

© SightLine Applications, Inc.

EAN-Command Example Code

2022-11-01

Exports: Export Summary Sheet

EULA: End User License Agreement

Web: sightlineapplications.com

Sales: sales@sightlineapplications.com

Support: support@sightlineapplications.com

Phone: +1 (541) 716-5137

1 Overview .. 1

1.1 Additional Support Documentation 1

1.2 Hardware Requirements .. 1

1.3 SightLine Software Requirements 1

1.4 Third Party Tools - PC Examples 3.0.xx and Later .. 1

1.5 Third Party Tools - PC Examples 2.0.xx and
earlier: .. 2

2 Getting Started ... 3

2.1 Projects Overview .. 3

2.2 SLATestGDI - Sample Video Decode Application ... 4

2.3 SLADecodePng ... 5

2.4 Simple Discover Example (simpleDiscover) 5

2.5 SightLine Command and Control Example
(slaCommand) .. 5

2.6 Panel Minus - Sample Graphical User Interface 5

2.6.1 Panel Minus Notes ... 5

2.6.2 Enabling RTSP Client Support 6

2.6.3 Panel Minus Installer .. 6

3 System Configuration Using Panel Plus and
SightLine Commands.. 7

4 Generating, Unpacking, and Parsing SightLine
Command Packets ... 8

4.1 Communication Protocol Packet Generation and
Unpacking .. 8

4.1.1 Packet Generation ... 8

4.1.2 Packet Unpacking ... 8

4.2 Packet Parsing .. 9

4.2.1 Packet Read ... 9

4.2.2 Packet Parse ... 10

5 Troubleshooting ... 10

5.1 Verify QT Options in Visual Studio 10

5.2 Building on Linux .. 11

5.3 Questions and Additional Support 11

Appendix A - Managing Parameter File - ARM or PC
Application Development ... 11

 CAUTION: Alerts to a potential hazard that may result in personal injury, or an unsafe practice that causes damage to the equipment
if not avoided.

 IMPORTANT: Identifies crucial information that is important to setup and configuration procedures.

 Used to emphasize points or reminds the user of something. Supplementary information that aids in the use or understanding of the
equipment or subject that is not critical to system use.

https://sightlineapplications.com/wp-content/uploads/Exports-Summary.pdf
https://sightlineapplications.com/wp-content/uploads/SightLine-Product-License.pdf
https://sightlineapplications.com/
mailto:sales@sightlineapplications.com
mailto:support@sightlineapplications.com

EAN-Command-Example-Code

© SightLine Applications, Inc. 1

1 Overview

The example solution file in Visual Studio is designed to help software engineers develop code to
interact with SightLine hardware platforms. The latest PC examples installer is available on SightLine
Command and Control page.

The code examples provide a guide on generating and transmitting SightLine Command packets. This is
important as it abstracts and simplifies creating message packets as defined by IDD. It also ensures that
the packets will be correct and compatible with the Sightline hardware that will receive the commands.

1.1 Additional Support Documentation

Additional Engineering Application Notes (EANs) can be found on the Documentation page of the
SightLine Applications website.

The Panel Plus User Guide provides a complete overview of settings and dialog windows located in the
Help menu of the Panel Plus application.

The Interface Command and Control (IDD) describes the native communications protocol used by the
SightLine Applications product line. The IDD is also available as a PDF download on the Software
Downloads page.

1.2 Hardware Requirements

SightLine hardware with enabled functionality as described in one of the corresponding OEM startup
guides: EAN-Startup Guide 1500-OEM, EAN-Startup Guide 3000-OEM, EAN-Startup Guide 4000-OEM.

1.3 SightLine Software Requirements

 IMPORTANT: The Panel Plus software version should match the firmware version running on the
board. Firmware and Panel Plus software versions are available on the Software Download page.

