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CHAPTER 1

Easing into Standard
Template Library (STL)
Using Arrays—STL Vector

Congratulations! Yes, you deserve a word of praise. By
picking up this book you have indirectly implied that you are serious about your understand-
ing of C, C++, Object-Oriented Programming (OOP), and state-of-the-art programming with
STL (ANSI/ISO C++ Standard Template Library). Kudos for your desire to learn the most
exciting addition to ANSI/ISO C++ and the powerful programming solutions STL enables.

STL is as revolutionary to programming as is Object-Oriented Programming. But like
OOP, STL has its own design roots, philosophies, and use. Understanding STL is like jump-
ing into several hundred thousand lines of code, written by other programmers. Your task is to
“jump onboard” with the logic, definitions, and syntax that make the whole package function.

What Do | Need to Know to Use This Book?

Simply, an understanding of C++ and familiarity with objects. Each chapter begins with a
discussion of how a Data Structures concept is implemented using standard C++ syntax and
then moves into the STL counterpart. The introductory section of each chapter reviews and
bootstraps your understanding of the Data Structures concept and then rolls that under-
standing over into the STL equivalent.

Why Do | Need Calculus When | Can Buy a Calculator?

As a student, did you ever ask yourself the question: “Why do I need - 101 (fill
in the blank with any required course) when I can buy a piece of technology that does it all



PHO19-Murray0l 10/24/00 3:05 PM Page 2 $

2 Chapter 1 ¢ Easing into Standard Template Library (STL) Using Arrays—STL Vector

for me? The answer you may have been given by your advisor might have gone along the
lines, “This course will give you the fundamentals necessary to skillfully employ said tech-
nological device.” You, on the other hand, may have heard them say: ““Yada, yada, yada, just
take it,” and it wasn’t until you obtained your degree and started working that you discov-
ered just how important those fundamentals really are!

The Complexity of Multiplatform Target Environments

From a programming point-of-view, today’s development environment is a hundred times
more complex than a decade ago. Instead of PC application development targeting a stand-
alone DOS text-mode environment, it must now deal with hundreds of PC clones and other
popular competing platforms.

These new architectures have their own evolving operating systems and multitasking,
multimedia capabilities. Add to this the typical Internet presence. In other words, today’s
programming environment, programmed by a single developer, was once the domain of sys-
tems, communications, security, networking, and utility specialists all working as a team to
keep the “mother ship,” or mainframe, up and running!

Something had to come along to enable application developers to keep pace with this
ever-increasing resource management nightmare. Voila, enter C and C++. These new lan-
guages incorporated brand new programming capabilities to melt through this hidden ice-
berg of programming demands.

Unintentional Misuse or Ignorance of C/C++ Features

The biggest stumbling block to accessing these incredibly powerful C/C++ features is igno-
rance of their existence. In the real world, most experienced FORTRAN, COBOL, Pascal,
PL/I, and Assembly Language programmers, when asked by their bosses to use a new lan-
guage, taught themselves the new language! Why? Because, of course, the company wouldn’t
give them the time off. They diligently studied nights and weekends on their own, and mapped
their understanding of whatever language they knew well to the new language’s syntax.

This approach worked for decades as long as a programmer went from one “older
high-level language,” to the next. Unfortunately, when it comes to C/C++, this approach
leaves the diligent, self-motivated, learn-on-their-own employee fired and wondering what
went wrong this time?

Here’s a very small example to illustrate the point. In COBOL, for instance, to incre-
ment a variable by 1, you would write:

accumulator = accumulator + 1;

Then one day the boss says you need to write the program in FORTRAN. You learn
FORTRAN and rewrite the statement:
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accumulator = accumulator + 1;

No problem. Then your company migrates to Pascal and once again you teach your-
self the new syntax:

accumulator := accumulator + 1;

Ta da! Now your boss says that your million dollar code needs to be ported over to
Microsoft Windows in C/C++. After a divorce, heart attack, and alcohol addiction you
emerge feeling you have mastered Microsoft Windows/C/C++ logic and syntax and finally
rewrite the statement:

iaccumulator = iaccumulator + 1; //1 for integer in Hungarian notation

and you get fired! The senior programmer, hired from a local two-year college, looks at
your code and scoffs at your inept translation. Oh, sure, you got the idea behind Hungarian
Notation (a C/C++ naming convention that precedes every variable’s name with an abbrevi-
ation of its data type), but you created a literal statement translation instead of incorporat-
ing the efficiency alternatives available in C/C++.

Your senior programmer, green, twenty years younger than you, only knowing
Microsoft Windows, C and C++ syntax, knew the statement should have been written:

iaccumulator++;

This statement, using the C/C++ increment operator, efficiently instructs the compiler
to delete the double fetch/decode of the incorrectly written translation, and to treat the vari-
able iaccumulator as its name implies—as an accumulator within a register, a much more
efficient machine language encoding.

This extremely simple code example is only the beginning of hundreds of C/C++ lan-
guage features waiting, like quicksand, to catch the unwary programmer.

Data Structures—The Course to Separate Hackers from Pros!

In a programmer’s formal educational path, there stands a course typically called Data
Structures, which statistically has an attrition rate of 50%. Why? Because it deals with two
extremely efficient concepts—pointers, and dynamic memory allocation/deallocation—
which when combined generate a geometric complexity in program development and
debugging requirements. These concepts typically present such a steep learning curve that
many programmers either avoid the course altogether, or lop along getting by, and then
never use the concepts in the real world.

This is unfortunate since pointers and dynamic memory allocation present some of the
most powerful and efficient algorithms available to a programmer. Enter the Standard Tem-
plate Library!
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So, Just What Is the Standard Template Library?

