Today

Randomized rounding of SOPs

- MAsan
-3-cdoring

$$
\begin{aligned}
& \text { worst case ratio } \\
& \qquad \frac{\text { LPOPT }}{O P T} \text { called integrality gap. }
\end{aligned}
$$

Input: $G=(V, E) \quad w_{i j} \quad \forall(i, j) \in E$
Goal: partition vertex set so as to max weight of endpts crossing cut,
IP formulation of MAXCUT

$$
\begin{aligned}
& x_{i}= \begin{cases}0 & \text { on ore side } \text { g partition } \\
1 & \text { on other side }\end{cases} \\
& z_{i j}=\left\{\begin{array}{cc}
1 & \text { edge (ii,) cut } \\
0 & \text { o.w. }
\end{array}\right. \\
& \max
\end{aligned}
$$

$$
\begin{array}{rlr}
z_{i j} \leq x_{i}+x_{j} & \forall(i, j) \in E \\
z_{i j} \leq 2-\left(x_{i}+x_{j}\right) \quad & \forall(i, j) \in E \\
x_{i} \in\{0,1\} \quad & i \in V \\
z_{i j} \in\{0,1\} & \forall(1, j) \in E
\end{array}
$$

* no polynomial sized LP relaxation of MAxCUT

Another approach:
First, rotation change

$$
\begin{aligned}
& \forall i \quad x_{i} \in\{-1,+1\} \\
& \operatorname{deg} i n e y_{i j}=x_{i} x_{j} \\
& \max \\
& \sum_{(i, j) \in E} w_{i j} 1\left[x_{i} \neq x_{j}\right]
\end{aligned}
$$

$$
\operatorname{deg} \text { in e } y_{i j}=x_{i} x_{j} \quad \forall_{i, j \in V}
$$

Exactly captures max cuT!

Want $\exists x_{i} \quad \forall i \in V$ sit. $\left.\quad y_{i j}=x_{i} x_{j} \quad \forall i, j\right)$

$$
\max \begin{array}{cl}
\sum_{(i, j) \in E} w_{i j} \frac{1}{2}\left(1-y_{i j}\right) & \\
y_{i j}=y_{j i} & \forall i, j \in V \\
y_{i i}=1 & \forall i \in V
\end{array}
$$

Ida: enforce brown by adding linear inequalities to purple.

SDP randing
Intro to semi-definite progamming
linean progamming where sans are entries in psd matrix
Defn If A is a symmetric n by n matrix
then A is a posinice semidefinite (psd) matrix $\equiv A \succcurlyeq 0$
yfany of the following equivalent conditions hold
(1) $\forall \vec{c} \in \mathbb{R}^{n}, \quad \quad^{\top} A_{c} \geqslant 0$
(d) A has nonnegatue eugenvalues
(3) $A=V^{\top} V$ for some $m \times n$ matrix V, $m \leq n$
(4) $A=\sum_{i=1}^{n} \lambda_{i} x_{i} x_{i}^{T}$ for sore $\lambda_{i} \geqslant 0$ and orthonormel vectors $X_{i} \in \mathbb{R}^{n}$

SDP randing
Intro to semi-definte progamming
linean programming where vans are entries in psd matrix
Defn If A is a symmerric n by n matrix
then A is a positik semimidinite (psd) mamix $\equiv A \succcurlyeq 0$
yfany of the following equivalent conditions hald
(1) $\forall \vec{C} \in \mathbb{R}^{n}, \quad C^{\top} A c \geqslant 0$
(2) A has nonnegatice engenvalues
(3) $A=V^{\top} V$ for some $m \times n$ matrix V, $m \leq n$
(4) $A=\sum_{i=1}^{n} \lambda_{i} x_{i} x_{i}^{T}$ for sore $\lambda_{i} \geqslant 0$ and orthonormil vectors $X_{i} \in \mathbb{R}^{n}$

Semidefinite program (SOP)

$$
\max \text { or min } \sum_{i, j} c_{i j} x_{i j}
$$

subject to $\quad \sum_{i j} a_{i j k} x_{i j}=b_{k}$

$$
\begin{aligned}
& x_{i j}=x_{j i} \quad \forall_{i j} \\
& X=\left(x_{i j}\right) \varepsilon_{0}
\end{aligned}
$$

$$
\equiv \quad \text { Vector progam }
$$

$$
\begin{array}{ll}
\max \text { ar min } & \sum_{i, j} c_{i j}\left(v_{i} \cdot v_{j}\right) \\
\text { Subget to } & \sum_{i, j} a_{i j k}\left(v_{i} \cdot v_{j}\right)=b_{k} \\
& v_{i} \in \mathbb{R}^{n} \quad i=1, \ldots, n
\end{array}
$$

given $X \Rightarrow X=v^{\top} v$; set $v i$ to beince gV

Key fact:
SDPs con be solved to within additive enor ε in time
poly (sizeg inurt, log(k))
in ar discussions, we igure additive enoer ε

Recap:
(1)