Table 1: Example Code Changes in SightLine Software

Software Version Change

2.25.xx
Decode library was updated to use FFMPEG version 3.4.1. As part of this update ensure that linker
settings in visual studio for SAFESH are set to No.

3.00.XX
Decode library was updated to use FFMPEG version 4.0.1.
Hardware decoder option was added to the decoder. Requires Intel integrated graphics card.

3.01
Added option to have decoder allocate a group of buffers to be reused instead of requiring user to
copy data out every frame.
See Panel minus for an example of how to reuse buffers.

1.4 Third Party Tools - PC Examples 3.0.xx and Later

Microsoft Visual Studio Professional 2017 or similar.

1. Download and install Microsoft Visual Studio Professional 2017. During installation, in the
Workloads tab, click on Desktop development with C++.

https://sightlineapplications.com/command-control/
https://sightlineapplications.com/documentation/
https://sightlineapplications.com/downloads/
http://sightlineapplications.com/idd/
https://sightlineapplications.com/downloads/
https://sightlineapplications.com/downloads/
http://sightlineapplications.com/wp-content/uploads/EAN-Startup-Guide-1500-OEM.pdf
http://sightlineapplications.com/wp-content/uploads/EAN-Startup-Guide-3000-OEM.pdf
https://sightlineapplications.com/wp-content/uploads/EAN-Startup-Guide-4000-OEM.pdf
https://sightlineapplications.com/downloads/
https://visualstudio.microsoft.com/vs/older-downloads/

EAN-Command-Example-Code

© SightLine Applications, Inc. 2

2. In the Installation Details » Optional section select Visual C++ MFC for x86 and x64, and C++/CLI
support. Do not uncheck anything that is already checked.

3. Click the Individual Components tab. Scroll down to SDKs, libraries, and frameworks and select
Visual C++ ATL for x86 and x64 (this may already be checked by default)

4. Click Install.

Microsoft Visual Studio Installer Projects - Adds support for SightLine installer projects.

Qt 5.12.1 or QT 5.12.9 - Download and install QT. Used with the Panel Minus application. 3.2.xx and
earlier use 5.12.1. 3.3.xx and later use 5.12.9.

QT Visual Studio Tools 2017 - Download and install after Qt 5.12.x above. Used for the Panel Minus
application.

If upgrading from Microsoft Visual Studio 2013 with QT Visual Studio Tools 2013 see the Verify QT
Options in Visual Studio section.

1.5 Third Party Tools - PC Examples 2.0.xx and earlier:

• Microsoft Visual Studio 2013 recommended.

• Microsoft Visual Studio 2013 Installer Projects - Necessary for building the SLAPanelMinusInstaller
project.

• VS2013 MBCS - Multibyte MFC Library for Visual Studio

• Qt 5.6.0 - Download and install. Used with the Panel Minus application.

• QT Visual Studio Tools 2013 - Download and install after QT 5.6.0. above is installed. Used for the
Panel Minus application.

https://marketplace.visualstudio.com/items?itemName=VisualStudioClient.MicrosoftVisualStudio2017InstallerProjects
https://download.qt.io/official_releases/qt/5.12/5.12.1/
https://download.qt.io/official_releases/qt/5.12/5.12.9/
https://marketplace.visualstudio.com/items?itemName=TheQtCompany.QtVisualStudioTools-19123
https://docs.microsoft.com/en-us/visualstudio/releases/2013/vs2013-sysrequirements-vs#download
https://marketplace.visualstudio.com/items?itemName=UnniRavindranathan-MSFT.MicrosoftVisualStudio2013InstallerProjects
https://www.microsoft.com/en-us/download/details.aspx?id=40770
https://download.qt.io/new_archive/qt/5.6/5.6.0/
https://marketplace.visualstudio.com/items?itemName=TheQtCompany.QtVisualStudioTools

EAN-Command-Example-Code

© SightLine Applications, Inc. 3

2 Getting Started

1. Install the PC examples installer file from the download (e.g., SLAExamplesInstaller.msi).

2. Use Windows File Explorer and navigate to the install directory. By default this will be: C:\SightLine
Applications\SLAExamples X.XX.XX\CmdCtrlExamples. This will change with each release version.

