remark 1. (On the role of continuity of F) Suppose that 0 is the only point of discontinuity of F,
with limy_,o- F(x) = 1/3 and F(0) = 2/3. Find the distribution PX.

Remark 2. One application of the result in the previous exercise is in the generation of random
samples from a particular distribution. If it is required to generate an observation Y from a population
with cdf Fy, we only need to generate a uniform random number U, between 0 and 1, and solve
for y in the equation Fy(y) = u, where u denotes the realization of U. From the computational
viewpoint, this method is often not too efficient, but it is generally applicable.

Exercise 16

Let T be an arbitrary index set, and suppose that {X;},.r is a collection of independent real-valued
random variables on a common probability space (2,4, P). Moreover, suppose that f;:R — R,
t € T, are B(R)-B(R) measurable functions. Show that {f;(X;)},cr is a collection of independent
real-valued random variables on (€2, A, P).

Solution

For any t € T, define g, := f; o X;. First, we show that {g;},cr is a collection of real-valued
random variables on (2,4, P). Let B € B(R). Since f; is B(R)-B(R) measurable by assumption,
/7Y (B) € B(R). Since X, is A-B(R) measurable by assumption, Xt_l(ft_l(B)) € A. Then,

g '(B)=X"(f"'(B)) € A.

We now establish independence. Consider any nonempty and finite index set Io € T and, for each
t € Iy, let Q; € B(R) be arbitrarily chosen. Then

(ﬂg (Q))—P(ﬂX (Q)))

telp telp

=[] Px"(£," Q)

telp
=[] P(e'(Qn).
telp

where the second equality holds because {X;},c is a collection of independent real-valued random
variables on (2,4, P) and f,"'(Q;) € B(R) because each f; is B(R)-B(R) measurable. The desired
result follows. W

Exercise 17

Consider the measurable space ([0, 1], B([0, 1])), where B([0, 1]) is the Borel o-field on [0, 1], and let
P, be the Lebesgue probability measure on ([0, 1], B([0, 1])). Let Q be the set of all rational numbers
in [0, 1] and I the set of all irrational numbers in [0, 1].
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(i) Which value does P-(Q) take?

(ii) A friend of yours, say Claudio, used the following way to compute the Lebesgue probability
measure of irrationals in [0, 1]:

Pe(1) =) Pe({x}).

xel

Since the Lebesgue probability measure of {x} is zero, he concludes that P.(/) = 0. Is Claudio’s
calculation right? If yes, explain why; if not, explain why and find the correct P.(1).

Solution

We need first to understand what the probability space ([0, 1], B([0, 1]), P;) is. Roughly speaking, the
Lebesgue probability measure P, on ([0, 1], B([0, 1])) is the probability measure on ([0, 1], B([0, 1]))
which on the intervals coincides with their length.

One way to go is to notice that
B([0,1]) ={S € P([0,1]) : S € B(R)}. (6)

Then, we can define P, as the restriction of A; to B([0, 1]), where A; is the Lebesgue measure on
(R, B(R)). To proceed this way, we need to verify that the equality among classes in () holds true (see
Ok (2016), Chapter B, Exercise 1.20), and that P, defines a probability measure on ([0, 1], B([0, 1])).

Alternatively, we might construct the probability space ([0, 1], B([0, 1]), P;). Define
A = set of all intervals of the form (a,b], with0 <a <b <1,

and

A* = AU {0}.

Moreover, let B([0, 1]) := U(A*) be the Borel o-field on [0, 1]. Clearly, every singleton, and hence
every countable, subset of [0, 1] belongs to B([0, 1]) [
On the semialgebra]| A*, define the probability pre-measure P,: A* — [0, 1] as

PL((a,b]) =b—a,

with P-({0}) = 0 and PE([O, l]) := 1. It can be shown that P, satisfies o—additivity.ﬁ Thus,
Carathéodory’s Extension Theoren(] tells us that Py can be extended uniquely to a probability
measure on B([0, 1]). This is the Lebesgue probability measure on ([0, 1], B([0, 1]))

The Lebesgue probability measure of a singleton set is zero. Indeed, for or any x € (0, 1], we have
= 1 1 1
Pz:({x}) = Pg((]k (x — ;,x]) = nli)ngo Pﬁ((x — ;,x]) = nlg%o - =0, (7)

where k := min{m € N:m > 1/x}, while ]P’g({O}) = 0 holds by definition of P.. Note that the
second equality in holds by continuity from above of P,.

We are now ready to answer the two questions.

4Quiz: Why? Make sure you are able to prove it.

® Definition. Let  be a nonempty set and S a class of subsets of Q. We say that S is a semialgebra on  if (i)
both @ and € belong to S; (ii) S is closed under taking finite intersections, and (iii) for any S € S, the set 2\ S can
be written as the union of a collection of finitely many pairwise disjoint elements of S. Remark. An algebra on Q is a
semialgebra on Q. Quiz: Is A* an algebra? Make sure you understand why the set of all intervals of the form (a, b),
with 0 <a < b <1 is not a semialgebra on [0, 1].

6See Ok (2016), Chapter B, pages 39-42, to get an idea.

"For a statement of Carathéodory’s Extension Theorem, see Ok (2016), Chapter B, page 32. The statement in Ok
(2016) is slightly more general than the one in the Lecture Notes, and it suits better the present framework.

8 Quiz: Let A= set of all intervals of the form (a,b), with 0 <a < b < 1. Clearly, o(.ﬁ) = B([0, 1]). Can you see

why I did not use A to generate B([0, 1])7?



(i) Since Q is a countably infinite set, it can be written as the countably infinite union of the
pairwise disjoint sets in

{{g} € P([0.1]) : q € O}.

0=\]J1q}.

q€Q
Since P, is a probability measure on ([0, 1], B([0, 1])), by o-additivity we have

PA@zP%LMw)ziywwn (8)

qeQ qeQ

That is,

Observing that P, ({q}) = 0 for all ¢ € Q, we conclude from @} that

Pr(Q) = 0.
(ii) Since I can be written as the union of the pairwise disjoint sets in

{{x} e P(0.1]) : x € I},

=]y,

xel

Claudio thinks that, by o-additivity of P,

Pe(I) =) Pr({x}).

xel

that is as

Since

ZPL({X}) 1= sup ZPL({x}) 1 €1 and ‘i} <00

xel xel
and the Lebesgue probability measure of a singleton set is zero, he concludes that P.(I) = 0.

Claudio’s reasoning is wrong because the set I is uncountable, while o-additivity of probability
measures only holds for countably infinite unions of pairwise disjoint sets. Since I := [0, 1]\ Q €
B([0, 1]), we have

Pc(I) = Pe([0.1]\ Q) = P([0,1]) = P(Q) =1-0= L,

where the second equality holds by Theorem 1.3.(iii) in the Lecture Notes, and the third equality
holds because P([0,1]) := 1 and P-(Q) = 0 by part (i). B

Exercise 18

Solve the following problems.
(a) Let X be a geometrically distributed random variable with parameter = € (0, 1), X ~ Geo(n).

(i) Show that the cumulative distribution function is
Fx)=1-(1-m¥, xe[l,00),

where | x| is the largest integer smaller than or equal to x.

8



(ii) Show that

E[X] = %

(b) Let Xi,...,X, be iid. random variables with X; ~ Exp(A), A > 0, for all i. Find the
distribution of the random variable m,, defined as

m, ‘= min X;.
1<i<n

Solution

(a) Let X ~ Geo(rm), with = € (0,1). The random variable X is discrete, with support Sy = N.
Its distribution takes values PX({i}) = (1 — 7)" ‘7 at cach i € Sy.

(i) Let x € Sx. We have
PX(X >x)=PX(X >x+1)

= i (l—ﬂ)i_lﬂ'

i=x+1
=7 Z (1 —n)i_1
i=x+1
(=)
=g | ———
Vs
=(1-m)"

Then, at any x € Sy,
FxX)=P¥X <x)=1-P¥X>x)=1-(1-n)"

The desired result follows by noting that PX((a,b)) =0if (a,b) NSy =@. A
(ii) We have

E[X]:= ) P*(ih
ieSy

= Zi(l —) 'x

i=1

=y i(l-n)""
i=1

- p |
=7 2 (_E(l — 1) )i|

where the interchange of summation and differentiation is justified because convergent
power series converge uniformly on compact subsets of the set of points where they con-
verge.



(b) Let P™» be the distribution of m, and PX the distribution of Xi,...,X,. Fix t € R. Note
that
My >t <<= (X1 >tAXo>1 A ANXy>1)

Therefore, for t > 0,

Pm"(mn >t):Pm"(X1 >I,X2>t,...,Xn >f)
=PX(X,>0)PX(Xy>1)---PX(X, > 1)

— oMMy
— e—n)lt
where the second equality holds because Xi,..., X, are i.i.d. random variables, and the third

equality holds because X; ~ Exp(A) fori =1,2,...,n, and P™(m, >t) =1ift <0. Thus,

l—e™  ift>0

FE, (t) .= P"(m, <t)=
() (mn =8) =1, it <0

We conclude that m, ~ Exp(ni). &

10
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Exercise 19

Let X be a continuous real-valued random variable on a probability space (2, A, P) with pdf fx:R —
[0, 400) defined by

2
e X712,

1
X) =
Sx(x) Nz
Find a pdf fy of the random variable Y defined as ¥ := X?2.

Solution

Let g(X) := X. In this case, g’(x) = 2x, which is > 0 for x > 0 and < 0 for x < 0, so g is not
invertible on R and the density transformation formula cannot be applied directly. However, we can
proceed as follows. Let Fy be the cdf of Y. For y > 0,

Fy(y)=P(Y =y) = P(=y = X =¥) = Fx(V¥) = Fx(=V7).

where Fy is the cdf of X. Moreover, Y is nonnegative by definition and so Fy(y) = 0 for y < 0,
Since the cdf of Y is continuously differentiable on R \ {0}, a pdf fy:R — [0,00) of Y satisfies
fr(y) = Fy(y) at any y € R\ {0} and can take an arbitrary finite value at y = 0. Therefore,

iy L) + ] iy =0
0 ify=<0
where we set fy(0) := 0. It follows that
L_,=v/2 ify>0
S R . n
Sr(») {O ity <0

Exercise 20

Let X and Y be real-valued random variables on some probability space (2,.4, P) with joint pdf
fxy:R? — [0, 00) defined as

c(x*+xy) for (x,y) €[0,1] x [0, 1]
0 otherwise

Sxy(x,y) = {

where ¢ is a positive real constant to be determined.
(i) Determine ¢ such that fxy is a pdf, and find the joint cdf Fyy.

(ii) Find marginal pdf’s fx and fy and the marginal cdf’s Fx and Fy.

1



(iii) Find E(X) and Var(X).

(iv) Find the covariance between X and Y.

Solution

The function fxy is piecewise-continuous, hence Riemann integrable. Therefore, the integrals below
are well defined.

(i) We have
+o0  ptoo
/ fxy(x,y)dxdy —/ / X -I—xy) dydx
—o0 —o0
1
—C/O (x + )dx
1 1
- C(g * z)
e
=5
Then,

+00 +o00 12
/ fxy(x,y)dxdy =1 <<= c¢c = —
oo J—oo 7

Moreover, when ¢ = 17—2, fxvy(x,y) is non-negative. Thus, fyy is a probability density function

12
for ¢ = =.

To find the joint cdf Fyy, consider first (x, y) € [0, 1] x [0, 1]. We have
Fxy(x,y) = P(X =x,Y =)

=/ / fxy(u,v)dudv
= // u+uv dvdu
uy—i—i)du
0 u
2.2
y X7y
(3 T )
ifx<Olory<l
24 22) i (x ) €10,1] % [0,1]
—I—X—) if x€e[0,1] and y > 1
+

%) if y€[0,1] and x > 1

ifx>1landy>1

7
12
7

Then, Fyy:R? — [0, 1] is given by

Fxy(x,y) =

=N N Nl <

(ii) We first find the marginal pdf’s. For x,y € [0, 1], we have

Sx(x) :/ Sxy(x,y)dy

12
=[ —(x* 4+ xy)dy
o 7

12 2+x
= —1 X bl B
7 2

2



and, similarly,
Y

Fr () =/_ fry (e y) dx = %(% + 5).

Therefore, a pdf fx:R — [0,00) of X is given by

%(xz + %) for x € [0,1]

otherwise

Sx(x) =

9

and a pdf fy:R — [0,00) of Y is given by

fr(y) = ﬁ(% T §) for y € [0,1]
0

otherwise

We now find the marginal cdf’s. For x, y € [0, 1], we have

FX(X):/ fx(X)dx:E(x_+x_)

7\ 3 4
and ’ . 5
y Y
o= [ Ao =2(3+ %)
Therefore, the cdf Fx:R — [0, 1] of X is given by
0 for x <1
Fx(x)i={2(5+%) forxef01] .
1 for x > 1
and the cdf Fy:R — [0, 1] of Y is given by
0 for y <1
Fr() =1 2(5+%) foryefo.1]
1 for y > 1

(iii) We have

400
E(X) = / xfy(x) dx

o0
12 !
= — X xz+f dx
7 Jo 2
_12 1+1
- 7\4 6
_5
=
and
+o0 39
E(X2)=/ X2 fx(x)dx = =.
oo 70
Hence,
39 25 23
V =EX?)—(EX)?==-"=""—,
ar(x) = E(X?) = (E(X))’ = 55 = 2 =



(iv) We have

400
Ea@::[: Y () dy

122 ' /1 x
== S+ )d
7 Jo y(3 2) g
_ 4
==
and
+o00 +o00
ECYY)::/’ /ﬁ xy fxy (x. ) dxdy
12 1 1
= —f / xy(x* + xy) dxdy
7 0 0
7
427
Thus,

17 54 17 20 1
Cov(X.Y)= E(XXY)—E(X)E(Y) = — — 20 -/ 2~
ov(X.Y) = E(XY) - EXEY) = 5 =27 = 5"~ 20

Expectation: A Brief Review

Let X be a real-valued random variable on some probability space (2,4, P). We introduce the
expectation of X, denoted by E[X], in three steps.