In a nutshell, STL encapsulates the pure raw horsepower of the C/C++ languages plus the
advanced efficient algorithms engendered within a good Data Structures course, all bundled
into a simple-to-use form! It is similar in a way to having struggled with years of pre-Calc
and Calculus courses, only to be given an advanced portable calculator that does all the
work for you.

You may view the Standard Template Library as an extensible framework which con-
tains components for language support, diagnostics, general utilities, strings, locales, stan-
dard template library (containers, iterators, algorithms, numerics), and input/output.

The Origins of STL

With the ever-increasing popularity of C/C++ and Microsoft Windows-controlled environ-
ments, many third-party vendors evolved into extremely profitable commodities by provid-
ing libraries of routines designed to handle the storage and processing of data. In an
ever-ongoing attempt to maintain C/C++’s viability as a programming language of choice,
and to keep the ball rolling by maintaining a strict control of the languages’ formal defini-
tion, the ANSI/ISO C++ added a new approach to defining these libraries called the Stan-
dard Template Library.

STL, developed by Alexander Stepanov and Meng Lee of Hewlett Packard, is
expected to become the standard approach to storing and processing data. Major compiler
vendors are beginning to incorporate the STL into their products. The Standard Template
Library is more than just a minor addition to the world’s most popular programming lan-
guage; it represents a revolutionary new capability. The STL brings a surprisingly mature
set of generic containers and algorithms to the C++ programming language, adding a
dimension to the language that simply did not exist before.

What Do | Need to Know to Take Advantage of STL?

You have all you need to know right now, simply by picking up this book. Unlike many
other STL books which simply enumerate endless lists of STL template names, functions,
constants, etc., this book will begin by first teaching you the advanced C/C++ language fun-
damentals that make the Standard Template Library syntactically possible.

Along the way, this instructional section will show you the syntax that allows an algo-
rithm to be generic; in other words, how C/C++ syntactically separate what a program does
from the data type(s) it uses. You will learn about generic void * pointer’s strengths and
weaknesses, the “better way” with generic types, the “even better way” using templates, and
finally, the “best way” with cross-platform, portable, Standard Templates.

The section on template development begins with simple C/C++ structures used syntac-
tically to create objects (yes, you can create an object with this keyword; however it is a very

e
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bad idea—you’ll have to wait until the next chapter to see why)! The struct object definition
is then evolved over, logically and syntactically, into the C++ class. Finally, the class
object is mutated into a generic template. This progressive approach allows you to easily
assimilate the new features of C/C++ and paves the way to technically correct use of the STL.
With this under your belt, you will logically and syntactically understand how the STL works
and begin to immediately incorporate this technology into your application development.

Generic programming is going to provide you with the power and expressiveness of
languages like SmallTalk while retaining the efficiency and compatibility of C++. STL is
guaranteed to increase the productivity of any programmer who uses it.

A High-Level View of STL

Although the STL is large and its syntax can be initially intimidating, it is actually quite
easy to use once you understand how it is constructed and what elements it employs. At the
core of the STL are three foundational items called containers, algorithms, and iterators.
These libraries work together allowing you to generate, in a portable format, frequently
employed algorithmic solutions, such as array creation, element insertion/deletion, sorting,
and element output. But the STL goes even further by providing internally clean, seamless,
and efficient integration of iostreams and exception handling.

Kudos to the ANSI/ISO C++ Committee

Multivendor implementations of C/C++ compilers would have long ago died on the vine
were it not for the ANSI C/C++ Committees. They are responsible for giving us portable C
and C++ code by filing in the missing details for the formal language descriptions of both C
and C++ as presented by their authors, Dennis Ritchie and Bjarne Stroustrup, respectively.
And to this day, it is the ANSI/ISO C++ Committee that continues to guarantee C++’s
portability into the next millennium.

The ANSI/ISO C++ committee’s current standards exceed their past recommenda-
tions which historically decided only to codify existing practice and resolve ambiguities and
contradictions among existing translator implementations. The C++ committee’s changes
are innovations. In most cases, the changes implement features that committee members
admired in other languages, features that they view as deficiencies in traditional C++, or
simply features that they’ve always wanted in a programming language. A great deal of
thought and discussion has been invested in each change and, consequently, the committee
feels that the new C++ definition, along with the evolutionary definition of STL, is the best
definition of C++ possible today.

Most of these recommended changes consist of language additions that should not
affect existing code. Old programs should still compile with newer compilers as long as the
old codes do not coincidentally use any of the new keywords as identifiers. However, even
experienced C++ programmers may be surprised at how much C++ has evolved without

e
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even discussing STL; take for example, the use of namespaces, new-style type casting, and
runtime type information (discussed in detail in Chapter 2).

STL’s Tri-Component Nature

Conceptually, STL encompasses three separate algorithmic problem solvers. The three most
important are containers, algorithms, and iterators. A container is a way that stored data is
organized in memory; for example, an array, stack, queue, linked list, or binary tree. How-
ever, there are many other kinds of containers, and the STL includes the most useful. The
STL containers are implemented by template classes so they can be easily customized to
hold different data types.

All the containers have common management member functions defined in their tem-
plate definitions: insert (), erase(), begin(), end(), size(), capacity (), and so on.
Individual containers have member functions that support their unique requirements.

Algorithms are behaviors or functionality applied to containers to process their contents
in various ways. For example, there are algorithms to sort, copy, search, and merge container
contents. In the STL, algorithms are represented by template functions. These are not member
functions of the container classes; they are stand-alone functions. Indeed, one of the surprising
characteristics of the STL is that its algorithms are so general. You can use them not only on
STL containers, but also on ordinary C++ arrays or any other application-specific container.

A standard suite of algorithms provides searching for, copying, reordering, transform-
ing, and performing numeric operations on the objects in the containers. The same algo-
rithm is used to perform a particular operation for all containers of all object types.