3. Open the slexample.sln example solution file in Microsoft Visual Studio. The included projects
implement a subset of the entire SightLine command and control protocol.

 For a complete overview of the SightLine command and control interface see the IDD.

 IMPORTANT: If using Visual Studio 2017 Community Edition and building slexamples.sln in release
build configuration, it is important to point to the necessary merge module
(Microsoft_VC141_CRT_x86.msm) or find another way to redistribute Microsoft dependencies.

 IMPORTANT: For each installation add the following directory to the system path: C:\SightLine
Applications\SLAExamples X.XX.XX\bin (X.XX.XX is the installed version).

2.1 Projects Overview

To debug/run a project, right click on the project in Visual Studio and select Set as Startup Project. The
project is displayed in bold indicating it is the startup project, e.g., SLAPanelMinus.

Table 2: SightLine Projects

Folder Included Files

bin Contains Windows 32-bit DLLs for FFmpeg (avcodec, avdevice … dlls)

lib Contains windows 32-bit libraries for FFmpeg

include FFmpeg and SightLine header files

SLADecode

Defines the SLADecode class interface for decoding mjpeg, mpeg2-ts video and KLV metadata.

SLATestGDI

Sample application - decodes mpeg2-ts or rtp-mjpeg video from a network stream and displays in a
GDI window.

SLADecodePng

Sample code utilizing libpng to decode PNG files and extract encoded metadata

CmdCtrlExamples simpleDiscover

This project uses an Ethernet connection to discover SightLine systems over an Ethernet network.

slaCommand

This project use either a Serial or Ethernet connection to demonstrates how to request and set
parameters, and how to initiate and receive track telemetry.

SLAPanelMinus

This project is an example of how to include the SLADecoder into a Windows Qt application.

SLAPanelMinusInstaller

Example project for an installer to deploy the Panel Minus application.

SLAVideoGrid

This project is a Windows and QT application that displays video from up to 6 sources in a 2 row, 3
column grid. See the readme.txt file in the SLAVideoGrid project directory for details.

NucTableExample Used to create or modify Non-Uniformity Correction (.nuc) or Dead Pixel Removal (.dead) tables for
use with SightLine video processing systems.

https://sightlineapplications.com/releases/IDD/current/index.html

EAN-Command-Example-Code

© SightLine Applications, Inc. 4

2.2 SLATestGDI - Sample Video Decode Application

1. Open Panel Plus and connect to the SightLine on-board video processing system.

2. From the Connect tab set the Video Output to Network for the 1500 (Network 1 or 0 for 3000).

3. From the Compress tab:

a. Set MPEG2-S to H.264

b. Click Use My IP - Unicast.

c. Click Send.

4. Close the Panel Plus application. At the prompt to stop the board from streaming, select No.

5. Browse to: C:\SightLine Applications\SLAExamples X.XX.XX\SLADecode.

6. Open SLATestGDI.sln with Visual Studio.

7. Build the solution, set SLATestGDI as StartUp Project, and then run SLATestGDI.cpp

8. From the main menu select File » Change to Address udp://@:15004.

 To decode from a different address or port, open SLATestGDI.cpp and change the address passed to
the SLADecode, defined as char ADDR[].

Examples include:

• MPEG2-TS default port, unicast to pc: char ADDR[] = udp://@:15004

• RTP-MJPEG default port, unicast to pc:

▪ char ADDR[] = udp://@:5004

▪ // Unicast to this PC (rtp-mjpeg default port)

• MPEG2-TS default multicast address and port: char ADDR[] = udp://@224.10.10.10:15004

• RTP-MJPEG default multicast address and port: char ADDR[] = udp://@224.10.10.10:15004

• RTSP client (release 2.24.7 and later): rtsp://192.168.1.102/clientPort=14560

• Decode a recorded file: char ADDR[] = video1.ts

 video1.ts must be saved to C:\SightLine Applications\SLAExamples x.xx.xx\SLADecode\SLATestGDI.

