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ABSTRACT

Heterogeneous computing environments use an assortment of high performance ma-

chines with different architectures in an attempt to most efficiently execute the various

tasks that are required by an application. While this environment is very well suited

for tasks such as image understanding, heterogeneous processing has key limitations

which including the lack of support for fine-grained parallelism, the high communica-

tion overhead of moving tasks between machines, and the prohibitively high costs.

The goal of this thesis is to propose a new computing paradigm, called micro-

Heterogeneous computing or mHC, which incorporates PCI based processing elements

(vector processors, digital signal processors, etc) into a general purpose machine. In

this manner the benefits of heterogeneous computing on scientific applications can be

achieved while avoiding some of the limitations. Overall performance is increased by

exploiting fine-grained parallelism on the most efficient architecture available, while

reducing the high communication overhead and costs of traditional heterogeneous

environments. Furthermore, mHC based machines can be combined into a cluster,

allowing both the coarse-grained and fine-grained parallelism to be fully exploited in

order to achieve even greater levels of performance.

The ensuing chapters will provide the motivation for this work, an overview of

heterogenous computing, and the details pertaining to microHeterogeneous comput-

ing. The framework implemented to demonstrate a microHeterogeneous computing

environment will be examined as well as the results. Finally, the future of micro-

Heterogeneous computing will be discussed.
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GLOSSARY

ANALYTICAL BENCHMARKING: Process of determining the suitability of a partic-

ular machine to execute a particular task

CPOP: Critical Path on a Processor Scheduling Heuristic

ETC: Estimated time to completion. The estimated amount of time that a par-

ticular task will require to execute on a particular device.

HEFT: Heterogeneous-Earliest-Finish-Time Scheduling Heuristic

MAPPING: Process of assigning a task to be executed on a particular machine

MHC: microHeterogeneous Computing

MIMD: Multiple Instruction, Multiple Data

MPI: Message Passing Interface

PVM: Parallel Virtual Machine

RC: Relative Cost Scheduling Heuristic

RTMM: Real-Time Min-Min Scheduling Heuristic

SIMD: Single Instruction, Multiple Data

SMM: Segmented Min-Min Scheduling Heuristic

viii



VECTOR PROCESSING: Type of processing that operates on arrays of data ele-

ments simultaneously

WRTMM: Weighted Real-Time Min-Min Scheduling Heuristic
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Chapter 1

INTRODUCTION

Heterogeneous computing environments use an assortment of high performance ma-

chines with different processing architectures in an attempt to most efficiently execute

the various tasks required by an application. This type of environment has proven

to be very effective for applications such as image understanding [27] where there are

many different levels of processing that are best suited to various underlying archi-

tectures. However, there are limitations that prevent it from becoming applicable to

an even wider set of problems.

One of the main drawbacks of heterogeneous environments is the granularity of

the parallelism that can be supported. Due to the loosely coupled nature of the ar-

chitecture, the grain size must be large enough to overcome the overhead required to

send a task to a particular machine. This overhead is dependent on the size of the

task, the working set required, and the type of interconnect used. Therefore, even if a

machine might be able to provide significant performance gains for a particular task,

the inherent overheads might prevent it from being efficiently used. Also, applications

which consist of mostly finer-grained parallelism are unable to benefit from heteroge-

neous environments. Another hindrance to using heterogeneous environments is their

cost effectiveness. There are very few applications that warrant the cost and time

required to set up and maintain a heterogeneous computing environment.
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Figure 1.1: A Cluster of microHeterogeneous Computers

This thesis proposes a new computing paradigm, named microHeterogeneous com-

puting or mHC, with the goal of achieving some of the benefits of a heterogeneous

environment while avoiding the aforementioned limitations. The mHC environment

incorporates PCI based processing elements (vector processors, digital signal proces-

sors, etc) into a general purpose computer thereby creating a small-scale heteroge-

neous system well suited to executing scientific applications. This environment is then

able to exploit fine-grained parallelism by mapping individual function calls, defined

by the mHC application programming interface, to the best suited processing element

that is available. These function calls are then executed in parallel. Performance is

increased by running tasks on the most compatible architecture, while no longer re-

quiring both the high communication overhead and costs of traditional heterogeneous

environments.
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Furthermore, the mHC based machines can be combined into a cluster which

allows both the coarse grained and fine grained parallelism to be fully exploited to

achieve even higher levels of performance. This combination creates an extremely cost

effective platform for utilizing various levels of parallelism and various architectures

in order to achieve the highest performance. A sample mHC environment is depicted

in Fig. 1.1 outlining these various levels of parallelism.

To demonstrate its effectiveness, the framework required to support mHC based

applications on a single general purpose machine was implemented. This allowed for

actual applications to be compiled and run using standard techniques. The framework

consisted of an application programming interface based on a subset of the GNU Sci-

entific Library [11], a real-time dynamic scheduling algorithm, and simulated devices

that executed the various function calls. Since real applications were compiled and

run under the framework, accurate performance numbers were obtained and clearly

demonstrate the applicability of the mHC architecture.

The organization of the remainder of this document is as follows: Chapter 2 gives

some background on heterogeneous computing, its limitations, and programming and

scheduling methods; Chapter 3 is an overview of the microHeterogeneous computing

environment; Chapter 4 discusses application programming interfaces and specifi-

cally ones relevant to scientific computing; Chapter 5 details the microHeterogeneous

framework that was developed and how it was implemented; Chapter 6 presents the

results obtained from various simulations using the framework developed. Finally,

Chapter 7 presents the conclusions for this work, as well as ideas for future work.
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Chapter 2

HETEROGENEOUS COMPUTING

The concept of microHeterogeneous computing is a variation on the standard

heterogeneous computing environment. This chapter gives a brief background on

heterogeneous computers including scheduling and programming techniques. The

chapter concludes with a discussion on the limitations of heterogeneous environments.

2.1 Background

Heterogeneous computing is an architecture which provides an assortment of high

performance machines for use by an application and arose from the realization that

no single machine is capable of performing all tasks in an optimal manner. These

machines differ in both speed as well as in capabilities and are connected using high

speed, high bandwidth intelligent interconnects that handle the intercommunication

between each of the machines. Heterogeneous computing is an extension to homoge-

neous computing, which uses only type of machine, that has the potential to increase

performance and cost effectiveness.

The need for heterogeneous computers arose from the varying needs of today’s

most computation-intensive applications. These applications generally involve many

different types of processing, such as SIMD, MIMD, and vector processing, which

have the potential to be exploited. However, with traditional homogeneous comput-

ers only a single type of processing is able to be performed efficiently, while all others

4



Figure 2.1: A Heterogeneous Environment

will suffer and thus limiting the effectiveness of these architectures. This is summa-

rized by Amdahl’s Law, which states that the performance of a system is dictated by

the percentage of code that requires a type of processing not particularly supported

by the hardware.

Heterogeneous computing tries to solve this problem by providing an assortment of

machines that are capable of efficiently performing various tasks. Analytical bench-

marking is used to determine the optimal speedup that a particular machine can

achieve when it executes code that is best suited for that machine type. The rela-

tionship between this optimal speedup and the actual speedup achieved creates the
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basis of determining how well a code segment is able to be matched to the machine

[26]. The results of the analytical benchmarking are then used to determine feasible

partitioning and mapping of applications.

Once all of the different machines have been benchmarked, the code to be executed

must be profiled. Since Heterogeneous systems involve many different classes of high

performance machines, it becomes essential to correctly identify the type of code that

is to be run so that an attempt can be made to match it with the most efficient ma-

chine. Without this information, the performance enhancements that heterogeneous

computering environments can provide are lost.

The profiling is done off-line and is used to determine the types of processing that

exists in each program segment as well as the execution times. The different types that

can be identified include: vectorizable decomposable, vectorizable non-decomposable,

fine/coarse-grain parallel, SIMD/MIMD parallel, scalar, and special purpose [15]. An

example of application profiling is shown in Fig. 2.2.

The program segments determined by the profiler must then be mapped onto the

most efficient hardware in order to minimize the completion time of an application

running on a heterogeneous computer. This efficiency depends heavily on computa-

tion costs, communication costs, and interference costs [21].

Computation costs involve the computation time of a particular task on a par-

ticular machine. Since a heterogeneous computer involves many different types of

machines, the computation time of task is heavily dependant on the machine to which

the task is assigned. The computation time is also dependant on the current load of

6



the assigned machine.

Communication costs involve the communication time between processors when

tasks are divided across different machines and are dependent upon the type of inter-

connection network used and the bandwidth which is available. In order to realize the

performance improvements offered by heterogeneous computing the communication

costs must be minimized. The interconnection medium must be able to provide high

bandwidth (multiple gigabits per second per link) at a low latency. It must also over-

come current deficiencies such as the high overhead incurred during context switches,

the overhead due to the need of executing high level protocols on each machine, and

the overhead of managing large amounts of packets [15]. While the use of LANs has

become commonplace, these types of connections are not well suited to heterogeneous

supercomputers.

Figure 2.2: Code-Type Profiling Example
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Interference costs are incurred when multiple tasks are assigned to a machine,

which creates resource contention and reduces processor utilization. Interference costs

increase overall completion time and therefore must also be minimized during the

mapping.

Mapping a parallel program onto a parallel architecture to minimize completion

time has already been shown to be an NP-hard problem even in a homogeneous envi-

ronment [4]. The fact that a heterogeneous computer involves a myriad of machines

simply complicates the matter further. The efficient mapping, or scheduling, of the

tasks of an application on the available resources, however, is one of the key factors

for achieving high performance and has become one of the most intensely studied

issues dealing with heterogeneous computing environments.

2.2 Task Scheduling

Scheduling for a heterogeneous environment includes of all of the same issues found

in scheduling for homogeneous environments plus some additional issues. Scheduling

needs shared by both homogeneous and heterogeneous systems include job schedul-

ing, intermediate-level scheduling, and low-level scheduling. Job scheduling involves

the selection between available processes to run on the available hardware. The

intermediate-level scheduling is in charge of smoothing operations over fluctuations

in the current load of the system. The low-level scheduling determines the next pro-

cess to run on a machine for a certain amount of time.

The scheduler in a heterogeneous environment must always be aware of the dif-

ferent task-types and machine-types in the system in order to schedule tasks to the
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most appropriate machine as well as be prepared to reassign tasks in case the system

configuration changes [15]. In addition, the scheduler must be acutely aware of the

bottlenecks and queuing delays caused by the heterogeneity of the hardware.

The following are some of the more recently developed scheduling heuristics. Brief

descriptions of other common mapping heuristics are also provided for completeness.

2.2.1 Segmented Min-Min

In the standard Min-Min scheduling heuristic, the minimum completion time for each

task is computed with respect to each of the machines that are currently present.

The task with the overall minimum completion time is selected and assigned to the

corresponding machine. The task is then removed and the process continues until all

tasks have been scheduled [2, 10]. This heuristic is very simple, fast, and provides

good performance. One drawback, however, is that small tasks are assigned and ex-

ecuted first which leaves some machines idle while larger tasks are being executed.

The Segmented Min-Min heuristic proposed in [29] attempts to solve this problem by

altering the Min-Min algorithm to schedule large tasks first.

The Segmented Min-Min algorithm first computes the expected time to compute

(ETC) for each task on each machine producing an ETC matrix where ETC(i,j) is the

ETC for task i on machine j. The tasks are then sorted into a task list in descending

order which has the effect of promoting tasks with large ETC values. The task list is

divided into n segments and for each segment, Min-Min is applied to assign tasks to

machines. The full algorithm is shown below.

9



Segmented min-min (Smm)

1. Compute the sorting key for each task:

Sub-Policy 1 - Smm-avg : Compute the average value of each row in ETC matrix

keyi =
∑

j

ETC(i, j)
m

Sub-Policy 2 - Smm-min: Compute the minimum value of each row in ETC matrix

keyi = min
j

ETC(i, j)

Sub-Policy 3 - Smm-max : Compute the maximum value of each row in ETC matrix

keyi = max
j

ETC(i, j)

2. Sort the tasks into a task list in decreasing order of their keys.

3. Partition the tasks evenly into N segments.

4. Schedule each segment in order by applying Min-min.

Even though Segmented Min-Min only proposes a slight change to the standard

Min-Min algorithm it successfully improves the load balancing and enhances the per-

formance from 2% to 12%. The scheduling time is also reduced because the Segmented

Min-Min uses a divide and conquer strategy which reduces the search space of the

Min-Min algorithm when determining which task to map [29].

2.2.2 Relative Cost Algorithm

The Relative Cost Algorithm uses a relative cost criterion rather than prioritizing

tasks based on size. The relative cost of a task is calculated by dividing the task

completion time ctk(i, j) by the average completion time of tasks i. This assures

that a higher priority is given to tasks that have a good match between tasks and

machines and minimizes the overall completion time [28]. The complete Relative Cost

Algorithm is shown below.
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RC Algorithm

1. For each task i and machine j, let ct(i, j) = ETC(i, j) and ρ(i) = 0

γs(i, j) = ETC(i, j)/ETC(i)avg

2. For k = 1 to t do

(a) for task i, 1 ≤ i ≤ t and ρ(i) = 0

i. compute ctk(i)avg =
∑

i≤j≤m ctk(i, j)/m

ii. select machine Bi such that ctk(i, Bi) = mini≤j≤m ctk(i, j)
iii. compute γd(i, Bi) = ctk(i, Bi)/ctk(i)avg

(b) select task Ak such that

γs(Ak, BAk
)α × γd(Ak, BAk

) = min
1≤i≤t,ρ(i)=0

γs(i, Bi)α × γd(i, Bi)

(c) let ρ(Ak) = 1 and F (Ak) = BAk
, that is, assign task Ak to machine BAk

(d) for task i with 1 ≤ i ≤ t and ρ(i) = 0, modify

ctk+1(i, j) =
{

ctk(i, j) ifj 6= BAk

ctk(i, j) + ETC(Ak, BAk
) otherwise

The factor of γα
d ×γs is used to fine tune the matching and load balancing criteria.