1. Discrete Random Variables
Let X:Q — R be a discrete random variable with range
Ry ={x e R:x = X(w) for some w € Q}.

(i) If Ry is finite, the expectation of X is defined as

EX]'= Y xP(X=x)= Y xPlocQ:X() =x})= > xP¥({x}).

XERx XE€ERx X€Rx
where:

— The first equality holds because

P(X =x):=P({w € Q: X(w) = x});
— The second equality holds because

P({a) €eQ: X(w)= x}) = PX({x}).

Note that E[X] is finite.

(ii) If Ry is countably infinite, we distinguish two cases:



1. If Rx € [0, +00), the expectation of X is defined as

E[X] = Z xP(X =x) = Z xP({a) e Q: X(w) =x}) = Z xPX({x}),

XERx XERx XERx

where:

* The first equality holds because
P(X =x):=P({w € Q: X(w) = x}):
* The second equality holds because
P({w € Q: X(w) = x}) = PX({x}).
Note that E[X] can be either finite or infinite.
2. If Ry is arbitrary, the expectation of X is defined as
E[X] = E[XT] - E[x],

provided that E[X+] and E[X_] are not both infinite. If E[X+] = 400 = E[X_],
we say that the expectation of X does not exist. Note that E[X] can be either finite or
infinite.

If E[X] exists and is finite, we write X € L} (2, A, P).

2. Non-Negative Random Variables
Let X:Q — R be a non-negative random variable (i.e., with values in [0, 400)). For each n € N

define

k k k+1
Dy(X)@) = il < X@)< %

for k € N U {0}. For each n, D,(X) is a discrete non-negative random variable on (€2, .4, P) with
range Rp,x) € NU{0}. The expectation of X is defined as

k k
E[X]:= lim E[D.(X)] = Tim > ;P(Dn(X) = ;).

kKER D, (x)

Note that E[X] can be either finite or infinite. If E[X] exists and is finite, we write X € L., (2, A, P).

3. General Random Variables

Let X:Q — R be an arbitrary random variable. The expectation of X is defined as
E[X] = E[X+] — E[X_],

provided that E[X+] and E[X_] are not both infinite. If E[X"'] = 400 = E[X_], we say that the
expectation of X does not exist. Note that E[X] can be either finite or infinite. If E[X] exists and
is finite, we write X € L(Q2, A, P).

Remark 1. X € L'(Q, A, P) ifand only if XT, X~ € L] (2, A, P).
Remark 2. L:LJF(Q,A, P)C Ll (2,A P)C LY(Q, A, P), where

Ly (QAP)={XeLy(Q AP):X=>0},

bt



and L;(Q,.A, P)C LY, A, P).

Remark 3. X € LY(Q, A, P) if and only if |X| € L1(Q, A, P).

Proof. Suppose X € L' (2, A, P). Then, X, X~ € LY (Q, A, P). Since |X| = Xt 4 X, by linearity
of expectation we have E[|X|] = E[X+] + E[X_] < 400, and so |X| € L1(R2, A, P). Now suppose
that |X| € L'(2, A, P). Then, E[X* + X~] < co. Since E[XT+X"] = E[X "]+ E[X ] and both
terms are non-negative, we have that they are also both ﬁnite Thus, X € LY (2, A, P). B

Remark 4. Together, the previous remarks say that
Xel'QAP)<— X", X el (Q, A P) < |X|c L (Q, A P).
Similarly, we have

Xell(Q AP) = Xt X eLi(QAP)= |X|eL)(Q, AP).

*Exercise 21

Let X, Y, Z be real-valued random variables on some probability space (€2, .4, P), and suppose that
X,Y € LY(Q, A, P). Prove the following statements.

(i) f X <Z <Y, then Z € LY(Q, A, P), and

E[X] < E[Z] < E[Y].

(i) [E[X]] = ETIX]].

[Note. When you are asked to prove a statement from the Lecture Notes, you can use all the results
that come before (but not after) that statement in the Lecture Notes.]

Solution

(i) Step 1. X, Y, Z discrete and non-negative random variables.

Assume that X,Y € L(Il (2, A, P), and that
X(w) < Z(w) < Y(w) for all w € Q. (1)
We want to show that Z € L} (R, A, P), and that

E[X] < E[Z] < E[Y].

Define
Q) ={weQ:Y(w)=y} for all y € Ry,

and
Q, ={weQ: Z(w) ==z} for all z € Rz.

Note that {2y}, and {Q:},cx, are countable partitions of €2. Consider the finer partition
of @, {Q,.} where

YERy,ZERZ?

Qy, :=Q,NQ, forall y € Ry and z € Ry.

ITo say that E[XT+ X7 = E[X"‘] + E[X_] I use that additivity of expectation of nonnegative random variables
also holds if the corresponding expectations are infinite.



We have

E[Z):= ) zP(Q:)

ZERZ

= Y zP(Q:NQ)

ZER 7

_ ZzP(QZﬂ<UQy))

YESY

— ZZP(U(QZﬂQy))

ZERZ yeSy

— ZzP(UQyz)

ZERZ yESY

= >z ) P(Q)

ZERZz YERy

=Y Y zP(Qy)

ZERz YyERy

= Y Y zP(Qy),

YERy zERZ

where: the fifth equality holds by o-additivity of P; the last equality follows by the discrete
version of Tonelli’s Theorem (cf. Ok (2016), Appendix 1, page 9) and the fact that zP(2,,) > 0
for all y and z. Similarly, we find

E[Y]= ) > yP(Q.).

YERy zERz
Then,
E[Z)= ) Y zP(Qy)< Y > yP(Qy:) = E[Y].
YERy z€ERz YERy z€ERz

where the inequality holds because implies that z < y whenever Q,, # @. That is, we have
E[Z] < E[Y] < 400, (2)

where the strict inequality holds because ¥ € LL(2, A, P). Moreover, as the sum of non-
negative terms is non-negative, we have

0 < E[Z]. (3)

Together, and give that Z € L} (2, A, P). That E[X] < E[Z] is proven analogously.
Step 2. X, Y, Z discrete random variables.
Assume that X,Y € L} (Q, A, P), and that

X(w) £ Z(w) < Y(w) for all w € Q. (4)
We want to show that Z € L,lm(Q,A, P), and that

E[X] < E[Z] < E[Y].



Let D, (X), D,(Y), D,(Z) be the discrete approximations of X, Y, Z on a 1/n grid, with n € N.
From and the definition of D,(X), D,(Y), D,(Z), we have

Dp(X)(@) = Dp(Z) (@) < Du(Y)(w)  forallw e Q. (5)
Step 1., together with , gives

E[D,(X)] < E[D,(Z)] < E[D,(Y)] for all n € N.
Therefore, by the sandwich theorem for limits of sequences,

—00 < E[X]:= lim E[D,(X)] < lim E[Dn(2)] < lim E[D,(Y)] := E[Y] < 400,

where the strict inequalities hold because X,Y € L,lm(Q,.A, P). The desired result follows
noting that
E[Z] = lim E[D,(Z)].
n—>oo

Step 3. X, Y, Z arbitrary random variables.
Assume that X,Y € L'(Q, A, P), and that

X(w) < Z(w) < Y(w) for all w € Q. (6)
We want to show that Z € L1(R2, A, P), and that
E[X] < E[Z] < E[Y].
From (], we have
XT(w) < ZT(w) <Y1 (0) for all w € Q. (7)

and
Y (w) < Z (w) < X (w) for all w € Q. (8)

Step 2., together with (7)) and (8)), gives

E[XTI < E[ZT] < E[Y"],

and
E[YT]| < E[ZT] < E[X7].
Therefore,
—oo < E[X]=E[XY|-E[X|<E[ZT|-E[Z7] = E[Z],
and

E[Z] = E[ZY|-E[ZT] < E[YT]|—E[Y ] := E[Y] < 400,
where the strict inequalities hold because X,Y € L1(Q, A, P). The desired result follows. W
Since X € LY'(Q, A, P), XT,X™,|X| € LY (R, A, P) and |E[X]] is a non-negative real number.
Then, we have
[E[X]| = |E[x*] - E[x7]]

<|E[x*]|+|E[x7]]

= E[X*]+ E[X]

= E[XJr + X_]

= E[|X]],
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where: (i) the first equality holds by definition of E[X]; (ii) the inequality holds by triangle
inequality; (iii) the second equality holds because X ™ and X~ are non-negative, and so E [X +]
and E[X _] are non—negativ; (iv) the third equality holds by linearity of expectation and
XT, X~ € LY(Q, A, P); (v) the last equality holds because |X| = Xt + X~. The desired
result follows.

Exercise 22

Prove the following statements.

(i) Let X be a non-negative real-valued random variable on some probability space (2,4, P).
Then, E[X] = 0 if and only if P(X =0) = 1.

(ii) Let X and Y be real-valued random variables on some probability space (2, .4, P), and suppose
that X,Y € L2(Q, A, P). Then, X,Y, X -Y € LY (Q, A, P).

Solution

(i) Clatim 1. P(X =0) =1= E[X] =0.
Step 1. X non-negative and discrete.
If X(w) =0 for all w € Q, then Q¢ :={w € 2 = X(w) =0} = Q2 and

E[X]:=0-P(Q)=0-1=0.

If X =0as., P(Q) =1, and P(2x) = 0 for any x € Ryx \ {0}, where Q, := {w € Q =
X(w) = x}. Then,

E[X] =0-P(Q)+ Y xP(Q)=0-140=0.
x€R x \{0}

Step 2. X non-negative.
For each n € N, we have P(D,(X) = 0) = 1. Then, by step 1, E[Dn(X)] = 0, and so

E[X] = lim E[D,(X)] = lim 0 =0.

Claim 2. E[X]=0=—= P(X =0) = 1.
Step 1. X non-negative and discrete.

By assumption

xP(2;x) = 0.
2

XERx

The fact that the sum of non-negative terms can be equal to 0 if and only if all terms are equal
to 0 forces one of x and P(€2) to be equal to zero for every x € Ry \ {0}. In particular, we
must have P(€2x) = 0 for any non-zero x, which shows that P(2¢) = 1.E]

Step 2. X non-negative.

For any n € N, set
1
Q, =wel: X(w)>—¢.
n

2We will prove that X > 0 = E[X] > 0 after Exercise 22.
3 Quiz: You see why, right?



Then, |
—1,(@) = Dy(X)(@)lg, (@) = X().

so that, by monotonicity and linearity of expectation,
1
~P(Q) < E[D4(X)1q,] < E[X] =0,
n

which forces P(€2,) = 0 for all n € N. The desired result follows (recall Exercise 14-(b) in
Problem Set 3).

(ii) We only need to show that X,Y € L?*(Q, A, P) implies X - Y € L'(Q, A, P). Then, setting
Y(w) =1 (X(w) :=1) for all w € Q shows that X € L*(Q, A4, P) (Y € L*(R, A, P)) implies
X e LY(Q,A P) (Y € LYQ, A, P)).

Suppose that X,Y € L?(R2, A, P). For any w € Q, we have

X% (w) Y?*(w
© Y@
2 2

Then, monotonicity and linearity of the expectation give

0=<[X(w) Y=

EY] < ElIX Y[} < 5[ E[x*] + E[y?]]

where 0°(w) := 0 for all @ € Q. Since E[0°] = 0 by Exercise 22-(i) and E[X?]+ E[Y?] < 400
because X2,Y? € L1(Q, A, P), we have that |X - Y| € LY (R, A, P), which is equivalent to
X Y € LY(Q, A, P) from Remark 4. B

Remark. Monotonicity of expectation and Exercise 22-(i) give

(X e L'(Q, A P)AX =0)= E[X]>0.

Exercise 23
A pdf fx:R — [0, 400) of the standard Cauchy distribution is defined by

fx() = [x(1+22)]7,

where 7 is a strictly positive real constant. Does the expectation of the Cauchy distribution exist?
Justify your answer.

Solution

We show that E [X +] =4o00=F [X _], and thus the expectation of a Cauchy random variable does
not exists.
Note that f is piecewise continuous, and so Riemann integrable. We have

+o0 1

E[X+]:[w maX{O,x}m X
0 0 +o0o X
:/_oo n(l—l—xz) dx—i—/o n(1+x2) dx

_ZJTH o

0
=400 —0

= +400.

10



That E[X_] = 400 is shown similarly. H

*Exercise 24

Let (Xn)n, (Yn)n, X and Y be R*-valued random variables on a common probability space (2, A, P).
Prove the following statements:

(i)
(i)

<X,,“—'S'>XAY,,“_'S'>Y>:>X,,+Y,,“—'S'>X+Y;

<X,,i>XAYni>Y>:>X,,+Yni>X+Y.

Solution

(i)

Define
Qyry = {w €Q: Xp() + Yo(w) — X(0) + Y(a))} .
n—-oo
We need to show that P(Qx+y) =1.

Set
Qy = {a) €Q: Xlw) — X(a))}

and
Qy = {a) EQ: Va(w) — Y(a))},

and note that Qx N Ly € Qx4y, as
<X,,(a)) s X(@) A Y, —> Y) — X, (@) + Yo(w) — X + Y.
n—00 n—00 n—>o0
Then, by monotonicity of P, the claim follows if P(Q x N Qy) = 1 or, equivalently, if P(Q \
(Qx NQy)) =0 (as P(2\ (2x NQy)) =1 — P(Qx N Qy) by Theorem 1.3.(iii)).
Note that
< P(2\Qx) + P(Q2\Qy)

= (1-P(Qx))+ (1 - P(Qy))
=0,

where: the first inequality holds by non-negativity of P; the first equality holds by De Mor-
gan’s laws; the second inequality holds by sub-o-additivity of P; the second equality holds by

Theorem 1.3.(iii); the last equality holds because X, 2% X and Y, Ny by assumption, and
SO P(QX) = P(Qy) = 1. The desired result follows. W

Let ¢ > 0. We need to show that

lim P({a) €Q: |[(Xu(@) + Yu() — (X(@) — Y())| > g}) — 0.

n—-oo

Fix n € N. By triangle inequality,
| (X (@) + Ya(@)) = (X (@) = Y(@))] < |Xn(@) = X(@)] + | Ya(w) = Y ()|
holds for any w € 2. Therefore, by monotonicity of P,
P({o € Q: |(Xa©) + Ya(@) - (X(@) - Y(@)] > ¢})

< P({ € 21 [ X(©) - X@)] + [ V(@) - Y(@)] > &}).

