
Improving ZooKeeper Atomic Broadcast Performance
When a Server Quorum Never Crashes
Ibrahim EL-Sanosi1,2,∗ and Paul Ezhilchelvan2

1∗Faculty of Information Technology, Sebha University, Sebha, Libya , i.elsanosi@sebhau.edu.ly
2∗School of Computing Science, Newcastle University, Newcastle Upon Tyne, UK, i.s.el-sanosi,paul.ezhilchelvan@ncl.ac.uk

Abstract

Operating at the core of the highly-available ZooKeeper system is the ZooKeeper atomic broadcast (Zab) for imposing
a total order on service requests that seek to modify the replicated system state. Zab is designed with the weakest
assumptions possible under crash-recovery fault model; e.g., any number - even all - of servers can crash simultaneously
and the system will continue or resume its service provisioning when a server quorum remains or resumes to be
operative. Our aim is to explore ways of improving Zab performance without modifying its easy-to-implement structure.
To this end, we �rst assume that server crashes are independent and a server quorum remains operative at all time. Under
these restrictive, yet practical, assumptions, we propose three variations of Zab and do performance comparison. The
�rst variation o�ers excellent performance but can be only used for 3-server systems; the other two do not have this
limitation. One of them reduces the leader overhead further by conditioning the sending of acknowledgements on the
outcomes of coin tosses. Owing to its superb performance, it is re-designed to operate under the least-restricted Zab
fault assumptions. Further performance comparisons con�rm the potential of coin-tossing in o�ering performances
better than Zab, particularly at high workloads.

Received on 15 December 2017; accepted on 5 January, 2018; published on 12 January 2018

Keywords: Apache ZooKeeper, Atomic Broadcast, Crash-Tolerance, Server Replication, Protocol Latency, Throughput,
Performance Evaluation

Copyright © 2018 Ibrahim EL-Sanosi and Paul Ezhilchelvan, licensed to EAI. This is an open access article distributed under the terms
of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.
doi: 10.4108/eai.10-4-2018.154455

Apache ZooKeeper [10] is a high-availabile system
o�ering coordination services to Internet-scale distributed
applications. These services include: leader election (used
by Apache Hadoop [16]), failure-detection and group
membership con�guration (by HBase [8]) and reliable
information storage and update (by Storm in Twitter [17]).
ZooKeeper itself is a replicated system made up of N,N ≥
3, servers that can crash at any moment and recover after
an arbitrary downtime with pre-crash state in stable store.
Server crashes may even be correlated and all servers may
crash at the same time. Despite these failure possibilities,
ZooKeeper is guaranteed to provide uninterrupted services,
so long as at least dN+1

2 e servers are operative and connected.
At the heart of ZooKeeper is the ZooKeeper atomic

broadcast protocol, Zab for short, to ensure that the service
state is kept mutually consistent across all correct servers.
Zab performance therefore impacts that of Zookeeper.

∗Corresponding author. Email: i.elsanosi@sebhau.edu.ly

Furthermore, e�cient atomic broadcast protocols have
far wider applications, e.g., in coordinating transactions
particularly in large-scale in-memory database systems [7,
15]. In such applications, the atomic broadcast protocol
typically operates in heavy load conditions and is expected
to o�er low latencies even at such extreme loads.

Zab is a leader-based protocol and, like many other leader-
based ones, it tends to o�er worsening performance when
the load on the leader increases. For example, [9] reveals
that ZooKeeper throughput decreases gradually as the write
requests outnumber the read requests in a cluster of any size.
The reason is that read requests can be processed without
involving Zab while write requests cannot proceed until Zab
execution is completed.

The aim of this paper is to explore ways of improving Zab
performance, particularly at high work loads, by primarily
shifting some of the leader load onto other nodes, while
at the same time maintaining the well-understood and
implementation-friendly structure Zab itself. We accomplish
our aim in three ways.

1

Introduction

EAI Endorsed Transactions
on Energy Web and Information Technologies Research Article

EAI Endorsed Transactions on
Energy Web and Information Technology 01

2018 - 04 2018 | Volume 5 | Issue 17 | e11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Newcastle University E-Prints

https://core.ac.uk/display/327367458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/
mailto:<i.elsanosi@sebhau.edu.ly>

I. EL-Sanosi and P. Ezhilchelvan

First, we consider a set of restricted fault assumptions:
servers crash independent of each other and at least dN+1

2 e
servers remain operative and connected at all time. Secondly,
we let non-leader servers broadcast acknowledgements and
thereby deliver atomic broadcasts with less involvement
from the leader; a novel concept of coin-tossing is used to
limit the broadcast tra�c, particularly the incoming tra�c
at the leader. Thirdly, the coin-tossing protocol is then
upgraded to operate with Zab fault assumptions, providing
thus a genuine alternative to Zab itself.

We develop 5 new protocols in total and their performance
are compared with Zab. All new protocols perform better
than Zab at all loads and the coin-tossing ones particularly
well under heavy loads. We identify a new protocol for a 3-
server system which outperforms all others at all loads, but
requires restrictive fault assumptions.