Once you have decided on a container type and data behaviors, the only thing left is
to interact the two with iterators. You can think of an iterator as a generalized pointer that
points to elements within a container. You can increment an iterator, as you can a pointer, so
it points in turn to each successive element in the container. Iterators are a key part of the
STL because they connect algorithms with containers.

Latest C++ ANSI/ISO Language Updates

While the ANSI/ISO committee was busy incorporating STL, they took the opportunity to
introduce modifications to the C++ language definition. These modifications, in most cases,
implement features that the committee members admired in other languages, features that
they viewed as deficiencies in traditional C++. These new changes, which consist of lan-
guage additions, should not affect any previously written code.

Using namespace

We’ll look at the definition for namespace from a bottom-up point of view. Namespaces
control scope or identifier (constants, variables, functions, classes, etc.) visibility. The tight-

e
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est scope is local—those identifiers declared within a function. Also at this level would be
member function or method declarations. Higher up on the scale would be class scope.

There are visibility issues associated with file scope, for example, when 1.cpp,
2.cpp, and 3. cpp are combined to generate 123 . exe. Identifiers declared in 1. cpp are not
visible (by default) in 2. cpp and 3. cpp.

At the highest level is program or workspace scope. Historically, this worked fine until
the advent of today’s complex programming environment where source files are coming at
you from all directions. Today’s programs are a combination of source files you write, those
supplied by the compiler(s), some from the operating system itself, and third-party vendors.
Under these circumstances, program scope is not sufficient to prevent identifier collisions
between categories. Namespaces allow you to lock down all program identifiers, success-
fully preventing these types of collisions.

Collisions usually fall under the category of external, global identifiers used through-
out a program. They are visible to all object modules in the application program, in third-
party class and function libraries, and in the compiler’s system libraries. When two
variables in global scope have the same identifier, the linker generates an error.

Many compiler manufacturers initially solved this problem by assigning unique iden-
tifiers to each variable. For example, under standard C, the compiler system prefixes its
internal global identifiers with underscore characters, and programmers are told to avoid
that usage to avoid conflicts.

Third-party vendors perpended unique mnemonic prefixes to global identifiers in an
attempt to prevent collisions. This failed, however, whenever two developers chose the same
prefix. The problem is that the language had no built-in mechanism with which a library
publisher could stake out a so-called namespace of its own, one that would insulate its
global identifiers from those of other libraries being linked into the same application.

Traditionally, a programmer had three choices to eliminate collisions: they could get
the source code, modify it, and rebuild it; have the authors of the offending code change
their declarations; or select an alternate code source containing the same functionality. Not
a very pleasant set of alternatives!

The C++ namespace keyword limits an identifier’s scope to the namespace identifier.
All references from outside the block to the global identifiers declared in the block must, in
one way or another, qualify the global idenfier’s reference with the namespace identifier. In
actuality, this is logically similar to perpending prefixes, however, namespace identifiers
tend to be longer than the typical two- or three-character prefixes and stand a better chance
of working.

namespace Syntax

To define a namespace, encapsulate your declarations within a namespace block, as in:

e
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namespace your_namespace_name {
int ivalue;
class my_class {/*....*/};
// more declarations;

In the above example, any code statements within your namespace_name have direct
access to the namespace’s declarations. However, any code statements outside of
your_namespace_name must use a qualifying syntax. For example, from the main () func-
tion, accessing ivalue would look like:

void main ( void )
{

your_namespace_name: :ivalue++;

The using namespace Statement

If you do not like the idea of always having to qualify an identifier with its namespace
everytime you access it, you can employ the using statement, as in:

using namespace your_namespace_name;
void main ( void )
{

ivalue++;

However, this approach can be like giving a hotel guest the key to the entire hotel
instead of a single room. The using namespace syntax provides access to all of the name-
space’s declarations; proceed with care. Each application will benefit from the best selec-
tion of these two approaches.

The Selective using Statement

Somewhere between a fully qualified namespace identifier (your_namespace_name: :ival-
uel++;) and the using namespace your_namespace_name syntax, there’s the simpler
using statement. The using directive tells the compiler that you intend to use specific identi-
fiers within a namespace. Using the previous examples, this would look like:

using your_namespace_name: :ivalue;
void main ( void )
{

ivalue++;
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Just as a programmer would not choose to always use for loops when there are while
and do-while alternatives, so too a programmer should carefully select the best, applica-
tion-specific approach to namespace identifier access.

Renaming namespaces

Sometimes third-party namespace names can get in your way because of their length; for
example, your_namespace_name is quite long. For this reason the namespace feature
allows a programmer to associate a new name with the namespace identifier, as in:

namespace YNN = your_namespace_name;
void main ( void )
{

YNN: :ivalue++;

static File Scope vs. Unnamed namespaces

One way to enforce file scope is with the keyword static. For example, if 1. cpp, 2. cpp,
and 3 . cpp all have the external variable declaration int ivalue;, and you do not want inter-
nal linkage (meaning all three identifiers share the same storage location), precede all three
declarations with the keyword static:

// 1.cpp // 2.cpp // 3.cpp
static int ivalue; static int ivalue; static int ivalue;
void main ( void ) void some_funcs( void ) ; void more_funcs( void ) ;

Unnamed namespaces provide the same capability, just a slightly different syntax:

// 1.cpp
namespace {
int ivalue;

}
void main ( void )

{

ivalue++;

To create an unnamed namespace, simply omit a namespace identifier. The compiler
then generates an internal identifier that is unique throughout the program. All identifiers
declared within an unnamed namespace are available only within the defining file. Func-
tions in other files, within the program’s workspace, cannot reference the declarations.
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New Casting Operations

As traditional style casting proves to be unsafe, error-prone, and difficult to spot when read-
ing programs, and even more challenging when searched for in large bodies of source code,
the newer style cast is a huge improvement. There are four new types of casts. The general
syntax looks like:

cast_operator <castType> (objectToCast)

Dynamic Casting

You use a dynamic_cast whenever you need to convert a base class pointer or reference to
a derived class pointer or reference. The one restriction is that the base, parent, or root class
must have at least one virfual function. The syntax for a dynamic_cast looks like:

dynamic_cast < castType > ( objectToCast );

This type of cast allows a program, at run time, to determine whether a base class
pointer or reference points to an object of a specific derived class or to an object of a class
derived from the specified class.