11



Moreover,
[Xn(@) = X(@)] + [ Ya@) = Y(@)]| > e = (| Xa(@) - X(@)] > g vV [Ya() - Y(@)] > g )

and so
{a) eQ: HX,,(a)) —X(w)” + HY,,(w) — Y(a))” > 5}

is a subset of
{a) eQ: HX,,(a)) — X(a))” > 8/2} U {w eQ: HYn(a)) — Y(a))H > 8/2}.
Therefore, by monotonicity and sub-o-additivity of P,
P({o e Q: |X:(@) = X(@)] + [Ya(@) - Y ()] > &})
< P({a) €Q: | Xu(w) - X(@)| > s/z}) (10)
+P({o € Q: | Ya@) ~ Y(@)] > ¢/2}).
Together with non-negativity of P, (9) and imply
0< P({w €Q: |(Xu(@) + Yu() — (X(@) — Y())| > g})
< P({a) €eQ: HX,,(a)) — X(w) H > 8/2}) (11)

+ P({a) eQ: Vo) - Y(o)| > g/z})

P P
for all n € N. By assumption, X;, — X and Y, — Y, and so the right hand side of
converges to zero as n — o0. The desired result follows by the sandwich theorem for limits of
sequences. W

12
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Exercise 25

Let X be a real-valued random variable on some probability space (2, .4, P), and let a,b € R such
that a < b.

(i) Let X be discrete. Show by definition: Ifa < X < b, then X € LCII(Q, A, P)anda < E[X] <b.
Use only statements up to page 55 in the Lecture Notes.

(ii) Show by definition: If a < X < b, then X € LY(Q,A,P) and a < E[X] < b. Use only
statements up to page 60 in the Lecture Notes.

(iii) Suppose that P(a < X <b) =1 and E[X] = b. Show that P(X =b) = 1.

Solution

(i) Since —o0 < a < b < 400, we only need to show a < E[X] < b. That X € L}I(Q,A,P)
follows. We distinguish three cases.
Case 1: 0 <a <b.

Let Rx be the range of X. For all x € Ry, define Q; = {w € Q : X(w) = x}. Note that
{Qx}rer, is a countable partition of . Then, we have

a= ) aP(Q)= ) xP(Q)= ) bP(Q)=0b. (1)

XERx XERx XE€ERx

where the two inequalities hold because

a<Xw)<bforallweQ <= a<x<>bforall x € Ry.

Since
E[X]:= ) xP(Qy).
XERx
gives
a < E[X] <D,
as desired.

Case 2: a <0 <b.
Since 0 < Xt < b and 0 < X—, by case 1 we have E[XT] < b and 0 < E[X~]. But then

E[X] = E[XT]— E[X"] <b. (2)



(i)

Moreover, since 0 < X~ < —a and 0 < X, by case 1 we have E[X~] < —a or, equivalently,
a < —E[X ] and 0 < E[X*]. But then

a<—E[X7|+E[XT] = E[X'] - E[X] = E[X]. (3)

The desired result follows from and ().
Case 3: a <b < 0.

In this case, X = —X7, —X = X7, and so E[X]:= —E[X] = —E[-X]. Note that a < X <
b<0<= 0<—-b<-X <—a. Then, by case 1,

—b < E[-X] < —a

or, equivalently,
a < E[-X] < b,

which gives the desired result. B

Since —o0o < a < b < 400, we only need to show a < E[X] < b. That X € LY (Q, A, P)
follows.

Let D, (X) be the discrete approximation of X on a 1/n grid, with n € N. For each n, we have
1
a——=DyX)=<b
n
by the assumption a < X < b and construction of D, (X )E] By part (i) of this exercise,
1
a——<E[Dy(X)] =)
n

holds for all n € N, and so
a < lim E[D,(X)] <b
n—oo

by the sandwich theorem for limits of sequences (note that lim,_...(¢ — 1/n) = a). Since
E[X] :==lim, o E[D,(X)], the desired result follows. B

For any w € Q, set Z(w) := X(w)—b. Our assumptions, together with linearity of expectation,
give P(Z <0) =1 and E(Z) = 0. We need to show that P(Z =0) = 1.

The claim follows if we show that P(Z < 0) = 0. For each n € N, set
1
Q, = %weQ:Z(a))<——}.
n

Then,
Z() < (Dn(Z)(w) 4 %)ﬂsz ©) <1, ().

for all w € R, so that, by monotonicity and linearity of expectation,
1 1
0= £12) = £| (Du2) 4 )16, | <~ P
n n

which forces P(€2,) = 0 for all n € N. The desired result follows (recall Exercise 14-(b) in
Problem Set 3). W

'Recall that D,(X) < X < D,(X) + 1/n for all n € N.



Exercise 26

Let (X,), be a sequence of i.i.d. real-valued random variables on some probability space (€2, .4, P)
with unknown cumulative distribution function Fy. An estimator for Fy based on the random
variables X1, ..., X, is the so-called empirical distribution function, defined as

~ l &
F,(2) ::;Z]l(kaz), —00 < z < +4o00.

Calculate the mean and the variance of F, (z). Show that Fo (2) N Fx(2).

Solution

To begin, observe the following: since (X,), is a sequence of i.i.d. random variables, the indicator
function is B(R)-B(R) measurable and measurable transformations of independent random variables
are independent (Exercise 16), (1(X, < z)), is a sequence of i.i.d. random variables on (2, A, P).
Now, fix arbitrary n € N and z € R. To compute the expectation of ﬁn (z), note first that

E[1(X; <2)] = P(Xx <z) = Fx(z) forallk € N.

Since E[]l(Xk < Z)] is finite, 1(Xy < z) € LY(Q, A, P) for all k. Thus, by linearity of expectation
we have

E[T«“n(z)] - E[% Xn: 1(X; < z)]

k=1

= —Z [1(Xk < 2)]
=;;P(stz)

1 n
= — Z Fx(Z).
n k=1
= Fx(2).
To compute the variance of /I*:n(z), note first that (IL(Xk < Z))2 = 1(X% < z), and so
E[(Il(Xk < z))z] — Fy(z) forallk e N.
Then

Var(]l(Xk < Z)) = EI:(I[(Xk < Z))z] _ (E[I[(Xk = Z)])Z

= Fx(z) — (Fx(2))*
= Fx(2)(1 = Fx(2)),

which is finite. Thus, we have

Var(?n(z)) - Var(% I; 1(Xg < z))

= niZ ZVar(Il(Xk <2))
k=1



- niz Z Fx(2)(1 — Fx(2))

k=1
1
= ~Fx(2)(1 = Fx(2))
where the second equality holds because the 1(Xy; < z)’s are independent.

Finally, since (1(Xx < n)), is a sequence of i.i.d. random variables with finite expectation E [IL(X r <
Z)] = Fx(z), by the weak law of large numbers (Theorem 2.7) we have

l n
“Y 1 < 2) L Fe(2),
n

k=1

as desired. W

*Exercise 27

Solve the following problems.

(a) Let (X,), and X be R*-valued random variables on a common probability space (2, A, P).
Show that X, —> X if and only if || X, — X|| — 0.

(b) Let (X,), be asequence of R¥-valued random variables on a common probability space (2, A, P),

and let @ € R¥. Show that X, i) a if and only if X, i> a.

Solution

(a) Forallnm e N, w € Q and ¢ > 0, we have
[Xa(@) = X@)] > & = || Xa(@) = X(@)] - 0| > .
The desired result immediately follows by definition of convergence in probability. B

P d
(b) By Theorem 2.15, X,, — a = X, —> a. Thus, we only need to prove that
d P
X, —a— X, —a.

d
Thus, assume that X, —> a. Let i € {1,2,....,k} and € > 0. Moreover, let Fy,, be the
marginal cdf of X, ;, for all n € N, and F,, the marginal cdf of a;. Since joint convergence in
distribution implies marginal convergence in distribution, Fy, ;(x) — Fg, (x) at all continuity
’ n—0o0

points x of Fy,,. Note that

0 ifx<a;
Fay () = 1 ifx>a;

which is continuous everywhere but at x = a;. Then,

PloeQ:|Xpi@) —ail >¢e}) =1-P({o e Q:a;—& < Xpi(®) < a; +¢})
=1-Fx,,;(a; +¢) + Fx, (a;i — &)
—P({w e Q: Xyi(w) =a; —¢})
<1-Fx, . (a; +¢)+ Fx,,(a; — &)
— 1 — Fy,(a; +¢€) + Fg,(a; —¢)

n—o00

4



=1-1+0
=0,

since Fy, is continuous at x = a; £ ¢, and so Fy,(a; + ¢) njgo Fy(ai +¢) =1, Fx,(a; —

€) = F,;(a;i —e) = 0. Apply Lemma 2.13 to obtain the desired result. l

Exercise 28

Solve the following problems.

(a) Suppose that X; = X, = ... are standard normally distributed random variables. Show that

d
X» — —Xi, but (X,), does not converge in probability to —X;.

(b) Let (X,), and (¥,), be two sequences of real-valued random variables on a common probability

space (2, A, P). Suppose that X, N 0 and Y, N 0. Show that

max{| X,|. |Yal} —> 0

by using the definition of convergence in probability.

Solution

(a) Claim 1. X, LN —X;.

For all n € N, let Fy, be the cdf of X,. By Theorem 2.14, it is enough to show that
Fx,(x) — F_x,(x) at all continuity points of F_x,. Let x be a continuity point of F_y,.

Note that
Fx,(x) = P(X; <x)
= P(X2 > —x)
= P(X; > —x) (4)
= P(—Xl < X)
= F_X1 ()C),
where the first equality holds because X, is standard normally distributed and so its distribution

is symmetric about zero, and the second equality holds because X; = X,. Since X, = X3 = ...,
Fx, = Fx, = ..., and so (Fx,(x)),, is a constant sequence. Therefore, Fy,(x) — F_x, (x)
= n—00

trivially follows from . Since x € R was arbitrarily chosen, the claim follows.
Claim 2. (X,), does not converge in probability to —Xj.
For ¢ := 2 > 0 we have
P(|X2 — (=X1)|[ > 2) = P(|X1 + X2)| > 2)

= P(12X2] > 2)

= P(|Xz| > 1)

~ 2-0.1587

# 0,

where the second equality holds because X1 = X,. Since X, = X5 = ...,

P(|X, — (=X1)| >2)=2-0.1587 > 0

bt



holds true for all n > 2, and so
P(X,—(—=X1)|>2) — 2-0.1587 > 0.
n—>oo

The claim follows.
(b) Let & > 0. We need to show that

lim P({a) € Q : max{| X, (w)|, | Yn(®)|} > 8}) = 0.

n—>oo

Note that
{w € @ max{| X, (o), [Yn(®)]} > &}

is equal to
{weQ: | Xp(w)|>eUlweQ:|Yrw)|}>e}.

for all n € N. Then, by non-negativity and sub-o-additivity of P we have

0< P({a) € Q :max{| X, (w)|, |Yn(®)|} > 8})

§P({a)€Q: | Xy ()] >8})+P({a)€QZ |V, (w)] >8}) (5)

P P
for all n € N. By assumption, X, — 0 and Y, — 0, and so the right hand side of
converges to zero as n — o0. The desired result follows by the sandwich theorem for limits of
sequences. W

Exercise 29

Solve the following problems.
(a) Let X ~ Po(A), with A > 0. Show that E[X] = A.

(b) Let X be a Gamma-distributed random variables with parameters @ > 0 and f > 0; in signs
X ~ T'(«, B). That is, X is continuous with density fx:R — [0, +00) defined as

ﬁ(x

— xolgmhxq x).
F(Ot) (0,+oo)( )

Sx(x) =

Show that E[X] = «/B. [Hint. T(a¢ + 1) = a'(«) for any o > 0.]

Solution
(a) Answer: E[X] = A. Details are omitted.
(b) Answer: E[X] = o/B. Details are omitted.

*Exercise 30

Solve the following problems.

(a) Let (X,),, X and Y be R¥-valued random variables on a common probability space (2, A, P).
Suppose that X, N X and X, N Y. Show that X = Y almost surely.

d
(b) Suppose that for R¥-valued random variables (X,),, (Y),, X and ¥ we have X, — X and
d d
Y, — Y. Does this imply X, + Y, — X + Y7 Justify your answer.

6



Solution

(a) Since ” X(w) — Y (w) ” = 0 if and only if X(w) = Y(w) for all w € Q, the desired claim follows

if we show that
P({o e [X@) - Y@)] > 1/k}) =0

for all £ € N.

Fix an arbitrary k € N. For any n € N, triangle inequality gives
|X(w) = Y(@)| < | X(@) = X (@) + |Y(®) — Xu(o)|
for any w € §2. Therefore, by non-negativity, monotonicity and sub-c-additivity of P,
0< P({a) €Q: X -YW)|> 1/k})
= P({w € @: [X(@) - X, ()] > 1/2k}) (6)
+ P({a) €Q: Y0 - Xa()] > 1/2k})
holds for all n € N. By assumption, X, —> X and X, —> ¥, and so the right hand side of

(@ converges to zero as n — o0. The desired result follows by the sandwich theorem for limits
of sequences. W

We show that the statement is false by providing a counterexample. For each n € N, let

d d
X, ~ N(0,1) and set Y, := X,,. Trivially, we have X;, — X ~ N(0,1) and Y, — —X (recall
Exercise 28-(a)). However, X, + Y, = 2X, ~ N(0,4) for all n, which clearly does not converge
in distribution to X + (—X) =0. &
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*Exercise 31

Solve the following problems.

(a) Let X be a real-valued random variable, and Y,, Z, real-valued discrete random variables for
all n € N. Assume that

| X = Yu| < Zy, lim E[Z,] =0, and lim E[Y,] =a,

n—>0o0

with @ € R, hold for all n, Show that X € L'(Q, A, P), and E[X] = a.

(b) Let (X,), be a sequence of real-valued random variables, and a € R. Show that

L
<E[Xn] —> a and Var(X,) — 0> — X, —>a.