If video is not displayed:

• Allow access to the network port used.

• Disable the windows firewall.

• Disable multiple network cards.

• Verify that other programs using the network video are closed (e.g., Panel Plus or VLC).

EAN-Command-Example-Code

© SightLine Applications, Inc. 5

2.3 SLADecodePng

SightLine products can record 16-bit capture images with no loss to PNG files along with a custom EXIF-
like header with metadata such as latitude and longitude. This sample code utilizes libpng to decode
PNG files and extract the encoded metadata. See EAN-File-Recording for information about recording
PNG Snap Shots.

2.4 Simple Discover Example (simpleDiscover)

This is a Windows console project that uses an Ethernet connection to discover SightLine systems over
an Ethernet network. This SLADiscover is usually the first step in establishing network communication
with a system for command and control. The SLADiscover protocol allows each system to inform the
client regarding IP Address, hardware type, and features information. The SightLine Discover Protocol
is described in the IDD.

2.5 SightLine Command and Control Example (slaCommand)

This is a Windows console project that uses either a Serial or Ethernet connection to a SightLine
system. The code contains instructions on how to modify each connection type. After the connection is
established, the application demonstrates how to request and set parameters and wait for a response.
Reading information from the hardware and parsing is done using the message unpacking routines in
slfip.cpp in a separate thread. Some command and control features will only be available with the
corresponding Application Bits (appbits) enabled on the SightLine hardware. For questions regarding
which features have been enabled, please contact Sales.

2.6 Panel Minus - Sample Graphical User Interface

This project is an example of how to include the SLADecoder into a Windows Qt application.
Installation of the Qt resources are required (see 1.4 Third Party Tools). For additional instructions see
the Qt webpage downloads section for more information.

2.6.1 Panel Minus Notes

• Before using Panel Minus close all instances of Panel Plus. Closing Panel Plus will prevent it from
consuming messages from SightLine hardware instead of Panel Minus.

• The default display area of SLADecode is approximately 640x480. If the camera input is larger (e.g.,
1280x720), then only a 640x480 sub area of the screen is displayed. No scroll bars or other UI
artifacts have been implemented to allow the user to see other parts of the image in this example.

• Clicking on Start Track sends three distinct track messages to the system via a call to
SendStartTrack at the following pixel locations: (100,200) (200,300) (300,400)

 Depending on the input resolution of the video this could be in an area of the screen not displayed in
Panel Minus.

https://sightlineapplications.com/wp-content/uploads/EAN-File-Recording.pdf
http://sightlineapplications.com/releases/IDD/current/md__s_l_a_discover.html
mailto:sales@sightlineapplications.com

EAN-Command-Example-Code

© SightLine Applications, Inc. 6

Figure 1 shows a full image displayed in Panel Plus. Figure 2 shows Panel Minus with a 640x480 center
view of a full image.

Figure 1: Panel Plus Full Image Figure 2: Panel Minus 640x480 Full Image

2.6.2 Enabling RTSP Client Support

The latest version of SLA Decode (2.24.07 or latest) has built in support for a sample RTSP client. Run
the SLATestGDI.cpp and enter the RTSP URL in the open URL drop-down menu to test the feature, e.g.,
rtsp://192.168.1.102/clientPort=14560.

Look in SLARtspClient.cpp for reference implementation in cases where the RTSP client needs modified.
Call the SLARtspOpenURL with the correct URL path. All socket creation is done internally.

This happens in Panel Plus when streaming using RTSP. Look in SLADecodeFFMpeg.cpp in ffmpegTask
for lines below. Do the same for the software.