It is important to note that the new protocols we propose
here di�er from Zab only in the latter’s normal (fail-free)
part and are shown to preserve all invariants necessary
to make use of the crash-recovery part of Zab unchanged.
Hence they can be easily implemented using existing Zab
implementations.

The paper is structured as follows. Section 1 describes
the role of Zab in the context of the ZooKeeper system,
Zab fault assumptions, and the protocol steps. Section 2
presents the restrictive fault assumptions and develops three
new protocols. The �rst one is suited only when N = 3, the
second uses acknowledgement broadcasting and the last one
reduces the tra�c through coin-tossing. Section 3 is devoted
to extensive performance comparison using latency and
throughput as metrics. Having convinced of the potentials
of the coin-tossing approach for performance improvement,
we upgrade it to original Zab fault assumptions in the
following section; we also derive a version without coin-
tossing. Their performance comparison with Zab further
con�rms the bene�ts of coin-tossing. Section 5 discusses
the related work. Finally, Section 6 concludes the paper and
outlines future research.
1. ZooKeep er and ZooKeep er Atomic
Br oadcast Proto col

Apache ZooKeeper [10] is open-source, general-purpose
coordination software released under the Apache Software
License Version 2.0. It is designed to o�er a variety of essen-
tial services, such as replicated state storage, leader election,
failure detection, maintaining group con�guration etc., to
large-scale distributed applications that are thereby relieved
from having to build these services themselves. Hosts exe-
cuting these applications thus constitute Zookeeper clients
and the Zookeeper server system typically serves a very large
client base and is potentially subject to heavy workloads.

ZooKeeper is implemented using an ensemble of N , N ≥
3, fail-independent and fully-connected servers. In practice,
N is an odd number and occasionally 5 and 7. The following
assumptions are made by ZooKeeper.

A1 - Ser ver Crashes. A server can crash at any time and
recover after a downtime of arbitrary duration. It has a stable
store or log and the log contents survive a crash. Server
crashes may be correlated and it is conceivable that all N
servers remain crashed at the same time.

A server that remains operative during a period of interest
is said to be correct during that period.

A2 - Ser ver Communication. Servers are connected by
a reliable communication subsystem: messages sent by a
correct server are never permanently lost and are received
by all correct destinations in the order sent.

Servers are replicas of each other and each maintains a
copy of the application state. Zookeeper clients can submit
their requests to any one of the N servers. Requests may
be broadly categorised as read or write; the latter seek state
modi�cation while the former do not. Read requests are
serviced by the receiving server itself. Write requests, as
illustrated in Figure 1, are �rst subject to total ordering
through an execution of ZooKeeper atomic broadcast (Zab)
protocol and then are carried out by all servers as per the
order decided. If a write request requires a response in return,
then only the server that received the request directly from
the client responds.

ZooKeeper Services

ZooKeeper Atomic Broadcast

Leader Follower1 Follower2

1. Write Request

3. Response

2. Broadcast Write
Response

Write Request

Forward Write

Figur e 1. Handling of Write Requests in ZooKeeper

Let Π ={p1, p2,, pN } denote the set of Zab processes,
one in each server. One of the Zab processes is designated
as the leader and the rest as followers. As in 2-Phase commit
protocol, only the leader can initiate atomic broadcasting
of m, abcast(m) for short, and the followers execute Zab
by responding to what they receive. So, when a follower
receives a write request m for ordering, it forwards m to
the leader for initiating abcast(m) (see Fig 1). When Zab
execution form terminates, both leader and followers deliver
m locally for processing, and this delivery event is denoted
as abdeliver(m).

Since the leader can crash any moment, Zab, like its
intellectual ancestor Paxos [12], exploits the notion of
quorums: a quorum Q is any majority subset of Π and any
two quorums must intersect.

Let Q be the set of all quorums in Π: Q = {Q : Q ⊆ Π ∧
|Q| ≥ dN+1

2 e}. For any two Q,Q′ ∈ Q : Q ∩Q′ , { }. For
example, when N = 3,
Q = {{p1, p2}, {p2, p3}, {p3, p1}, {p1, p2, p3}}.
By the liveness arguments in [10] (see Claim 7), one process

gets elected as the new leader when the current leader

2
EAI Endorsed Transactions on

Energy Web and Information Technology 01
2018 - 04 2018 | Volume 5 | Issue 17 | e11

Improving ZooKeeper Atomic Broadcast Performance When a Server Quorum Never Crashes

crashes, so long as a quorum of processes are correct and
can communicate in a timely manner. The new leader starts
abcasting after it has synchronised its abdelivered message
history with those of the followers that elected it.

Let history Hi(t) denote the ordered sequence of messages
abdelivered by pi until (real) time t. (The sequence order is
the order in which messages in Hi(t) were abdelivered by
pi .) Zab guarantees the following (see [10] for details) which
ensure that the service state remains mutually consistent
across all correct replicas:
G1 - Validity: If the leader does not crash until it completes
abcast(m), then m ∈ Hi(t) for any correct pi at some t.
G2 - Integrity: if m ∈ Hi(t) for any pi , abcast(m) occurred at
some t′ < t.
G3 - Total Order and Agreement: At any time t and for any
two pi and pj ∈ Π: either Hi(t) = Hj (t) or one is a pre�x of
the other.