(c) Let (Xn),, (Yn),, (Z,), and X be real-valued random variables on a common probability space
(2, A, P) such that X,, < Z,, <Y, for all n € N. Show that

<X,,i>x and YnLX>:>Z,,i>X.

(d) Let (Xp),, (Un),, (Wy), and X be R¥-valued random variables on a common probability space
(2, A, P). Prove the following statements.
(i) Xy = 0p(1) < limc— 400 limsup,_ o, P(| Xn|| > C) =0
(ii) Suppose that X, = 0,(1), U, = O,(1) and W,, = Op,(1). Then,
1. Uy + W, = 0,(1);
2. XnU, = 0,(1) (assume that (X,),, (Uy,), are real-valued for simplicity).

[Note. If you are asked to prove a statement from the Lecture Notes, you can use all the results that
come before (but not after) that statement in the Lecture Notes.]

Solution

(a) We show that E[X] =a. That X € L1(Q, A, P) follows because —oo < a < +00.

As | X =Y, < Z,,

or, equivalently,
Yn_anfon‘i‘Zn (1)



for all n € N. Let D, (X) be the discrete approximation of X on a 1/n grid, with n € N. Since
Du(X) = X = Du(X) + 1/n, (1) gives

1
Yn_Zn__ SDn(X)SYn+Zn
n
for all n € N. Linearity and monotonicity of expectation for discrete random variables yields
1
E[Yn] - E[Zn] - ; =< E[Dn(X)] =< E[Yn] + E[Zn]

for all sufficiently large nﬂ and so, by the sandwich theorem for limits of sequences (and the
algebra of limits),

1
lim E[Y,] — lim E[Z,]— lim — < lim E[D,(X)] < lim E[Y,]+ lim E[Z,]. (2)
n—00 n—-oo n—-oo n n—o00 n—-oo n—-oo
By our assumptions and the fact that E[X] := lim,— o E[Dn(X)], reads as
a < E[X] <a,

thus completing the proof. l

(b) =]
We need to show that
E[|X, —a|’] — 0.

n—oo

For sufficiently large n, we have

E[|X, —al’] = E[(Xx — a)?]
= E[X; 4+ a® — 2aE[X,]]
= E[X2] +a*> —2aE[X,]
= Var(X,) + (E[X])* + a® — 22 E[X,] (3)
= Var(X,) + (E[X,] — a)’

?0+(a—a)2=0,

where: the third equality holds by linearity of expectation; the fourth equality holds because
Var(X,) = E[X?] — (E[Xn])z; convergence follows by our assumptions and continuity of the
function f:R — R, x > (x —a)?. The desired result obtains.

[—]
We need to show that

Var(X,) — 0 and E[X,] — a.
n—o00 n—oo
From (3) we have
E[|X, —al?] = Var(X,) + (E[X,] — a)’ (4)

for sufficiently large n. Since Var(X,) > 0 and (E[Xn] — a)2 > 0 for all n € N, we have from
#)
0 < Var(X,) < E[|X» —al?]

By assumption, lim, e E[Z,] = 0 and lim, e E[Ys] = a. Therefore, there exist natural numbers Nz and Ny
such that Z, € L‘Ii(Q,A, P) foralln > Nz,and Y, € L:i(Q,A, P) for all n > Ny, By “sufficiently large n” we mean
n > max{Nz, Ny}, so that both E[Y,] and E[Z,] are finite, and using monotonicity and linearity of expectation is
justified.



and X
0 < (E[Xx]) —a)” < E[|1X, —a|’]
for all sufficiently large n. As E [|X,, — a|2] —> 0 by assumption, the sandwich theorem for
n—-oo

limits of sequences gives
Var(X,) — 0 and  (E[X,]—a)’ — 0,
n—o00 n—oo

that is,
Var(X,) — 0 and E[X,] — a,
n—00 n—o0

which proves the claim. B

Let &€ > 0 be arbitrary. We need to show that

P(Z,—X<—-¢V Z,—X >¢) — 0.

n—oo

Since X, < Z, <Y, for all n € N, we have
Zpn—X<—-—te—=X,— X < —¢,

and
Iy—X>e=Y,— X >e.

Thus,

0<P(Z,—-X<-eV Z—X>e)<P(Xp—X<—-¢V Y, —X>¢

<P
<PX,—X<—-¢)+P(Y,—X>e¢), ©)

where: the first inequality holds by non-negativity of P; the second inequality holds by mono-
P
tonicity of P; the third inequality holds by sub-o-additivity of P. Since X, — X and

Y, — X,
P(X,—X <—¢)—0  and P(Y,—X>¢) — 0. (6)

n—oo n—oo

The desired result follows from , @ and the sandwich theorem for limits of sequences. W

(i) =]
We need to show that
hrﬂ limsup P(|| X,| > C) =0,

n—-oo

i.e., that for any ¢ > 0, there exists C, such that

limsup P(|| X,|| > C) <e for all C > C,.

n—-oo

Fix ¢ > 0. Since X, = Op(1), there exist C, and N, such that
P(|Xn|| > Ce) < ¢ for all n > N.
Hence,

sup P (|| Xx| > Ce) < ¢

k>n

for all n > N,. Thus, by monotonicity of P, for any C > C, we have

P(| Xkl > C) < P(| Xkl > Ce).

3



(i)

and so

sup P(|| Xil| > C) < ¢

k>n

for all n > N,. It follows that

limsup P(|| X,|| > C) <e,

n—00

completing the proof.
Sl
Fix € > 0. We need to show that there exist C, > 0 and N, > 0 such that

P(|Xn]| <Ce) > 1—¢ for all n > N,.

By assumption, limc 400 limsup,_,o P(||[Xx|| > C) = 0. Then, by Theorem 1.3.(iii),
lime 400 M SUP, o0 P (|| Xn| < €) = 1. Therefore, there exists C, > 0 such that for all
C > C, we have

limsup P(| X, <€) = 1-=.

n—-oo

In particular, for C; := C, + 1 we have

limsup P(| X, [ < Co) > 1 — g

n—-oo

that is,

lim sup P(| Xk]| < Co) > 1 — g

k>n

But then, there exists N, > 0 such that, for all n > N,

sup P(| Xkl < Ce) > 1—¢,

k>n

and so, for all n > N,

P(|Xull £ Co) = 1 - u

1. Fix ¢ > 0. Since U, = O0,(1) and W, = O,(1), there exist C,z > 0, Ce,wy > 0 and

Neu, Ne,w such that
P(|Up|l > Cep/2) <g/2 forallnm > n.y (7)

and
P([Wy|l > Cew/2) <e/2 for all n > ng w. (8)

Set Cg := max{C, vy, Cew}. Then, for all n > n, := max {n,y,n.w}, we have

P(|[Up + Wa|l > Ce) < P(|Up|l + [Wall > C)
< P(|Unll > Cs/2) + P(|Wal > C¢/2)
< P(|Unll > Cou/2) + P(IWal > Cew /2)
<g/2+4+¢/2
=g,
where: the first inequality holds by triangle inequality of the Euclidean norm and
monotonicity of P; the second inequality holds by monotonicity and sub-o-additivity
of P; the third inequality holds by the fact that C = max{C, vy, C,,w} and mono-

tonicity of P; the fourth inequality holds by and and the fact that n > n,.
The claim follows. W



2.

Let €,8 > 0 be arbitrary. We want to show that there exists N, g such that for n € N,
n > N5, we have
P(X,U,| > ¢) <.

Since U, = O,(1), there exist Cs and Nj such that

P(U > Co) = 5 )

for all n > Ns. Moreover, as X, = 0,(1), there exists Ny, c;,5 such that

P(X| > e/C) < (10)
for all n > Ng/cs,5. Observe that
| XaUn| > & = (| Xn| > ¢/Cs v |Uy| > Cs). (11)
Then, for n > N5 := max {Ng/ca,g, Ne,g}

P(| X, U,| >¢) < P(|Xy| >¢/Cs Vv |Uy| > Cs)
= P(|Xn| > E/CS) + P(lUnl > C8)
<8/2+6)2
=3,

where: the first inequality holds by monotonicity of P and ; the second inequality
holds by sub-o-additivity of P; the last inequality holds by (@ and and the fact
that n > N, 5. The desired result follows. B

Exercise 32

Solve the following problems.

(a) Let X ~ B(n,m) and Y ~ Po(A).

(i) Find the characteristic functions of X and Y.

(ii) Use

the characteristic function of X to compute E[X] and Var(X).

(b) Let X ~ Po(A),Y ~ Po(u), with A, u > 0, and assume that X and Y are independent. Show
that (X +Y) ~ Po(A + p).

(c¢) Let X, ~ B(n,m,) for alln € N, Y ~ Po(A) and suppose that lim,_ nm, = A. Show that
x, -y,

Solution

(a)

(i) For all t € R, we have (omitting details)

and

ox (1) = E[e"¥] =) "e'"* (Z) k(1 — )" = (ze' + (1-n))",
k=0

90y(t) = E[eitY] — Zeitkﬁe_A _ e,x(en—l).



(ii) We have (omitting details)
E[X] = i_lgz);(l)(O) = nm,

E[X?] =i¢P(0) = nz((n — Dr + 1),

and so
Var(X) = na((n — D + 1) —n?7? = nn(1 — 7). [ |

(b) The characteristic functions of X and Y are gx(t) = e’ ) and py(t) = et ™) Since X
and Y are independent,

ox+r (1) = px (Dpy (1) = HE D) = (ArmeE™h,

which is the characteristic function of a discrete random variable with Poisson distribution with
parameter A + w. Hence, (X +Y) ~ Po(A + n) by Lemma 1.43. B

(c) By Levy’s continuity theorem (Corollary 2.17 in the Lecture Notes), it is enough to show that
¢x, (1) — ¢y (1)
for all r € R. Let t € R be arbitrary. We have
lim gy, (1) = lim (ne™ + (1 — 7,))"
i (1 DY

n—o00 n

n it __ 1
= lim exp (n In (l + M))
n—o0 n

) hmn_,Oo nm, (e’ —1)
=exp| lim nln
lim, o0t

n—-oo

Ale’t — 1
:exp(lim nln(l—l— (e ))
n—o0 limy, oo
Ale’ — 1
:exp(lim nln(l—l— (¢ ))
n—o0 lim, oot
:exp( lim nln(
n—oo llmn_>oon
Ale’t — 1
= lim exp <1n (1 + — (e ) )
n—o0
it _
n—o00 n
_ e/l(eil_l)
= oy (1),

where we used the fact that, for a continuous function f, lim,—e f(x,) = f(lim,—eo Xn),
the assumption that lim, . nm, = A, and the fact that lim,_ (1 + ;—C)n = e* for any real
number x. W



Exercise 33

d
Let (X,), and (Y,), be sequences of R*-valued random variables such that X, i> XandY, — Y.
Suppose that X, and Y, are independent for all n and that X and Y are independent. Show that

X, +7Y, -5 x+v.

Solution

By Levy’s continuity theorem (Corollary 2.17 in the Lecture Notes), the claim follows if we show
that
0x,+v, () — ox4y() for all r € R¥,
n—>oo

Let t € R¥ be arbitrary. Since X,, and Y, are independent for all n, and so are and X and Y, we
have
Px,+7, (1) = ¢x, (1)ey, (1) (12)

for all n, and
ox+y (1) = ox(H)py (1) (13)

d d
(cf. Proposition 1.42 in the Lecture Notes). As X, — X and Y, — Y, Levy’s continuity theorem
gives
0x, (1) — ¢x (1) and ¢y, (t) — @y (1),
n—>oo n—>0o0

and so, from the algebra of limits,
¢x, ey, () —> ox (D (1). (14)
The desired result follows by combining (12)), and (14). |

*Exercise 34

Solve the following problems.

(a) Suppose that (X,), is a sequence of i.i.d. real-valued random variables with known expectation
—00 < 4 < o0, unknown variance 0 < 02 < 400, and finite fourth moments. Apply the
delta-method to derive the limit distribution of /n(S, —0o), where S, is the following estimator
of o:

1 n
Sni= | =Y (X —w)?.
n nkzl(k M)

(b) Suppose that (Xy), is a sequence of i.i.d. real-valued random variables with E[X}] < +oo0.
Define Y, == n™' Y i, |Xkl, Zn = n"' > ;i X2, and T, := (Y,. Z,)". Show that /n(T, —

0) i) N((0,0)', ) and identify 8 and ¥ in terms of moments of X;.
(c) Fori € {l,...,k}, let Z; beiid. with Z; ~ N(0,1), and define Z := (Z;,..., Zx). Let u € R¥

and A be a k x k real matrix. Compute the mean, the variance and the characteristic function
of the random variable X = pu + AZ.



Solution

(a) Set Y, := (X, — pu)* for all n. Since (X»), is a sequence of i.i.d. random variables, so is (¥3),.
Moreover,
E[Y,] = E[(X, — p)*] = 02,

and
Var(Y,) = E[(Yn — 02)2]

= E[((X, - = 0?)’]
= E[(X, — w)*] —o*,

where we use linearity of expectation and the fact that o is finite. Set §2 .= E [(Xn — /L)4] —o*.
As X, has finite fourth moments, we have 0 < $? < —I—ooE] Thus, from the central limit theorem
for i.i.d. real-valued random variables,

> r_Yi —no?

i=1

d
Z ~ N(0, S?),
NG — ( )

or, by setting Ty, := + > 1 V;,

(T, —0?) -5 Z ~ N(0. 52).

The function ¢: [0, +00) = R, ¢(x) := /x, is differentiable at any x > 0, and so in particular
at x = 02, with

¢(Tn) = Sns

¢(0?) =0,

, 1
and ((,b (02))2 = 102

Applying the delta-method we obtain

Jn(p(T) — (%) == N(0. 52(¢'(69)).

that is,

4 4
ﬁ(sn—o)i>N<o,E[(X”_“) |-o )
402

which answers the question. H

(b) Set S, :== (|Xnl|, X?) for all n. Since (X,), is a sequence of i.i.d. random variables, so is (Sy),.

Define
01 = E[|X1]], (15)
0, = E[X]], (16)
and 0= (91, 92)/. (]_7)

Clearly, E[S,] = 0 for all n. Let ¥ denote the covariance matrix of S;. We have

E[(1X1 = ENX.[)*| = E[1X, 7] - 63 = 6, - 67,

2Quiz: Why 0 < S2?