The client uses one of the available ports in the system for RTSP. To configure a specific port, pass in
the RTP port as a third parameter in the SLARtspOpenURL (the client will try to use it). Another option
is to use clientPort= in the URL. The port does not need to be configured externally, since the decoder
is aware that the port has been created.

2.6.3 Panel Minus Installer

Building the Panel Minus Installer provides a way to distribute a custom application without requiring
users to install Visual Studio or Qt.

An alternate option to allow for seamless distribution is to install Panel Plus on a PC. Once installed
copy the .dlls from the Panel Plus install location to the Panel Minus application location where
panelminus.exe is running.

 Before building the installer add all required .dlls from the c:\SightLine Applications\SLAExamples
X.XX.XX\bin folder to the installer.

EAN-Command-Example-Code

© SightLine Applications, Inc. 7

3 System Configuration Using Panel Plus and SightLine Commands

SightLine recommends using a combination of Panel Plus and SightLine commands to configure a
system to start in a known state.

Use the following guidelines to help facilitate this process:

• Use Panel Plus to configure settings that are expected to remain constant for the application.
Examples may include:

▪ Acquisition settings

▪ Serial communication settings

▪ Network settings

▪ Display settings (in certain applications)

• Use Panel Plus to configure the default settings for video encoding if applicable.

 In most applications, the way the video is encoded (e.g., H.264) will not change because of the
potential problems it can cause on the client receiver.

• Use Panel Plus to configure the default settings for other image processing functions if applicable,
e.g., registration limits and stabilization rates.

• Save the default settings to the SightLine hardware. This creates a parameter file on the system
that is loaded on every reboot cycle ensuring the system will start up in a known state.

• Look for the VersionNumber (0x40) message. To query version information, use the
GetVersionNumber (0x00) command.

▪ The VersionNumber (0x40) message is sent after the system starts up to indicate it is running
and ready to receive commands.

▪ The system may also begin streaming the telemetry packet TrackingPosition (0x51)depending
on configuration and features enabled.

▪ Check the major, minor, and release numbers that come back. If it is possible to upgrade the
SightLine hardware asynchronous to the microcontroller firmware, then it is possible for the
supported command and control protocol to be out of sync. This can cause some commands to
no longer work with the system.

• Query the state of the system for information that may change over time, e.g., querying the system
prior to changing the false color mode with SetDisplayParameters (0x16) command.

 If the microcontroller starts up in sync with the SightLine system, this becomes less necessary.

https://sightlineapplications.com/releases/IDD/current/struct_s_l_a_version_number__t.html
https://sightlineapplications.com/releases/IDD/current/struct_s_l_a_get_version_number__t.html
https://sightlineapplications.com/releases/IDD/current/struct_s_l_a_version_number__t.html
https://sightlineapplications.com/releases/IDD/current/struct_s_l_a_tracking_positions__t.html
https://sightlineapplications.com/releases/IDD/current/struct_s_l_a_set_display_parameters__t.html

EAN-Command-Example-Code

© SightLine Applications, Inc. 8

4 Generating, Unpacking, and Parsing SightLine Command Packets

The example projects rely on packet generation and parsing provided by the source code in the
following sections.

4.1 Communication Protocol Packet Generation and Unpacking

Packet generation and unpacking are implemented in slfip.cpp, slfip.h.

4.1.1 Packet Generation

Packet generation provides functions to generate most outgoing packets. These functions take
parameters and generate a buffer of data to send out the communication port. It also implements
correct data packing when generating outbound packets.

An example of generating and sending data is shown below. The calls that begin with My indicate
customer generated calls.

When the SightLine commands are updated to add more parameters, there will be additional functions
that correspond with the new parameter set. For example, if the Set Registration Parameters
command was recently updated to include the camera index. The following commands are now
implemented. (Both calls will work since SightLine firmware is backwards compatible.)

