

Copyright © 2010 by Mathematical Olympiads for Elementary and Middle Schools, Inc. All rights reserved.

— Mathematical Olympiads FEBRUARY 9, 2010

4A Time: 4 minutes

Allie has half as much money as Ben. Ben has \$3 more than Emma. Emma has 5 times as much money as Shauna. Shauna has \$1. How much money do Allie and Ben have together?

4B *Time: 5 minutes*

Following only the paths shown, what is the number of different paths that go from A to B to C to D and touch each of those points exactly once?

4C *Time: 5 minutes*

Sarah and Tyler ride their bikes. They start at the same time from the same point and ride in the same direction. Sarah travels 20 miles every hour, and Tyler travels 15 miles every hour. At the end of how many hours will Sarah be 30 miles ahead of Tyler?

4D *Time: 7 minutes*

Michael has some cards. If he puts them in 5 equal piles, there are 3 left over. If he puts them in 4 equal piles, there are 2 left over. If he puts them in 3 equal piles, there is 1 card left over. What is the fewest cards Michael may have?

4E *Time: 7 minutes*

The figure shown is made up of 6 congruent squares. The perimeter of the figure is 42 cm. It is folded along the dotted lines to form a box. How many 1-cm cubes can fit in the box?

ANSWERS AND SOLUTIONS

OLYMPIADS

Note: Number in parentheses indicates percent of all competitors with a correct answer.

OLYMPIAD 1 NOVEMBER 17, 201						
A	nswers:	[1A] 80	[1B] 12	[1C] 9	5 [1D] 120	[1E] 66
1A	METHO (8 × 4) + (D 1: <u>Strateg</u> (8×3) + (8×2	<u>y</u> : Simplify using) + (8 × 1) = 8 ×	g the Distribu (4 + 3 + 2 + 1	tive Property.) = 8 × 10. The va	87% correct lue is 80.
	METHO (8×4) + (8	D 2: <u>Strateg</u> 8×3) + (8×2)	<u>y</u> : Perform the + (8 × 1) = 32 +	operations as 24 + 16 + 8	indicated. = 80.	
1B	<u>Strategy</u> : 0 We must picks all th picks must has picks Foll whic (2) H two o	Consider the wavoid picking he red and whe st be blue. Wited, at least tw cow-Ups: (1) whe color it is. How many jell of each color?	worst case. a second blue hite jelly beans f thout looking, wo must be blu Suppose she wan What is the few ly beans would d	jelly bean as irst. She then she knows t ie. nts two jelly be west jelly be she need to ta	long as we can. S has used 10 picks hat among the 12 eans of the same co ans she must pick ke out to insure tha	38% Suppose Amanda and her next two jelly beans she olor, regardless of in this case? [4] at she has at least
1C	Strategy: D Use divisit order, is p The next i the seque Four	Examine each bility tests to de prime or compo- number, 95, e ence that is p cow-Up: Consi	number in the setermine whether osite. The first fi onds in a 5 and i not a prime nu der the prime nu	sequence. Treach number ve numbers (s divisible by mber. mbers less tha	r in the sequence, ta 2, 5, 11, 23, and 47 5. Thus, 95 is the n 100. How many pa	40% aken in ascending) are each prime. a first number in airs of consecutive
	prim	e numbers hav	ve a difference t	hat is odd? [1]	
1D	METHON The table s column sp of second Thus, on	D 1: <u>Strateg</u> shows the tota becifies which Is "2" is displa e of the digit	y: Count in an a l count-down tin times contain a yed in each inte s shows a "2"	organized way ne separated i n "2" and the t erval. for 120 seco	² nto one-minute inter hird column counts onds.	rvals. The second the total number
	METHO Consider The mi The 10 The se	D 2: <u>Strateg</u> the times from inutes digit is D-second digit econds digit is	<i>y</i> : <i>Count the num</i> n 4:59 through 4, 3, 2, 1, or 0. is 5, 4, 3, 2, 1, 0 9, 8, 7, 6, 5, 4,	<i>mber of secon</i> 0:00, a total o There are 4 v or 0. There ar 3, 2, 1, or 0.	<i>ds that a 2 is <u>not</u> s.</i> f 300 seconds. /alues other than 2 re 5 values other th There are 9 values	<i>howing.</i> an 2. s other than 2.