E[(x3 - E[x)’] = EX{] - 63.
and

E[(|X1| —0,)(x2 - 62)] = E[|X1|X2] - 6,0, = E[|1X,*] - 6,6,.

Since E[X{] < 400 by assumption, all previous moments are finite, and using linearity of
expectation is correct. Therefore, we have

92—012 E[|X1|3] _9192i| (18)

> =
[E[|X1|3] — 016,  E[X{]— 62
which is finite. Then, by the multivariate central limit theorem,

%(isi _ ne) L Z ~ N((0,0), D).

Observing that
1 n
completes the proof. That 6 and X are identified in terms of moments of X follows from (|15)),

[6), (17 and (18). m

(Detailed sketch) Since the Z;’s are i.i.d. with Z; ~ N(0, 1), we have Z ~ N(O, Iy), where Iy
(= Var(Z) = E[ZZ’]) denotes the k x k identity real matrix. We have

EX|=E[u+AZ]=pn+AEZl=pn+ E[Z]l=pu+0 =pn
by linearity of expectation, and
Var(X) := Var(u + AZ)
= E[[M +AZ —E[pu+ AZ]|[n+ AZ — E[u + AZ]]’]
= E[AZZ'A']
= AE[Z2Z'|A’

= Al A’
= AA'.

Moreover, for all t € Rk, .
pz(t) = E[e" 7] = "2,

Since @44z (t) = e @z (A't) (cf. Proposition 1.42 in the Lecture Notes), we get
ex(t) = exp(ip't) exp(—t'AA't/2) = exp(in't —t'AA't)2)

for all t € R*. W

Exercise 35

Let X be a real-valued random variable, and let ¢x be its characteristic function. Show that ¢y is
real if and only if X < —X.



Solution

Fix t € R. First, we show that
ex (1) = ox(=1) = p—x (). (19)

To see this, we simply let the minus sign wander through the exponent:

e = cosxt + i sin xt

= cosxt — i sin xt

= cos(x(—t)) + i sin(x(—1)) (= D)
= cos((—x)t) + i sin((—x)t)
— ei(—x)t.

Now, if gx is real, then px () = @x(¢). If follows from |D that ¢_x(t) = @x(t), which means that
X and —X have the same characteristic function, and, hence, by uniqueness (Lemma 1.43 in the
Lecture Notes), the same distribution.

If, on the other hand, X 4 —X, then ¢x () = ¢_x(¢) (again by Lemma 1.43). Together with ,
this yields ¢x () = ¢x(t), that is, ¢x is real. B

Exercise 36

Let (X»), be a sequence of i.i.d. random variables, with X, ~ Exp(A). Define A, = 1/X,, with
Xp = 1%%_| Xk. Find 02 (as a function of 1) such that

iR, =) -5 7 ~ N0, 6?).

Solution

For each i, we have

E[Xi] = )lk and Var(X;) = %

By the central limit theorem for i.i.d. sequences of real-valued random variables,

— 1 d 1
a(m) Ln(oL)
The function ¢: (0, +00) — R, ¢(x) = 1/x, is differentiable at all x on its domain, and so in
particular at x = 1/A, with

¢(Yn) = /A\n,
d(1/4) = A,
and (' (1/1))* = A*.

Applying the delta-method we obtain

Vi) = 91/2) <% N (0.5 @ 1/0) )

that is,
(A, —2) -5 N(0.22),

which answers the question, with 62(1) = A%. B
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Exercise 37

Let Y be a real-valued random variable on some probability space (2, .4, P), with Y € L?(Q, A, P).
Show that u = E[Y] is the unique minimizer of the function G:R — [0, 400) defined as G(c) =
E[(Y —¢)?].

Solution
Note that

G(c) = E[(Y —¢)?]
= E[Y? 4 ¢*> —2cY]
= E[Y?] 4+ ¢? —2¢E[Y],

where the last equality holds by linearity of expectation and the fact that ¥ € L?(Q2, A, P) and
¢ € R. We need to solve the following minimization problem:

min [E[Y?] + ¢*—2¢E[Y]].

The objective function is twice continuously differentiable (in ¢) on R. The first order condition is

dG(c)
5 =0 < 2¢—2E[Y]=0 < ¢ = E[Y].
c
The second order condition is
PG(c) =2>0
a2 '
which shows that the objective function is strictly convex on R. Thus, u = E[Y] is the unique

minimizer of G(c). W

*Exercise 38

Solve the following problems.

d
(a) Find a sequence of random vectors ((X,,Y,)"), and a random vector (X,Y) such that X, —>
d d
X, Y, — Y, but not (X,,Yn)), — (X,Y)".

(b) Let (Xy,),, with X, == (Xy.1,..., Xnx) for all n, be a sequence of R¥_valued random variables,
d
and X := (X;...., Xx) an R¥-valued random variable. Suppose that X, — X. Show that
d
Xni — X foralli e{l,... k}.



Solution
(a) Let X ~ N(0,1), Y ~ (0,1), and assume that X and Y are independent. Then,
(X,Y) ~ N((0,0), I,),

where I, is the 2 x 2 real identity matrix. Now, for all n, let X,, ~ N(0, 1), and set Y, := —X,,,
d d
Clearly, X, — X, and Y, — Y (cf. Exercise 28-(a)). However,

(X, Y) -5 (X.—X) ~ N((0.0). %),

==L 7

d
As (X,-X) # (X,Y), (Xn, Yn)"), does not converge in distribution to (X,Y)". B

with

(b) Consider an arbitrary i € {I,...,k}, and let e; the i-th vector of the standard basis of R¥ (i.e.,

d
e; is the vector in R¥ with a 1 in the i-th coordinate and 0’s elsewhere). Since X,, — X, by
the Cramér-Wold device (Theorem 2.18 in the Lecture Notes) we have

d
/ /
eX,—eX

Since e} X, = X, ; for all n, and e; X = X;, the desired result follows. B

Exercise 39

A real-valued random variable X is standard Cauchy distributed if it is continuous with density
fx:R — [0, +00) defined by

1
X) = )
Sx(x) (0129
where 7 is a strictly positive real constant. The characteristic function of X is gx(t) = eV

Suppose that Xi, ..., X, are i.i.d. standard Cauchy distributed random variables. Show that X, :=
n~1Y"_ | X; is standard Cauchy distributed.

Solution

For all + € R, we have



where the first equality holds by Proposition 1.42 in the Lecture Notes, and the second equality holds
by Proposition 1.42 and the fact that X1,..., X, are i.i.d. standard Cauchy random variables. Thus,
¢x, = ¢x, and so X, is standard Cauchy distributed by Lemma 1.43 in the Lecture Notes. B

Exercise 40

Solve the following problems.

(a) (Final Exam - Spring 2013) Suppose that €, and €, are two nonempty sets, and that f:Q; —
2, is a function. Further, let A, be a o-field on ©,. Show that the class

A= {1 (A) € P(Q1): A € Ay}

is a o-field on Q. [Note. For each 4 € P(R3), f 1 (A) = {w € Q1 : f(w) € 4}, ie. f71(A)
denotes the inverse image of A under f.]

(b) Let X be a real-valued random variable on some probability space (2,.4, P). Show that X is
independent of itself if and only if X is constant almost surely.

Solution

(a) We show that the defining properties of o-field (Definition 1.1 in the Lecture Notes) are satisfied
by Al.

(o) By definition, A; is a class of subsets of .
(i) Since A, is a o-field, @ € A,. By definition of Ay, f~1(0) € A;. As

S7H0) = {0 e Qi : flw) € 0} =0,

we have @ € A;.

(ii) Let B € A;. Then, by definition of A, there exists A € A, such that B = f~!(4). Since
A, is a o-field on Q,, Q, \ A € A,. By definition of A;, f~1(Q,\ 4) € A;. As

72\ A) =Q\ f71(4) = Q1 \ B,

we conclude that A; is closed under complementation.

(iii) Let By, Ba,--- € A;. Then, by definition of Ay, there exist Ay, A,--- € A, such that
By = [ (A1), B» = f71(A2),.... Since A, is a o-field, | J;2, 4, € A,. By definition of
Ai, f_l(Uflo=1 An) € A;. As

U4 = @ = Ba
n=1 n=1 n=1
we conclude that A; is closed under taking countably infinite unions. B
Remark. Note that A; is the o-algebra on Q; generated by f:Q; — @, (cf. Exercise 48).
(b) First, suppose that P(X = c) = 1 for some ¢ € R. For any A € B(R), we have
P(X € A) =1 < c €A,

and therefore,
P(X € A) = 1 4(c).



Then, for any A, A> € B(R),

P(X € A1, X € 4;) = P(X € (A1 N Ay))
= L4,n4,(¢)
= 14,(c)L4,(c)
=P(X € A)P(X € Ay),

which shows that X is independent of itself.
Now, suppose that X is independent of itself. Then, for any x € R,

PX<x)=PX <x,X<x)=[P(X <x)]~

This means that P(X < x) can only equal 0 or 1 for any x € R. Since limy_,_o, P(X < x) =0,
limy 400 P(X < x) =1, and P(X < x) is non-decreasing in x, there must be a ¢ € R such
that P(X <c¢) =1 and P(X <c) =0, which shows that P(X =¢)=1. R

*Exercise 41

Solve the following problems

(a) Let X be an R*-valued random variable on some probability space (2,4, P) and ¢ a real
constant. Show by definition of conditional expectation that E[c | X] = ¢ almost surely.

(b) Let Y be a real-valued random variable on some probability space (22, A, P),Y € L?(Q, A, P),
and ¢ a constant in R¥. Show that E[Y | c¢] = E[Y].

(¢) Let Y be a real-valued random variable, X an R¥-valued random variable, and Z an R™-valued
random variable all defined on the same probability space (22,4, P). Let Y € LY(, A, P).
Show by definition of conditional expectation that:

(i) E[E[Y | X]] = E[Y];
(ii) E[E[Y | X]| X, Z] = E[Y | X] almost surely;

(i) E[Y | X, f(X)] = E[Y | X] almost surely for any B(R¥)-B(R™) measurable function
fiRF - R™.

Solution

(a) Since E[c] = ¢ € R, we have ¢ € L'(R2, A, P), and the conditional expectation of ¢ given X
exists by Theorem 3.4 in the Lecture Notes. Let g(X) be a version of E[c | X]. By definition,
g(X) satisfies

Elch(X)] = E[g(X)h(X)],

or, equivalently, using linearity of expectation,
El(c —g(X)h(X)] =0 (1)

for every bounded and Borel measurable function 4: R¥ — R. By way of contradiction, suppose
that g(X) = ¢ almost surely does not hold. Then, there exist &1, n; > 0 such that

P(c—g(X)>¢e1)>n >0,
or there exist €5, 1, > 0 such that

P(g(X)—c>8g)>n >0,

4



(c)

or both. Assume without loss of generality that
Plc—g(X)=e) =n>0, (2)
for some ¢,7 > 0, and define h: R¥ — R as

h(X) = Lie—g(x)>e}-

Clearly, & is bounded and Borel measurable. However,

E[(c — (X)) Lie—gx)zet] = E[elie—g(x)2e1]
= eE[Lic—g(x)261]
— eP(c— g(X) > ¢) 3)
= €n

> 0,

where: the first inequality holds by monotonicity of expectation; the first equality holds by
linearity of expectation; the second inequality holds by . Since (3) contradicts , the
desired result follows. W

By Lemma 3.6, if the measurable function g: R¥ — R minimizes E[(Y — g(c))z], then g(c) =
E[Y | ¢] almost surely. Since ¢ is a constant in R¥, g(c) is a real constant for any measurable
function g:R¥ — R, and so we can use the standard calculus approach to find g(c). Set
a = g(c). We want to solve
: 2
min E [(Y a) ]
By Exercise 37, we know that a = E[Y] is the unique solution to the previous minimization
problem. The desired result follows. l
(i) By definition, E[Y | X] satisfies
E[Yh(X)] = E[E[Y | X]h(X)]

for any bounded and Borel measurable function h: R¥ — R. Define h as h(x) := 1 for all
x € R¥. Clearly, & is bounded and Borel measurable. Then, we have

E[Y -1l = E[E[Y | X]-1],
that is
E[Y] = E[E[Y | X]],
which gives the desired result. W

(ii) Let g(X, Z) be a version of the conditional expectation of E[Y | X] given X and Z. Then,
we have
E[E[Y | X]h(X. Z)] = E[g(X, Z)h(X, Z)],

or, equivalently, using linearity of expectation,
E[(E[Y | X] - g(X,Z))h(X,Z)] =0 (4)

for every bounded and Borel measurable function #: R x R”™ — R. By way of contradic-
tion, suppose that g(X,Z) = E[Y | X] almost surely does not hold. Then, there exist
€1, 11 > 0 such that

PE[Y | X]—g(X,Z) = ¢&1) =m >0,



or there exist &5, 7, > 0 such that
P(g(X.Z)—E[Y | X] Z &2) = 2 > 0,
or both. Assume without loss of generality that
P(E[Y | X]—g(X,Z) > &) = n >0, (5)
for some &, 1 > 0, and define h: R¥ x R” — R as

h(X,Z) = lE[y|X]-g(X.Z)>¢}-
Clearly, & is bounded and Borel measurable. However,

E[(E[Y | X] - 8(X. D)) L ix1-sx. 20201 = E[elizy 1 x1-s(x.2)261]
= ¢E[Ligy|x1-¢(x.2)2e)]
=eP(E[Y | X]-g(X.Z)=¢)  (6)
= £
> 0,
where: the first inequality holds by monotonicity of expectation; the first equality holds

by linearity of expectation; the second inequality holds by . Since @ contradicts ,
the desired result follows. B

(iii) Let g(X) be a version of the conditional expectation of ¥ given X. We want to show that
g(X) is also a version of the conditional expectation of ¥ given X and f(X); that is,

E[Yh(X, f(X))] = E[g(X)h(X, f(X))]

for every bounded and Borel measurable function h:R¥ x R™ — R. Consider an arbitrary
such h. Since g(X) be a version of E[Y | X], we have

E[Yh(X)] = E[g(X)h(X)],

for every bounded and Borel measurable function #: R¥ — R. In particular, define h: R¥ —
R as h(x) = h(x f(x)) for all x € R¥. Note that such 4 is bounded because h is so, and
is measurable because the identity function and f are so. Then, we have we have

E[Yh(X, f(X))] == E[Yh(X)] = E[g(X)h(X)] == E[g(X)h(X, f(X))],

Since A , was chosen arbitrarily, the desired result follows. B

Exercise 42

Let (X, Y)' be a jointly continuous R2-valued random variable with joint density fyy:R? — [0, +00)
defined as
if0o<x<y<l

1
y
0 otherwise

Sxy(x,y) =

(i) Determine the conditional density of X given Y. What is the cdf of X given ¥ = y?