4.1.2 Packet Unpacking

Packet unpacking provides functions to unpack common incoming packets. These functions take a
buffer of data and then fill in a structure containing the parameters. These functions should only be
called in a callback routine for processing the matching command. For example, the
SLFIPUnpackTrackingPosition() unpacks a buffer of data into the SLTelemetryData structure defined in
slfip.h. The source code is in slfip.cpp. These are also good examples of how to unpack all commands.
There are a limited number of these functions.

The following calls are currently implemented:

• (2.25.06) SLFIPUnpackTrackingPosition

• SLFIPUnpackTrackingPositions

• SLFIPUnpackTrackingPositionsExtended

• SLFIPUnpackTrackingPixelStats

• SLFIPUnpackFocusStats

• SLFIPUnpackLandingAid

• SLFIPUnpackLandingPosition

#include "slfip.h"

u8 buffer[MAX_SLFIP_PACKET] = {0}

u8 dataLen = 0;

MyOpenSerialPort(COM1, 57600, 8, 1, NO_HW_HANDSHAKE);

dataLen = SLFIPStartTracking(buffer, 320, 240, 1);

MySerialPortWrite(buffer, dataLen);

s32 SLFIPSetRegistrationParameters(SLPacketType buffer, u16 maxTranslation,

u8 maxRotation, u8 zoomRange=0, u8 lft=0, u8 rgt=0, u8 top=0, u8 bot=0);

s32 SLFIPSetRegistrationParameters(SLPacketType buffer, u16 maxTranslation,

u8 maxRotation, u8 zoomRange, u8 lft, u8 rgt, u8 top, u8 bot, u8 cameraIdx);

EAN-Command-Example-Code

© SightLine Applications, Inc. 9

4.2 Packet Parsing

Packet read and packet parse are supported.

4.2.1 Packet Read

The FIPReadPacket() reads and returns a complete packet from a port. This is included in slfipport.cpp
and manages extended length bytes. An example of using a thread along with the FIPReadPacket() can
be found in the SLAPanelMinus project in SLAReceiveThread.spp.

typedef struct {

 s16 trackCol;

 s16 trackRow;

 f32 sceneCol;

 f32 sceneRow;

 s16 displayCol;

 s16 displayRow;

 u8 trackingConfidence;

 u8 sceneConfidence;

 u16 displayAngle7;

 u8 idx;

 u8 reserved;

 s16 sceneAngle7;

 u16 sceneScale8;

} SLTelemetryData;

void SLACommManager::cbCurrentTrackingPosition(u8* data)

{

 SLTelemetryData trackPosition;

 u32 frameIdx = 0xFFFFFFFF;

 u64 timeStamp = 0;

 SLFIPUnpackTrackingPosition(&trackPosition, data, &timeStamp,

&frameIdx);

 MyProcessTrackingPosition(&trackPosition);

}

s32 FIPReadPacket(u8 *data, SLPort *port, s32 timeoutMs, bool fipEx, u8

*extraHeaderByte)

void SLAReceiveThread::receive()

{

 // just read until we are told to quit:

 while(!m_quit)

 {

 packetLength = FIPReadPacket(&buffer[0], m_ReadingPort, timeout,

fipEx);

 //if we got a whole packet, check the checksum:

 if(packetLength >0 && packetLength < 0xffffffff)

 {

…

EAN-Command-Example-Code

© SightLine Applications, Inc. 10

4.2.2 Packet Parse

The SLParsePackets() example is included in simpleslfipport.cpp. This function takes a packet that has
been read and calls the appropriate callback function.

5 Troubleshooting

Troubleshooting issues related to Visual Studio and third-party tools:

• To build and run projects, the QT directory and version must be specified. Check the environment
variables for an entry for QTDIR. Set this to where the QT is installed, e.g.,
C:\Qt\Qt5.6.0\5.6\msvc2013.

• Delete *user file if edited manually.

• There can be problems building Qt projects such as SLAPanelMinus because it cannot find tools or
dlls.