You can also use dynamic_cast to upcast a pointer or reference to a derived class to
a pointer or reference to one of the base, parent, or root classes in the same hierarchy.
Upcasting allows a program to determine, at run time, whether a pointer to a derived class
really contains the address of an object of that class. At the same time, you want to force the
address into a pointer of one of the object’s ancestor classes.

Static Casting

A static_cast implicitly converts between types that are not in the same class hierarchy.
The type-checking is static, where the compiler checks to ensure that the conversion is valid
as opposed to the dynamic run-time type checking that is used with dynamic_casts. The
syntax for a static_cast looks like:

static_cast < castType > ( objectToCast );

The static_cast operator can be used for operations such as converting a pointer to a
base class to a pointer to a derived class. Such conversions are not always safe. For example:
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class typeA { ... };
class typeB : public typeA { ... };

void someFunction (typeA* ptypeA, typeB* ptypeB)
{
typeB* ptypeB2 = static_cast<typeB*> (ptyped); // not safe, ptypeB may
// point to just typeB

typeA* ptypeA2 = static_cast<typeA*>(ptypeB); // BETTER - this is a
// safe conversion

In this code segment the object pointed to by ptypea may not be an object of typeB,
in which case the use of *ptypeB2 could be disastrous. For instance, calling a function that
is a member of the typeB class, but not the typea class, could result in an access violation.

Newer C-Type Cast

The reinterpret_cast operator replaces many of the older C-type casts except those
removing an identifier const restriction. The reinterpret_cast is capable of converting
one pointer type into another—numbers into pointers, and pointers into numbers. The syn-
tax looks like:

reinterpret_cast < castType > ( objectToCast );

The reinterpret_cast operator can be used for conversions such as char* to int*,
or Base_class* t0 anyOtherNONrelated class*, which are inherently unsafe.

The result of a reinterpret_cast cannot safely be used for anything other than being
cast back to its original type. Other uses are, at best, nonportable. The following code segment
demonstrates a pointer type cast in C, C++, and C++ using the reinterpret_cast syntax:

void main ( void )
{

int * pointer_to_int;

/* in C */

pointer_to_int = malloc(100); /* implicit void * cast to int *,

with warning */
(int *) new int[100]; // C++ required cast of void *
to int *

pointer_to_int = reinterpret_cast<int *>( new int[100]); // new style cast

pointer_to_int
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Constant Cast

The const_cast operator can be used to remove the const, volatile, and __ unaligned
attribute(s) from a class. The general syntax looks like:

const_cast < castType > ( objectToCast )

With a const_cast, your program can cast a pointer to any object type or a pointer
to a data member, to a type that is identical except for the const, volatile, and
__unaligned qualifiers. For pointers and references, the result will refer to the original
object. For pointers to data members, the result will refer to the same member as the origi-
nal (uncast) pointer to data member.

Run-Time Type Information (RTTI)

The typeid operator, found in <typeinfo>, supports the new C++ run-time type informa-
tion feature. The operator returns a reference to a system-maintained object of the type
type_info, which identifies the type of the argument. RTTI was added to the C++ lan-
guage because many vendors of class libraries were implementing this functionality them-
selves. This caused incompatibilities between libraries. Thus, it became obvious that
support for run-time type information was needed at the language level.

The following code segment demonstrates their straightforward syntax and logical use:

#include <typeinfo>
#include <iostream>
using namespace std;
//
class someClassType { };
//
someClassType sCTinstance;
int ivalue;
cout << "object type = " << typeid(sCTinstance) .name(); // type's name
if ( typeid ( ivalue ) == typeid ( sCTinstance ) ) // type comparisons
cout << "I DON'T BELIEVE IT!";

If this code section defined and then dynamically created a plethora of object types
and instances, knowing which dynamically allocated type was in use at any point within an
algorithm would be an extremely useful piece of run-time logic control.

Introduction to the Standard C++ Library

No matter how sophisticated your procedural or object-oriented, stand-alone, or Windows
application is, as a programmer you must invariably resort to tried and true Data Structures
algorithms for creating linked-lists, stacks, queues, and binary trees. By necessity, you have
again reinvented the wheel for each application’s unique user-defined data types. Along

e



PHO19-Murray0l 10/24/00 3:05 PM Page 13 $

Introduction to the Standard C++ Library 13

with this application-specific proprietary code comes the developer’s nightmare—design
changes that are not easily added in such cases, and code maintenance.

Unlike many other object-oriented languages, such as SmallTalk, if these common
programming components had been part of the C++ language, you could avoid re-inventing
data-specific algorithms. In a nutshell, that is what STL is all about. Finally, the C++ lan-
guage provides you with general purpose components for common programming tasks
through the Standard C++ Library.

Some of the more interesting, reusable components of the Standard C++ Library
include powerful and flexible containers and programmable algorithms. The facilities pro-
vided by the Standard C++ Library are as follows:

* C++ Language Support—includes common type definitions used throughout the
library such as predefined types, C++ program start and termination function support,
support for dynamic memory allocation, support for dynamic type identification, and
support for exception processing.

* Diagnostic Tools—provides components for reporting several kinds of exceptional
conditions, components for documenting program assertions, and a global variable
for error number codes.

* General C/C++ Utilities—provides components used by other elements of the Stan-
dard C++ Library. This category also includes components used by the Standard
Template Library (STL) and function objects, dynamic memory management utili-
ties, and date/time utilities. These components may also be used by any C++ pro-
gram. The general C/C++ utilities also include memory management components
derived from the C library.