(ii) Determine E[Y], E[X | Y], and E[X? ]| Y].



Solution

(i) We briefly answer the question omitting details. We have

_ Sxy(x,y)
fr(y)

for any y such that fy(y) > 0. Note that for 0 < y < 1 we have

Txiy(x[y):

oo Y1 1 1
S = [ pertendr= [ Sav= o[ dr=
—00 oy Y Jo y 1x=0
and fy(y) = 0 otherwise. Therefore,
L ifo<x<y<l1
X =7
S (1) {any density otherwise
Moreover, for x € (0, y) we have
1 > X
FX|Y(x|y)=/ —ds = —s = —,
o Y y ls=0 Yy
Fxiy(x|y)=0for x <0, and Fx |y(x | y)=1forx > y.
(ii) We have
+o0 1 y2 1 1
E[Y]=[ yfy(y)dy=/ ydy =71 =3.
o 0 2 2
y=0
Moreover,
+o0 | xz Y
EX 1Y =3 = [ xforripde= [ xdv =2
—o0 o ¥ 2V 2o
Finally,
400 ¥y 1 x3 Y
B 1Y == [ @fare o= [ etae= 1) =
—o0 o 3.2,

N =
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Exercise 43

Solve the following problems.

(a) Let Y;,Y, be real-valued random variables and X an R¥_valued random variable on the same
probability space (2, A, P), with Y,.Y, € L1(Q, A, P), and let o, @ € R. Show that Efo, Y, +
axYs | X] = o E[Y1 | X]+ ax E[Y> | X] almost surely.

(b) Let X and Y be real-valued random variables on some probability space (2, .4, P), with ¥ €
L2(Q, A, P). Show that P(|Y| >8] X) <8 2E[Y? | X] almost surely for any § > 0.

Solution

(a) We want to show that
E[(1Yy + a2 Y2)h(X)] = E[(1 E[Y1 | X] + 2 E[Y2 | X]h(X)]

for every bounded and Borel measurable function #: R¥ — R. Consider an arbitrary such A.
We have
Ef(a1Y1 + a2Y2)h(X)] = Ela1 Y17(X) + 02 Y2h(X)]
= a1 E[Y1h(X)] + a2 E[Y2h(X)]
— o, E[E[Y, | XIh(X)] + a2 E[E[Y; | X]h(X)]
= E[a1 E[Yy | X]h(X) + a2 E[Y> | X]h(X)]
= E[(alE[Yl | X]+ arE[Y> | X])h(X)],
where: the second and fourth equality holds by linearity of expectation and the fact that
ap, o0 € R, and Yy, Y5, h(X) € LY(Q, A, P); the third equality holds because, by definition of

conditional expectation of Y; given X, k = 1,2, we have E[Y h(X)] = E[E[Yx | X]h(X)] for
the bounded and measurable function 4: R¥ — R. Then,

E[OllYl +O(2Y2|X]:O[1E[Y1 |X]+Ol2E[Y2|X] a.s.

by uniqueness of conditional expectation. B

(b) Note that
8 Llgyi=sy < Y7

Then, by monotonicity and linearity of conditional expectation, as Y € L?(Q2, A, P),

SE[Lgyizsy | X] < E[Y? | X] aus.,



ie.,
E[Y? | X]
E[lgyrzs; | X] < — 2 A5

Observing that
E[lgyizsy | X] = P(Y| =8| X),

the desired result follows. W

*Exercise 44

Let Y be a real-valued random variable and X an R¥-valued random variable on a common probability
space (2, A, P), with Y € L2(Q, A, P).

(a) Show that Var(Y | X) = E[Y?| X]— (E[Y | X])? almost surely.
(b) Suppose that X and Y are independent. Show that Var(Y | X) = Var(Y) almost surely.
(c¢) Show that Var(Y) = E[Var(Y | X)] + Var(E[Y | X]).

Solution
(a) As Y € L*(Q2, A, P), we have
Var(Y | X) = E[(Y — E[Y | X])* | X]
= E[Y?-2YE[Y | X]+ (E[Y | X])* | X]
= E[Y?| X]-2E[YE[Y | X] | X] + E[(E[Y | X])? | X] a.s.
= E[Y? | X]-2E[Y | X]E[Y | X]+ E[(E[Y | X])*| X] as.
= E[Y?| X]—-2(E[Y | X])* + (E[Y | X])* as.
= E[Y?| X] - (ElY | X])".
where: the second equality holds by linearity of conditional expectation; the third and fourth

equalities hold by the law of iterated expectations (Theorem 3.10-(iv) in the Lecture Notes).
The claim follows. W

(b) AsY € L*(Q, A, P), we have
Var(Y | X) = E[Y? | X] — (E[Y | X])* as.
= E[Y?] - (E[Y])? as.
= Var(Y),

where: the first equality holds by part (a); the second equality holds by independence of X
and Y and Proposition 3.11 in the Lecture Notes. The claim follows.

(c) AsY € L%(R, A, P), we have
E[Var(Y | X)] + Var(E[Y | X]) = E[E[Y? | X] - (E[Y | X])?]
+ E[(E[Y | X)?] - (E[E[Y | X]))*
= E[E[Y” | X]| - E[(E]Y | X])?]
+ E[(E[Y | X])*] - (E[Y])®
= E[Y?]—(E[Y])?
= Var(Y),

where: the first equality follows by part (a); the second equality holds by linearity of conditional
expectations and the law of iterated expectations; the third equality holds by the law of iterated
expectations. l



Exercise 45
Let X ~ U(—1,1), and define Y := X2

(1)
(i)
(iii)

Is (X,Y) jointly discrete or jointly continuous?
Determine E[Y | X] by using Lemma 3.6 in the Lecture Notes.
Determine E[X | Y].

Solution

(i)

(iii)

Note that the range of (X, Y)’, that we denote with R((X, Y)/), always lies on the curve y = x2,
with —1 < x < 1. The graph of this function is a subset of [—1, 1] x [0, 1] of zero (Lebesgue)
measure. That is, if G := {(x, y)e[-1,1] x[0,1]: y = xz} denotes the graph of this function,
ure(G) =0, where u, is the Lebesgue measure on ([—1, 1] x [0, 1], B([—1, 1] x [0, 1])). Suppose
(X,Y)' is jointly continuous. Then, (X, Y) has a density, i.e., there exists a function fyy:R? —
[0, 4+00) such that

P(R((X.Y)) € G) = / /G Frer (6, 9) dpae(x, ).

But the integral of a function over a set of zero Lebesgue measure is always zero, contradicting
that P((X,Y) € G) = 1. Thus, (X,Y)  cannot have a density, and so is not jointly continuous.
Moreover, as the range of (X, Y)" is uncountable, (X,Y)" cannot be jointly discrete either.

By Lemma 3.6 in the Lecture Notes, if we find a Borel measurable function g:R — R that
minimizes

E[(Y —g(X))?], (1)
then g(X) = E[Y | X]. As Y = X2, minimizing with respect to g(X) is equivalent to

minimize 5
E[(X*—g(X)7].
with respect to g(X). Since (X? — g(X ))2 > 0, by monotonicity of expectation we have
2
E[(X*-g(X)"] =0
for any Borel measurable g: R — R, and
2
E[(X? - g(x))’] =0

if g(X) = X2. Note that g(X) = X? is Borel measurableE] Thus, we conclude that E[Y |
X] = X? := Y almost surely.

Since Y := X2, and X ~ U(—1.1), for any y € [0, 1] we have

E[X|Y =yl =E[X]|X*=)]
=—/YP(X <0)+ J/yP(X >0)
1 1
= 0.

Then, E[X | Y] =0.

L Quiz: Why?



Exercise 46

Let Xi,..., X, be i.i.d. real-valued random variables, with E[X;] = u € R and Var(X;) = 0? e R.
Let X, :=n~1>7_, X; be the sample mean. An estimator for 62 is the sample variance

1 < — 2
i=1

Show that S? is unbiased for o2.

Solution
We have
1 n
elsi]= | Yo%y
i=1
1 n n . n
= IE[ZX,-Z +3°%, ZXHZX,i|
e i=1 i=1 i=1 (2)
— 2 1 21 _ 2
= - E[x7]+- (nE[Xn] 2nE[Xn])
__n 21 _ 2
_n_l(E[Xi] E[Xn])
Moreover,
— 1 ¢ 1 . 1 o2  E[X?]-u?
Var(X,) = Var(; ;Xi) = n—z\/ar(;X,-) = n—znVar(X,-) ==

where the third equality holds because X;---, X}, are i.i.d. Since Var(Yn) = E[Yﬁ] — (E[Yn])z,

E[Yz] — Var(¥o) + (E[Yn])z _ w L= E[X?] -I-n(n — l)/Lzy 5

where we used that E [Yn] = u. Plugging into , we have

els3] = 2 e - [2))

n—1

__n E[Xz]_E[XiZ]_(”_l)Mz
-1 ! n

_n (m=D(E[X?] - p?)

T n—1 n

_n (n—1)0?

T n—1 n

:02,

which shows that S,f is unbiased for o2. W



*Exercise 47

Solve the following problems.

(a) Let (X,), be a sequence of i.i.d. random variables, with X,, ~ Exp(4). By using Lemma 4.7
in the Lecture Notes, construct an asymptotic (1 — «)-confidence interval for A.

(b) Let (Xp,), be asequence of i.i.d. binomially distributed random variables with parameters n € N
and p € (0,1). Determine the method of moments estimators for the parameters n and p.

Solution

(a) Define T, = 1/X,, with X, == %ZZ:I X. By Exercise 36, we know that

(T = 1) -5 Z ~ N0, 12).

Since Var(X;) = 1/A2, and the sample variance $2 == (n — 1) 30_, (X; — Yn)z is a consistent
estimator for Var(Xy), by the continuous mapping theorem for convergence in probability we
have that 1/ S’n is a consistent estimator for A. By Lemma 4.7 in the Lecture Notes, an
asymptotic (1 — a)-confidence interval for A is

. 1/S, - 1/S
|:Tn — zl—a/z%, T, + Z1—a/2%:|,

where

Pl A "X =X,
Tn = — and Sn = \/Zz_l( 1 n)
X, 1

and zy—q/2 is the (1 —a/2)-quantile of Z ~ N(0,1). B

b

(b) Since m; := E[X,] = np, and m, := E[X}?] = np(1 — p) + n?p?, solving
m; = np
my = np(1—p) +n*p?
for n and p we find

2
my

my —my + m?
and p= .

n = 5
ml—mz—i-ml mu

Let g :=n~1Y " X; and i, = n~' Y 7_, X? be the empirical moments, which are consistent
estimators of the respective population moments by the weak law of large numbers and the con-
tinuous mapping theorem for convergence in probability. The method of moments estimators
for n and p, denoted as 71 and p, are given by

- N

2+H¢l%

1

my —

n=

3|3
3>

gy, and p=

m; —
Exercise 48

Solve the following problems.

(a) Let (22,.A) be a measurable space and X a real-valued random variable on (2,.4). The o-
field generated by X, denoted as o(X), is the smallest o-field ¥ on Q2 such that X is X-B(R)
measurable.



(i) Suppose that X is a constant random variable on (2,.4) (i.e., X(w) = ¢ € R for all
w € Q). What is 0(X)?

(ii) Let A € A. What is 0(14), where 14 is the indicator function of A7

(iii) Let = {1,...,6}, A = P(R), and X such that X(w) = w for all ® € Q. What is
o(X)?

(iv) Suppose that X is a real-valued random variable on (£2,.4). Show that
o(X)= a({X_l(C) eP(Q):C € C})
for any collection C of subsets of R such that o(C) = B(R). [Hint. Good set technique.]

(b) Let (£2,.4) be a measurable space, and suppose that X and Y are real-valued random variables
on (2, A). Show that X + Y and XY are (real-valued) random variables on (€2, .A).

Solution
(a) (i) We have o(X) = {0, Q}.
(ii)) We have 0(X) = {0, 4,2\ 4, Q}.
(iii) We have o(X) = P(2).
)

(iv) Set
T:=0({X"'(C) e P(Q): C €C}).

We want to show that
o(X)="T.
[2] By Exercise 40-(a),
o(X) ={X"'(B) e P(Q) : B € B(R)}.
Since C € B(R),
(X"U(C) e P(Q):C eCl<{X'(B) e P(Q): B € BR)}.

That 7 C o(X) immediately follows.

[C] Consider the following class of subsets of R:
G:={SeBR): X '(S)eT].

First, we show that G is a o-field on R that contains C. To see that C C G, consider an
arbitrary C € C. Then, X~ !(C) € T by definition of 7, and so C € G by definition of G.
Since C # @, it follows that G # @. To see that G is closed under complementation, let
G € G. Then, X~!1(G) € T by definition of G. Since T is a o-field on 2, Q \ X 1(G) =
X Y(R\ G) € T. But then, R\ G € G by definition of G. To see that G is closed under
taking countably infinite unions, let Gi,G,,--- € G. Then, X 1(G,) € T, X 1G,) €
T.... by definition of G. Since T is a o-field,

X6 = X—l( U Gn) eT.

But then, | J72, G, € G by definition of G. We conclude that G is a o-field on R that
contains C, as we claimed. Therefore, B(R) = 0(C) € G. Since G € B(R) by definition of
G, we have B(R) = G. That is, for any B € B(R), X~!(B) € T. But then, 6(X) C T, as

we wanted to show.