Want $\exists x_{i} \quad \forall i \in V$ sit. $\left.y_{i j}=x_{i} x_{j} \quad \forall i, j\right)$

$$
\max \begin{array}{cc}
\sum_{(i, j) \in E} \omega_{i j} \frac{1}{2}\left(1-y_{i j}\right) & \\
y_{i j}=y_{j i} & \forall i, j \in V \\
y_{i i}=1 & \forall i \in V
\end{array}
$$

Opt solution to brown + purple $=$ Opt of maxcuT
(2) Brown \Rightarrow

$$
\left(c_{1} c_{2}, \ldots, c_{n}\right)\left(\begin{array}{c}
\therefore \\
\vdots \\
y_{i j} \\
\vdots
\end{array}\right)\left(\begin{array}{l}
a_{i}^{n} \\
c_{n} \\
i_{n}
\end{array}\right) \geqslant 0 \quad \forall \vec{R} \mathbb{R}^{n}
$$

These constraints $c^{T} Y c \geqslant 0 \quad \forall c \in \mathbb{R}^{n}$

$$
\equiv Y \text { is pod matrix! }
$$

(3) Yields a semidefinite programming relaxation of MAxCUT

$$
\max \begin{array}{ll}
\sum_{(i i j) \in E} w_{i j} \frac{1}{2}\left(1-y_{i j}\right) & \\
y_{i j}=y_{j i} & \forall i, \in V \\
y_{i i}=1 & \forall i \in V
\end{array}
$$

plus $Y=\left(\begin{array}{lll}y_{n} & \cdots & y_{n} \\ y \ldots & \cdots & y_{m}\end{array}\right)$ pod
can be solved eficuntly using the ellipsoid alg.

We can solve this, "round" results \Rightarrow int son
\Rightarrow pare that it gives pretty good approx.

Can equiralently write SDP relaration as a vector progam

$$
\begin{gathered}
\max \begin{array}{cc}
\sum_{(i, j) \in E} w_{i j} \frac{1}{2}\left(1-y_{i j}\right) & \\
y_{i j}=y_{j i} & \forall i, \in V \\
y_{i i}=1 & \forall i \in V \\
Y=\left(\begin{array}{ll}
y_{11} & \cdots \\
y_{i n} \\
y_{n 11} \cdots & y_{n n}
\end{array}\right) & \text { psd }
\end{array},
\end{gathered}
$$

Relaraton check:

$$
O P T \leq O P T_{\text {SDP }}(G)
$$

$$
\begin{gathered}
\max \sum_{(i, j) \in E} w_{i j} \frac{1}{2}\left(1-\vec{v}_{i} \cdot \vec{v}_{j}\right) \\
v_{i} \cdot v_{i}=1
\end{gathered}
$$

i.e. V_{i} 's are unit vectors

$$
\in \mathbb{R}^{n}
$$

Lovász umbrella
$\max \sum_{(i, j) \in E} \omega_{i j} \underbrace{\frac{1}{2}}_{\approx 0.9}(\underbrace{\left(1-\cos \left(\text { angle }\left(v_{i}, v_{j}\right)\right)\right.})$
all edges at angle $\frac{4 \pi}{5}$

$$
\cos \left(\frac{4 \pi}{5}\right)=-\frac{\phi}{2} \approx-.8
$$

all weights equal
golbenrahor

$$
\begin{aligned}
& O P T=4 \\
& \text { SOP OPT } 04.5
\end{aligned}
$$

ratio $=\frac{4}{4.5}=0.89$ $1+\frac{\sqrt{5}}{2}$

MAXCUT

Input: $G=(V, E)$
$\omega_{i j} \quad \forall(i, j) \in E$
Gal: partition vertex set so as to max weight of endpts crossing cut.

$$
\begin{aligned}
& \text { Vector programming relaxation } \\
& \begin{array}{c}
\max \frac{1}{2} \sum_{(i, i) \in E} w_{i j}\left(1-\vec{v}_{i} \cdot \vec{v}_{j}\right) \\
\vec{v}_{i} \cdot \vec{v}_{i}=1 \quad \forall i \in V \\
\vec{v}_{i} \in \mathbb{R}^{n} \quad
\end{array}
\end{aligned}
$$

Can solve SDP in poly time.

$$
\text { Claim: MAXCUT OPT } \leqslant \text { SOP OPT }
$$

But how to round? get large contribution to OPT when $v_{i} \cdot v_{j}$ very -re

Handress
(1) If \exists approx alg for $\operatorname{MAXCUT~with~approxrato~} \geqslant 0.941$,
then $P=N P$.
(2) If the "unique games conjecture" is true, there is no approxaly for maxcut with approx ratio better than 0.878

Unique Games Conjecture
$\forall \varepsilon>0, \exists$ prime 9 sit. $(1-\varepsilon, \varepsilon)$ Gap version

assignment faction $2 \geqslant 1-\varepsilon$ output yes equs
if no assignat satisfies $>$ E fraction output NO
admits no poly time soon unless $P=N P$