 Strings—includes components for manipulating sequences of characters, where
characters may be of type char, w_char (used in UNICODE applications), or of a
type defined in a C++ program. UNICODE uses a two-byte value to represent every
known written language’s symbol set versus the limiting one-byte ASCII code.

¢ Cultural Formatting Support—provides numeric, monetary, and date/time format-
ting and parsing and support for character classification and string collation.

e STL (Standard Template Library)—includes the most widely used algorithms and
data structures in data-independent format. STL headers can be grouped into three
major organizing concepts: containers, iterators, and algorithms. Containers are tem-
plate classes that provide powerful and flexible ways to organize data; for example,
vectors, lists, sets and maps. Iferators are the glue that paste together algorithms and
containers.

e Advanced Numerical Computation—includes seminumerical operations and com-
ponents for complex number types, numeric arrays, and generalized numeric algo-
rithms.

e
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e Input/Output—includes components for forward declarations of iostreams, prede-
fined iostream objects, base iostream classes, stream buffering, stream formatting and

manipulators, string streams, and file streams.

e The Standard C++ Library also incorporates the Standard C Library.

The Standard C++ Libraries

An application accesses Microsoft’s Standard C++ Library facilities by using appropriate
include files and associated static and dynamic libraries. Tables 1.1 and 1.2 list all the Stan-
dard C++ Library headers and the associated static and dynamic libraries provided by

Visual C++.

Table 1.1 The Standard C++ Library Headers

algorithm bitset
cfloat ciso646
complex csetjmp
cstdio cstdlib
cwctype deque
iomanip ios
iterator limits
memory new

set sstream
string strstream

cassert
climits
csignal
cstring
exception
iosfwd
list
numeric
stack
utility

cctype
clocale
cstdarg
ctime
fstream
iostream
locale
ostream
stdexcept
valarray

cerrno
cmath
cstddef
cwchar
functional
istream
map
queue
streambuf
vector

Remember, the Standard C++ Library headers have no .h file extension in accordance with the

latest ANSI/ISO C++ standard.

Microsoft also provides the static and dynamic libraries as shown in Table 1.2.
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Table 1.2 Static and Dynamic Libraries Included with Microsoft Visual C++

Library types C runtime library Standard C++ Library ~ Old iostream library
Single-Threaded LIBC.LIB LIBCP.LIB LIBCI.LIB
Multithreaded LIBCMT.LIB LIBCPMT.LIB LIBCIMT.LIB
Multithreaded DLL version ~MSVCRT.LIB MSVCPRT.LIB MSVCIRT.LIB

(uses MSVCRT.DLL) (uses MSVCRT.DLL) (uses MSVCIRT.DLL)
Debug Single-Threaded LIBCD.LIB LIBCPD.LIB LIBCID.LIB
Debug Multithreaded LIBCMTD.LIB LIBCPMTD.LIB LIBCIMTD.LIB
Debug Multithreaded MSVCRTD.LIB MSVCPRTD.LIB MSVCIRTD.LIB

(uses MSVCRT.DLL) (uses MSVCRT.DLL)  (uses MSVCIRT.DLL)

Your First Standard C++ Library Application

To make you feel right at home, the following C++ program uses the Standard C++ Library
iostream to print “Hello World!”:

#include <iostream>
void main( void )
{

cout << "Hello World!";

}

The code segment used the Standard C++ Library input/output component to print
“Hello World!” by simply including the Standard C++ Library header <iostream>. It is
important to remember that starting with Visual C++ 4.0, a C++ program, depending on the
run-time library compiler option specified (/ML[d], /MT[d], or /MD[d]), will always link
with one Basic C run-time library and, depending on headers included, will link with either
a Standard C++ Library (as in the example program above) or the old iostream library (as
in the following coded example):

#include <iostream.h>
void main( void )
{

cout << "Hellow World!";

}

Implementing Your Own Template

Frequently, a C++ program uses common data structures such as stacks, queues, and linked-
lists. Imagine a program that requires a queue of customers and a queue of messages. You

e
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could easily implement a queue of customers, and then take the existing code and imple-
ment a queue of messages.

If the program grows and there is a need for a queue of orders you could take the
queue of messages and convert it to a queue of orders. But what if you need to make some
changes to the queue implementation? This would not be a very easy task because the code
has been duplicated in many places. Reinventing source code is not an intelligent approach
in an object-oriented environment that encourages reusability. It seems to make more sense
to implement a queue that can contain any arbitrary type rather than duplicating code. How
does one do that? The answer is to use type parameterization, more commonly referred to
as templates.

Templates are very useful when implementing generic constructs such as vectors,
stacks, lists, and queues that can be used with any arbitrary type. C++ templates provide a
way to reuse source code, as opposed to inheritance and composition, which provide a way
to reuse object code.

C++ provides two types of templates: class templates and function templates. Use
function templates to write generic functions; for example, searching and sorting routines
that can be used with arbitrary types. The Standard Template Library generic algorithms
have been implemented as function templates and the containers have been implemented as
class templates.

Your First class Template

The good news is that a c1ass template definition looks very similar to a regular class def-
inition, except for the prefix keyword template. The following example defines a stack
class template, independent from any stack element type definitions:

template <class T>

class genericStack

{

public:

genericStack( sizeOfStack = 25);

~genericStack() { delete[] stackPtr; }

int pushElement (const T&) ;

int popElement (T&) ;

int isStackEmpty()const { return stackTop == -1 ; }

int isStackFull() const { return stackTop == sizeOfStack - 1 ; }
private:

int sizeOfStack ; // number of stack elements

int stackTop ;
T* stackPtr ;
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T represents any data type. It is important to note that T does not have to be a class
type as implied by the keyword class. T can be anything from a simple data type like int,
to a complex data structure like pToArrayOfStructures *.