The smaller the γd the better the matching of machines. Therefore tasks that match

machines better will be given a higher priority. The α parameter is used to adjust γs,

or the static relative cost, and is always between 0 ≤ α ≤ 1. The specific value for α

is generally determined by way of experimentation.

In practice, the Relative Cost Algorithm provides a good compromise between load

balancing and matching proximity and consistently performs better then Min-Min,

Max-Min and GA.

11



2.2.3 Heterogeneous-Earliest-Finish-Time and Critical Path on a Processor

Instead of using a strict performance measurement such as estimated completion time

or relative cost, Heterogeneous-Ealiest-Finish-Time (HEFT) and Critical Path on a

Processor (CPOP) determine task scheduling based on the application’s task graph

[23]. The task graph is a directed acyclic graph, denoted by G = (V, E), where V

is the set 0f v tasks and E represents the set of e edges between the tasks. The

edges represent the dependencies between the tasks, with edge (i, j) meaning that

task ni must be completed before task nj may begin. Two important properties of

the task graph are the entry and exit tasks. Entry tasks are those tasks that have no

parent task and exit tasks are those tasks that have no children. A cost matrix, W ,

is calculated in which each wi,j represents the estimated execution time of task ni on

processor pj.

Tasks in this system are ordered by their priorities which are linked to their upward

and downward ranking. The upward rank is calculated recursively by traversing the

graph upward and is defined by

ranku(ni) = wi + max
nj∈succ(ni)

(ci,j + ranku(nj)) (2.1)

where succ(ni) is the set of successors of task ni, ci,j is the communication cost of edge

(i, j), and wi is the average computation cost for task ni. Therefore, the resulting

ranku(ni) defines the length of the critical path from task ni to the exit task and

includes the computation cost for task ni. The downward rank is very similar but is
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calculated by traversing the graph upward and is defined by

rankd(ni) = wi + max
nj∈pred(ni)

(wj + cj,i + rankd(nj)) (2.2)

where pred(ni) is the set of predecessors of task ni. The resulting rankd(ni) is the

longest distance from the entry task to the task ni but does not include the compu-

tation cost of task ni.

The HEFT algorithm consists of two phases, a prioritizing phase and a processor

selection phase. During the prioritizing phase, the task list is sorted by decreasing

order of ranku. This provides a linear ordering of the tasks which preserves the prece-

dence constraints.

Once the tasks have been properly ordered, the tasks are mapped to the processors

during the processor selection phase. During this phase, an appropriate idle time slot

is located for each task. The search starts at the time equal to the ready time of ni on

pj, or in other words the time when all input data of task ni has arrived at processor pj.

The search continues until finding the first idle time slot that is capable of holding the

computation cost of task ni. HEFT differs from most mapping algorithms because it

considers assigning tasks in idle time occurring between two previously scheduled tasks

instead of automatically beginning the search for an appropriate processor starting

at the time the last scheduled task has completed. The complete HEFT algorithm is

shown below.
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HEFT Algorithm

1. Set the computation costs of tasks and communication costs of edges with mean values.

2. Compute ranku of tasks by traversing graph upward, starting from the exit task.

3. Sort the tasks in a scheduling list by nonincreasing order of ranku values.

4. while there are unscheduled tasks in the list do

(a) Select the first task, ni from the list for scheduling.

(b) for each processor pk in the processor-set (pk ∈ Q) do

i. Compute EFT (ni, pk) value using the insertion-based scheduling policy.

(c) Assign task ni to the processor pj that minimizes EFT of task ni.

5. endwhile

The CPOP algorithm consists of same two main phases as the HEFT algorithm,

a prioritizing phase and a processor selection phase. During the prioritizing phase

the upward and downward ranks of all of the tasks are calculated. The priority of

the tasks is the summation of the upward and downward ranks. The critical path of

the application is then determined. First the entry task is selected and marked as a

task of the critical path. The successor with the highest priority is then selected and

marked as part of the critical path. This continues until the exit task is reached.

Once the prioritizing phase is complete, the tasks are then mapped to processors

in the heterogeneous system. Tasks that are part of the critical path are mapped to

the critical-path processor, pcp, which minimizes the cumulative computation costs of

the tasks on the critical path. Tasks that are not part of the critical path are assigned

to a processor which minimizes the earliest execution finish time of the task. The

complete CPOP algorithm is shown below.
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CPOP Algorithm

1. Set the computation costs of tasks and communication costs of edges with mean values.

2. Compute ranku of tasks by traversing graph upward, starting from the exit task.

3. Compute rankd of tasks by traversing graph downward, starting from the entry task.

4. Compute priority(ni) = rankd(ni) + ranku(ni) for each task ni in the graph.

5. |CP | = priority(nentry), where nentry is the entry task.

6. SETCP = priority(nentry), where SETCP is the set of tasks on the critical path.

7. while nk is not the exit task do

(a) Select nj where ((nj ∈ succ(nk)) and (priority(nj) == |CP |)).
(b) SETCP = SETCP ∪ nj .

(c) nk ← nj

8. endwhile

9. Select the critical path processor (pCP ) which minimizes
∑

ni∈SETCP
wi,j , ∀pj ∈ Q

10. Initialize the priority queue with the entry task.

11. while there is an unscheduled task in the priority queue do

(a) Select the highest priority task ni from priority queue.

(b) if ni ∈ SETCP then

i. Assign the task ni on pCP

(c) else

i. Assign the task ni to the processor pj which minimizes the EFT (ui, pj).

(d) Update the priority queue with the successors of ni, if they become ready tasks.

12. endwhile

When tested on 56,000 randomly generated task graphs, HEFT and CPOP on

average performed better then other list scheduling heuristics such as Dynamic-Level

Scheduling [20], Mapping Heuristic [9], and Levelized-Min Time [14]. HEFT produced

schedules that reduced execution time in 86% of the fifty-six thousand randomly

generated task graphs, while CPOP produced better schedules in 65% of the cases.

Due to the promising results and fast scheduling times, HEFT is currently being

further developed [23].
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2.2.4 Other Mapping Heursitics

Many other mapping heurisitics have been designed to map tasks onto a heterogeneous

environment of which only a sample are described here. All of the following heuristics

statically schedule meta-tasks (a set of tasks with no dependencies) onto the machines.

This requires that both the number of tasks and the number of machines is known

before the scheduling process begins. All of these heuristics have been evaluated in

[5].

OLB: Opportunistic Load Balancing assigns each task in arbitrary order to the first

available machine [2]. This technique generally does not produce acceptable

schedules.

UDA: User-Directed Assignment assigns each task to the machine that has the best

expected execution time [2]. This technique generally does not produce accept-

able schedules.

Fast Greedy: Assigns each task to the machine with the minimum completion time

[2].

Max-Min: A variation to Min-Min in which the task with the overall maximum

completion time from the set of all unmapped tasks is selected and assigned to

the corresponding machine [2, 10]. This technique generally does not produce

acceptable schedules.

GA: The genetic algorithm operates on a population of chromosomes for a given

problem and is used to search a large solution space. The initial population

is generated randomly, though it could be generated using one of the other
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heuristics available [25]. This algorithm generally provides for good performance

though it is much slower then Min-Min while only performing slightly better.

A*: A* uses a tree based method in order to incrementally build a solution for the

task mapping. The root node of the tree is generally that of a null solution,

intermediate nodes represent partial solutions, and leaf nodes represent final

solutions. The nodes are rated by a cost function and the node with the min-

imum cost function is replaced by its children while the node with the highest

cost function is removed [7]. This algorithm provides very good schedules for

some situations but is very slow, averaging about 1200 times slower then that

of Min-Min [5].

2.3 Programming

Parallel programming environments include the tools needed to write and debug ap-

plications for parallel machines. These include programming languages, compilers,

debuggers and other aides. A few of the different programming languages currently

available are discussed here.

2.3.1 Parallel Virtural Machines (PVM)

PVM (Parallel Virtual Machine) is a software system that enables a collection of het-

erogeneous computers to be used as a coherent and flexible concurrent computational

resource [18]. The overall objective of the PVM system is to to enable such a collec-

tion of computers to be used cooperatively for concurrent or parallel computation.

The unit of parallelism in PVM are tasks which are generally Unix processes.

These tasks are independent sequential threads of control that alternate between
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communication and computation. The system allows users to specify the set of ma-

chines for an application to use. The user also has the choice to view these resources

as an attributeless collection of virtual processing elements or choose to exploit the

capabilities of specific machines in the host pool by positioning certain computational

tasks on the most appropriate computers

A system level process runs on each of the computer systems that permits the

collection of machines to be viewed as a coherent system. The system supports pro-

cess management, communication via message passing, and synchronization through

the use of named barriers. Important to heterogeneous computing, PVM allows mul-

tifaceted virtual machines to be configured within the same framework and permits

messages containing more than one datatype to be exchanged between machines hav-

ing different data representations. Examples of programs that have been executed

under PVM include matrix factorization, stochastic simulation of toroid networks,

and Mandlebrot image computations.

2.3.2 Message Passing Interface (MPI)

The Message Passing Interface (MPI) [1] is another programming environment used

for parallel processing and is compatible with heterogeneous environments. The goal

of MPI is to create a widely used standard for writing message passing based appli-

cations. The interface provided is practical, portable, efficient, and flexible and has

become widely used.

The implementation of MPI is fundamentally different then PVM. MPI does not

explicitly create processes to divide up among the various processing elements. In-
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stead each processor is assigned a rank which then determines which parts of the

application that processor will execute. This division of tasks among processors is

left solely up to the developer writing the application.

The MPI standard includes routines to do point-to-point communication between

two processing elements, collective operations to simultaneously communicate infor-

mation between all processing elements, and implicit as well as explicit synchroniza-

tion. The standard does not provide direct support for shared memory operations

or support for threads. MPI has most recently been used by MPEG encoding and

decoding applications [3].

2.4 Limitations

Although heterogeneous computing environments have proven to be very useful for

some applications, it has drawbacks which prevent its use from becoming widespread.

These limitations include the focus on coarse-grain parallelism, the inherent commu-

nication costs, and the actual implementation costs.

Heterogeneous computing environments function most efficiently on applications

that demonstrate a very coarse-grained parallelism. This coarse-grained parallelism

results in large task sizes and reduced coupling which allows the processing elements

to work more efficiently. This requirement is also translated to most heterogeneous

schedulers since they are based on the scheduling of meta-tasks, i.e. tasks that have

no dependencies.

While some applications such as image understanding [27] and gaussian elimina-
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tion [23] contain this type of parallelism, there are many applications that do not.

These types of applications may have finer-grained parallelism or tend to be more

tightly-coupled and are not able to benefit as much from a standard heterogeneous

environment. In these cases, the task size is smaller and the overhead required to

distribute the tasks becomes greater then the performance enhancement achieved by

executing the task on a different architecture. This is also true with applications that

include many dependencies which require more data to be passed between machines.

The inherent communication costs are another drawback of using a heterogeneous

environment. Generally, specialized interconnects must be used in order to provide a

high bandwidth low latency connection [15]. These specialized interconnects tend to

be very expensive and are not always available. The other option is to use standard

networking equipment (LANs) which is more cost effective but can greatly hinder the

overall performance of the heterogeneous environment. As the granularity of an ap-

plication decreases, the performance characteristics of the interconnect must increase

or risk becoming a bottleneck in the system.

Finally, the implementation cost of heterogeneous networks is very prohibitive.

Creating a heterogeneous network requires specialized machines and high speed inter-

connects in order to produce an environment with good performance characteristics.

The cost might be acceptable for applications that are known to map well onto this

type of environment, but in other cases they are simply not cost effective.

The next chapter discusses the role of application program interfaces and specifi-

cally describes a few scientific APIs that play a role in microHeterogeneous computing.
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Chapter 3

APPLICATION PROGRAM INTERFACES

3.1 Background

An application program interface (API), sometimes referred to as an application pro-

gramming interface, is the interface by which an application program accesses services

provided by an operating system or other applications. An API provides a level of

abstraction between the application and functionality that the API provides to ensure

the portability of the code.

The use of APIs in modern application development is omnipresent. Computers

have become so complex that low-level functionality is constantly being abstracted to

higher levels through the use of these interfaces. Operating systems are required to

provide one of the most diverse APIs that becomes the bridge between user applica-

tions and the hardware upon which they are executing.

Using an API to provide access to underlying functionality has some important

benefits. First it allows an application to maintain portability. As long as the inter-

face provided does not change, an application using the API is not disrupted if the

functionality that the API provides is modified. This is especially true of APIs that

provide an interface to libraries that are often optimized for different architectures.
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The use of APIs also makes software development easier and more robust. Soft-

ware developers do not need to concern themselves with low-level details such as

drawing pixels on a screen, since these types of things have already been abstracted

to high level APIs such as OpenGL [19]. APIs that have become a standard are also

widely used and therefore widely tested, making the functionality that they provide

less prone to errors and more dependable.

For microHeterogeneous computing environments, the most important APIs are

those dealing with scientific computing.

3.2 Scientific Computing APIs

Heterogeneous and microHeterogeneous computing are mainly focused on scientific

based applications since it is these types of programs that can benefit most from

heterogeneous environments. These APIs provide access to the basic building blocks

of scientific computing which can be utilized to create complete applications. A few

of the more common scientific computing APIs are discussed here.

3.2.1 Basic Linear Algebra Subprograms (BLAS)

The Basic Linear Algebra Subprograms (BLAS) [17] are a set of low level operations

that are fundamental to numerical linear algebra. The motivation was to create a

highly optimized set of routines common to most scientific applications in order to

improve the overall performance. Since a significant amount of execution time is gen-

erally spent in these low level operations, reducing the time required to perform these

low level operations leads to an overall reduction in an applications execution time.
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BLAS is divided into three separate levels dependent on the type of data that

is operated on. The Level 1 BLAS, implemented between 1973 and 1977, includes

subprograms for scalar and vector operations. The software package LINPACK uses

the Level 1 BLAS extensively for the solution of dense and banded linear equations

and linear least squares problems. The Level 2 BLAS, implemented between 1984

and 1986, deals with matrix-vector operations and the Level 3 BLAS, implemented

between 1987 and 1988, deals with matrix-matrix operations. The linear algebra soft-

ware package LAPACK utilizes the Level 2 and 3 BLAS for portable performance.