1.1. Zab Protocol

Zab consists of the following steps.

• L1: Leader initiates abcast(m) by assigning m a
sequence number m.c and broadcasting m to all
processes (including itself);

• F1: A follower, on receiving m (with m.c) from the
leader, logs m and then sends an acknowledgement,
ack(m), to the leader;

• L2: Leader executes F1, sending ack(m) to itself. Upon
receiving ack(m) from a quorum, it sends commit(m)
to all processes (including itself);

• F2: A follower, on receiving commit(m), executes
abdeliver(m).

• L3: Leader, on receiving commit(m) (from itself),
executes abdeliver(m).

Zab protocol steps ensure the following invariant holds for
every abdeliver(m):
Zab Invariant on abdeliver: If a process executes
abdeliver(m), then all processes in some Q ∈ Q have logged
m.

The invariant is essential for correctly replacing a crashed
leader: any m that might have been abdelivered under the old
leadership is guaranteed to be abdelivered by the new leader
since the quorum that elects the latter must intersect with Q.

2. Zab Variations with Additional
Assumptions

Assumption A2 is retained, A1 modi�ed into A1.1 and A1.2,
and A3 additionally made.

2.1. Assumptions

A1.1 - Leader Crash and Re cover y. If the leader server
crashes, we assume an external mechanism exists for electing
a new leader. It is important to guarantee that at any time
there is at most one active leader server that is allowed
to initiate atomic broadcast. In our implementation, it is
su�cient to assume that some mechanism exists to elect a
leader and such a mechanism guarantees that at most one
leader server is active at any time.

Note that Zab tracks leadership changes through epoch
numbers [10]. Thus, when a process logs the epoch number
in which it acts as a leader, it can, on recovery, suspend
joining the system until the current epoch number is larger.

A1.2 - Ser ver Crashes. No process can fail when exactly
dN+1

2 e processes in Π are executing the protocol.
Thus, a quorum remains operative always, allowing a new

leader to be elected when a leader crashes and abdeliver to
continue when a follower crashes.

A2 - Ser ver Communication. Same as A2 in § 1.

A3 - Follo w er Crash Suspicions. Followers monitor each
other’s operative status and can thereby suspect a follower
crash. This will require followers periodically exchanging
’heart-beat’ messages with each other. In our evaluations,
servers make use of JGroups membership views to become
aware of other server crashes.

2.2. Definitions and Lemma

For `, 1 ≤ ` ≤ N , let Q` denote the set of all quorums that
contain p` and Q̄` be its complement:
Q` = {Q : Q ∈ Q ∧ p` ∈ Q}, and Q̄` = Q − Q` .
For example, Q1 = {{p1, p2}, {p3, p1}, {p1, p2, p3}}, and

Q̄1 = {{p2, p3}}, when N = 3.
Let q ¯̀ = {Q` − {p`} : Q` ∈ Q`}. Again, with N = 3 as an

example, q1̄ = {{p2}, {p3}, {p2, p3}}.
Note that q ¯̀ ∈ q ¯̀ need not be a quorum and |q ¯̀| ≥ dN−1

2 e.
Lemma: Any q ¯̀ ∈ q ¯̀ and any Q′ ∈ Q̄` must intersect.
Proof : By de�nition, q ¯̀

⋃
{p`} and Q′ are quorums which

must intersect. The common process p cannot be p` since
p` < Q

′ . ∴ p ∈ q ¯̀ must hold and hence the lemma.

2.3. Design Approach

Implicit Acknowledgements. In one protocol, a follower
does not transmit ack(m) for every m it receives from
the leader, and may at times omit such transmissions in
an attempt to reduce the tra�c at the leader. When ack
transmissions are skipped, an ack(m) from a given follower
not only acknowledges m (with sequence number m.c), but
also will indicate an implicit acknowledgement for allm′ sent
by the same leader with m′ .c < m.c.

The leader will abdeliver(m) once it receives a quorum
of either implicit or explicit acknowledgements for m. Note
that a given m′ is implicitly acknowledged multiple times,
i.e., whenever an ack(m), m.c > m′ .c, is received. Any one

3
EAI Endorsed Transactions on

Energy Web and Information Technology 01
2018 - 04 2018 | Volume 5 | Issue 17 | e11

I. EL-Sanosi and P. Ezhilchelvan

of them from a given process su�ces to build the necessary
quorum.

Use of implicit acknowledgements does not undermine
the correctness due to A2 (reliable communication and sent-
ordered message reception) but can delay abdelivery.
Commit Messages. Leader does not send commit messages
to followers which decide on abdelivery by themselves.
Invariants on abdeliver . Zab invariant stated earlier holds
only when the leader abdelivers m. For followers:
Follower Invariant on Abdelivery: If a follower process
abdelivers m that was abcast by leader p` , then all followers
in some q ¯̀ ∈ q ¯̀ have logged m.