• Check the .user file and verify that QTDIR is defined and correct.

• Try manually adding QTDIR to .user file and restarting Visual Studio.

5.1 Verify QT Options in Visual Studio

Table 3: Visual Studio Software Compatibility

SightLine Software Microsoft Visual Studio QT Visual Studio Tools QT Software Version

3.3.xx and above VS 2017 QT VS Tools 2017 QT5.12.9

3.0.xx and above VS 2017 QT VS Tools 2017 QT5.12.1

2.5.xx and below VS 2013 QT VS Tools 2013 QT5.6.0

1. In Visual Studio, go to QT VS Tools » Qt Options.

2. Verify that the QT version that is installed (Figure 3) matches the software version in Table 3.

3. If the QT version is not correct, delete the entry and click Add. Browse to the path where the recent
version of QT is installed and click OK (Figure 4).

Figure 3: QT Options Dialog

Figure 4: Add New QT Version

u32 SLParsePackets(const u8 *data, u32 len, handlerCallback *callback,

u32 firstType, u32 nTypes)

EAN-Command-Example-Code

© SightLine Applications, Inc. 11

5.2 Building on Linux

The source code is provided for all the example code starting in version 3.0 of the installer.
Additionally, SLAHalLinux.cpp is provided which can be used instead of SLAHalPc.cpp to build examples
like slaCommand on a Linux machine. Makefiles or other build scripts are left up to the user.

5.3 Questions and Additional Support

For questions and additional support, please contact SightLine Support. Additional support
documentation and Engineering Application Notes (EANs) can be found on the Documentation page of
the SightLine Applications website.

Appendix A - Managing Parameter File - ARM or PC Application Development

When developing an ARM or PC application to send SLA commands to the OEM hardware, commands
sent by external applications can affect the state of the system when saving the parameter file. To
alleviate these issues SightLine recommends the following guidelines when managing the parameter
file:

• Disable ARM or PC applications when configuring and saving parameters to OEM hardware.

• Configure a single system with parameters and test the configuration.

• If the configuration test passes, use the SightLine upgrade utility application to retrieve the
parameter file from the OEM hardware and save it to a separate location as a known good system
configuration file.

• The upgrade utility can then be used to upload the known good system parameter file to OEM
hardware.

 See the EAN-Firmware Upgrade Utility for information on how to use the SightLine upgrade utility
to manage the parameter file.

mailto:support@sightlineapplications.com
https://sightlineapplications.com/documentation/
http://sightlineapplications.com/wp-content/uploads/EAN-Firmware-Upgrade-Utility.pdf

	1 Overview
	1.1 Additional Support Documentation
	1.2 Hardware Requirements
	1.3 SightLine Software Requirements
	1.4 Third Party Tools - PC Examples 3.0.xx and Later
	1.5 Third Party Tools - PC Examples 2.0.xx and earlier:

	2 Getting Started
	2.1 Projects Overview
	2.2 SLATestGDI - Sample Video Decode Application
	2.3 SLADecodePng
	2.4 Simple Discover Example (simpleDiscover)
	2.5 SightLine Command and Control Example (slaCommand)
	2.6 Panel Minus - Sample Graphical User Interface
	2.6.1 Panel Minus Notes
	2.6.2 Enabling RTSP Client Support
	2.6.3 Panel Minus Installer

	3 System Configuration Using Panel Plus and SightLine Commands
	4 Generating, Unpacking, and Parsing SightLine Command Packets
	4.1 Communication Protocol Packet Generation and Unpacking
	4.1.1 Packet Generation
	4.1.2 Packet Unpacking

	4.2 Packet Parsing
	4.2.1 Packet Read
	4.2.2 Packet Parse

	5 Troubleshooting
	5.1 Verify QT Options in Visual Studio
	5.2 Building on Linux
	5.3 Questions and Additional Support

	Appendix A - Managing Parameter File - ARM or PC Application Development