Overall, the BLAS have enabled many applications to improve performance while

maintaining portability.

Orginally, the BLAS was implemented in Fortran 66 but specifications for Fortran

77, Fortran 95, and C now exist. Highly efficient machine-specific implementations of

the BLAS are available for almost every modern computer architecture. In general,

the BLAS has been very well received by developers for the high performance of the

library routines and the portability that comes with using a standardized API. The

routines provided have become the building blocks of a large portion of scientific

applications over the past two decades.

3.2.2 Vector, Signal, and Image Processing Library (VSIPL)

The Vector, Signal, and Image Processing Library (VSIPL) [13] was designed to

provide a portable, object-based API for signal and image processing on embedded

systems. The API began development in 1996 by Hughes Research Laboratory and

was funded by DARPA. The working group included companies such as Lockheed-
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Sanders, Nothrup Grumman, Digital, Intel, and Cray with the common goal to create

an industry supported standard for vector and signal processing primatives.

One of the technical goals that VSIPL set to achieve was to be very portable. To

accomplish this, the VSIPL API is implemented in ANSI C and requires only a sim-

ple re-compile to port between platforms. The API also does not restrict the actual

implementation of the computational portion of the standard. This allows vendors to

create optimized implementations, if desired, while maintaining source-code portabil-

ity based on the API.

VSIPL is an object-based library, which is a departure from traditional libraries,

such as BLAS, that are functional based. Applications utilizing the VSIPL API use

special abstract data types whose implementations are hidden to allow for vendor-

private implementations. The main data types used are blocks and views. Blocks

are contiguous storage areas in which the actual data values are stored. V iews are

then created to determine how a block of data is handled. The three main view char-

acteristics are offset from the beginning of a block, the number of elements (length),

and the spacing between the elements (stride).

For example, a group of nine data elements would be stored in a contiguous stor-

age area within a block as shown in Table 3.1(a). In order to create a view for the

entire block as a vector, the offset would be set zero, the length would be set to nine,

and the stride would be set to one. If only the even elements were desired, a view

would be created with an offset of one, a length of four, and a stride of two. This

view would only contain the data elements shown in Table 3.1(b). The block could

24



1 2 3 4 5 6 7 8 9 2 4 6 8
1 2 3
4 5 6
7 8 9

(a) A block of data (b) A view of even elements (c) A matrix view

Table 3.1: Example of VSIPL Blocks and Views

also be used as a 3× 3 matrix by creating a view with an offset of zero, a row length

of three, a row stride of one, a column length of three, and a column stride of three.

This view would contain all of the data elements but would be used like a matrix as

shown in Table 3.1(c).

The VSIPL API supports a wide range of functions that are most common to

scientific based applications with an emphasis on signal and image processing. A

summary of the functions included is located in Table 3.2.

VSIPL also includes special accommodations for embedded applications. Better

performance is achieved through the use of early binding which allocates resources for

an operation as early as possible. The memory space is also divided into a user data

space and a VSIPL data space in order to assure that data is not corrupted. The user

data space contains data the user is able to manipulate directly. Only data in the

VSIPL data space can operated on by VSIPL operations and is hidden from direct

Signal Processing Vector/Matrix Ops Linear Algebra

. FFT

. Convolution

. Correlation

. FIR/IIR Filters

. Arithmetic

. Comparison

. Selection Operations

. Boolean Operations

. Data Conversion

. Inner, Outer, Kronecker Product

. Matrix-Vector, Matrix-Matrix Multiply

. QR, LU, Cholesky Decompositions

. Solvers

Table 3.2: Summary of VSIPL Functionality
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user manipulation. In order to make development on an embedded device easier,

VSIPL includes special development modes with higher degrees of error checking and

a production mode which runs faster and includes no error checking to save space in

embedded devices.

3.2.3 GNU Scientific Library (GSL)

The GNU Scientific Library (GSL) [11] is a modern numerical library for C and C++

programmers. The project was started in 1996 at the Los Alamos National Labo-

ratory by Dr M. Galassi and Dr J. Theiler after they became discouraged with the

restrictions of the licenses of other existing libraries. With this in mind, the GSL was

released under the GNU General Public License (GPL) [12], making the library freely

available.

With support for over 1000 functions, the GSL aims to provide the most compre-

hensive scientific computing library available. A summary of the topics covered are

shown in Table 3.3. The GSL has been successfully compiled under all of the modern

operating systems including SunOS, Solaris, Linux, HP-UX, IRIX, BSD, Windows,

and Apple Darwin.

The GSL successfully combines a very powerful library with an easy to use and

understand interface. The library uses an object-oriented design and allows different

algorithms to be easily plugged in or changed at run-time without the need to recom-

pile the actual application. The function calls follow a standard naming convention

and data types which make the library particularly easy for the ordinary scientific

user. It is also thread-safe which is critical for multi-threaded applications.
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Complex Numbers Roots of Polynomials Special Functions
Vectors and Matrices Permutations Sorting

BLAS Support Linear Algebra Eigensystems
Fast Fourier Transforms Quadrature Random Numbers
Quasi-Random Sequences Random Distributions Statistics

Histograms N-Tuples Monte Carlo Integration
Simulated Annealing Differential Equations Interpolation

Numerical Differentiation Chebyshev Approximation Series Acceleration
Discrete Hankel Transforms Root-Finding Minimization

Least-Squares Fitting Physical Constants IEEE Floating-Point

Table 3.3: Summary of GSL Functionality

Another benefit to the GSL is its compatibility with other scientific based APIs.

It provides direct support for all three levels of the BLAS, making the transition from

the BLAS to the GSL a trivial matter. The GSL also uses the same block and view

representations of data that VSIPL uses. This allows the GSL function calls to seam-

lessly interact with embedded devices based on the VSIPL standard. It is because of

this compatibility with both the BLAS and VSIPL, and the comprehensive library,

that the microHeterogeneous computing API is based on a subset of the GSL.

The next chapter discusses the microHeterogeneous architecture that is being pro-

posed. It includes the benefits of heterogeneous computers while removing some of

the inherent limitations.
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Chapter 4

MICROHETEROGENEOUS COMPUTING

This chapter gives an overview of microHeterogeneous computing.

4.1 Description

The microHeterogeneous computing (mHC) environment is a new computing paradigm

that attempts to most efficiently exploit the fine-grained parallelism found in most

scientific computing applications. The environment is contained within a workstation

and consists of a host processor and a number of additional PCI based processing

elements as shown in Fig. 4.1. These processing elements might be DSP based, vec-

tor based, FGPA based, or even reconfigurable computing elements. In combination

with a host processor, these elements create a small scale heterogeneous computing

environment that has many of the same benefits of standard heterogeneous environ-

ments while also including the additional benefits of a shared-memory system with

low overheads.

The idea for mHC environments originated with the observation that workstations

are already becoming heterogeneous in nature. Graphics cards now come equipped

with their own graphics processors, sound cards include digital signal processing hard-

ware, and network cards contain special purpose network processors. However, these

processing elements are not available to general user programs. There is simply no
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Figure 4.1: A microHeterogeneous Environment

way to compute fast fourier transforms on the DSP processor located on a sound card

for example. This extra processing power, therefore, often goes unused.

There are, however, other PCI-based processing elements that are available to user

programs, two of which are discussed later in this chapter. These add-on processors

are able to execute some tasks much faster than a standard processor. One of their

main drawbacks, however, is their cumbersome nature. This is why the use of such

processing elements is not more wide spread. There is currently no standard API

that manufacturers currently use, instead multiple proprietary APIs are in use de-

pending on the type of device. This makes working with one of these devices difficult

and working with combinations of these devices quite a challenge. In addtion, the

developer is left to deal with the difficult issues of task mapping and load balancing,

issues with which they may not be intimately familiar.

The proposed microHeterogeneous computing environment greatly simplifies the

use of these types of devices for scientific computing. The mHC API is used to

make function calls that become tasks. After a task has been scheduled, the call
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immediately returns which allows for the user application to continue execution. In

this manner, multiple tasks can be scheduled and executed in parallel even if the user

application was not initially multi-threaded. It becomes possible for a developer to

write an application once using the mHC API and then simply add more processing

power, at a later time, if it becomes required.

4.2 mHC API

A standard API was developed that all mHC compliant devices will use, eliminating

the need to learn a different interface for each device. When an API call is made,

the framework handles all of the scheduling and load balancing issues internally by

placing the task in the task queue of the most appropriate device. Only the functions

available in the API can be scheduled to processing elements in the microHeteroge-

neous environment.

Scientific APIs take years to create and develop and more importantly, be adopted

for use. We therefore decided to create an extension on an existing scientific API and

add compatibility for mHC environment rather then developing a completely new

API. This approach has many benefits. First, The mHC API can be more complete

than would have been possible if a completely new API had been created. Secondly,

it can leverage the numerous data types already available in the existing API. Lastly,

building off of an existing API means that there is already a user base developing

applications that would then become suitable for mHC.

After reviewing a large number of scientific APIs, it was decided that the GNU

Scientific Library (GSL) would form the basis of the mHC API. The GSL is an ex-
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Vector Operations Matrix Operations Polynomial Solvers
Permutations Combinations Sorting

Linear Algebra Eigenvectors and Eigenvalues Fast Fourier Transforms
Numerical Integration Statistics

Table 4.1: Scientific Areas Supported by the mHC API

tensive, free scientific library that uses a clean and straightforward API. It provides

support for the Basic Linear Algebra Subprograms (BLAS) which is widely used in

applications today and is data-type compatible with the Vector, Signal, and Image

Processing Library (VSIPL) which is becoming one of the standard libraries in the

embedded world.

Currently, the mHC extension to the GSL includes over sixty functions. The

different areas of support are shown in Table 4.1. A full listing of the entire API can

be found in Appendix A.

4.3 Example Devices

Currently there are no mHC compliant devices, but there are several PCI-based accel-

erator cards that could be utilized by an mHC environment. The only change required

would be to update the device drivers in order to utilize the mHC API instead of the

proprietary APIs that are currently implemented. A sample DSP accelerator card,

the XP-15, and a sample vector processing accelerator card, the Pegasus-2, are de-

scribed here. These devices also served as the model devices that were used to obtain

the results located in Chapter 6.
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Figure 4.2: The XP-15 DSP Accelerator Card

4.3.1 XP-15

The XP-15 [22] is a powerful DSP accelerator card developed by Texas Memory Sys-

tems. The card interfaces with a standard 64-bit, 66 MHz PCI bus making it fully

compatible with the requirements of microHeterogeneous computing. The XP-15 is

based around the TM-44 DSP Blackbird chip which is able to perform eighty 32-bit

floating-point operations per instruction cycle. This results in a peak processing rate

of eight GFLOPS. The addition of this card to a workstation results in a performance

gain of 5x to 20x when dealing with DSP related functions. A comparison of the

XP-15 to a 1.4 GHz Intel P4 for computing complex fast fourier transforms is shown

in Table 4.2.

The XP-15 includes 256 megabytes of fast local Double Data Rate (DDR) mem-

ory directly connected to the TM-44 chip by way of a 256-bit DDR bus that provides

6400 MB/sec memory bandwidth. Data can be transferred into this local memory

by means of the PCI bus in parallel with the TM-44 executing instructions. This is

critical for the efficient processing of data. The host processor is also free to execute
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CFFT Size XP-15(microseconds) 1.4GHz P4(microseconds) Improvement
1K 8 175 22x
4K 31 825 26x
16K 162 4,500 27x
64K 655 23,750 36x
256K 3,275 116,750 36x
1024K 13,107 550,000 42x

Table 4.2: Comparison of the XP-15 and a 1.4 GHz Intel P4 [22]

other tasks while the XP-15 is working on the data stored in its large local memory.

The XP-15 is capable of executing over 500 different scientific algorithms which

have all been optimized to the hardware. These algorithms include real and complex

vector arithmetic, real and complex matrix arithmetic, 1-D and 2D FFTs, image

processing algorithms, and digital signal processing algorithms. Almost all of this

functionality is mirrored in the mHC API making this device a particularly good

match to microHeterogeneous computing.

4.3.2 Pegasus-2

The Pegasus-2 [6] is a high-performance digital signal processing board distributed

by Catalina Research based on the Pathfinder-1 FFT vector processor. The board

interfaces with a standard 64-bit, 66 MHz PCI bus making it fully compatible with

the requirements of microHeterogeneous computing.

Processing on the Pegasus-2 is accomplished by passing data from one of the two

input memories, through the Pathfinder-1, and into the output memory. The data

is then passed back into one of the input banks if additional processing is required.
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Figure 4.3: The Pegasus-2 Vector Processing Accelerator Card [6]

Each of the SRAM memory banks is 48 bits wide and 256K words deep.

The Pegasus-2, along with its multiple Sojourner-2 address generators, supports

standard radix FFT patterns, real FFT operations, offset and stride addressing, and

stacked transform operations. This allows the Pegasus-2 to handle very high speed

complex vector multiplications, fast convolutions, polyphase filters, and 2D FFTs.

Also included is a high performance reconfigurable computing element that follows

the vector processor in the data path. This reconfigurable computing element can be

configured on the fly by way of the PCI bus and has been used to support things such

as FIRs and adaptive filtering. Some sample performance numbers can be found in

Table 4.3.
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Operation Processing Time
1K complex FFT 25.6 microseconds

64K 3.28 milliseconds
256K 13.11 milliseconds

4096 tap complex FIR 1,235 microseconds
4:1 Polyphase filter 75.48 microseconds

Table 4.3: Pegasus-2 Sample Operation Performance [6]

4.4 Comparison to Heterogeneous Computing

As mHC is a derivative on heterogeneous computing, many similarities exist between

the two. There are also some key differences which significantly change the role of

mHC environments.