Function Templates Requirements

Implementing template member functions is somewhat different than implementing the reg-
ular class member functions. The declarations and definitions of the class-template member
functions should all be in the same header file. Why do the declarations and definitions need
to be in the same header file? Consider the following:

//sample.h
template <class t> //sample.cpp //main.cpp
class sample #include "sample.h" #include "sample.h"
{ template <class t> void main( void )
public: sample<t>::sample () {
sample () ; { sample<int> si ;
~sample () ; } sample<float> sf ;
Yo template <class t> }

sample<t>::~sample ()
{
}

When compiling sample.cpp, the compiler has both the declarations and the defini-
tions available. At this point, the compiler does not need to generate any definitions for tem-
plate classes, since there are no instantiations. When the compiler compiles main. cpp,
there are two instantiations: template classes sample<int> and sample<float>. At this
point, the compiler has the declarations but no definitions!

Using a class Template

Using a class template is very easy. Create the required classes by plugging in the actual
type for the type parameters. This process is commonly known as instantiating a class. Here
is a sample class that uses the genericStack class template:

#include <iostream>

#include "stack.h"

using namespace std;

void main( void )

{
typedef genericStack<float> floatStack;
typedef genericStack<int> intStack;
FloatStack actualFloatStackInstance( 10 );
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In the above example we defined a class template, genericStack. In the program we
instantiated a genericStack of float (floatStack) and a genericStack of int
(intstack). Once the template classes are instantiated, you can instantiate objects of that
type (for example, actualFloatStackInstance).

It is good programming practice to use typedef while instantiating template classes.
Then, throughout the program, you can use the typedef name. There are two advantages to
this method. First, typedefs are helpful when nesting template definitions. For example,
when instantiating an int STL vector, you could use:

typedef vector<int, allocator<int> > intVECTOR ;

Secondly, should the template definition change, simply change the typedef defini-
tion. This practice is especially helpful when using STL components.

class Template Parameters

The genericStack class template, described in the previous section, used only type para-
meters in the template header. It is also possible to use nontype parameters. For example,
the template header could be modified to take an int number_of_elements parameter as
follows:

#define MAX_ELEMENTS 32
template <class T, int number_of_elements>
class genericStack ;

Then, a declaration such as:

genericStack<float, MAX_ELEMENTS> currentStackSize;

could instantiate (at compile time) a MAX_ELEMENTS genericStack template class named
currentStackSize (of float values); this template class would be of type generic-
Stack<float, 32>.

Default Template Parameters

Let’s look at the genericStack class template again:

template <class T, int number_of_elements> genericStack { ....};

C++ allows you to specify a default template parameter, so the definition could now
look like:

template <class T = float, int number_of_elements = 10> genericStack { ....};
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Then a declaration such as:

genericStack<> defaultStackSize;

would instantiate (at compile time) a 10 element genericStack template class named
defaultStackSize (of float values); this template class would be of type generic-
Stack<float, 10>.

If you specify a default template parameter for any formal parameter, the rules are the
same as for functions and default parameters. Once you begin supplying a default parame-
ter, all subsequent parameters must have defaults.

The Standard Template Library

The Standard Template Library is part of the Standard C++ Library. Every C++ program-
mer at one time or another has implemented common data structures such as a vector, list,
or queue, and common algorithms such as binary search, sort, and so on. Through STL,
C++ gives programmers a set of carefully designed generic data structures and algorithms.

These generic data structures and algorithms are parameterized types (templates) that
require only plugging in of actual types to be ready for use. Finally, STL brings to C++ the
long promised goal of reusable software components. More importantly, the STL substruc-
ture generates extremely efficient code size and performance.

STL Components

* Containers are objects that store other objects.
sequential containers include:
vector
list
deque
associative containers include:
map
multimap
set
multiset
* Algorithms include generic functions that handle common tasks such as searching,
sorting, comparing, and editing.
e Iterators are generic pointers used to interface containers and algorithms. STL algo-

rithms are written in terms of iterator parameters, and STL containers provide itera-
tors that can be plugged into the algorithms. Iterators include:

e
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input

output

forward
bidirectional
random access
istream iterator
ostream_iterator

* Function templates are objects of any class or struct that overload the function call
operator (). Most STL algorithms accept a function object as a parameter that can
change the default behavior of the algorithm. Function template argument types include:

plus
minus
times
divides

The unary, logical, bitwise, and comparison operator object types include:
modulus
negate
equal_to
not_equal_to
greater
less
greater_equal
less_equal
logical_and
logical_or
logical_not

* Adapters modify the interface of other components. There are three kinds of STL
adapters:
Container Adapter: stack, queue, priority queue

Iterator Adapter: reverse_bidirectional_iterator,
back_insert_iterator, front_insert_iterator, and

insert_iterator

Function Adapters: not1, not2, bindlst, and bind2nd
The individual STL libraries and glue components are designed to work together in

useful ways to produce the kind of larger and more specialized algorithms needed in today’s
applications.

e
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Rules for Using STL

The following sections highlight fundamental principles employed by the C++ compiler
when using STL components. For example, when an object is used with an STL container, it
is first copied with a call to the copy constructor, and the copy is what is actually inserted into
the container. This means an object held by an STL container must have a copy constructor.
If an application removes an STL container object, the object is destroyed with a call to the
destructor. If the STL container is destroyed, it destroys all objects it currently holds.

Frequently, STL components use compare container objects with a complete set of
logical tests such as <, <=, >, >=, ==, and !=. This means the comparison operators must be
defined for objects used with an STL component. Of course, some STL components mod-
ify the value of an object. This is accomplished using the assignment operator. This means
the assignment operator, =, must be defined for objects used with an STL component. Your
application can use the <utility> definitions of the <=, >, >=, and ! = operators, which are
all defined in terms of the < and ==.