Recall that |q ¯̀| ≥ dN−1
2 e. This means that a follower can

abdeliver m as soon as at least dN−1
2 e followers are known

to have logged m; in particular, it is not conditional on p`
logging m. When p` does log m, the original Zab invariant
holds since q ¯̀

⋃
{p`} is a quorum.

Thus, the follower invariant eventually leads to Zab
invariant, if p` does not crash. If p` does crash, it can, by
A1.1, take part in the subsequent leader election; by A1.2,
a quorum Q′ ∈ Q̄` must exist to elect the new leader. By
lemma, q ¯̀ and Q′ intersect; so, the new leader is guaranteed
to abdeliver any m that could have been abdelivered when p`
was the leader. We note that Zab mechanisms for recovering
from leader crashes can be used unchanged in all variants
proposed.
Switch to/from Zab: One of the protocols proposed in this
section is designed to perform well when all N − 1 followers
are correct. It is also designed to switch to Zab whenever
a follower crash is observed, and back to itself when the
crashed follower joins the system. Assumption A3 is used
for this purpose.

2.4. Leader Protocol
The steps executed by the leader are the same in all variations
proposed here. They are as follows.

• L1: Leader initiates abcast(m) by assigning m a
sequence number m.c and broadcasting m to all
processes (including itself);

• L2: On receiving m (with m.c) from itself, it logs m and
then sends an acknowledgement, ack(m), to itself;

• L3: Upon receiving ack(m) or an implicit acknowledge-
ment form from a quorum, it sends commit(m) to itself;

• L4: Leader, on receiving commit(m), executes abde-
liver(m).

2.5. Protocol 1
Proto col 1.1: Zab Ac. It works only when N = 3 and
allows a follower to ’Ack and commit’ without waiting for a
commit from the leader nor having any interaction with the
other follower. (Hence the name ZabAc, Zab appended with
’Ac’ for ack and commit.) The protocol steps for a follower
are as follows.

• F1: A follower, on receiving m (with m.c) from the
leader, logs m;

• F2: It then sends ack(m) to the leader and to itself;

• F3: After receiving ack(m), it executes abdeliver(m).

When N = 3, each follower forms a q ¯̀; so, the follower
invariant holds.

ZabAc is thus a simple protocol: it involves no switch to
or from Zab nor uses implicit acknowledgements. Message
complexity is 4 unicasts per abcast and abdelivery at
followers is faster compared to Zab.

Proto col 1.2: Zab Aa. It is an extension of ZabAc for N >
3. Instead of unicasting ack(m) only to the leader, ack(m) is
broadcast to all. (Hence the name ZabAa: Zab appended with
’Aa’ for ack-all.) A follower abdelivers(m) once at least f =
dN−1

2 e followers are known to have logged m. Its protocol
steps are as follows.

• F1: A follower, on receiving m (with m.c) from the
leader, logs m;

• F2: It then sends ack(m) to the leader and to followers
(including itself);

• F3: On receiving ack(m) from f followers, it sends a
commit(m) to itself.

• F4: On receiving commit(m), it executes abdeliver(m).

Message complexity is N (N − 1) unicasts per abcast
and increases quadratically with N . Though abdelivery at
followers can be expected to be faster, increased message
handling may slow down their responses. These will be
analysed in Section 3 where we consider up to N = 9.

Next protocol seeks to reduce message complexity by
conditioning the sending of acknowledgements by followers
to outcomes of coin tosses.

2.6. Protocol 2: ZabCt

Each follower has a coin with prob(Head) = p. After logging
m, it sends an ack(m) to itself and tosses the coin (Hence
the name ZabCt: Zab appended with ’Ct’ for coin-toss.); if
the outcome is Head, the follower behaves as in ZabAc or
ZabAa; otherwise, it does nothing. It makes use of implicit
acknowledgements for deciding on abdelivery and the steps
are as follows.

• F1: A follower, on receiving m from the leader, logs m;

• F2: It sends ack(m) only to itself and tosses the coin;

• F3: If (coin = Head) then it sends ack(m) to the leader;
if N > 3, it sends ack(m) to all other followers;

• F4: On receiving ack(m) or an implicit ack for m from
f followers, it sends a commit(m) to itself.

• F5: On receiving commit(m), it executes abdeliver(m).

4
EAI Endorsed Transactions on

Energy Web and Information Technology 01
2018 - 04 2018 | Volume 5 | Issue 17 | e11

Optimal Value for p. Ideally, we would prefer exactly
f followers to get Head, when they toss their coins for
every given m sent by the leader. This will ensure that
the leader has (f + 1) ack(m) and each follower f ack(m),
and all processes abdeliver m without relying on implicit
acknowledgements which will only delay abdelivery of m.

For simplicity, assume that N is odd and all servers are
correct. Thus, n = N − 1 is the number of followers that toss
the coin on receiving m; f = dN−1

2 e = n
2 when N is odd.

Thus, n = 2f and (n − f) = f . The Binomial probability that
f of these n (independent) coin tosses are heads, is given by:
B(n, f) =

(n
f

)
pf (1 − p)n−f =

(n
f

)
pf (1 − p)f .