MAX2LIN(9)
9 prime
input. linear equations mod q
w/ unknowns
$x_{1}, \ldots, x_{n} \in\{0,1, \ldots, q-1\}$
(form $x_{i}-x_{j}=c$)

$$
\begin{gathered}
x_{3}-x_{11} \equiv 87(\bmod 97) \\
x_{7}-x_{22} \equiv 3(\bmod 97) \\
\vdots \\
x_{7}-x_{19} \equiv 56(\operatorname{med} 97)
\end{gathered}
$$

Problem: Find assignment of x_{i}^{\prime} 's that satisfies max possible \#g eons
(3) Int gap of the $[G W]$ SDP $=0.878 \ldots$
(3) Every paly sind LP relaxant of MAXCCTT has integrality gap of $\frac{1}{2}$. James

3-Coloring a 3-colorable graph
Green graph $G=(V, E)$
\& promise that it is 3-cbrable
What is min k st., we can find a k-coring of G in poly tine?

Simple resets:
(1) A graph with max degree Δ can be colored with $\leq \Delta+1$ colors
(2) A 3-clorable graph can be colored with $O(\sqrt{n})$ colors.

Find a vertex of deg $\geqslant \sqrt{n}$
Use 3 coors to ctr it \& its neighbors (rughborhood 2 -colorable)
Remove it \& its reqhbors from graph

An SDP-based alg

$$
\begin{array}{lll}
\min _{\text {st. }} & \vec{\lambda}_{\vec{v}_{i}} \cdot \vec{v}_{j} \leq \lambda & \forall(i,) \in E \\
& \vec{v}_{i} \cdot \vec{v}_{i}=1 & \forall i \in V \\
& \vec{v}_{i} \in \mathbb{R}^{n} &
\end{array}
$$

Claim: if graph is 3-colorable

$$
\lambda \leq-\frac{1}{2}
$$

$\min \lambda$
st, $\vec{v}_{i} \cdot \vec{v}_{j} \leq \lambda \quad \forall(i, j) \in E$
$\vec{v}_{i} \cdot \vec{v}_{i}=1 \quad \forall i$
$\vec{v}_{i} \in \mathbb{R}^{n} \quad \forall i$

Claim: if graph is 3-colorable

$$
\lambda \leq-\frac{1}{2}
$$

Aside: If G has a triangle, then optimal sorn to SDP has $x^{x} \geqslant-\frac{1}{2}$

Proof: Suppose

$$
\begin{aligned}
0 \leqslant\left(\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}, \vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}\right) & =\vec{v}_{1} \cdot \vec{v}_{1}+\vec{v}_{2} \vec{v}_{2}+\vec{v}_{3} \vec{v}_{3} \\
& +\vec{v}_{1} \cdot \vec{v}_{2}+\vec{v}_{1} \cdot \vec{v}_{3}+\vec{v}_{2} \vec{v}_{1}+\vec{v}_{2} \cdot \vec{v}_{3}+\vec{v}_{3} \vec{v}_{1}+\vec{v}_{3} \cdot \vec{v}_{2}
\end{aligned}
$$

Algorithm
(1) Solve SDP $(x) \Rightarrow v_{i}^{*} \quad i=1 \ldots, n$
(2) Choose t random hyperplanes thru origin
(3) Color vertices in each region w/ diff color

(4) remove any edges properly colored
(5) Repeat steps 2-4 until have proper coloring

One execution f step 2 uses a^{t} colors.
Goal: produce semi-cloring, we. $\geqslant \frac{1}{2}$
coloring of nodes st.
$\leq \frac{n}{\text { n }}$ edges have same color at both
\Rightarrow at least $\frac{p}{\frac{p}{2}}$ vertices properly colored.
Observation: of k-colors sufficient to get semi-coloring, \Rightarrow graph can be properly colored with $O(k \operatorname{logn})$ colors
What should t be to guarantee (x)?

$$
\begin{aligned}
& \text { Fix (ii) } \in E \\
& \operatorname{Pr}(i 8 j \text { get samecdor) }
\end{aligned}
$$

$\Rightarrow E(\#$ edges with save color)

Let Δ^{*} be a parameter
$\left.\begin{array}{l}\text { 1. Pick a vertex of } \operatorname{deg} \geqslant \Delta^{*} \& 3 \text {-or it \&neighbers } \\ \text { 2. Repeat step } 1 \text { until all vertices have degree } \leq \Delta^{*}\end{array}\right\} \leq \frac{3 n}{\Delta^{* 2}}$ colors
3. Run SDP-based alg to color rest \} $O\left(\Delta^{* \log _{3} 2}\right)$ colors

Choose Δ^{*} to minimize $\quad \frac{3 n}{\Delta^{*}}+\left(\Delta^{*}\right)^{\log _{3} 2}$

$$
\Rightarrow \quad \Delta=n^{\log _{6} 3} \quad \Rightarrow \tilde{O}\left(n^{0.39}\right)
$$

Current best: $O\left(n^{0.199}\right)$
NP-hard to color with 4 colors

Hinge open problem: Is there an alg for 3-coloring a 3-colcrable graph that uses polylogn
colors?

Next time: well use linear programming duality

- Lover bounds on randemized ubugpeax
- dean randomized alp for online problems