4.4.1 Task Granularity

As with heterogeneous environments, the need for mHC environments stems from

the fact that applications generally involve many different types of processing and

parallelism which have the potential to be exploited. In order to handle the differ-

ent processing needs of an application, both environments provide an assortment of

processing architectures so that tasks may be executed on the one which is most

suitable. However, while standard heterogeneous environments may contain differ-

ent types of machines to efficiently execute tasks, only coarse-grained parallelism is

supported. The microHeterogeneous computing environment instead focuses on the

fine-grained parallelism by providing the processing elements within a single machine

which creates a tightly-coupled shared-memory environment that is well suited to this

application. Task size is reduced to a single function call, such as matrix inversion

or a fast fourier transform, instead of an entire procedure that may contain many
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instructions and function calls.

There are some obvious drawbacks to this technique. First, PCI based processing

elements are not nearly as powerful as the machines used in a standard heterogeneous

environment. Second, there is a small and finite number of processing elements that

can be added to a single machine. However, neither of these are an issue when dealing

with parallelism at such a fine level. While the PCI based processing elements may

not provide as much of a speedup on each task they execute, the shear number of

tasks being executed makes up for this. Over the execution time of an application,

the performance gains accumulate and positively effect the overall execution time.

Additionally, since the task size is so small and the overall execution time of such

tasks is relatively short, the limitation on the number of processing elements becomes

less important.

4.4.2 Task Execution Overhead

Moving tasks and their data sets between machines requires a great deal of overhead

on heterogeneous architectures. This overhead is a result of the large amounts of

information that must be transmitted over the network plus the cost of the encoding

and decoding of data as it passes from one architecture to another.

A study performed in [8] compared PVM and MPI message transfer characteristics

over a 10Mbit/s Ethernet network in homogeneous and heterogeneous environments.

The homogeneous network was able to use 86% and 74% of the effective network

bandwidth using PVM and MPI respectively using 120 kilobyte messages. This re-

sulted in transfer times of 132 ms for PVM and 153 ms for MPI. On the heterogeneous
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network, the increased overhead reduced the use of effective bandwidth to 54% for

PVM and 43% with corresponding transfer times of 210 ms and 265 ms respectively.

Due to the great amount of overhead, the task size must remain large so that the

communication-to-computation ratio remains favorable.

In an mHC environment, communication overhead is greatly reduced since all of

the devices are directly connected via the PCI bus. A 64-bit PCI bus running at

66 MHz has a theoretical throughput of 4.2 Gb/s [24] which is more then twice the

throughput of even the highest performance interconnects being used today which

reach as high as 1.92 Gb/s [16]. The overhead created by the encoding and decoding

of transmitted data is also greatly reduced since all of the processing elements are

designed to be used on the PCI bus and are able to directly access main memory

when it is required. This tightly coupled nature allows for even very small tasks to

execute efficiently with very low communication-to-computation ratios.

4.4.3 Cost Effectiveness

The cost of deploying a microHeterogeneous computing environment is much less

then a standard heterogeneous environment. The processing elements required for

mHC cost only hundreds of dollars and can be added to any workstation. This

low cost makes a cluster of these machines a very viable and cost effective solution.

In comparison, the machines used in a heterogeneous environment can cost tens of

thousands of dollars each, and require the extra expense of the high-speed, low latency

interconnects to achieve acceptable performance.
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4.4.4 Analytical Benchmarking and Profiling

Analytical benchmarking is used for the same purpose in both computing environ-

ments. The capabilities of each processing element or machine must be known before

program execution begins so the scheduling algorithm is able to determine an effi-

cient mapping of tasks. Since all of the processing elements have different capabil-

ities, scheduling would be impossible without knowing the specific capabilities of each.

While analytical benchmarking is still required, code profiling is not. Since mi-

croHeterogeneous computers use a real-time dynamic scheduler that operates during

run-time, there is no need to determine the types of processing an application uses

during compile time. This eliminates the need for special profiling tools and removes

a step from the typical heterogeneous development cycle.

4.4.5 Scheduling Algorithms

Scheduling algorithms in heterogeneous environments generally take place during the

compilation stage instead of during execution. In order to create acceptable mappings

all of the tasks in an application need to be identified by a profiler and their relative

execution times need to be determined. The scheduler is then required to take the

list of tasks and map them to the existing hardware.

The microHeterogeneous environment, however, poses new challenges. The task

are smaller and contain more dependencies that must be taken into account. Also,

the set of tasks an application produces is not known at compile-time. This makes

standard heterogeneous scheduling algorithms inadequate. The scheduler for an mHC

environment must be dynamic and map tasks in real-time in order to provide the best
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performance.

The next chapter discusses the implementation details of the framework that

was created in order to support a microHeterogeneous computing environment. The

scheduling algorithms that were designed are also examined.
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Chapter 5

MICROHETEROGENEOUS COMPUTING

FRAMEWORK

The chapter describes the usage and implementation of the microHeterogeneous Com-

puting framework. The different scheduling heuristics that were examined are also

discussed.

5.1 Usage

Using the microHeterogeneous computing framework that was implemented is ex-

tremely straightforward. A user application needs to include mhcapi.h in order to

gain access to the mHC API functions and then link against libmhc. After calling

mhc initialize with the proper parameters, the GSL-compatible functions defined in

the mHC API can be used to create tasks that will be automatically scheduled on the

available mHC compatible devices. The only consideration that needs to be made is

that mhcjoin should be called before any of the values calculated by an mHC function

call is used by a non-mHC instruction. This assures that the function computing this

value has completed its execution. An example application is shown in Appendix C.

5.1.1 Initialization Parameters

The mhc initialize API call takes a list of parameters as its argument that are used

to initialize the framework. This function must be called before any other API calls
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are made. The following is a list of the valid parameters that be used:

-a value Sets the value of α to value. This value is used in scheduling heuristics
to determine the minimum speedup that must be achieved before a task will
be scheduled onto a processing element. The default value of α is 1.25 which
indicates a speedup of 25% is required.

-b filename Use filename as the bus configuration file. A bus configuration file
must be specified if a scheduler is going to be used (ie a scheduler other then
’none’).

-d filename Use filename as the device configuration file. A device configuration
file must be specified if a scheduler is going to be used(ie a scheduler other then
’none’).

-g value Sets the value of γ to value. This value is used in the Weighted Real-Time
Min-Min scheduling heuristic. The default value of γ is 0.25.

-l filename Write log events to filename. If this is not specified, no log information
will be recorded.

-r value Sets the value of ρ to value. This value is used in the Weighted Real-Time
Min-Min scheduling heuristic. The default value of ρ is 0.5.

-s id Use the scheduling heuristic indicated by id to perform the scheduling of tasks.
The possible values are:

-1 Indicates no scheduler should be used. This results in the application to exe-
cute sequentially. No bus configuration or device configuration is required.

0 Indicates the Fast Greedy scheduling heuristic should be used. Bus configu-
ration and device configuration files must also be specified.

1 Indicates the Real-Time Min-Min scheduling heuristic should be used. Bus
configuration and device configuration files must also be specified.

2 Indicates the Weighted Min-Min scheduling heuristic should be used. Bus
configuration and device configuration files must also be specified.

-t value Determines whether the application should execute in normal mode (value =
0) or timing mode (value = 1). In normal mode, tasks are executed by simulated
devices on the host processor and will produce accurate results. Since tasks
are actually being executed by the host processor, it is impossible for them to
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demonstrate the timing characteristics indicated in the device configuration file.
In timing mode, task execution is replaced with sleep statements that represent
the expected execution time of the task. In this manner, tasks can appear to
execute faster then the host processor would normally execute them.

At an absolute minimum, the scheduler must be set to -1 using ’-s -1’. This will

have the effect of running the application sequentially, but it will run without errors.

5.1.2 Configuration

The mHC framework is extremely flexible and is able to model any combination of

devices on any combination of buses. The configuration is done though the use of

XML based configuration files that specify the properties of the devices and buses

that are being modelled. Sample configuration files can be found in Appendix B.

Device Configuration

The device configuration file defines each of the devices that is available in the mHC

environment. The file contains a list of devices each with their own attributes. These

attributes include the device properties, the bus the device uses, and a list of all of

the functions that the device supports. The function lists are unique to each device

and contains the function ids, the function names, the expected speedup compared

to the host processor, and the expected completion given in microseconds per byte of

input of each function. The complete BNF for the device configuration file is shown

below.

<device config file> ::= <mHCDeviceConfig> <device list> </mHCDeviceConfig>

<device list> ::= <device> | <device list> <device>
<device> ::= <Device> <id> <name> <device desc> <bus> <bus id> <api list> </Device>

<device desc> ::= <Description> <string> </Description>

<bus> ::= <BusName> <string> </BusName>

<bus id> ::= <BusID> <integer> </BusID>
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<api list> ::= <APISupport> <function list> </APISupport>
<function list> ::= <function> | <function list> <function>

<function> ::= <Function> <id> <name> <speedup> <completion time> </Function>

<id> ::= <ID> <number> </ID>

<name> ::= <Name> <string> </Name>

<speedup> ::= <Speedup> <integer> </Speedup>

<completion time> ::= <CompletionTime> <double> </CompletionTime>

<integer> ::= /* an integer value */
<double> ::= /* a double value */
<string> ::= /* a string value */

The flexibility of the device configuration file allows each device to support differ-

ent function calls with different speedups. There is no defined limit to the number of

devices that can exist or the number of functions that a particular device can support.

The nature of XML also allows custom tags to be added to the file if desired, without

breaking any functionality when using the file with the mHC framework.

Bus Configuration

The bus configuration file defines each of the buses that are used by the devices. The

file contains a list of buses each with their own attributes. These attributes include

the bus properties and three important timing values. These timing values include

the initialization time of the bus, the per bus transaction overhead, and the per byte

transfer time. Each of these is given in microseconds. The complete BNF for the

device configuration file is shown below.

<bus config file> ::= <mHCBusConfig> <bus list> </mHCBusConfig>

<bus list> ::= <bus> | <bus list> <bus>
<bus> ::= <Bus> <id> <name> <desc> <init time> <overhead> <transfer> </Bus>
<id> ::= <ID> <number> </ID>

<name> ::= <Name> <string> </Name>

<desc> ::= <Description> <string> </Description>

<init time> ::= <InitTime> <double> </InitTime>

<overhead> ::= <Overhead> <double> </Overhead>
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<transfer> ::= <TransferTime> <double> </TransferTime>

<integer> ::= /* an integer value */
<double> ::= /* a double value */
<string> ::= /* a string value */

There is no defined limit to the number of buses that can exist, but every bus id

that is used in the device configuration file must be defined in the bus configuration

file. The nature of XML also allows custom tags to be added to the file if desired,

without breaking any functionality when using the file with the mHC framework.

5.2 Implementation

The microHeterogeneous computing framework is a dynamically linked library writ-

ten purely in C that user applications interact with by way of the mHC API. The

framework creates tasks from the API function calls and schedules them to the avail-

able processing elements. Currently the library has only been compiled for Linux

workstations running the 2.4 kernal.

5.2.1 Overview

After the framework has been successfully initialized, there are three main phases

that every task passes through in order to go from an API call to executing on one

of the available devices. These three phases are: task creation, task scheduling, and

task execution. A high level diagram of the mHC framework is shown in Fig. 5.1.

5.2.2 Initialization

The mHC framework must be initialized before any of the mHC function calls can be

used. This is accomplished by using the mhcinitialize() function call. It is during the

initialization phase that all of the configuration files are read and the data structures

44



Figure 5.1: microHeterogeneous Computing Framework

required are created. These structures include the device list, the bus list, and the

resource list.

A set of helper threads is also created during initialization. These helper threads

are used during the task execution phase in order to move tasks from a device’s task

queue to the device driver so that the task may be executed. If the ’no scheduler’

option is chosen, none of this initialization takes place and instead the tasks are simply

passed directly to the device driver for execution.

Device List

The device list is a singly-linked list that contains all of the available devices. The list

is initialized using the device configuration file that is specified in the mch initialize()
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function. This is the only way that devices may be added to the device list. The de-

vice list contains pointers to mDevice data structures which are defined by:

typedef struct mDevice {
int id;
char *name;
char *desc;
int bus;
double *speedup;
int numCalls;
double *completionTime;
mQueuePtr taskQueue;

} mDevice, *mDevicePtr;

where id is the unique id for this device, name is the name of the device, and desc

is a short description. Bus is the id of the bus that this device uses. This id must

be defined in the bus list. Speedup is an array where speedupi is the speedup that

this device delivers over the host processor when executing the function with id i. A

value of zero in the speedup array indicates that the function is not supported. The

total number of function calls that are supported by the device is held in numCalls.

CompletionT ime is an array where completionT imei is the expected completion time

of the function with id i measured in microseconds per operand byte.

Each device also contains its own taskQueue which is a priority-based heap in

which the tasks scheduled for this device are stored. The heap assures that the task

with the highest priority is always the first one to removed. The priority is based

on the task ID so that the tasks are removed from the heap in ascending order,

regardless of what order they where placed in the heap. This is important when the

user application is multi-threaded as tasks may not be scheduled in the same order

that they were assigned. Deadlock could occur if a task is dependent on s task that

is scheduled after it.
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Bus List

The bus list is a singly-linked list that contains the bus definitions that are used by

the devices. It is used to determine the time required to transmit a task to a device

using a particular bus. The list is initialized using the bus configuration file that is

specified in the mhc initialize() function. This is the only way that buses may be

added to the bus list. The list contains pointers to mBus data structures which are

defined by:

typedef struct mBus {
int id;
char *name;
char *desc;
double init;
double overhead;
double transfer;

} mBus, *mBusPtr;

where id is the unique id for the bus, name is the name of the bus, desc is a short

description, init is the initialization time of the bus in microseconds, overhead is the

per transaction overhead in microseconds, and transfer is the transfer time per byte

in microseconds.