B(n, f) is a concave function of p, with B(n, f) = 0 for
p = 0 and p = 1, and has its maxima for some 0 < p < 1.
Ḃ(n, f) = 0⇒ (p

1−p)f = (p
1−p)(f −1).

When p = 0.5, Ḃ(n, f) = 0 and B̈(n, f) < 0,∀f ≥ 1. Thus,
B(n, f) is at its maximum when the coin is fair.
Remark 1: Total Message Cost.

The expected number of Heads from n independent
coin tosses is np. Thus, the expected message complexity
per abcast is (N − 1) + (N − 1)p(N − 1). When p = 0.5, it
becomes (N − 1) + 0.5(N − 1)2 which is now quadratic only
on (N − 1). Note that it is the same as the message cost in
ZabAc when N = 3.
Remark 2: Incoming Tra�c at the Leader.

Note also that the leader in ZabCt, irrespective of N , is
expected to receive 0.5 × (N − 1) follower acks per abcast,
which is just half of those it receives in ZabAc and ZabAa.
For example, the leader in ZabCt with N = 3 is expected
to receive one follower ack per abcast, while it receives 2
follower acks in ZabAc. Of course, this reduction in incoming
tra�c at the leader is at the cost of any additional waiting
to receive implicit acknowledgements when more than f
followers get Tail outcomes for a given abcast.
Remark 3: Role of abcasting Rate.

When a follower tosses its coin on successive abcast
receptions, the expected number of Tail outcomes before the
�rst Head is 1−p

p = 1. Thus, if a follower skips transmitting
an ack once, it is expected that it would transmit ack(m) for
the next abcast(m) it receives. This means that the more
frequently the leader abcasts, the less would be the extra
abdelivery delay imposed by implicit acknowledgements.

2.7. Switching Between Zab and ZabCt

Protocol switching is based on followers suspecting each
other’s crash and it must therefore account for the possibility
that a suspicion can be wrong and be reversed: a follower
pi that suspects crash of follower pj can receive a delayed
heartbeat message later from pj and reverse its suspicion
subsequently.

A follower pi that suspects another follower’s crash, sets
its p = 1 and sends its ack ai only to the leader p` , unicasting
as in Zab but with its ack �eld ai .zab = 1. When it suspects
none of N − 2 other followers, it reverts to ZabCt by (i)

resetting p = 0.5 and (ii) setting ai .zab = 0 in any ack it
broadcasts.

Whenever the leader p` receives an ack(m) with zab �eld
set to 1, it sends commit(m) message to the sender of that ack
when it sends, or if it has already sent, commit(m) to itself.

Observe that when a follower pj does crash, Zab will be
executed with all follower acks having their zab �eld set to
1; when all followers are correct and none suspects any other,
ZabCt will be executed with zab �eld in acks set to 0.

3. Exp eriments and Performance
Comparison
In this section, we compare the performances of the
protocols under di�erent load conditions. Atomic broadcast
latency and throughput are the two metrics used for
comparison.

We use 250 concurrent clients distributed equally on
10 identical machines; each machine thus hosts 25 clients.
At most 9 machines were dedicated to running the
protocols, thus covering N = 3, 5, 7, 9. Machines used in
our experiments are commodity PCs of 2.80GHz Intel
Core i7 CPU and 8GB of RAM, running Fedora 21
and communicating over 100 Mbps Switched Ethernet.
Connections between machines were established at the
beginning of the experiment.

The protocols, including Zab, were implemented in Java
(JDK 1.8.0) on the top of the JGroups framework. JGroups
is a toolkit for reliable communication and also supports
crash detection, joining of recovered process and installation
of group membership views [2]. Messages are transmitted
using JGroups’ FIFO reliable UDP, more precisely, by using
UNICAST3 protocol in JGroups suite which is functionally
identical to TCP.

Each client generates a read or write request with a
payload of 1Kbytes and sends the request to one ofN servers.
If the request is of read type, then the server simply returns
the request as the response; if the request is of write type,
the server (if it is not the leader) forwards it for abcasting;
when a server abdelivers a request it had received directly
from a client, it sends the request back to the client as the
response. Thus, no read/write operations actually occur since
the aim is to measure and compare abdelivery latencies and
throughput. On receiving the response, the client repeats its
action and selects the destination server in a round-robin
manner. Thus, there are at most 250 client requests being
handled by the servers.

We use write-ratio, WR, 0 < WR ≤ 1, for clients to vary
the load they impose on servers. For every write request that
a given client generates, it will generate 1−WR

WR read requests;
in other words, WR > 0 is the probability that a request
generated by a client is of write type. Experiments reported
consider WR values of 25%, 50%, 75% or 100%.

In an experiment, where the protocol, WR and N are
�xed, clients send, and receive responses for, a total of 10000
write requests after the warm-up phase. For example, if

5
EAI Endorsed Transactions on

Energy Web and Information Technology 01
2018 - 04 2018 | Volume 5 | Issue 17 | e11

Improving ZooKeeper Atomic Broadcast Performance When a Server Quorum Never Crashes

I. EL-Sanosi and P. Ezhilchelvan

WR = 50%, the server system will process 10000
0.5 = 20000

read/write requests, i.e., each of the 250 clients will issue 80
requests. Note that servers handle at most 250 ×WR abcasts
at any moment.