We can form a reading that does not show 2 by choosing a non-2 for each of the 3 digits. This can be done in $4 \times 5 \times 9 = 180$ different ways. There are then 180 seconds in which no 2 is showing and therefore 300 - 180 = 120 seconds in which a 2 is showing.

FOLLOW-UPS: (1) Which of the other digits will also be displayed for exactly 120 seconds? [4,3,1] (2) How many numbers between 200 and 600 are <u>not</u> divisible by 5? [320]

1E <u>Strategy</u>: Minimize the use of the longest sides. By touching all 4 front corners first and then all 4 rear corners as shown, the ant can travel along a 20-cm side only once. If the ant starts along a 4-cm side when touching the 4 front corners, it travels only once along a 15 cm side. The same is true when the ant touches the 4 rear corners. **The shortest distance that the ant may travel** is $(4 \times 4) + (2 \times 15) + (1 \times 20) = 66$ cm. The diagram shows one of several possible paths.

9%

Follow-UP: How many different paths are 66 cm long? [8, one starting at each corner]

OLYMPIAD 2						DECE	MBER 15,	, 2010
Ai	nswers:	[2A]	182	[2B]	22	[2C] 26	[2D] 14	[2E] 10
								78% correct
2A	2A METHOD 1: <u>Strategy</u> : Work from right to left. In the ones column, $5 + 8 + T$ ends in 5, so $T = 2$ (with a "carry" of 1). Then $1 + 4 + 7 + A$ ends in 0, so $A = 8$ (with a carry of 2). Finally, $2 + 3$ + 6 + C is 12, and $C = 1$. The three-digit number CAT is 182. METHOD 2: <u>Strategy</u> : Add the first two numbers and subtract from the sum. 1205 - (345 + 678) = 1205 - 1023 = 182. Follow-Up: Find digits A and B in the following multiplication: $12,345,679 \times A$ <u>BRB BBB BBB</u> $[A = 9, B = 1]$: the digits of <u>BBB BBB BBB</u> add to $9 \times B$ a multiple of						3 4 5 6 7 8 + C A T 1 2 0 5 sum. 45,679 × A = multiple of 9.]	
28	<u>Strategy</u> : The first look for p & 5, 5 & 22.	<i>List the p</i> few prime primes tha 7, and	orime nur es are 2,3 at differ b 11 & 13.	<i>nbers</i> . 3,5,7,11,1 by 2 (thes The thre	13,17 e are e lea	7,19 A "twinne e called <u>twin prime</u> ast "twinners" are 4	r" is surrounded <u>es</u>). The first thr 4, 6 and 12, and Follow-U	31% by primes, so ee pairs are 3 their sum is

	FOLLOW-UPS: (1) Find three primes such that the sum [2 and any pair of twin primes] (2) Can you find a s the numbers? Explain. [No. Primes other than 2 are odd is even.]	n of two of colution wit l, and the su	them equa hout using um of two c	<i>ls the third.</i> 2 as one of odd numbers				
2C	<u>Strategy</u> : Find the range of possible sums. If each die shows 1, the total is 5. If each die shows 6, t from 5 to 30 inclusive are possible. These are all the cou for 1 through 4. Then 26 different sums are possible .	he total is nting num	30. All int bers up to	8% egral sums 30, except				
2D	<u>Strategy</u> : Determine the length of the common side. \overline{DC} is a side of both rectangles ABCD and DCFE and then a factor of both 63 and 35. The only common facto 35 are 1 and 7. Suppose DC = 1. Then AB = 1 and D since AB is longer than DE, DC must be 7. Then AD = 9, AE is 14 cm long.	its length rs of 63 ar <i>E</i> = 35. B <i>DE</i> = 5, ar	is nd ut nd	A B C E F				
2E	8% <u>Strategy</u> : Working backwards, find the winner of each round. The winner of a round receives as many marbles as she already has from each of the others. This triples what she has. That is, after each round, the winner's total is a multiple of 3							
	At the end of Round 2, the only multiple of 3 is Brenda's total, 6, so she won Round 2. Brenda started Round 2 with 2 marbles and received 2 more from each of the others. The table below shows how many marbles each had at the end of each round.							
	Similarly, at the end of Round 1, the only multiple of 3 is C won Round 1. Cate had started Round 1 with 3 marbles of the others. At the start of the game, Ashley had 7 + in the table.	ate's highl and receiv 3 = 10 m a	ighted tota ed 3 more arbles as	ıl, 9, so she from each highlighted				
	Round	Ashley	Brenda	Cate				
	End of Round 2 — Brenda won 2 marbles from each.	5	6	7				
	End of Round 1 — Cate won 3 marbles from each.	7	2	9				
	Start.	10	5	3				