It is important that every bus id that is used during the device configuration is

defined in the bus configuration file. Also, the bus id’s must start at 0 and increment

by one for each additional bus. This restriction was necessary in order to increase

performance within the framework.
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Resource Lists

The mHC framework maintains a resource list for the function operands and another

list for the function results. They are both singly-linked lists and are used in the

task execution phase to check for data dependencies before a task is executed. The

resource lists are composed of mResource data structures which are defined by:

typedef struct mResource {
int id;
int deviceID;
int taskID;
void *memory;
size_t size;

} mResource, *mResourcePtr;

where id is the unique id for the resource, deviceID is the id of the device that needs

the resource, taskID is the id of the task associated with the resource, memory is

a pointer to the beginning of the data block in memory that this resource consists

of, and size is the size of the data block in memory. The resource list is sorted by

taskID. This reduces the amount of items that need to be searched when looking for

dependencies, since the search can cease as soon as a taskID is found that is greater

then or equal to the taskID of the task that is being checked for dependencies.

5.2.3 Task Creation

A task is created every time an mHC API call is made other then mhc initialize(),

mhc finalize(), and mhc join(). The tasks encapsulate the relevant information

about the function call so that it may be passed to the scheduler in order to get

mapped onto an mHC device. This encapsulation is defined by:

typedef struct mTask {
int id;
int functionID;
void *args[10];
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void *ops[10];
size_t opsSize[10];
void *res[10];
size_t resSize[10];
double etc;

} mTask, *mTaskPtr;

The id is a unique id for this task and functionID is the id of the mHC API

function that was called. The arguments to the function are held in the void pointer

array args. The arguments that are operands for the function call are held in the

void pointer array ops with their corresponding sizes in the opsSize array. The argu-

ments that are used to return the results of the function are stored in the void pointer

array res with their corresponding sizes in the resSize array. All of these arrays

have a static size of ten, where one of the elements must be NULL. This limits the

number of arguments that can be passed in an mTask to nine. Finally, the estimated

time to completion is held in etc. This value is calculated during the scheduling phase.

The args list is used later to obtain pointers to the original arguments of the

function call. The ops list and the res list are used to determine task dependencies

during the task execution phase. These lists actually contain pointers to the block

of data specified by the arguments, not the arguments themselves, which may be

modified during execution of the function. This is done to handle cases such as

matrix views where two different matrix views may actually point to the same block

of data.

5.2.4 Task Scheduling

After a task has been created, it is passed into the scheduling phase. When the task

enters the scheduling phase, the memory locations specified in the ops and res lists

are added to the appropriate resource list. The scheduler is then invoked and the
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task is placed into the most appropriate task queue. The particulars of each of the

different scheduling heuristics are discussed in the following section. After the task

has been scheduled, the function call returns allowing the main program to continue

execution.

5.2.5 Task Execution

The final phase in the framework is task execution. Task execution is performed by

the helper threads that are created during initialization. The threads are lightweight

pthreads that use a real-time round-robin scheduling scheme with a slightly higher

priority then the main program execution thread. Every device has its own helper

thread that moves tasks from the task queue to the device.

If there is a task in the task queue, the helper thread checks to see if the task is

dependent on any other tasks that have not yet finished executing. If there is such

a dependent task, the thread blocks and allows the other threads in the system to

run. Otherwise, the helper thread removes the task from the task queue and passes

it to the device driver in order to be executed. Currently, the device driver and exe-

cution are simulated and the actual execution of the task is done on the host processor.

If the timing mode option is selected when the framework is initialized, tasks are

not actually executed at all. Instead, the helper thread that would have normally

executed the task sleeps for the expected completion time of the task. This allows

a task to ’execute’ faster then is normally possible on the host processor and also

allows multiple tasks to be ’executing’ simultaneously. The host processor executes

a busy loop for the expected completion time of the task. This correctly models how
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tasks would actually execute in a mHC environment. Tasks executing on the external

processing elements are allowed to execute in parallel and in the correct amount of

time independent of the host processor. The host processor, however, blocks execution

of the main program when executing tasks by using a busy loop since these events

are occurring on the same hardware.

5.3 Scheduling Heuristics

The scheduling heuristic is responsible for taking the tasks created when an API call

is made and place it in the task queue of the device that will minimize execution

time. The heuristics that are used by the mHC environment are dynamic and real-

time which means the mapping is done during run-time and the scheduler only has

knowledge about those tasks that have already been scheduled.

The heuristics assume that the target microHeterogeneous environment consists

of a set Q of q heterogeneous processing elements. W is a computation cost matrix

of size v × q that contains the estimated execution time for all tasks already created

where v is the number of the task currently being scheduled. The value wi,j gives the

estimated execution time of task i on processing element pi. B is a communication cost

matrix of size q×2, where bi,1 is the communication time required to transfer this task

to processing element pi and bi,2 is the per transaction overhead for communicating

with processing element pi. The estimated time to completion (ETC) of task i on

processing element pj is defined as

ETCi,j = wi,j + bj,1 + bj,2 (5.1)

The estimated time to idle is the estimated amount of time before a processing element
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pi will become idle. The estimated time to idle (ETI) of processor j is defined as

ETIj =
∑

1≤i≤n

ETCi,j (5.2)

where n is the number of tasks currently scheduled on processing element i. This does

not take into account any processing that might have already been completed on the

first task in the queue. However, since the number of tasks created is reasonably large

and the execution times of the tasks is relatively short this does not have a negative

impact on the performance of the scheduling heuristics.

Three different schedulers were implemented in order to compare their perfor-

mances. All of these algorithms are based on heterogeneous scheduling algorithms

which have been modified to fit the requirements of a microHeterogeneous environ-

ment if required.

5.3.1 Fast Greedy

The Fast Greedy algorithm is a very simple algorithm that simply searches for the

processor which has the lowest ETC for the task that is being scheduled. Tasks that

have previously been scheduled are not taken into account at all in this algorithm.

The Fast Greedy algorithm first determines the subset of processors, S, of Q that

support the current task being scheduled. The ETC for the task on each of the

processors in S is then calculated. The processor, sj, with the minimum ETC is

chosen and compared against the ETC of the host processor. If the speedup gained

is greater then γ then the task is scheduled to sj, otherwise the task is scheduled to

the host processor. The complete algorithm is shown below.
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Fast Greedy

1. Let i represent the current task to be scheduled.

2. Determine that set of processors S of size s that support the function call ci where ci is the
function that is to be executed. The host processor is denoted as s0 and must always appear
in S.

3. Calculate the ETC of task i for each of the s processors.

4. Locate the processor sj where

ETCi,sj = min
0≤j≤s

ETCi,j

5. If ETCi,sj
/ETCi,s0 > γ then schedule task i on processor sj otherwise schedule task i on

processor s0

The parameter γ is used as a final check on whether or not the performance gained

is worth the effort to send a task to a processor. This allows some fine turning to

prevent very small tasks from being sent to processing elements where the higher

communication-to-computation ratio would be undesirable.

5.3.2 Real-Time Min-Min

The Real-Time Min-Min (RTmm) algorithm is based on the standard Min-Min algo-

rithm that is used in heterogeneous computing. The Min-Min algorithm was chosen

because it is simple, very fast, and generally results in good performance. The Min-

Min algorithm had to be modified because information about all of the tasks is not

known at run-time, only information about previously created tasks is known. Thus

tasks are scheduled in order to minimize the expected time to completion as tasks are

scheduled.

The RTmm algorithm first determines the subset of processing elemments, S, of

Q that support the current task being scheduled. The ETC for the task and the ETI
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for each of the processing elements in S is then calculated. The ETCi,j(total) for task

i on processing element pj is equal to the sum of ETCij and ETIj. The processing

element, sj, with the minimum newly calculated ETCtotal is chosen and compared

against the ETCtotal of the host processor. If the speedup gained is greater then γ

then the task is scheduled to sj, otherwise the task is scheduled to the host processor.

The complete algorithm is shown below.

Real-Time Min Min

1. Let i represent the current task to be scheduled.

2. Determine that set of processors S of size s that support the function call ci where ci is the
function that is to be executed. The host processor is denoted as s0 and must always appear
in S.

3. Compute the ETC of task i for each of the s processors.

4. Compute the ETI of processing element pj for each of the s processors.

5. Compute ETCi,j(total) = ETCi,j + ETI for each of the s processors.

6. Locate the processor sj where

ETCi,sj(total) = min
0≤j≤s

ETCi,j(total)

7. If ETCi,sj(total)/ETCi,s0(total) > γ then schedule task i on processor sj otherwise schedule
task i on processor s0

The parameter γ is again used as a final check on whether or not the performance

gained is worth the effort to send a task to a processor.

5.3.3 Weighted Real-Time Min-Min

The Weighted Real-Time Min-Min (WRTmm) uses the same algorithm as RTmm

but adds two more parameters so that the scheduling can be fine tuned to specific

applications. First, the parameter α takes into account times when a task dependency

exists for the task that is currently being scheduled. An α value of less then one tends
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to schedule these tasks onto the same processing element as the dependency while

a value greater then one tends to schedule these tasks onto a different processing

element.

Second, the parameter ρ is used to try and schedule events to processing elements

that support fewer of the API calls and must be between 0 and 1. A low value of ρ tells

the scheduler not worry about mapping tasks to devices that do not support many

functions, while the opposite is true for high values of ρ. This parameter is most useful

for times when a custom hardware device is being used that only supports a couple

of the function calls. Ordinarily, such a device would remain idle a good portion of

the time if other devices also supported the same functions. The complete algorithm

is shown below.

Weighted Real-Time Min Min

1. Let i represent the current task to be scheduled.

2. Determine that set of processors S of size s that support the mHC function call ci where ci

is the mHC function that is to be executed. The host processor is denoted as s0 and must
always appear in S.

3. Compute the ETC of task i for each of the s processors.

4. Compute the ETI of processing element pj for each of the s processors.

5. Compute ETCi,j(total) = ETCi,j + ETI for each of the s processors.

6. Compute ETCweighted for each of the s processes which is defined as

ETCi,j(weighted) = (ETCi,j(total) × α)× [1− (ρ× 1
c
)]

where c is the total number of mHC function calls that pj supports.

7. Locate the processor sj where

ETCi,sj(weighted) = min
0≤j≤s

ETCi,j(weighted)

8. If ETCi,sj(weighted)/ETCi,s0(weighted) > γ then schedule task i on processor sj otherwise
schedule task i on processor s0
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The parameter γ is again used as a final check on whether or not the performance

gained is worth the effort to send a task to a processor.

The next chapter discusses the results that were obtained using each of these

scheduling heuristics on various permutations of a microHeterogeneous computing

environment.
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Chapter 6

RESULTS

This chapter discusses the experimental results of this thesis. All of the results were

obtained from running the microHeterogeneous computing framework on a 400 MHz,

Pentium II processer workstation running Red Hat Linux 7.3.

6.1 Methodology

In order to assure accurate timing information, each simulation run was done in three

steps. The default values for α, γ, and ρ were used for each of the simulation runs.

First, the application was executed without using a scheduler causing the applica-

tion to execute sequentially. The was done five times and the median run was used

to determine the estimated completion time of each of the different function types

that were used by the application. The estimated completion time of each of these

functions was then calculated for each of the available devices based on the speedup

provided by the device. Next, the application was run with the desired scheduling

heuristic which caused the tasks to actually be mapped to various processing elements.

This was done as a check to make sure that the output of the parallelized application

was the same as when the application was run sequentially. Finally, the application

was run using the desired scheduling heuristic in the timing mode that is provided

by the framework. This step does not actually execute the tasks and therefore the

resulting output will be different then the sequential version. It does, however, utilize
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the timing information calculated during the first step in order to accurately model

the timing of a microHeterogeneous environment. This final step was also done five

times and the median of the runs was used.

While any combination of devices is possible using the mHC framework, the sim-

ulations were made more manageable by only using three different base combinations

of devices. These combinations were then altered by changing the number of devices,

the speedups associated with the devices, and the bus timing information associated

with the device. When the speedups or bus timing was changed, it was changed

equally on all devices. The base combinations used were:

default The default combination modelled three PCI-based processing elements which

supported all of the mHC API calls with a speedup of 20.

full same The full same combination utilized six PCI-based processing elements

which supported all of the mHC API calls with a speedup of 20.

full diff The full diff combination utilized six PCI-based processing elements which

supported all of the mHC API calls with varying speedups. The speedups used

were 20,10,5,2,1, and 0.5 for devices one through six respectively. When the

number of devices is altered, devices are always removed starting at device six.

The speedup of 20 was decided as a conservative value based on the processing ele-

ments that were previously mentioned. These accelerators were actually reported to

have speedups in this range as compared to a 1.4 GHz Pentium IV and should actually

surpass this mark when compared to 400 MHz processor used for the simulations.
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6.2 mHC Simulator

An mHC Simulator was implemented in Qt which provides a graphical user interface

for setting up and running simulations. Using the simulator, all of the configuration

files that the framework requires can be generated without the need to edit the text

files themselves. The simulator also allows simulations to be run that involve various

mHC applications, various device configurations, and various bus timing values.

The simulator follows the same procedure outlined in the Methodology section for

obtaining timing results without the need for any user intervention. It automatically

calculates and records all of the estimated completion times that are required for

the simulations, checks the parallel output against the sequential version, and then

performs the timing runs.

The simulator also automatically analyzes all of the log files that are generated

by the framework and produces in-depth HTML reports. These reports include exe-

cution time comparisons, device utilization charts, program statistics, and scheduler

performance analysis. Interactive task graphs are also generated that indicate the

device to which each task was assigned, what order the tasks were executed in, and

also where the task dependencies occurred that resulted in a device being blocked.

6.3 Application Simulations

Three different applications were simulated using the full same device configuration.