Let t0 and t1 be the instants when a server receives a
request from a client and abdelivers that request respectively;
t1 − t0 de�nes the abdelivery latency for that request. We
compute the average of 10000 such latencies and repeat
the experiment 20 times for a con�dence interval of 95%.
Throughput is de�ned as the number of abdeliveries made
by all servers per unit time and is computed, like latencies,
with a 95% con�dence interval.

Experiments are run in failure-free and suspicion-free
scenarios. Furthermore, servers do not log m in disk (as
ideally required) but only record m in main-memory. Thus
the performance �gures we present here do not include
disk write delays, but only network delays. This kind of
evaluations correspond to the ’Net-Only’ category of the
evaluations in [10] where several ways of logging have
been considered. Since all protocol versions being compared
require logging of m exactly at the same point in the
execution for every abcast(m), ignoring delays due to disk
writes cannot invalidate the integrity of observations made
and conclusions drawn from performance �gures.

3.1. Observations

Figure 2 presents the latency �gures for all three protocols
for each N = 3, 5, 7, 9.

Let us �rst focus on N = 3 depicted in Fig 2a. Both ZabAc
and ZabCt o�er shorter latencies compared to Zab.

The di�erence between Zab and ZabAc increases as WR
increases: about 12 ms at WR = 25% to 17 ms at WR =
100%. This can be attributed to the absence of commit
message transmissions in ZabAc (also in ZabCt), and Zab
followers having increased incoming tra�c at higher loads.

What is interesting to note is the performance of ZabCt
which nearly levels that of ZabAc when WR = 100%.
Frequent abcasting leads to frequent coin-tosses which in
turn reduce the delays due to the leader having to commit
by receiving implicit acks from followers; moreover, the
incoming tra�c at the leader halves (Remark 2 in § 2.6) when
followers toss coins which will have the e�ect of reducing
latencies at the leader.

Note that the followers in ZabCt do not su�er from implicit
acks as they do not have to rely on each other’s acks for
abdelivery. This advantage disappears in ZabCt for N =
5, 7, 9 where a follower must await at least 1 ack from
another follower.

Considering the latency �gures for N = 5, 7, 9, we
observe the same trend between ZabAa and Zab as we did
between ZabAc and Zab for N = 3. What is very di�erent is
the behaviour of ZabCt compared ZabAa which are nearly
close at all WR and the closeness tightening as N increases.
This leads us to conclude that ZabCt is a desirable alternative
to ZabAa from the perspectives of abdelivery latencies.

Fig 3 compares throughput at WR = 100% - a scenario
that favours the use of implicit acks and coin-tosses. While
the throughputs of proposed protocols perform at least as
well as, if not better than, Zab, di�erences due to coin-tosses
are often within the widths of con�dence interval.

4. Coin Tossing Under Assumptions A1-A3
Encouraged by the observations that coin-tossing and use
of implicit acks do not seriously undermine abdelivery
latencies, we consider upgrading ZabCt under original Zab
crash-recovery assumptions. More precisely,

We restore Assumption A1 (see Section 1), discard its
restricted alternatives A1.3 (see Subsection 2.1), retain A2
and A3. Thus, A3 is the only additional assumption made
compared to Zab protocol. The upgraded version of ZabCt
is denoted as ZabCT (with the upper-case T implying least
restrictive assumptions). It involves minor changes in steps
F3 and F4 of ZabCt:

• F1-F2: As in ZabCt (see subsection 2.6);

• F3: If (coin = Head) then it sends ack(m) to the leader
and to all other followers;

• F4: On receiving ack(m) or an implicit ack for m from
f+1 followers, it sends a commit(m) to itself.

• F5: As in ZabCt.

A follower pi commits m after it knows that f + 1
processes have loggedm. Thus, ZabCT preserves the original
Zab Invariant on abdelivery for followers as well. Therefore,
it operates under assumption A1.

A follower waiting for 1 more ack(m) before doing com-
mit(m) additionally prolongs abdelivery latencies, whenever
fewer than (f) other followers get a Head outcome when
tossing for a given abcast(m). A follower relies much more on
(i) implicit acks and (ii) a di�erent set of followers getting the
Head outcome while tossing the coin for abcast(m’), m′ > m.

Change in step F4 also requires a follower to send acks
to all followers (on coin=Head) irrespective of N . This is
re�ected in Step F3 above.

Zab AA with p =1. An interesting variation of ZabCT is
when p is �xed at 1, i.e., (coin = Head) in step F4 returns true
for every abcast(m). This is similar to ZabAa, but operates for
all N and under A1 and hence it is denoted as ZabAA. Also,
it, unlike ZabAa, must switch to Zab when follower crashes
are suspected.

Observe that the total message cost per abcast(m) in
ZabAA is 6 when N = 3 which is the same as in Zab. In
what follows, we compare the performance of Zab, ZabC and
ZabAA only for N = 3 - the most common N for Zab.