The simplest way for you to guarantee that your objects will sucessfully interact with
the STL containers is to make certain your objects contain:

1. A copy constructor

2. An assignment operator, =

3. An equality comparison operator, ==
4. A less than comparison operator, <

Function Objects

Function objects are relatively new to the C++ programming language. Their usage may
seem odd at first glance, and the syntax may appear to be confusing. A function object is an
object of a class or struct type that includes an operator () member function. An opera-
tor () member function allows the creation of an object that behaves like a function. For
example, a two-dimensional Array2D class could overload operator () to access an ele-
ment whose row and column index are specified as arguments to operator ().

class Array2D
{
public:
Array2D(int, int);
int operator (int, int) const;
private:
Array<int> Array2Def;
int rowOffset;
int colOffset;
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int Array2D::operator (int currentRow, int currentCol) const
{
if ( currentRow > 0 && currentRow <= rowOffset && currentCol > 0 &&
currentCol <= colOffset)
return Array2Def [currentRow, currentCol];
else
return (0);
}
Array2D intArray2D(10, 10);
int intArray2D_element = intArray (5, 5);

It is important to note that function objects are objects that behave like functions, and,
as such, they can be created and must always return a value.

STL Function Objects

The Standard Template Library provides function objects for standard math operations such
as addition, subtraction, multiplication, and division. STL also provides function objects for
unary operations, logical operations, bitwise operations, and comparison operations. Chap-
ter 2 lists all the function objects defined in the STL header file <functional>.

The following example program demonstrates how these function objects can be used
with STL algorithms to change their default behavior. The STL sort algorithm, by default,
sorts in ascending order. However, by using the greater (T) function object, you can
“trick” the sort algorithm to work in descending order:

#include <iostream>
#include <vector>
#include <functional>
#include <algorithm>
using namespace std;

void main( void )

{
typedef vector<int, allocator<int> > iVECTOR;
int iArray[5] = {10, 15, 22, 31, 18, 5};
1VECTOR iVectorInstance (iArray, iArray + 5) ;

// default ascending sort
copy (iVectorInstance.begin (), iVectorInstance.end(), out) ;
sort (iVectorInstance.begin(), iVectorInstance.end()) ;

// use of function object to reverse sort to descinding

copy (iVectorInstance.begin(), iVectorInstance.end(), out) ;
sort (iVectorInstance.begin(), iVectorInstance.end(), greater<int>())
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Basically, it is the greater<int> () function object passed to sort () that inverts the
comparison logic used by sort () thereby tricking it into a descending algorithm. You can
also use STL function objects directly in a C++ program. The following two statements:

float floatCalculation = (times<float>()) (1.1, 2.2); // assigns 2.42
int intCalculation = (minus<int>()) (15, 5); // assigns 10

access the times and minus function objects directly.

STL Function Adapters

Function adapters help us construct a wider variety of function objects using existing func-
tion objects. Using function adapters is often easier than directly constructing a new func-
tion object type with a struct or class definition. STL provides three categories of function
adapters: binders, negators, and pointer-to-function adapters.

Binders are function adapters that convert binary function objects into unary function
objects by binding an argument to some particular value. STL provides two types of binder
function objects: binderlst<Operation> and binder2nd<Operation>. A binder func-
tion object takes only a single argument. STL provides two template functions, bindlst
and bind2nd, to create binder function objects.

The functions bindlst and bind2nd each take as arguments a binary function object
fand a value x. bind1lst returns a function object of type binderlst<Operation>, and
bind2nd returns a function object of type binder2nd<Operation>. Here are the function
prototypes for the bindlst and bind2nd functions:

template <class Operation, class T>
binderlst<Operation> bindlst(const Operation& f, const T& x) ;
template <class Operation, class T>
binder2nd<Operation> bind2nd(const Operation& f, const T& x) ;

Look at this first example:

int iGreater = (bind2nd(greater<int>(), 15)) (actual_int_value)

If you assume actual_int_value is defined as type int, the above statement could
have been rewritten as:

int iGreater = (greater<int>()) (actual_int_value, 15)

Negators are the second type of function adaptors. Negators are used to return the
complement of a result obtained by applying a provided unary or binary operation. STL
provides two types of negator function objects: unary negate<Operation> and
binary negate<Operation>. A negator function object takes only a single argument.
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The two template functions, not1 and not2, create negator function objects. The
function not1 takes a unary function object f as its argument and returns a function object
of type unary_negate<Operation>. The function not2 takes a binary function object f as
its argument and returns a function object of type binary negate<Operation>. Here are
the function prototypes for the not1 and not2 functions:

template <class Operation>
unary_negate<Operation> notl (const Operation& f) ;
template <class Operation>
binary negate<Operation> not2 (const Operation& f) ;

The following code segment demonstrates find_if () used with the not1 function
used to locate the first element in the array that is not greater than 15:

int iArray[25] = {/* your initialization code here */};
int* offset = find_if (iArray, iArray+25,
notl (bind2nd (greater<int>(), 15)));

The function bind2nd creates a unary function object which returns the result of the
comparison int > 15. The function not1 takes the unary function object as an argument
and creates another function object. This function object merely negates the results of the
comparison int > 15. This next statement uses the not2 function in a game playing match
by causing the greater function object to trigger an ascending sort order:

sort (iVectorInstance.begin(), iVectorInstance.end(), not2 (greater<int>())) ;

STL provides two types of pointer-to-function objects: pointer_to_unary_func-
tion<Arg, Result> and pointer_to_binary function<Argl, Arg2, Result>. An
application can use adapters for pointers to functions to convert existing binary or unary
functions to function objects. Adapters for pointers to functions allow the programmer to
utilize the existing code to uniquely extend the library.