٦

ľ

OLYMPIAD 3 JANUARY 12, 2010							
Ar	swers:	[3A]	9375	[3B] 13	[3C] 24	[3D] 8	[3E] 71
ЗА	<u>Strategy</u> : C The 4 digit the greates number is a are 75. Th Joshua's i	<i>Consider</i> s form st with t a multip ie thous numbe	<i>each cond</i> a sequence the least, ar ole of 5, the sands digit r is 9375 .	<i>ition in turn.</i> of consecutiv nd the two mid last digit is a is greater than	ve odd number dle ones with e 5. The partner n the hundreds,	s. To get the sa ach other. Beca of 5 is 7, so the , so the first two	79% correct ame sum, pair ause Joshua's last two digits digits are 93.
3B	METHOD Suppose M hats and 1 enough for METHOD Try differen See which	1: <u>S</u> legan h shirt fo only 1 2: <u>S</u> nt value value a	trategy: Con nas enough r \$18. In to hat and 1 s trategy: Ma s for the co also gives \$	<i>mbine the give</i> money to buy tal, she has bo shirt and so M <i>ke a table</i> . st of a shirt. U 518 for the sec	n information. 1 hat and 2 shi bught 3 hats and egan has 39 ÷ se the first state cond statement.	rts for \$21 and t d 3 shirts for \$39 3 = \$13. ement to find the	62% hen another 2 b. But she has e cost of a hat.
	1 shirt: 2 shirts: 1 hat: 2 hats + 1 sh A shirt cos	2 hirt: 2 ts \$8 a	\$5 \$10 1–10 = \$11 ×11+5 = \$27 nd a hat co	\$6 \$12 21–12 = \$9 2×9+6 = \$24 sts \$5. Megan	\$7 \$14 21-14 = \$7 2×7+7 = \$21 has \$13.	\$8 \$16 21–16 = \$5 2×5+8 = \$18	
3C	METHOD 1: <u>Strategy</u> : Find the time 1 painter needs to paint 1 room. Three painters each need 4 hours to paint one classroom, so one painter needs $3 \times 4 = 12$ hours to paint that classroom. Then for one painter to paint <u>two</u> classrooms, it would take twice as long, or 24 hours. METHOD 2: <u>Strategy</u> : Find the part of a room done per hour by 1 painter. In 4 hours, 3 painters can paint 1 classroom, so in 1 hour the 3 painters can paint $\frac{1}{4}$ of a room. Then in 1 hour each painter paints $\frac{1}{12}$ of a room. So each painter working alone						
	METHOD In the picture shows that picture dou time the 3 p into 1 colum	3: <u>S</u> res, ea 3 pair bles th bainters nn (1 pa	trategy: Dra ch small sq nters (rows) e number o s need for 2 ainter) and s	w a picture. uare represen need 4 hours f squares (by classrooms. 1 hows that 1 pa	ts 1 painter's we s (columns) to doubling the nu The third picture inter needs 24 h	ork for 1 hour. The paint 1 classroo mber of column rearranges the ours to paint the	he first picture om. The next s) to show the small squares 2 classrooms.
	£ 4 hr € 1 class	room	3 2 painters	8 hours	painter	24 hours	