4.1. Performance Comparison with N = 3
Fig 4 depicts the latencies of Zab, ZabAA and ZabCT. ZabAA
abdelivers faster than Zab as followers need not wait for

6
EAI Endorsed Transactions on

Energy Web and Information Technology 01
2018 - 04 2018 | Volume 5 | Issue 17 | e11

0

10

20

30

40

50

60

25 50 75 100
Write Ratio

La
te

nc
y

(m
s)

Zab ZabAc ZabCt

(a) Ensemble size N = 3.

0

10

20

30

40

50

60

70

80

90

100

110

25 50 75 100
Write Ratio

La
te

nc
y

(m
s)

Zab ZabAa ZabCt

(b) Ensemble size N = 5.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

25 50 75 100
Write Ratio

La
te

nc
y

(m
s)

Zab ZabAa ZabCt

(c) Ensemble size N = 7.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190

25 50 75 100
Write Ratio

La
te

nc
y

(m
s)

Zab ZabAa ZabCt

(d) Ensemble size N = 9.

Figur e 2. Latency comparison.

commit messages. ZabCT is even faster than ZabAA at
all WR; this suggests that delays due to implicit acks are
outdone by bene�ts of reduced message tra�c due to coin
toss. However, when we compare ZabAA and ZabCT with
ZabAc and ZabCt for N = 3, the latter are much faster.

Fig 5 presents the throughput averages of all protocols
for N = 3 at WR = 100% for an overall comparison.
ZabAc outperforms all, closely followed by both coin-tossing
protocols.

As we can observed in all �gures, latency is relatively
high, in the order of tens to hundreds of milliseconds, and
throughput is low. This can be explained by the fact that
we use a limited Switched Ethernet of 100 Mbps compared
to a Gigabit network interface using in the literature [9].
Therefore, the performance results in this paper are not
directly comparable to the values typically observed in [9,

10]. However, the evaluation presented in this paper is fair in
the sense that Zab and all its variants are built out of the same
code base and utilising the same performance evaluation
setup and hardware properties.

5. Relate d Work
As per [6], Zab belongs to the group of �xed sequencer
protocols because the leader is responsible for establishing
the order on abcast messages. The widely studied Paxos
[4, 12] is the intellectual ancestor of Zab. It permits di�erent
abcasts to be made with the same m.c and resolves the
con�ict using ballots. Where as in Zab, there can at most
be one leader at any moment and a new leader cannot
commence its leadership role until a quorum of servers
have disowned the old leader; there is no need for ballots.
However, some abcasts may be permanently ’lost’ due to

7
EAI Endorsed Transactions on

Energy Web and Information Technology 01
2018 - 04 2018 | Volume 5 | Issue 17 | e11

Improving ZooKeeper Atomic Broadcast Performance When a Server Quorum Never Crashes

I. EL-Sanosi and P. Ezhilchelvan

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

3 5 7 9
Ensemble size

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Zab ZabAc ZabAa ZabCt

Figur e 3. Throughput comparison for WR = 100%.

0

10

20

30

40

50

60

25 50 75 100
Write Ratio

La
te

nc
y

(m
s)

Zab ZabCT ZabAA

Figur e 4. Latency comparison for Zab, ZabCT and
ZabAA for N=3.

leadership change; i.e., they may not be abdelivered at all
prior to or after the new leadership begins. Consequently Zab
does not preserve the causal order delivery as traditionally
understood [11].

As write-only requests have to be consistently repli-
cated, adding servers to a ZooKeeper system often does
not increase but decrease write throughput. Therefore, to
address write-performance problems is to statically dis-
tribute the data across multiple ZooKeeper instances [10],
thereby paying the maintenance costs associated with oper-
ating more than one deployment. In addition, a possible
way to increase read throughput in ZooKeeper without
noticeably deteriorating write performance is to introduce
observers [1], that is, servers that only passively learn com-
mitted state updates from others. However, this approach

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Zab ZabAc ZabCt ZabCT ZabAA
Protocols

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Figur e 5. Throughput comparison for WR = 100% and
N = 3.

increases network tra�c as leader not only communicate to
followers but also needs to send learnt proposal to observers.

Leader based protocols such as Zab tend to overload
the leader disproportionately (compared to followers) and
several authors [3, 13, 14, 18] have sought to remedy this
drawback. S-Paxos [3], for instance, relieves the leader
from broadcasting client requests by separating the roles of
request dissemination and request ordering. Each process
directly broadcasts client requests to others (instead of
forwarding to the leader) and request ordering is done
through Paxos executions using only request identi�ers.

Mencius [14], on the other hand, allows each process to
act as a leader by numbering its own abcasts with unique
and increasing m.c such that abcasts from all processes are
uniquely and continuously numbered. It thus achieves a high
throughput by balancing network utilization. However, the
crash of any single server stops atomic broadcast delivery
until recovery.

Chain replication [18] reduces the leader load by
distributing the role between two servers called the head and
the tail. The head is responsible for handling write requests
and provides m.c for each write which it passes down the
chain sequentially until received by the tail. This sequential
transmission tends to increase abdelivery latencies for large
N .