(b) We first show that X +7Y is A-B(R) measurable. By Exercise 14-(a), it is enough to show that,
for each a € R,

A=X+Y) ' ((—00,0) ={weQ: X(w)+Y(w) <a} e A

Fix a € R. Suppose that all the rationals are arranged in a sequence {gn},cy. Now, note that

A= U{a)eQ:X(a))<qn,Y(a))<a—qn}.

neN

[We decomposed the half plane below the line x + y = a into a countable union of bounded
boxes {(x,y) € R?: x < ¢n,y < a —qyu}.] Clearly,

{weQ: X)) <gun,Yw)<a—qy}={weQ: X(w) <g,}N{weQ:Y(w)<a—qn)}
= X"'((=00,¢2)) N Y 1 ((=00,a — ¢»))

is an element of A as an intersection of sets in A (X and Y are A-B(R) measurable). Hence
A € A as a countable union of elements of A.

Next, we show that XY is A-B(R) measurable. Note that if Y is A-B(R) measurable, then so
is =Y (prove it!). Hence, X —Y = X + (-=Y) is A-B(R) measurable. Then as

XY:%{(X+Y)2—(X—Y)2},

it will suffice to prove that the square of A-B(R) measurable functions is A-B(R) measurable.
So let Z: Q2 — R be an arbitrary A-B(R) measurable function, fix an arbitrary a € R, and
consider the set {a) €eQ:7Z%(w) > a}. For a < 0, this set is 2 € A, and for a >0

lweQ:Z%w)>a} ={weQ: Z(w) > Va} U{w € Q: Z(w) < —/a}.

Both sets on the right hand side are elements of A, as Z is A-B(R) measurable. Hence, we have
shown that Z? is A-B(R) measurable. Apply this with Z :== X +Y and Z := X —Y respectively
to conclude that XY is A-B(R) measurable. It follows that ¢ X is A-B(R) measurable for any
real constant c¢.

Remark. Exercise 48-(b) tells us that the class of real-valued random variables on some measurable
space (£2,.4) is a vector space under (pointwise) addition.

Exercise 49 (Optional - Not Graded)

Solve the following problems.

(a) Construct a probability space (2, .4, P) and a sequence of random variables (X,), on (2, A, P)
with X, (w) — 0 for all w € Q, but where E[X,] does not converge to zero. Which insight

n—-oo X
can you draw from this example?

(b) Let (Uk)gen be a sequence of i.i.d. uniformly distributed random variables over [0, 1], and define

Y, = ([T'—, Ux)~"". Show that (Y, — e) ——> N(0.¢?). [Hint. Set Xz := —In Uy and use
the delta method.]



Solution

()

Set  :=[0,1], A := B([0, 1]), and let P be the unique probability measure on the measurable
space ([0, 1], B([0, 1])) induced by the pdf of the uniform distribution over [0, 1] (cf. Corollary
1.18 in the Lecture Notes). Consider the sequence of discrete real-valued random variables
(Xn),en on ([0, 1], B([O, 1]), P) where, for each n, X, is defined as

n fo<w=<1

Xn(w) = .
0 otherwise
Clearly, lim, o X, (w) = 0 for all ® € [0, 1], and therefore E[lim,_o X,] = 0. However, for
each n we have
n—1 1

Therefore, as E[X,] = 1 for all n, lim,—e E[X,] =1 # 0.

This exercise shows that, in general, lim, . X,(®w) = X(w) for all w € Q is not suffi-
cient for lim,— o E[X,] = E[X]. That is, we need additional assumptions to assure that
Elim, 00 X,] = limy 00 E[X,] (cf. Monotone Convergence Theorem and Dominated Conver-
gence Theorem). B

Set Xy .= —In Uy for all k € N. Then,

n —1/n 1 n 1 n
lnYn::ln(HUk) :—EZmU,- ::;ZXi:Y,,,
i=1 i=1

k=1
and so Y, = exp(X,). Since (Ux)zey is sequence of i.i.d. random variables, so is (Xk)keN
Moreover, we have

1
E[Xi] = E[-InU;] = / —Inudu = —u(lnu — 1)}11:0 =1,
0

and
E[X}] = E[(-InUy)?] = E[-2InU;] =2E[-In U] = 2,

and therefore,
Var(X,) = E[X?] - (E[X]])*=2—-1=1.

By the central limit theorem for i.i.d. sequences of random variables we have
— d
vn(X, —1) — Z ~ N(0,1).

The function ¢: R — R, ¢(x) := e*, is differentiable at all x on its domain, and so in particular
at x = 1, with

¢(X,) = exp(Xy),

(1) =e,
and (gz&’(l))2 = e?.
Applying the delta-method we obtain

V@K, = ¢() -5 N (0. (¢'M)°).
that is,
Ji(exp(X,) —e) -5 N(0, e?).

As exp(X,) = Y,, the desired result follows. H

2 Quiz: Why?
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Exercise 50

Solve the following problems.

n

(a) For a square matrix C = (¢i,j),<; j<p the trace of C is defined as tr(C) = 3 ;_, ¢i;. Let
Z = (Zi,j)1<i,j<m be a random square matrix, i.e., Z; ; are real-valued random variables on a
common probability space (2, A, P). Assume that Z; ; € LY (Q,A P)forali,j=1,...,m.
The expectation of Z is defined as E[Z] := (E[Z;,j])1<i,j<m- Show that E[tr(Z)] = tr(E[Z]).

P P
(b) Let (Z,),, Z be random m x m matrices, and suppose that Z, — Z. Show that det(Z,) —
det(Z), where det(C) denotes the determinant of the square matrix C.

Solution
(a) We have
m m
Eltr(Z)] = E [ > z,-,l} =Y E[Z:] = tr(E[Z)).
i=1 i=1
where the second equality holds by linearity of expectation and the fact that Z;; € L1(2, A, P)
foralli=1,....m. 1

(b) Endow the space R™ x R™ of real-valued m x m matrices with the Euclidean distance. As
det: R™™ — R is a continuous function, the claim follows by Lemma 2.12 in the Lecture Notes
(continuous mapping theorem for convergence in probability). B

Exercise 51

Solve the following problems.

(a) Let F:RxR — R be a continuous function. Moreover, assume that f, g:R — R are B(R)-B(R)

measurable functions. Show that h:R? — R, defined as h(x) := F(f(x), g(x)) is B(R?)-B(R)
measurable.

(b) Let Y be a real-valued random variable, with ¥ € L{(Q2, A, P), and let n € N. Show that

E[Y 1in,00)(Y)] — 0.

(c) Let Y be a real-valued random variable, and X be an R¥-valued random variable on a common
probability space (2,4, P). Suppose that ¥ € (2,4, P). Show that

|ETY | X]| < E[|Y] ]| X] almost surely.

1



(d) Let Xi,...X, be i.i.d. random variables with finite expectation, and let S := > ;_, Xkx. Show

that E[X; | S] = §/n almost surely.

Solution

(a) By Exercise 14-(a), it is enough to show that
h~'((a, +00)) € B(R?)

for any a € R. Fix a € R, and note that

h ' ((a, +0)) == {x e R?: h(x) > a} = {x eR?: (f(x),g(x)) e Ga},

where

G, = {(u,v) € R*: F(u,v) > a} :== F~'((a, +0)).

Suppose first that G, is an open rectangle of the form
Gq = (a1,by) x (c1.d1)
for some real numbers ay, by, cq1,d;. Then,

h~!((a. +00)) = {x € R? : (f(x).g(x)) € G}
= {x e R*: (f(x).8(x)) € (ay,b1) x (c1.d1)}

= {x e R*: f(x) € (a1, by) and g(x) € (c1.d1)}

= {x eR?: f(x) e (al,bl)} N {x eR?:g(x) e (cl,dl)}

= f'((a1.b1)) N g7 ((c1. dv)).

Since f and g are Borel measurable functions and (ay, b;), (c1,d,) € BR), f~'((ai,b;)) and
g ' ((c1,dy)) are in B(R?). Thus, f~'((a1,b1)) N g~ ((c1,d1)) € B(R?) because the o-algebra
B(R?) is closed under taking finite intersections. It follows that A~1((a, +00)) € B(R?). Now,
suppose that the set G, is not a rectangle. In this case, we decompose G, into the countable
union of rectangles. Since F is continuous, G, is an open subset of R? (endowed with the

Euclidean distance). Hence, it can be written as

00
G, = LJ‘Rna
n=1

where R, are open rectangles of the form (a,, b,) X (c,, d,). Therefore,

h™((a, +00)) = {x € R : (f(x),g(x)) € G

x € R (f(x).g(0) € | J(@n. bu) % (cn,dn)}

n=1

oo o0

n=1 n=1

xeR?: f(x) e D(an,bn)} N

= f_l( U(an»bn)) N g_l(U(Cn»dn))

2

xeR?: f(x) e U(an,bn) and g(x) € U(Cn7dn)}

x eR?: glx) e U(Cn’dn)}
n=1



I
N
i e

—_

[ (an, bn))) N ( U ¢ (e, dn)))

n=1

I
(@

(7" @nb)) g™ (e dn)).

n=1

where we used that inverse images behave well with respect to taking unions. As f and g are

Borel measurable and B(R?) is closed under countable intersections and unions, we conclude
that A~ 1((a, +00)) € B(R?). &

Omitted.
Recall that Y = YT — Y, and |Y| =Y + Y. Then,

E[Y | X]| = |E[Y" Y™ | X]|

=|E[Y"T | X]—[Y " | X]| almost surely

<|E[YT | X]|+|E[Y™ | X]|

=E[Y" | X]+ E[Y™ | X]

= E[YT +Y" | X] almost surely

= E[|Y]] X].
where: The second and fourth equality holds by linearity of conditional expectation, and the fact
that YT,Y~ € LY(Q, A, P) as Y € L'(Q, A, P); the inequality follows by triangle inequality

for absolute value; the third equality holds because Y+ and Y~ are non-negative, and so are
their conditional expectations. The claim follows. l

Since X1,...X, are i.i.d. random variables,
E[X,|S]=E[Xz2|S]="--=E[X,|S],
and so
n
> E[X; | S]=nE[X,]S]. (1)
k=1

Moreover, as the X;’s have finite expectations,

Xn:E[Xi|S]:E|:Xn:X,-}Si|=E[S|S]:S a.s., (2)

where: the first equality holds almost surely by linearity of conditional expectation; the second
equality holds by definition of S; the third equality holds almost surely by the law of iterated
expectations (Theorem 3.10.(iv) in the Lecture Notes). From and (2)), we have

nE[X,|S] =S,

and therefore g
E[X,|S]=— as.
n

The claim follows. B



Exercise 52

Solve the following problems.

(a)

(b)

Let X ~ Exp()). Find the characteristic function of X, and use it to compute E[X¥], for
k=1,2,3,....

Let (X,), be asequence of i.i.d. random variables, with X,, ~ Exp(4). Construct an asymptotic
(1 — @)-confidence interval for A based on

2 1/2
o = (_) |
5 Lim X7

Solution

(a)

Let px:R — C be the characteristic function of X. For each ¢t € R,

X too A T A
px(1) == E["] = /_oo e’ le g 100y (x)dx = Yy _ke(”_ )x M werrs
For k =1,2,3,..., we know that
E[X*] = i™¢{(0).
By induction on k, it is easy to show (do it!) that
.k 'A’
&) i“k!
ox (1) =
X (A it)k+1
and so .
¢x (0) Tk
Therefore,
ik k!
Ky _ ik Ry ikl KD k!
E[X]—l ¢X(O)—l /’\_k_/’\_k
fork=1,2,3,.... R
For each i, we have (using part (a) of this exercise)
2 2 24 4 20
E[X}?] = ) and  Var(X?) = E[X]'] — (E[X}?])" = kv iakys

Since (X,), is a sequence of i.i.d. random variables, so is (X ,f)n.. Then, by the central limit
theorem for i.i.d. sequences of real-valued random variables,

I, 2\ 4 20

The function ¢: (0, +00) — R, ¢(x) := (2/x)1/2, is differentiable at all x on its domain, and
so in particular at x = 2/A2, with

I < A
¢(; ;xiz) = Az

L Quiz: Why?



P(2/2%) = A,
6
and (¢'(2/)&2))

2 A
16
Applying the delta-method we obtain
1 d 20, ,
Vi <¢ (; > X,?) - ¢(2/A2)) w0 5weny).
i=1
that is,

4

2
El ——=——=| =A%
(%Z?ZIX?)

by the weak law of large numbers we have that

R 2
(o — 1) -5 N(O, &)

Since

2 P

_—
1y y2

AZ
and so, by the continuous mapping theorem for convergence in probability (observing that
f:]0,400) = R, f(x) = +/5x/4, is a continuous function),

\/512,11 P \/g)L
2 2

Hence, by Lemma 4.7 in the Lecture Notes, an asymptotic (1 — «)-confidence interval for A is

\/giZ,n Y + \/512,71
P Z1—a/2—7 — |>
T2y

where z1_q/2 is the (1 —a/2)-quantile of Z ~ N(0,1). B

Exercise 53

Solve the following problems.

(a) Let (X,), be asequence of i.i.d. log-normally distributed random variables with pdf f: (0, +00) —
[0, +00) defined by

Fx) = _ w}

1
exp
V2mox { 202

where u € R and 0 > 0. Determine method of moments estimators for the parameters p and
k202

00 2
2 : : . 1 ky—% _ ku+
o”. [Hint. The following holds true for all k € N: /_oo 5= 202 dy = e 2 ]

(b) Let Xi,...,X, be an ii.d. sample of random variables, with X; uniformly distributed over
the closed interval [0, 6], i.e. X; ~ U([0,0]). We want to estimate the unknown (boundary)
parameter 6 > 0. Let X, :=n~'>7_, X; be the sample mean.

(i) Show that 2X, is a consistent and unbiased estimator for . Determine its variance.

(ii) Determine éM LE, the maximum likelihood estimator for 67

bt



(iii) Determine a cdf of éMLE, its expectation and its variance.