Start with a 3 by 3 tile. No matter where it is placed, the greatest number of squares remaining in a row or column is two. So only one 3 by 3 tile can be used. Put it in a corner position to allow maximum space for the 2 by 2 tiles. Then 3 of the 2 by 2 tiles can be placed. One placement is shown. The remaining spaces must be filled by the 1 by 1 tiles. There are 4 of those spaces. The fewest number of tiles is 1 + 3 + 4 = 8. Follow-UP: What would be the fewest number of tiles Mr. Wright would need if his floor measured 6 ft by 6 ft? 7 ft by 7 ft? 8 ft by 8 ft? [4; 12; 11] 5% 3E **METHOD 1:** <u>Strategy</u>: Find a large factor first. Note that 111,111 consists of 2 blocks of the digits "111". Then 111 is a factor of 111,111, and upon division, $111,111 = 111 \times 1001$. To factor 111, note that the digit-sum is 3 and therefore 3 is a factor. Upon division, $111 = 3 \times 37$. These 2 factors are both prime. The problem states that there are 3 more prime factors. To factor 1001, note that the divisibility test for 11 is satisfied (In 1001, 1 + 0 = 0 + 1). Upon division, 1001 = 11 × 91. 11 is prime, so 91 must be the product of the last 2 primes. To find them, it suffices to try primes that are less than 10. 2, 3, and 5 don't work, but 91 = 7 × 13, both of which are prime. The sum of the 5 prime factors of 111,111 is 3 + 37 + 11 + 7 + 13 = 71. METHOD 2: <u>Strategy</u>: Find a small factor first. The sum of the digits in 111,111 is 6, a multiple of 3, so 3 is a factor of 111,111, and 111,111 = 3 × 37,037. To factor 37,037, try 37 to get 37,037 = 37 × 1001. Proceed as in Method 1 to get the 5 prime factors 3, 37, 11, 7, and 13, whose sum is 71. **METHOD 3:** *Strategy*: Divide by each prime in order, starting with 2. 111,111 ÷ 2 is not a whole number. 111,111 ÷ 3 = 37,037. 37,037 ÷ 5 is not a whole number. 37,037 ÷ 7 = 5291. 5291 ÷ 11 = 481. 481 ÷ 13 = 37. Then 3 + 7 + 11 + 13 + 37 = 71.

> **FOLLOW-UP:** (1) In Method 1, we said that in order to factor 91, you only had to test primes less than 10. Why is this so? [If both factors are greater than 10, the product is greater than 100.] (2) To determine whether 421 is a prime number, you try to factor it. What is the greatest factor you have to try to show that it is prime? [19]

3D <u>Strategy</u>: Place the largest tiles first.

Division Copyright © 2017 by Mathematical Olympiads for Elementary and Middle Schools, Inc. All rights reserved. Page 10

OLYMPIAD 4 FEBRUARY 9, 201							
Ar	nswers:	[4A] 12	[4B] 12	[4C] 6	[4D] 58	[4E] 27	
4A	METHOI Shauna h Allie has !	D 1: <u>Strateg</u> as \$1, so Emr ⁄ ₂ × 8 = \$4. A l	<u>v</u> : <i>Work backwar</i> ma has 1 × 5= \$ Il ie and Ben ha v	<i>ds.</i> 5. Then Ben has ve 8 + 4= \$12 to	5 + 3= \$8. gether.	84% corre	
	Foll it on was l much	ow-Up: Laures a pair of desig left after that o money did sh	n went to the mal gner jeans, a third on a slice of pizza he get for her bird	l with all of her bi l of what was left 1 and a soda. Sho hday? [\$90]	irthday money. S on a T-shirt, and e returned home	he spent half of a sixth of what with \$25. How	
4B	METHOI For each o C and 3 p There are to B to C	D 1: Strategy of the 4 paths aths from C to $4 \times 1 \times 3 =$ to D and touc	<i><u>2</u>: Count paths to</i> from A to B, ther D D. 12 different pa ch each point on	e each letter sepan e is 1 path from E ths that go from ce.	$\begin{array}{c} rately. \\ B to \\ n A \\ exp \end{array}$	$ \begin{array}{c} $	
	METHOI Label the traveled. Paths fror diagram o	D 2: <u>Strateg</u> individual pa One such pat m A to B to C or by the list at	<u>y</u> : Make an organ ths by naming t h, shown by the to D can be rep the right:	nized list. the three segme e thick lines is <u>e.</u> presented by a t	fxp gxp nts hxp x <u>p</u> . ree	fxq fxr gxq gxr hxq hxr	
	There are	12 paths in al	II.				
4C	METHOI Each hour in 30 ÷ 5 =	D 1: <u>Strateg</u> r, Sarah rides = 6 hours.	<u>y</u> : <i>Compare the a</i> 5 miles more tha	<i>listances they ride</i> In Tyler. Sarah w	e each hour. ill be 30 miles a	67 ⁴ head of Tyler	
	METHO Let <i>t</i> = the travels is 2 Then 20 <i>t</i> =	D 2: <u>Strateg</u> number of ho 20t. Likewise = 15t + 30. So	\underline{v} : Use algebra. burs that each rid , Tyler rides a dis plving, $t = 6$. Sar	es. Sarah rides stance of 15 <i>t</i> mile ah will be 30 mile	at 20 mph, so the es. es ahead of Tyle	e distance she r in 6 hours.	
	Foll Adan fast r mph]	ow-Up: Jake n starts one ho must Jake trave	and Adam head our ahead of Jake el to arrive at the	off for the same e. If Adam is trav e ski lodge at the	ski lodge 270 n veling at 45 miles same time that A	niles away, but per hour, how dam does? [54	
4D	METHO Note that Suppose I Therefore (LCM) of 3	D 1: <u>Strateg</u> in each case f Michael gets 2 the new nun 3, 4, and 5. Th	2: Use the pattern the number of ca more cards. He nber of cards is hen before gettir	n in the given info ards left over is 2 can now put the a multiple of 60 ng the extra 2 car	ormation. less than the nu cards into 3, 4, o), the Least Cor ndies, Michael h	umber of piles. r 5 equal piles. nmon Multiple as 58 cards.	