The simulations show the performance when simulated on a microHeterogeneous com-

puter for some common operations that are found in scientific computing applications.
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Figure 6.1: Matrix Application: Performance vs Number of Devices

6.3.1 Matrix

The matrix application performs some basic matrix operations on a set of fifty 100

× 100 matrices. Initially, the first twenty-five matrices are summed together, the last

twenty-five matrices are subtracted from one another, and every fifth matrix is scaled

by a constant factor. This provides for a good mix of operations and dependencies

and represents some of the common operations performed on matrices.

After the basic matrix math operations, the inverse of each of the fifty matrices

is determined. This is accomplished by first performing an LU decomposition on the

matrix, followed by the matrix inversion. Matrix inversion is a very common task

that is relatively computation intensive.

The results of the simulation are shown in Fig. 6.1. The results along with

the speedups as compared to the single processor machine are also shown in Table

6.1. All of the different configurations produced a performance improvement over
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Number of Processing Elements
Heuristic 1 2 3 4 5 6 7

Fast Greedy Exec Time (s) 7.5 3.22 3.22 3.25 3.2 3.25 3.25
Speedup - 2.33 2.33 2.31 2.34 2.31 2.31

RTmm Exec Time (s) 7.5 5.25 3.75 3.14 2.04 2 1.5
Speedup - 1.43 2.00 2.39 3.68 3.75 5.00

WRTmm Exec Time (s) 7.5 3.81 2.7 2.02 1.89 1.14 1.48
Speedup - 1.97 2.78 3.71 3.97 6.58 5.07

Table 6.1: Matrix Simulation Data Summary

the sequential version (indicated in the graph as having only one processing element)

to varying degrees. The Fast Greedy heuristic produced a decent speedup, but did

not take advantage of the additional devices as they were added. It did, however,

produce the best results for the cases of two and three processing elements due to

the low scheduling overhead of the heuristic. The RTmm heuristic and the WRTmm

both scaled well versus the number of processing elements, with WRTmm consistently

providing lower overall execution times. The highest speedup obtained was 6.58 and

occurred using WRTmm with six processing elements.

6.3.2 Stats

The stats application divides a block of five million values into fifty blocks of one

hundred thousand values and then determines the blocks of data with the minimum

and maximum standard deviations. This is accomplished by finding the standard

deviation of each of the fifty blocks, storing the values into an array, and then locating

the indices of the minimum and maximum values. This application represents the

parallel search of a data space for a specific value, in this case the minimum and
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Figure 6.2: Stats Application: Performance vs Number of Devices

maximum standard deviation.

The results of the simulation are shown in Fig. 6.2. The results along with the

speedups as compared to the single processor machine are also shown in Table 6.2.

For this application, only the WRTmm heuristic consistently produced schedules that

produced a performance improvement over the sequential version. The Fast Greedy

heuristic produced did not produce an acceptable mapping due to its inability to

balance loads effectively. The RTmm heuristic and the WRTmm both produced

acceptable mappings, with WRTmm consistently providing lower overall execution

times. The highest speedup obtained was 1.16 and occurred using WRTmm with six

processing elements. The performance increase was not as dramatic as with the matrix

application because the standard deviation function used is not as computationally

intensive. This left most of the devices idle for a large portion of the total execution

time, greatly reducing their effectiveness.
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Number of Processing Elements
Heuristic 1 2 3 4 5 6 7

Fast Greedy Exec Time (s) 6.2 6.78 6.91 6.85 6.9 6.88 6.9
Speedup - 0.91 0.90 0.91 0.90 0.90 0.90

RTmm Exec Time (s) 6.2 6.4 6.23 5.8 5.76 5.4 5.62
Speedup - 0.97 1.00 1.07 1.08 1.15 1.10

WRTmm Exec Time (s) 6.2 6 5.59 5.42 5.44 5.35 5.32
Speedup - 1.03 1.11 1.14 1.14 1.16 1.17

Table 6.2: Stats Simulation Data Summary

6.3.3 Linalg

The linalg application solves fifty sets of linear equations each containing one hundred

and seventy-five variables. This is another rather computation intensive application

that is very common in scientific applications. In order to solve each matrix must first

be decomposed and then passed to the solve function, creating a direct dependency

for each of the fifty sets of equations.

Figure 6.3: Linalg Application: Performance vs Number of Devices
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Number of Processing Elements
Heuristic 1 2 3 4 5 6 7

Fast Greedy Exec Time (s) 9.6 3 3.12 3.08 3.02 3.18 3.22
Speedup - 3.20 3.08 3.12 3.18 3.02 2.98

RTmm Exec Time (s) 9.6 6.75 2.82 4.2 2.21 2.58 1.5
Speedup - 1.42 3.40 2.29 4.34 3.72 6.40

WRTmm Exec Time (s) 9.6 5.86 2.82 2.14 1.6 1.49 1.16
Speedup - 1.64 3.40 4.49 6.00 6.44 8.28

Table 6.3: Linalg Simulation Data Summary

The results of the simulation are shown in Fig. 6.3. The results along with the

speedups as compared to the single processor machine are also shown in Table 6.3. All

of the different configurations produced a performance improvement over the sequen-

tial version (indicated in the graph as having only one processing element) to varying

degrees. The Fast Greedy heuristic produced a decent speedup, but again did not take

advantage of the additional devices as they were added. It did, however, produce the

best results for the case of two processing elements due to the low scheduling overhead

of the heuristic. The performance of the RTmm heuristic was heavily dependent on

whether or not the number of processing elements was odd. If the number was odd,

the number of times devices had to be blocked due to dependencies was reduced and

the heuristic performed better. The WRTmm algorithm consistently providing lower

overall execution times and scaled well with the number of processing elements. The

WRTmm algorithm was also not dependent on the number of processing elements

being odd. The highest speedup obtained was 8.28 and occurred using WRTmm with

seven processing elements.
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6.4 Scheduler Performance Comparison

A final stress testing was performed on each of the scheduling heuristics to provide

a more complete comparison between them. The application used to perform the

testing generated one hundred different task graphs with which to test the sched-

ulers on. The task graphs created each contained three hundred tasks with varying

depths and a unique set of dependencies between them. The task performed was a

simple element multiplication of two matrices. The average execution time of the one

hundred task graphs was used to compare the performance of the different schedulers.

The task graphs that were created posed a challenge to the schedulers since the

dependencies did not follow any regular pattern. There was no way for the heuristics

to obtain a good schedule by chance, which had occurred in one of the applications

simulated previously. Also, the task chosen was intentionally not very computation-

ally intensive. The performance achieved was therefore very dependent on the ability

of the scheduler to handle the dependencies as well as efficiently balance the load

between the processors.

The schedulers were tested with both similar and dissimilar devices. They were

also tested with increasing bus transfer times, as well as decreasing device perfor-

mance in order to determine their effect on overall application performance.

First, the schedulers were tested with the full same device configuration using var-

ious numbers of devices. This simulation was used to test the ability of the heuristics

to effectively utilize additional devices by balancing the load equally. The results of

the simulation are shown in Fig. 6.4. The results are also shown in Table 6.4.
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Figure 6.4: Performance of Random Task Graphs on a Uniform Set of Devices

In this test, both the RTmm and WRTmm algorithms reduced their overall exe-

cution times as more devices were added. However, the WRTmm algorithm showed

a sharper decline in execution time as devices were added as well as better over-

all performance. The Fast Greedy algorithm performs no load balancing at all and

demonstrated a relatively constant execution time that was greater then both the

RTmm and WRTmm heuristics.

Second, the schedulers were tested with the full diff device configuration using

Number of Processing Elements
Heuristic 1 2 3 4 5 6 7

Fast Greedy Exec Time (s) 11.8 13.25 13.1 13.3 13.16 13.32 13.25
RTmm Exec Time (s) 11.8 12.67 12.51 11.96 11.75 11.16 11.19

WRTmm Exec Time (s) 11.8 11.75 10.74 10.23 9.6 9.27 8.92

Table 6.4: Uniform Set of Devices Performance Data
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Figure 6.5: Performance of Random Task Graphs on a Non-Uniform Set of Devices

various numbers of devices. This simulation was used to test the ability of the heuris-

tics to effectively utilize additional devices by balancing the load to the most effective

processing element. The results of the simulation are shown in Fig. 6.5. The results

are also shown in Table 6.5.

In this test, only the WRTmm algorithm reduced the overall execution time as

more devices were added. This shows that the WRTmm is able to take advantage

of slower devices without having a negative impact on the overall performance. The

RTmm, however, was unable to determine a adequate mapping to take advantage

Number of Processing Elements
Heuristic 1 2 3 4 5 6 7

Fast Greedy Exec Time (s) 11.8 13.01 13.12 13.22 13.22 13.29 13.18
RTmm Exec Time (s) 11.8 12.3 12.11 12.46 12.48 11.92 13.08

WRTmm Exec Time (s) 11.8 11.4 10.62 10.19 9.98 9.82 9.84

Table 6.5: Non-Uniform Set of Devices Performance Data
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Figure 6.6: Performance of Random Task Graphs for Increasing Bus Transfer Times

of such devices and actually showed a decrease in performance as more devices were

added. The Fast Greedy algorithm performs no load balancing at all and demon-

strated a relatively constant execution time that was greater then both the RTmm

and WRTmm heuristics.

Next, the schedulers were tested with the default device configuration using in-

creasing values for the bus transfer times. This simulation was used to test the ability

of the heuristics to cope with higher communication times due to slower buses. The

bus transfer times tested start at the level of a 33 MHz 64-bit PCI bus and end at

the level of a 100 Mb/s ethernet connection. The results of the simulation are shown

in Fig. 6.6. The results are also shown in Table 6.6.

For this test, the Fast Greedy heuristic performed the best and showed not per-

formance degradation as the bus transfer times were increased. This is because the

Fast Greedy heuristic simply places the tasks on the device with the lowest estimated
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Number of Processing Elements
Heuristic 0.005 0.01 0.02 0.04 0.08

Fast Greedy Exec Time (s) 13.7 13.82 13.71 13.66 13.94
RTmm Exec Time (s) 14.21 19.53 26.1 37.68 76.54

WRTmm Exec Time (s) 12.43 14.32 15.01 21.03 31.76

Table 6.6: Increasing Bus Transfer Times Performance Data

time to completion which is always the host processor as the bus transfer times are

increased. The RTmm and WRTmm algorithms both showed increased execution

times as the bus transfer times increased. Overall, the WRTmm algorithm performed

better then the RTmm algorithm and the execution time only increased by a factor

of three while the bus transfer times increased by a factor of forty. In comparison, the

execution time using the RTmm algorithm increased by a factor of approximately six.

Finally, the schedulers were tested with the default device configuration but with

varying device speedups. This simulation was used to test the ability of the heuristics

to perform well even with slower devices. The device speedups tested start at the 4

and end at 40. The results of the simulation are shown in Fig. 6.7. The results are

also shown in Table 6.7.

Number of Processing Elements
Heuristic 4 5 10 20 40

Fast Greedy Exec Time (s) 17 16.27 13.75 14.18 13.12
RTmm Exec Time (s) 14.3 13.8 11.9 11.8 11.6

WRTmm Exec Time (s) 11.26 11.23 10.76 10.75 10.61

Table 6.7: Varying Speedup Performance Data
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Figure 6.7: Performance of Random Task Graphs for Varying Device Speedups

In this test, both the Fast Greedy and RTmm algorithms proved to be very depen-

dent on the speedup of the devices in order to achieve good performance. Each time

the performance of the devices was reduced by half, the execution time for both the

Fast Greedy algorithm and the RTmm algorithm would increase by approximately a

second. The WRTmm algorithm, however, did not demonstrate this dependence at

all and the execution time changed very little as the device speedup was reduced. This

is close to the ideal case since the task graphs were not composed of computationally

intensive tasks whose execution time could be improved by any dramatic amount by

increasing the device speedup alone. It is instead the inefficient load balancing of

the Fast Greedy and RTmm algorithms that actually gets partially hidden by faster

devices in this particular case.

Overall, the WRTmm algorithm proved to have the best scheduling performance

in almost every case. The more basic RTmm was never able to perform as well as the

WRTmm algorithm in any of the test that were performed. The Fast Greedy algo-
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rithm also generally showed worse performance then the WRTmm algorithm, except

in a few special cases. For instance, when only two processing elements (including

the host processor) is going to be used, the Fast Greedy algorithm provides good

performance due to its very low scheduling time.

These results show that the microHeterogeneous computing environment is a vi-

able architecture that can provide measurable performance benefits in almost all cases.

The next chapter discusses the accomplishments, limitations, and future work in re-

gards to this thesis.
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Chapter 7

CONCLUSIONS

7.1 Accomplishments

This thesis presents a new computing paradigm, microHeterogeneous Computing,

that successfully exploits fine-grained parallelism in scientific based applications using

additional PCI based processing elements. An API was created that allows developers

to incorporate mHC into their applications without being required to address task

scheduling, load balancing, or threading issues. A highly configurable mHC frame-

work was implemented as a standard library which allows actual mHC compliant

applications to be compiled and executed using standard techniques. All of the mHC

devices were simulated as no actual mHC compliant devices exist at this time. The

performance results obtained showed the mHC environment to be a viable comput-

ing architecture that has the capability to measurably increase performance over a

comparable single processor machine.

An mHC simulator with a graphical user interface was also implemented. The

mHC simulator has the ability to generate all of the configuration files that are re-

quired by the mHC framework. It also allows the user to automatically run simu-

lations for mHC applications with various user-defined configurations. Full featured

HTML based reports are then created based on the log files generated from the sim-
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ulation.

7.2 Limitations

The main limitation of this work is the lack of real mHC compliant drivers. As

no devices of this nature currently exist, they had to be simulated which creates

the possibility of discrepancies between the simulated performance and the actual

performance of a true mHC environment. Every effort was made to accurately model

device interactions, however, not every aspect that effects overall performance could

be properly accounted for.