Solution
(a) We have
400 1 1 _ 2
my = E[X{] = X exp{—w}dx
0 V2mox 20

too % ﬂ%x—uf}
pl——— =~ tdx

ex
0 V2ro 202
+o0 1 B

= e’e 202 dy
—00 A2mo

2
— €M+U /2’

where: the third equality holds via integration by substitution, with y = logx; the fourth
equality follows by the hint. Similarly,

+o0o 1 1 _ 2
my = E[Xlz]: x2 exp{——(()gx z,u) }dx
0 V2rmox 20
o x { Gogx-—ﬁoz}d
= eXp _—— X
0 V2no 202
+oo 1 —w)?
_ 2y , 752
= ee 202 dy
—00 A2mOo
— p2uta?)

Solvin
g {ml — €M+02/2

2

for ;. and o2, we obtain
1
u = 2log(m;) — 5 log(m,) and o2 = log(m,) — 2log(my).

Let rmy :=n"'Y""_, and M, = n='Y_"_, X? be the empirical moments, which are consistent
estimators of the respective population moments by the weak law of large numbers and the con-
tinuous mapping theorem for convergence in probability. The method of moments estimators
for u and 02, denoted as [t and 62, are given by

1
ﬁ:zbgmg—ibgmg and 6% = log(ri,) — 2log(rity). |

(b) (i) Since the sample mean in an unbiased estimator for the population mean, we have
E[Xn] = E[X;] = 6/2. Using linearity of expectation, we deduce that E[2Xn] =
2F [Y,,] = 6, which shows that 2X, is an unbiased estimator for 6. Moreover, as

_ p _
X, — E[X:] = 0/2, that 2X,, is consistent for 8 follows by the continuous mapping the-
orem for convergence in probability (noting that f:R — R, f(x) := 2x, is a continuous
function). Finally, we have

4 62 B 62

Var(ZYn) = 4Var(yn) = %Var(Xl) = - . T



(ii) First, note that a pdf of X; is f(x|0) = % for 0 < x <60, and f(x|6) = 0 otherwise.
The likelihood function is

LO|(X1..... Xn) = [ [ f(X:16)

i=1

=151 €f0.6)

1
= %]l(max{Xl,...,Xn} < 0).

The previous derivation shows that
LO|(Xy,..., X)) =0 if 60 <max{Xy,...,X,}

and {
LO|(Xy,...,Xn) = on if 0 >max{Xy,...,X,}.

Therefore, as 8 > 0 and ein is a decreasing function of 6, we have éMLE = max {Xy,..., Xn}
(iii) We have
Omre = max{Xi,...,X,} <x <= (X <xA X, <x A AKX, <x).

Since Xq,..., X, iid- U([0, 8]), it follows that a cdf of éMLE is

0 ifx <0
Fip ) = P(Oyre <x) = (x/0)" if0=x<6
1 if x > 6

Differentiating the cdf with respect to x, we obtain the pdf of éML E:

nx"71/p"  f0<x <6

RO {O

otherwise

Therefore,
0 n—1
A nx n
E|6 = dx = 6.
[ MLE] /0 X on X — "

Analogously, E [é]%l I E] = (n/(n + 2))0?, which gives

A no?
Var(E[@MLE]) = (n n 1)2(;1 n 2)

Exercise 54

Let (X,), and (Z,), be two sequences of real-valued random variables on a common probability
space (2, A, P), and let ¢ be a strictly positive real constant. Prove the following statements.

(i) If Z, i) 400 and X, i> ¢, then X, Z, i) +00.

2Quiz: Suppose that X; ~ U([0,0)), i.e., X; is uniformly distributed over the interval [0, ). Does the maximum
likelihood estimator for 6 exist? Discuss.



(i)

If Z, —> 400 and X, = Op(1), then X, + Z, —> +00.

Solution

(i)

Fix C > 0 and 7 > 0. We want to show that there exists N¢,, > 0 such thaff]

P(X,Zy,>C)>1—1
P
for all positive integers n > N¢ . Fix ¢ > 0. Since X,, — ¢, there exists N, > 0 such that

P(Xngc—e)<g (3)

P
for all positive integers n > N, ,. As Z, — +00, there exists N¢/(c—s),, > 0 such that

P(Zy=C/lc=e) <3 (4)

for all positive integers n > N¢/(c—¢),n. Moreover, note that

<Xn>c—s/\Z,,> >:>XnZ,,>C. (5)

c—¢

Then, for all positive integers n > N¢,, ‘= max {Ns,,,, Nc/(c_s),,,}

P(X,Z, >c)zP(Xn>c—e,Z,, — )

c—¢
C
zl—P(anc—s)—P(an )
c—¢
>1—E—ﬁ
2 2
>1—-n,

where: The first inequality holds by ; the second inequality holds by De Morgan’s laws,
Theorem 1.3.(iii) in the Lecture Notes, and sub-o-additivity of P; the third inequality holds
by and . The desired result follows. W

Fix C > 0 and n > 0. We want to show that there exists N¢ , > 0 such that
P(Xp+Z,>C)>1—n

for all natural numbers n > N¢ . Since X, = Op(1), there exist real numbers C, and N, > 0
such that n
P(X, <—-Cy < > (6)

P
for all positive integers n > N;. As Z,, —> 400, there exists N¢_c,,, > 0 such that

P(Zy<C—Cy) < g (7)

3Since probability measures are bounded from above by 1, a limit exists if and only if “liminf = limsup,” and
“liminf < lim sup” always holds true, we have

liminf P(XxZy > C) = 1 < lim P(X,Z, > C) = I.
n—>oo n—>oo



for all positive integers n > Nc_c, . Moreover, note that
(Xp>—-Cy N Z,>C—-Cy))= X, + Z, > C. (8)
Then, for all natural numbers n > N¢, := max {N,,, NC—CnJ?} >0

P(Xp+Z,>C)=P(Xy>=-Cy.Z,>C—Cp)
>1—-P(Xy<—Cy)—P(Z, <C—Cy)

>1—E—E
2 2
>1—-n,

where: The first inequality holds by ; the second inequality holds by De Morgan’s laws,
Theorem 1.3.(iii) in the Lecture Notes, and sub-o-additivity of P; the third inequality holds
by @ and . The desired result follows. B

Exercise 55

Solve the following problems.

(a)

A sample of size 1 is taken from a population distribution Po(A), where A > 0. To test
Hy : A = 1 against Hy : A = 2, consider the non-randomized test ¢(X) = 1 if X > 3, and
e(X) = 0if X < 3. Find the probabilities of type I and type II errors and the power of the
test against A = 2. If it is required to achieve a size equal to 0.05, how should one modify the
test @?

A traditional medicament attains an effect in 50% of all cases. We examine the effect of a
new medicament in a study with n = 20 test persons. The result is that in 15 cases the new
medicament attains a positive effect. Consider the hypotheses Hy : The new medicament is
equally effective as the traditional one, against H; : The new medicament is more effective.

(i) Construct a level-a = 0.05 test. Would you reject the null hypothesis given the 15 positive
effects?
(ii) Determine (an expression for) the probability of type II error if the new medicament has

a rate of 60% of positive effects.

[Hint. For the cdf F of a Bin(20,1/2)-distributed random variable, we have F(14) ~ 0,979,
F(13) = 0,942]

Let X, be the sample mean of an i.i.d. sample of size n from N(u,16). Find the smallest
sample size n such that (X, — 1, X, 4+ 1) is a 0.90-confidence interval for u.

Let X1, X» b U(6,0 + 1). For testing Hy : 6 = 0 versus H; : 0 > 0, we have two competing
tests: ¢1(X1) rejects Hy if X7 > 0.95 (and does not otherwise); ¢.(X1, X3) rejects Hy if
X1+ X, > C (and does not otherwise) for some real number C > 1.

(i) Find the value of C so that ¢, has the same size as ¢.

(ii) Calculate the power function of each test. Draw a well-labeled graph of each power
function.

(iii) Prove or disprove: ¢, is a more powerful test that ¢;.

(iv) Show how to get a test that has the same size but is more powerful than ¢,.



Solution

(a) Let X ~ Po(A) be our random sample. A type I error occurs when Hj is true, but rejected.
The probability of type I error (size) for test ¢ is

Pj—1(¢ rejects Hy) = Pr=1(p(X) = 1)

= Pp=1(X > 3)
=1-P=1(X =3)
3 lk -1

2

1 1 1
e 1 6
~ 0.019.

A type II error occurs when Hj is true, but rejected. The probability of type II error for test
@ is
Pi— (¢ rejects Hy) = Pi—a(p(X) = 0)
= Pp=2(X <3)
> ko2
k!
k=0
1 1 2 4 8
B e2( U 6)
~ 0.857.

The power is the probability of rejecting Hy when H; is true. For test ¢, the power is
Py—>(p rejects Ho) = 1 — Py—»(¢ rejects Hy) ~ 1 —0.857 = 0.143.

The size of a non-randomized test ¢ such that ¢(X) = 1if X > 2, and ¢(X) =0if X <2
is approximately equal to 0.08, which is larger that 0.05. To achieve a size equal to 0.05, we
might use a randomized test that always rejects Hy if X > 3, and rejects Hy with probability
y if X = 3, where y solves

0.05 =yPy=1(X =3) + Pj=1(X > 3).
The previous equation gives y ~ 0.51. B

(b) A binomial model is suitable. Denote Xj,..., X, random variables which are ii.d. with
X; ~ Bin(l, p). The test statistic T is the number of positive effects in a sample of size
= 20. That is, T := Y2, X;, with T ~ Bin(20, p). We test Hy : p = 1/2 against

H1 - p > 1/2

(i) We determine the critical value ¢ for the non-randomized test

0 ifT<c

X110 Xag) =
(X 20) §1 HT > c

For a = 0.05, we find ¢ as
¢ :=min {k € NU{0}: Pp—os(T > k) < 0.05}

20 20
k € NU {0} : Z( )(1/2)20 < oos}

i=k

= min

10



and deduce that ¢ = 14 from the hint. For this sample, T = 15 > 14 = ¢, and so we
reject the null hypothesis.

(ii)) A type II error occurs when Hj is true, but rejected. The probability of type II error for
test @ is
Pr—os ((p rejects H1) =1- Pp=0.6(g0 does not reject H1)
=1— Ep=o6lp(X1. ..., X20)]

=1—Pp_os(@(X1,...,X2) =1)
=1- Pp=0.6(T > 14) |

(c) We want to determine the smallest sample size n such that

P(X,—1<pu<X,+1)>009.
As X, ~ N(u,02/n), we have f}’;nﬁ ~ N(0,1). Let zy_4/2 denote the 1 — a/2-quantile of
Z ~ N(0,1). Then,

X, —p
o//n

P(_Zl—a/z < < Zl—oc/Z) =1-a,

from which we obtain

_ o — o
PlX,—zicagph—<u<X,+z2i—gp— | =1—0.
( la/Zﬁ % 1a/2ﬁ)

For o = 0.1, we have zy_q/2 ~ 1.645. Then, as 0 = 4, to determine n we solve

— 4 —
Xn+ 1.645E =X, +1,

for n or, equivalently,
1.645-4 = /n,

which gives n = 43. l
(d) The density function of ¥ := X; + X, is given byf]

y —26 if20 <y <20+1
fr(y;0) =3204+2—y if204+1<y<20+2
0 otherwise

(i) A type I error occurs when Hy is true, but rejected. The size of a test is the associated
probability of type I error. The size of ¢ is

P9=O(§01 reje(jts HO) = P9=0(§01(X1) == 1) == P9=0(X1 > 095) =1-0.95 = 0.05.
The size of ¢, is

Py—o(¢2 rejects Ho) = Po—o(¢2(X1. X2) = 1) = Pg—o(X1 + X> > C).

4Let X, and X, be two independent real valued random variables with density functions fx, and fx,. Then, the
sum Y := X + X, is a random variable with density function fy, where fy is the convolution of fx, and f¥x,, i.e.,

+o0 +oo
) = /_ fi (v — x2) fy (x)ddo = /_ oy — x1) fy ().

11



For 1 < C <2, we have

Po—o(X1 + X5 > C) = Po—o(Y > C)

2
=/ Fr(v:0 = 0)dy
C

=/ (2 —y)dy
C
_@-oy

2

Now, solving
2-C)*
C-0)r _ o5
for C we obtain C =2 — /0.1 ~ 1.68.

(ii) The power function of a test ¢ is the map B,: ® — [0, 1] defined as B,(0) = Eglp(X)].
The power function for test ¢; is

B1(0) = Eglo1(X1)]

= Po(p1(X1) = 1)
— Py(X, > 0.95)

0 it 6 <—-0.05
=410+005 if —0.05<6<0.95
1 if 0.95 <6

The power function for test ¢, is

B2(0) == Eglp2(X1, X2)]

= Po(p2(X1,X3) = 1)

= Py(X1+ X, > C)

= Py(Y > C)
0 ifg<C/2-1
20 +2—-C)*/2 ifC/2—1<6<(C—-1)/2
1—(C—=20)%/2 if(C-1)/2<6<C/2
1 ifC/2<86

(iii) From the graph (draw it!) it is clear that ¢; is more powerful for 6 near 0, but ¢, is more
powerful for larger 8’s. Thus, ¢, is not uniformly more powerful than ¢;.

(iv) If either X7 > 1 or X, > 1 (or both), we should reject Hy because Pp—o(X; < 1) =1 for
i = 1,2. Now, consider a new test, ¢new, With the rejection region given by

{(Xl,XZ) € Rz X1+ Xy > C} U {(.Xl,.XQ) S Rz X1 > 1} @] {()Cl,.Xz) € Rz DXy > 1}

The first set is the rejection region for ¢,. The new test, @new, has the same size as ¢,
because the last two sets both have probability 0 if 6 = 0. But for 0 < § < C — 1, the
power function of @, is strictly larger than B,(0). Indeed, for 0 < 8 < C — 1, ¢, does
not reject Hy (¢2(X1, X2) = 0) with positive probability despite either X; > 1 or X, > 1,
while the new test rejects Hy (i.e., @new(X1, X2) = 1) for the same realization of X; and
X5. That is, Py(@new (X1, X2) — 2(X1,X2) =1) > 0. If C —1 < 0, this test and ¢, have
the same power as, for those values of 6, Pg(@pnew (X1, X2) —@2(X1,X2) =1)=0. R
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