METHOD 2: *Strategy: Consider one condition at a time.* The number of cards is 3 more than a multiple of 5, so it ends in 3 or 8. This number is also 2 more than a multiple of 4, so it is even. The number ends in 8. This number is 1 more than a multiple of 3; this multiple of 3 must end in 7. Add 1 to the multiples of 3 that end in 7: 28, 58, 88, 118, ... and test each. 28 satisfies two conditions, but is not 2 more than a multiple of 4. However, 58 satisfies all three conditions. Michael has 58 cards.

FOLLOW-UP: What is the least number that leaves a remainder of 3 when divided by 5, a remainder of 2 when divided by 6, a remainder of 1 when divided by 7, and is greater than 200? (Hint: Take some away.) [218]

19%

4E <u>Strategy</u>: Find the length of one side of the box. The perimeter of the figure is made up of 14 congruent segments. Each segment is $42 \div 14 = 3$ cm. Folding the figure forms a box 3 cm high with a 3 cm by 3 cm base. 3 \times 3 = 9 cubes can fit in one layer on the bottom and 3 such layers can fit in the box. In all, 27 one-cm cubes can fit in the box.

OL	2010						
Ans	wers:	[5A] 150	[5B] 30	[5C] 24	[5D] 57	[5E] 45	
5A I	МЕТНО	D 1: <u>Strategy</u> :	Look for a patte	ern.		69% correct	
ן 5 t	Notice tha Similarly, t he sum (at the numbers 3 + 22 = 25, 6 + of the numbers	in the first shad - 19 = 25, and so s in the shaded	ded box and the oon. Six pairs o boxes is 6 × 25	e last shaded bo of numbers each 5 = 150 .	ox add to 25. add to 25, so	
I /	METHOD 2: <u>Strategy</u> : Add in an organ Add by rows or columns. (See diagram.)				= 9 + 20 + +	16 = 150.	
		1 9 17	23451011121318192021	678141516222324	18 50 82		
9 20 22 12 13 28 30 16 150 Follow-Up: What is the sum $1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512? (Hint: Look for a pattern in the partial sums as terms are added left to right.) [1023]$							
						[]	

Page 13

23%

FOLLOW-UP: (1) How many of the 125 cubes do not touch the box? [36] (2) Suppose the box had a closed top. How many cubes would touch exactly one face? [54] (3) Now, suppose the box were 4 cm on an edge, with 64 cubes inside the box. How many cubes would touch exactly one face? [24] (4) Suppose the box were 6 cm on an edge, with 216 cubes inside the box. How many cubes would touch exactly one face? [96] Can we generalize these results?

			27%			
5E	METHOD 1: <u>Strategy</u> : Work from the middle outward. Consider the numbers listed in order from smallest to largest:	,,,,	_3			
	Since 50 is the average, and all numbers are equally spaced, the two consecutive odd numbers in the middle are 49 and 51:	,, 49, 51,	_3			
	Once these are in place, write the odd numbers that precede 49 and that follow 51 to complete the list:	45, 47, 49, 51, 53	3, 55			
	The least of these numbers is 45.					
	METHOD 2: <u>Strategy</u> : Group the candies two different ways. The sum of the six consecutive odd numbers is $6 \times 50 = 300$. Choose the simplest set (1, 3, 5, 7, 9, and 11), and then add the same amount to each to reach a sum o 36 is 264 short of 300, so we must increase each number in the set by $264 \div 6 = 44$ set then becomes 45, 47, 49, 51, 53, and 55. The least number in the set is 45.					