Broadcasting an acknowledgement is common in symmet-
ric (leaderless) atomic broadcast protocols such as [15]. That
it can help to avoid the leader broadcasting commit messages
has been hinted by Zab authors themselves (e.g., [10]). In this
paper, we explored this idea under various fault assumptions.
Implicit acknowledgments and crash suspicions which we
have used here are not new. The former are commonly used
in TCP implmentations where they are also called cumula-
tive acknowledgements. Suspecting crashes (using timeouts)

8
EAI Endorsed Transactions on

Energy Web and Information Technology 01
2018 - 04 2018 | Volume 5 | Issue 17 | e11

is the basis for crash detection and building unreliable fail
detectors [5] to ensure liveness in atomic broadcasting.

6. Conclusion and Futur e Work
We have extended the well-known Zab protocol under its
original fault assumptions as well as under a restricted fault
assumptions which are yet practical. Extensions use ack
broadcasting - not an unknown idea - and coin tossing to
reduce tra�c at the leader. The latter is novel and, to the best
of our knowledge, coin-tossing protocols are new.

Performance comparisons have been carried out without
disk-based logging but the results still hold as logging is
common to all protocols being compared. Two important
conclusions emerge: restrictive fault assumptions do bring
performance bene�ts when N = 3, the most common Zab
con�guration, in the form of ZabAc; secondly, coin-tossing
is an e�ective alternative to naively broadcasting acks,
irrespective of WR and N , in both the restricted and the Zab
fault assumptions.

We plan to pursue the coin-tossing approach to improving
Zab performance under high loads in the light of Remarks
made in Section 2.6: p needs to be adaptively chosen based
on the abcasting rates observed and when number of correct
followers is less than N − 1 but more than f + 1.

Although the evaluation of Zab and the new variations
have not done on the main use cases of Zab, ZooKeeper,
this is part of further research which should be done to
investigate how these optimizations perform in practical
systems.

Refer ences
[1] Zookeeper observers, 2016 (accessed 01-March-2017).
[2] B. Ban. Jgroups, a toolkit for reliable multicast communica-

tion. URL: http://www. jgroups. org, 2002.
[3] M. Biely, Z. Milosevic, N. Santos, and A. Schiper. S-paxos:

O�oading the leader for high throughput state machine
replication. In IEEE 31st Symposium on Reliable Distributed
Systems (SRDS), pages 111–120, 2012.

[4] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live:
an engineering perspective. In Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed computing,
pages 398–407, 2007.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM (JACM),
43(2):225–267, 1996.

[6] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Computing
Surveys (CSUR), 36(4):372–421, 2004.

[7] R. Emerson and P. Ezhilchelvan. An atomic-multicast
service for scalable in-memory transaction systems. In Cloud
Computing Technology and Science (CloudCom), 2014 IEEE 6th
International Conference on, pages 743–746. IEEE, 2014.

[8] L. George. HBase: the de�nitive guide. " O’Reilly Media, Inc.",
2011.

[9] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX
Annual Technical Conference, volume 8, page 9, 2010.

[10] F. P. Junqueira, B. C. Reed, and M. Sera�ni. Zab: High-
performance broadcast for primary-backup systems. In
IEEE/IFIP 41st International Conference on Dependable Systems
& Networks (DSN), pages 245–256. IEEE, 2011.

[11] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558–
565, 1978.

[12] L. Lamport. Paxos made simple. ACM Sigact News, 32(4):18–
25, 2001.

[13] L. Lamport. Fast paxos. Distributed Computing, 19(2):79–103,
2006.

[14] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: building
e�cient replicated state machines for wans. In OSDI,
volume 8, pages 369–384, 2008.

[15] P. Ruivo, M. Couceiro, P. Romano, and L. Rodrigues. Exploiting
total order multicast in weakly consistent transactional
caches. In IEEE 17th Paci�c Rim International Symp. on
Dependable Computing (PRDC), 2011, pages 99–108, 2011.

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed �le system. In IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), 2, pages 1–10, 2010.

[17] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, and J. Donham. Storm@
twitter. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 147–156, 2014.

[18] R. Van Renesse and F. B. Schneider. Chain replication
for supporting high throughput and availability. In OSDI,
volume 4, pages 91–104, 2004.

9
EAI Endorsed Transactions on

Energy Web and Information Technology 01
2018 - 04 2018 | Volume 5 | Issue 17 | e11

Improving ZooKeeper Atomic Broadcast Performance When a Server Quorum Never Crashes

	1 ZooKeeper and ZooKeeper Atomic Broadcast Protocol
	1.1 Zab Protocol

	2 Zab Variations with Additional Assumptions
	2.1 Assumptions
	2.2 Definitions and Lemma
	2.3 Design Approach
	2.4 Leader Protocol
	2.5 Protocol 1
	Protocol 1.1: ZabAc
	Protocol 1.2: ZabAa

	2.6 Protocol 2: ZabCt
	Optimal Value for p

	2.7 Switching Between Zab and ZabCt

	3 Experiments and Performance Comparison
	3.1 Observations

	4 Coin Tossing Under Assumptions A1-A3
	ZabAA with p =1
	4.1 Performance Comparison with N = 3

	5 Related Work
	6 Conclusion and Future Work