7.3 Future Work

There is still much work to do in the field of microHeterogeneous computing. All

aspects of the architecture need to be refined in order to achieve the highest possible

performance. The area that requires the most intensive effort is the creation of mHC

compliant device drivers so that an actual mHC environment can be created. Suitable

devices already exist, however there are currently no drivers to connect them to the

mHC library so that function calls may be mapped to them. Once device drivers

are created, the framework can simply be modified to utilize these drivers instead of

executing the function calls internally.

Dynamic real-time scheduling algorithms must also be studied in order to obtain

better mappings in this type of environment. This architecture presents some new

challenges by combining the issues of mapping tasks onto heterogeneous processing

elements with the issues of real-time scheduling in a multiprocessor system. While a

cursory algorithm was presented here, more work needs to be done especially when
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an actual mHC test environment becomes available.

While the microHeterogneous API currently contains the most common scientific

functions, it needs to be expanded in order to become complimentary to the GNU

Scientific Library. This will further ease the transition for developers moving from

GSL applications to mHC applications.

Finally, the concept of mHC clusters needs to be fully explored in order to de-

termine the applicability of mHC to this area of computing. By exploiting both the

coarse-grained and fine-grained parallelism, performance should dramatically increase,

but this hypothesis needs to tested in a real-world situation.
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Appendix A

COMPLETE MHC API

The following is a complete list of currently supported mHC API calls. All of

the API calls return 0 if successful and a negative error code otherwise. The mHC

library is thread-safe except for mHC initialize(...) and mHC finalize(). These two

functions should only be called by the main application thread at the very beginning

and very end of execution respectively.

A.1 mHC Specific Functions

mhc initialize( char **argv )
This function initializes the microHeterogeneous API and must be called before any of the
API functions may be called. The arg list passed to the application should be passed into
mhc initialize as well in order to be fully compliant with the mHC Simulator.

mhc join()
This function waits for all currently scheduled tasks to finish before returning. This function
should be called before using any result from an mHC API call is used by a non mHC API
call.

mhc finalize()
This function cleans up the microHeterogeneous API and mustbe called before exiting to
assure that all memory has been properly freed and all file handles have been properly closed.

A.2 Matrix Operations

mhc matrix add( gsl matrix *a, gsl matrix *b )
This function adds the elements of matrix b to the elements of matrix a, a′(i, j) = a(i, j) +
b(i, j). The two matrices must have the same dimensions.

mhc matrix sub( gsl matrix *a, gsl matrix *b )
This function subtracts the elements of matrix b from the elements of matrix a, a′(i, j) =
a(i, j)− b(i, j). The two matrices must have the same dimensions.
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mhc matrix mul elements( gsl matrix *a, gsl matrix *b )
This function multiplies the elements of matrix a by the elements of matrix b, a′(i, j) =
a(i, j)b(i, j). The two matrices must have the same dimensions.

mhc matrix div elements( gsl matrix *a, gsl matrix *b )
This function divides the elements of matrix a by the elements of matrix b, a′(i, j) =
a(i, j)/b(i, j). The two matrices must have the same dimensions.

mhc matrix scale(gsl matrix *a, double *x )
This function multiplies the elements of matrix a by the constant factor x, a′(i, j) = xa(i, j).

mhc matrix add constant( gsl matrix *a, double *x )
This function adds the constant value x to the elements of the matrix a, a′(i, j) = a(i, j) + x.

mhc matrix minmax( gsl matrix *m, double *min out, double *max out )
This function returns the minimum and maximum values in the matrix m, storing them in
min out and max out.

mhc matrix minmax index( gsl matrix *m, size t *imin, size t *jmin, size t *imax,
size t *jmax )
This function returns the indices of the minimum and maximum values in the matrix m,
storing them in (imin,jmin) and (imax,jmax). When there are several equal minimum or
maximum elements then the first elements found are returned.

A.3 Vector Operations

mhc vector add( gsl vector *a, gsl vector *b )
This function adds the elements of vector b to the elements of vector a, a′ i = a i + b i. The
two vectors must have the same length.

mhc vector sub( gsl vector *a, gsl vector *b )
This function subtracts the elements of vector b from the elements of vector a, a′ i = a i−b i.
The two vectors must have the same length.

mhc vector mul( gsl vector *a, gsl vector *b )
This function multiplies the elements of vector a by the elements of vector b, a′ i = a ib i.
The two vectors must have the same length.

mhc vector div( gsl vector *a, gsl vector *b )
This function divides the elements of vector a by the elements of vector b, a′ i = a i/b i. The
two vectors must have the same length.

mhc vector scale(gsl vector *a, double *x )
This function multiplies the elements of vector a by the constant factor x, a′ i = xa i.

mhc vector add constant( gsl vector *a, double *x )
This function adds the constant value x to the elements of the vector a, a′ i = a i + x.

mhc vector minmax( gsl vector *m, double *min out, double *max out )
This function returns the minimum and maximum values in the vector v, storing them in
min out and max out.

mhc vector minmax index( gsl vector *m, size t *imin, size t *imax )
This function returns the indices of the minimum and maximum values in the vector v, storing
them in imin and imax. When there are several equal minimum or maximum elements then
the lowest indices are returned.
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A.4 Polynomial Solve

mhc poly complex solve( double *a, size t *n, gsl poly complex workspace *w,
gsl complex packed ptr z )
This function computes the roots of the general polynomial P (x) = a 0 + a 1x + a 2x2 +
... + a n− 1xn−1 using balanced-QR reduction of the companion matrix. The parameter n
specifies the length of the coefficient array. The coefficient of the highest order term must be
non-zero. The function requires a workspace w of the appropriate size. The n − 1 roots are
returned in the packed complex array z of length 2(n − 1) , alternating real and imaginary
parts.

A.5 Permutations

mhc permutation reverse( gsl permutation *p )
This function reverses the elements of the permutation p.

mhc permutation inverse( gsl permutation *inv, gsl permutation *p )
This function computes the inverse of the permutation p, storing the result in inv.

mhc permutation next( gsl permutation *p )
This function advances the permutation p to the next permutation in lexicographic order
and returns GSL SUCCESS. If no further permutations are available it leaves p unmodified.
Starting with the identity permutation and repeatedly applying this function will iterate
through all possible permutations of a given order.

mhc permutation prev( gsl permutation *p )
This function steps backwards from the permutation p to the previous permutation in lexi-
cographic order. If no previous permutation is available it leaves p unmodified.

mhc permute( size t *p, double *data, size t *stride, size t *n )
This function applies the permutation p to the array data of size n with stride stride.

mhc permute inverse( size t *p, double *data, size t *stride, size t *n )
This function applies the inverse of the permutation p to the array data of size n with stride
stride.

mhc permute vector( gsl permutation *p, gsl vector *v )
This function applies the permutation p to the elements of the vector v, considered as a row-
vector acted on by a permutation matrix from the right, v′ = vP . The j-th column of the
permutation matrix P is given by the p j-th column of the identity matrix. The permutation
p and the vector v must have the same length.

mhc permute vector inverse( gsl permutation *p, gsl vector *v )
This function applies the inverse of the permutation p to the elements of the vector v, con-
sidered as a row-vector acted on by an inverse permutation matrix from the right, v′ = vPT .
Note that for permutation matrices the inverse is the same as the transpose. The j-th col-
umn of the permutation matrix P is given by the p j-th column of the identity matrix. The
permutation p and the vector v must have the same length.
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mhc permutation mul( gsl permutation *p, gsl permutation *pa,
gsl permutation *pb )
This function combines the two permutations pa and pb into a single permutation p, where
p = pa . pb. The permutation p is equivalent to applying pb first and then pa.

A.6 Combinations

mhc combination next( gsl combination *c )
This function advances the combination c to the next combination in lexicographic order. If no
further combinations are available it leaves c unmodified. Starting with the fisrst combination
and repeatedly applying this function will iterate through all possible combinations of a given
order.

mhc combination prev( gsl combination *c )
This function steps backwards from the combination c to the previous combination in lexico-
graphic order. If no previous combination is available it leaves c unmodified.

A.7 Sorting

mhc heapsort( void *array, size t *count, size t *size, gsl comparison fn t compare )
This function sorts the count elements of the array array, each of size size, into ascending
order using the comparison function compare. The type of the comparison function is defined
by, int (*gsl comparison fn t) (voida, voidb) A comparison function should return a negative
integer if the first argument is less than the second argument, 0 if the two arguments are equal
and a positive integer if the first argument is greater than the second argument.

A.8 Linear Algebra

mhc linalg LU decomp( gsl matrix *A, gsl permutation *p, int *signum )
These functions factorize the square matrix A into the LU decomposition PA = LU . On
output the diagonal and upper triangular part of the input matrix A contain the matrix
U. The lower triangular part of the input matrix (excluding the diagonal) contains L. The
diagonal elements of L are unity, and are not stored. The permutation matrix P is encoded
in the permutation p. The j-th column of the matrix P is given by the k-th column of the
identity matrix, where k = p j the j-th element of the permutation vector. The sign of the
permutation is given by signum. It has the value (−1)n, where n is the number of interchanges
in the permutation. The algorithm used in the decomposition is Gaussian Elimination with
partial pivoting (Golub & Van Loan, Matrix Computations, Algorithm 3.4.1).

mhc linalg complex LU decomp( gsl matrix complex *A, gsl permutation *p,
int *signum )
Complex version of mhc linalg LU decomp.

mhc linalg LU solve( gsl matrix *LU, gsl permutation *p,
gsl vector *b, gsl vector *x )
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These functions solve the system Ax = b using the LU decomposition of A into (LU, p) given
by gsl linalg LU decomp or gsl linalg complex LU decomp.

mhc linalg complex LU solve( gsl matrix complex *LU, gsl permutation *p,
gsl vector complex *b, gsl vector complex *x )
Complex version of mhc linalg LU solve.

mhc linalg LU svx( gsl matrix *LU, gsl permutation *p, gsl vector *x )
These functions solve the system Ax = b in-place using the LU decomposition of A into
(LU,p). On input x should contain the right-hand side b, which is replaced by the solution
on output.

mhc linalg complex LU svx( gsl matrix complex *LU, gsl permutation *p,
gsl vector complex *x )
Complex version of mhc linalg LU svx.

mhc linalg LU refine( gsl matrix *A, gsl matrix *LU, gsl permutation *p,
gsl vector *b, gsl vector *x, gsl vector *residual )
These functions apply aniterative improvement to x, the solution of Ax = b, using the LU
decomposition of A into (LU, p). The initial residual r = Ax− b is also computed and stored
in residual.

mhc linalg complex LU refine( gsl matrix complex *A, gsl matrix complex *LU,
gsl permutation *p, gsl vector complex *b, gsl vector complex *x,
gsl vector complex *residual )
Complex version of mhc linalg LU refine.

mhc linalg LU invert( gsl matrix *LU, gsl permutation *p,
gsl matrix *inverse )
These functions compute the inverse of a matrix A from its LU decomposition (LU,p), storing
the result in the matrix inverse. The inverse is computed by solving the system Ax = b for
each column of the identity matrix. It is preferable to avoid direct computation of the inverse
whenever possible.

mhc linalg complex LU invert( gsl matrix complex *LU, gsl permutation *p,
gsl matrix complex *inverse )
Complex version of mhc linalg LU invert.

mhc linalg QR decomp( gsl matrix *A, gsl vector *tau )
This function factorizes the M-by-N matrix A into the QR decomposition A = Q R. On
output the diagonal and upper triangular part of the input matrix contain the matrix R.
The vector tau and the columns of the lower triangular part of the matrix A contain the
Householder coefficients and Householder vectors which encode the orthogonal matrix Q. The
vector tau must be of length k = min(M, N). The matrix Q is related to these components by,
Q = Qk...Q2Q1 where Qi = I − τiviv

T
i and vi is the Householder vector vi = (0, ..., 1, A(i +

1, i), A(i + 2, i), ..., A(m, i)). This is the same storage scheme as used by LAPACK. The
algorithm used to perform the decomposition is Householder QR (Golub & Van Loan, Matrix
Computations, Algorithm 5.2.1).

mhc linalg QR solve( gsl matrix *QR, gsl vector *tau, gsl vector *b, gsl vector *x )
This function solves the system Ax = b using the QR decomposition of A into (QR, tau)
given by gsl linalg QR decomp.

mhc linalg QR svx( gsl matrix *QR, gsl vector *tau, gsl vector *x )
This function solves the system Ax = b in-place using the QR decomposition of A into
(QR,tau) given by gsl linalg QR decomp. On input x should contain the right-hand side b,
which is replaced by the solution on output.
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mhc linalg QR lssolve( gsl matrix *QR, gsl vector *tau, gsl vector *b, gsl vector *x,
gsl vector *residual )
This function finds the least squares solutionto the overdetermined system Ax = b where the
matrix A has more rows than columns. The least squares solution minimizes the Euclidean
norm of the residual, ||Ax− b||. The routine uses the QR decomposition of A into (QR, tau)
given by gsl linalg QR decomp. The solution is returned in x. The residual is computed as a
by-product and stored in residual.

mhc linalg QR QTvec( gsl matrix *QR, gsl vector *tau, gsl vector *v )
This function applies the matrix QT encoded in the decomposition (QR,tau) to the vector
v, storing the result QT v in v. The matrix multiplication is carried out directly using the
encoding of the Householder vectors without needing to form the full matrix QT .

mhc linalg QR Qvec( gsl matrix *QR, gsl vector *tau, gsl vector *v )
This function applies the matrix Q encoded in the decomposition (QR,tau) to the vector v,
storing the result Qv in v. The matrix multiplication is carried out directly using the encoding
of the Householder vectors without needing to form the full matrix Q.

mhc linalg QR Rsolve( gsl matrix *QR, gsl vector *b, gsl vector *x )
This function solves the triangular system Rx = b for x. It may be useful if the product
b′ = QT b has already been computed using gsl linalg QR QTvec.

mhc linalg QR Rsvx( gsl matrix *QR, gsl vector *x )
This function solves the triangular system Rx = b for x in-place. On input x should contain
the right-hand side b and is replaced by the solution on output. This function may be useful
if the product b′ = QT b has already been computed using gsl linalg QR QTvec.

mhc linalg QR unpack( gsl matrix *QR, gsl vector *tau, gsl matrix *Q, gsl matrix *R
)
This function unpacks the encoded QR decomposition (QR,tau) into the matrices Q and R,
where Q is M-by-M and R is M-by-N.

mhc linalg QR QRsolve( gsl matrix *Q, gsl matrix *R, gsl vector *b, gsl vector *x )
This function solves the system Rx = QT b for x. It can be used when the QR decomposition
of a matrix is available in unpacked form as (Q,R).

mhc linalg QR update( gsl matrix *Q, gsl matrix *R, gsl vector *w, gsl vector *v )
This function performs a rank-1 update wvT of the QR decomposition (Q, R). The update
is given by Q′R′ = QR + wvT where the output matrices Q’ and R’ are also orthogonal and
right triangular. Note that w is destroyed by the update.

mhc linalg R solve( gsl matrix *R, gsl vector *b, gsl vector *x )
This function solves the triangular system Rx = b for the N-by-N matrix R.

mhc linalg R svx( gsl matrix *R, gsl vector *x )
This function solvesthe triangular system Rx = b in-place. On input x should contain the
right-hand side b, which is replaced by the solution on output.

A.9 Eigenvectors and Eigenvalues

mhc eigen herm( gsl matrix complex *A, gsl vector *eval, gsl eigen herm workspace
*w )
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This function computes the eigenvalues of the complex hermitian matrix A. Additional workspace
of the appropriate size must be provided in w. The diagonal and lower triangular part of A
are destroyed during the computation, but the strict upper triangular part is not referenced.
The imaginary parts of the diagonal are assumed to be zero and are not referenced. The
eigenvalues are stored in the vector eval and are unordered.

mhc eigen symmv( gsl matrix *A, gsl vector *eval, gsl matrix *evec,
gsl eigen symmv workspace *w )
This function computes the eigenvalues and eigenvectors of the real symmetric matrix A.
Additional workspace of the appropriate size must be provided in w. The diagonal and lower
triangular part of A are destroyed during the computation, but the strict upper triangular
part is not referenced. The eigenvalues are stored in the vector eval and are unordered.
The corresponding eigenvectors are stored in the columns of the matrix evec. For example,
the eigenvector in the first column corresponds to the first eigenvalue. The eigenvectors are
guaranteed to be mutually orthogonal and normalised to unit magnitude.

mhc eigen hermv( gsl matrix complex *A, gsl vector *eval, gsl matrix complex *evec,
gsl eigen hermv workspace *w )
This function computes the eigenvalues and eigenvectors of the complex hermitian matrix A.
Additional workspace of the appropriate size must be provided in w. The diagonal and lower
triangular part of A are destroyed during the computation, but the strict upper triangular
part is not referenced. The imaginary parts of the diagonal are assumed to be zero and
are not referenced. The eigenvalues are stored in the vector eval and are unordered. The
corresponding complex eigenvectors are stored in the columns of the matrix evec. For example,
the eigenvector in the first column corresponds to the first eigenvalue. The eigenvectors are
guaranteed to be mutually orthogonal and normalised to unit magnitude.

A.10 Fast Fourier Transforms

mhc fft complex forward( gsl complex packed array data[], size t *stride, size t *n,
gsl fft complex wavetable *wavetable, gsl fft complex workspace *work )
These function computes forward FFTs of length n with stride stride, on the packed complex
array data, using a mixed radix decimation-in-frequency algorithm. There is no restriction on
the length n. Efficient modules are provided for subtransforms of length 2, 3, 4, 5, 6 and 7.
Any remaining factors are computed with a slow, O(n2), general-n module. The caller must
supply a wavetable containing the trigonometric lookup tables and a workspace work.

mhc fft complex transform( gsl complex packed array data[], size t *stride, size t *n,
gsl fft complex wavetable *wavetable, gsl fft complex workspace *work,
gsl fft direction *sign )
These function computes transform FFTs of length n with stride stride, on the packed com-
plex array data, using a mixed radix decimation-in-frequency algorithm. There is no restric-
tion on the length n. Efficient modules are provided for subtransforms of length 2, 3, 4, 5, 6
and 7. Any remaining factors are computed with a slow, O(n2), general-n module. The caller
must supply a wavetable containing the trigonometric lookup tables and a workspace work.

mhc fft complex backward( gsl complex packed array data[], size t *stride, size t *n,
gsl fft complex wavetable *wavetable, gsl fft complex workspace *work )
These function computes backward FFTs of length n with stride stride, on the packed complex
array data, using a mixed radix decimation-in-frequency algorithm. There is no restriction on
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the length n. Efficient modules are provided for subtransforms of length 2, 3, 4, 5, 6 and 7.
Any remaining factors are computed with a slow, O(n2), general-n module. The caller must
supply a wavetable containing the trigonometric lookup tables and a workspace work.

mhc fft complex inverse( gsl complex packed array data[], size t *stride, size t *n,
gsl fft complex wavetable *wavetable, gsl fft complex workspace *work )
These function computes inverse FFTs of length n with stride stride, on the packed complex
array data, using a mixed radix decimation-in-frequency algorithm. There is no restriction on
the length n. Efficient modules are provided for subtransforms of length 2, 3, 4, 5, 6 and 7.
Any remaining factors are computed with a slow, O(n2), general-n module. The caller must
supply a wavetable containing the trigonometric lookup tables and a workspace work.

mhc fft complex transform( gsl complex packed array data[], size t *stride, *stride,
size t *n, gsl fft complex wavetable *wavetable, gsl fft complex workspace *work
)
This function computes the FFT of data, a real array of length n, using a mixed radix
decimation-in-frequency algorithm. For gsl fft real transform data is an array of time-ordered
real data. There is no restriction on the length n. Efficient modules are provided for sub-
transforms of length 2, 3, 4 and 5. Any remaining factors are computed with a slow, O(n2),
general-n module. The caller must supply a wavetable containing trigonometric lookup tables
and a workspace work.

mhc fft real transform( double data[], size t *stride, size t *n, gsl fft real wavetable
*wavetable, gsl fft real workspace *work )
This function computes the FFT of data, a half-complex array of length n, using a mixed radix
decimation-in-frequency algorithm. For gsl fft halfcomplex transform data contains fourier
coefficients in the half-complex ordering described above. There is no restriction on the
length n. Efficient modules are provided for subtransforms of length 2, 3, 4 and 5. Any
remaining factors are computed with a slow, O(n2), general-n module. The caller must
supply a wavetable containing trigonometric lookup tables and a workspace work.

A.11 Numerical Integration

mhc integration qags( gsl function *f, double *a, double *b, double *epsabs, double
*epsrel, size t *limit, gsl integration workspace *workspace, double *result, dou-
ble *abserr )
This function applies the Gauss-Kronrod 21-point integration rule adaptively until an esti-
mate of the integral of f over (a,b) is achieved within the desired absolute and relative error
limits, epsabs and epsrel. The results are extrapolated using the epsilon-algorithm, which
accelerates the convergence of the integral in the presence of discontinuities and integrable
singularities. The function returns the final approximation from the extrapolation, result,
and an estimate of the absolute error, abserr. The subintervals and their results are stored in
the memory provided by workspace. The maximum number of subintervals is given by limit,
which may not exceed the allocated size of the workspace.
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A.12 Statistics

mhc stats mean( double data[], size t *stride, size t *n, double *mean )
This function computes the arithmetic mean of data, a dataset of length n with stride stride.
The result is returned in mean. The arithmetic mean, or sample mean, is denoted by µ̂ and
defined as, µ̂ = (1/N)

∑
xi where x i are the elements of the dataset data. For samples drawn

from a gaussian distribution the variance of µ̂ is σ2/N .

mhc stats variance( double data[], size t *stride, size t *n, double *variance )
This function computes the estimated, or sample, variance of data, a dataset of length n with
stride stride. The result is returned in variance. The estimated variance is denoted by σ̂2

and is defined by, σ̂2 = (1/(N − 1))
∑

(xi − µ̂)2 where x i are the elements of the dataset
data. Note that the normalization factor of 1/(N − 1) results from the derivation of σ̂2 as
an unbiased estimator of the population variance σ2. For samples drawn from a gaussian
distribution the variance of σ̂2 itself is 2σ4/N . This function computes the mean via a call
to gsl stats mean. If you have already computed the mean then you can pass it directly to
gsl stats variance m.

mhc stats variance m( double data[], size t *stride, size t *n, double *mean, double
*variance )
This function is the same as mhc stats variance except that the mean is passed in as mean
instead of being computed.

mhc stats sd( double data[], size t *stride, size t *n, double *sd )
The standard deviation is defined as the square root of the variance. This function returns
the square root of the corresponding variance functions above in sd.

mhc stats sd m( double data[], size t *stride, size t *n, double *mean, double *sd m )
This function is the same as mhc stats sd except that the mean is passed in as mean instead
of being computed.

mhc stats covariance( double data1[], size t *stride1, double data2[], size t *stride2,
size t *n, double *covar )
This function computes the covariance of the datasets data1 and data2 which must both be
of the same length n. covar = (1/(n− 1))

∑n
i=1(x i− x̂)(yi − ŷ)
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Appendix B

SAMPLE CONFIGURATION FILES

The following are samples of all of the different configuration files that are used

by the mHC scheduler and/or the mHC Simulator. All of the configuration files are

based on standard XML and can automatically be generated by the mHC simulator.

B.1 Device Configuration

The device configuration file is used by both the mHC scheduler and the mHC Simu-

lator and determines what devices are available in the system. The following sample

shows a definition for a host processor and a vector processor, each supporting only

the mhc matrix scale operation to varying degrees.
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<?xml version="1.0"?>
<mHCDeviceConfig>

<Device>
<ID>0</ID>
<Name>Host</Name>
<Description>The host processor</Description>
<BusName>Local</BusName>
<BusID>0</BusID>
<APISupport>

<Function> 10

<ID>5</ID>
<Name>mhc matrix add constant</Name>
<TimingType>0</TimingType>
<TimingValue>1</TimingValue>
<Speedup>1</Speedup>
<CompletionTime>0.006</CompletionTime>

</Function>
<Function>

<ID>4</ID>
<Name>mhc matrix scale</Name> 20

<TimingType>0</TimingType>
<TimingValue>1</TimingValue>
<Speedup>1</Speedup>
<CompletionTime>0.006</CompletionTime>

</Function>
</APISupport>

</Device>
<Device>

<ID>1</ID>
<Name>Vector1</Name> 30

<Description></Description>
<BusName>PCI</BusName>
<BusID>1</BusID>
<APISupport>

<Function>
<ID>4</ID>
<Name>mhc matrix scale</Name>
<TimingType>0</TimingType>
<TimingValue>1</TimingValue>
<Speedup>2</Speedup> 40

<CompletionTime>0.003</CompletionTime>
</Function>

</APISupport>
</Device>
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B.2 Bus Configuration

The bus configuration file is used by both the mHC scheduler and the mHC Simulator

and determines what buses are available in the system. The following sample shows

a definition for a local bus and a PCI bus.

<?xml version="1.0"?>
<mHCBusConfig>

<Bus>
<ID>0</ID>
<Name>Local</Name>
<Description>The local bus.</Description>
<InitTime>0</InitTime>
<Overhead>0</Overhead>
<TransferTime>0</TransferTime>

</Bus> 10

<Bus>
<ID>1</ID>
<Name>PCI</Name>
<Description>A standard PCI bus.</Description>
<InitTime>50</InitTime>
<Overhead>0.01</Overhead>
<TransferTime>0.005</TransferTime>

</Bus>
</mHCBusConfig>
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Appendix C

SAMPLE MHC APPLICATION

The following is a sample application to demonstrate some of the constructs required

to use the microHeterogeneous API. This application performs a simple vector scaling

on a single vector. It demonstrates the correct way to initialize and finalize the mHC

API. This program can be compiled and linked by using:

gcc -lmhc -o sample sample.c

Note that this assumes that mHC api.h is located in the include path and libmhc.so.1.0.0

is located in the lib path. If this is not the case, simply use the −I and −L arguments

of gcc to point to the files directly.

The easiest way to run the application to make sure that the mHC library and

header files are installed correctly is to use:

sample -s -1

which runs the application sequentially and thus does not require the normal device

and bus configuration files. If there are no errors during compilation or execution,

then the mHC API has been installed correctly.
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#include <stdio.h>
#include <stdlib.h>
#include "mHC_api.h"

int main( int argc, char **argv )
{

int i;
gsl vector *x = gsl vector alloc( 100 );
double scale = 5;

10

/* initialize the mHC api by passing it the argument list */
if( mhc initialize( argv ) != MHC SUCCESS )

abort();

/* initialize the vector */
for( i = 0; i < 100; i++ )

gsl vector set( x, i, i + .75 );

/* make a simple mhc call and wait for it to finish*/
mhc vector scale( x, &scale ); 20

mhc join();

/* free the vector that we created */
gsl vector free( x );

/* cleanup the mHC api, must be done to free memory and close log */
if( mhc finalize() != MHC SUCCESS )

abort();

return 0; 30

} /* main */
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Appendix D

SAMPLE MHC SIMULATOR REPORT

A few samples of reports that were automatically generated by the mHC Simulator

can be found in the /generated reports/ folder on the CD ROM. These reports are

HTML based and should be viewed by pointing a web browser to

/generated reports/index.html.
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Appendix E

MHC FRAMEWORK SOURCE CODE

The source code for the microHeterogeneous framework is located in the

/source/mHC scheduler/ directory on the CD ROM.
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Appendix F

MHC SIMULATOR SOURCE CODE

The source code for the microHeterogeneous Simulator is located in the

/source/mHC simulator/ directory on the CD ROM.
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