The pointer_to_unary_function function object takes one argument of type Arg,
and pointer_to_binary_function takes two arguments of type Argl and arg2. STL
provides two versions of the template function ptr_fun to create pointer-to-function func-
tion objects.

The first version of ptr_fun takes a unary function f as its argument and returns a
function object of type pointer_to_unary_function<aArg, Result>. The second ver-
sion of ptr_fun takes a binary function f as its argument and returns a function object of
type pointer_to_binary function<Argl, Arg2, Result>. Here are the function pro-
totypes for the ptr_fun functions:
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template<class Arg, class Result>
class pointer_to_unary_function
: public unary_function<Arg, Result> {
public:
explicit pointer_to_unary_ function(Result (*pf) (Arg));
Result operator () (const Arg x) const;

Y

The template class stores a copy of pf. It defines its member function operator () as
returning (*pf) (x).

Standard Template Library Algorithms

This section serves to introduce the STL algorithm fundamentals and presents some exam-
ples. Remembering some basic rules will help you to understand the algorithms and how to
use them. STL provides generic parameterized, iterator-based functions (a fancy description
for template functions). These functions implement some common array-based utilities,
including searching, sorting, comparing, and editing. The STL algorithms are user-pro-
grammable. What this means is that you can modify the default behavior of an algorithm to
suit your needs, as in the example:

sort (first, last) ; //sorts elements of a sequence
//in ascending order by default.

In this case, the STL algorithm assumes an operator == or operator < exists, and uses
it to compare elements. The default behavior of the STL algorithms can be changed by
specifying a predicate. The predicate function could be a C++ function. For example,
sort_descending is a C++ function that compares two elements. In this case, the sort
algorithm takes a function pointer, as follows:

sort (first, last, sort_descending) ;

Or, the predicate function could be a function object. Either define a function object,
or use the function objects provided by STL. For example (as seen earlier):

sort (first, last, greater<int>());

Every algorithm operates on a range of sequence. A sequence is a range of elements in an
array or container, or user-defined data structures delimited by a pair of iterators. The identifier
first points to the first element in the sequence. The identifier points last to the one element
beyond the end of the region you want the algorithm to process. A common notation used to
represent the sequence is [first, last). This is a notation for an open interval. The notation
[first, last) implies that the sequence ranges from first to last, including first but not includ-
ing last. The algorithm will increment an internal iterator with the ++ operator until it equals
last. The element pointed to by last will not be processed by the algorithm.

e
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STL algorithms do not perform range or validity checking on the iterator or pointer
values. Many algorithms work with two sequences. For example, the copy algorithm takes
three parameters, as follows:

copy (firstvaluel, lastValuel, firstvalue2);

If the second sequence is shorter than the first, copy will blindly continue writing into
unconnected areas of memory. Some STL algorithms also creates an in-place version and a
copying version. For example:

reverse (first, last); // places results in original container
reverse_copy (firstValuel, lastValuel, firstValuel); // results in
// duplicate location

The STL generic algorithms can be divided into the following four main categories:
Nonmutating—sequence algorithms operate on containers without modifying the contents
of the container. Mutating—sequence algorithms typically modify the containers on which
they operate. Sorting—related algorithms include sorting and merging algorithms, binary
searching algorithms, and set operations on sorted sequences. Finally, there is a small col-
lection of generalized numeric algorithms defined in the files: <algorithm>, <func-

tional>, <numeric>.

Standard C++ Library Language Support

The language support section of the Standard C++ Library provides common type defini-
tions used throughout the library, characteristics of predefined types, functions supporting
start and termination of C++ programs, support for dynamic memory allocation, support for
dynamic type identification, support for exception processing, and other run-time support.

cstddef

This header file basically includes stddef .h. There are two macros, NULL and of fsetof,
and two types, ptrdiff_t and size_t, specifically listed in this section of the standard. To
determine the distance (or the number of elements) between two elements you can use the
distance () function. If you pass it, an iterator pointing to the first element and one point-
ing to the third element, it will return a 2. The distance function is in the utility header file;
it takes two iterators as parameters and returns a number of type difference_type. Dif-
ference_type maps is an int.

Implementation Properties: 1imits, climits, cfloat

The numeric_limits component provides information about properties of fundamental
types. Specializations are provided for each fundamental type such as int, floating point,

e
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and bool. The member, is_specialized, returns true for the specializations of
numeric_limits for the fundamental types. The numeric_limits class is defined in the
limits header file, as shown here:

template<class T> class numeric_limits {
public:

static const bool has_denorm;

static const bool has_denorm_loss;
static const bool has_infinity;
static const bool has_qguiet_NaN;
static const bool has_signaling_ NaN;
static const bool is_bounded;

static const bool is_exact;

static const bool is_iec559;

static const bool is_integer;

static const bool is_modulo;

static const bool is_signed;

static const bool is_specialized;
static const bool tinyness_before;
static const bool traps;

static const float_round_ style round_style;
static const int digits;

static const int digitsl0;

static const int max_exponent;
static const int max_exponentl0;
static const int min_exponent;
static const int min_exponentl0;
static const int radix;

static T denorm_min() throw() ;
static T epsilon() throw();
static T infinity () throw();
static T max() throw();

static T min() throw();

static T quiet_NaN() throw() ;
static T round_error () throw();
static T signaling_NaN() throw();
Y

Exception Handling

The C++ Standard Library exception class defines the base class for the types of objects
thrown as exceptions. The exception header file defines the exception class that is the base
class for all exceptions thrown by the C++ Standard Library. The following code would
catch any exception thrown by classes and functions in the Standard C++ Library:
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try {
// your code here
}
catch ( const exception &ex)
{

cout << "exception: " << ex.what();

The exception class is defined in the header file exception, as follows:

class exception {
public:
exception () throw();
exception(const exception& rhs) throw();
exception& operator=(const exception& rhs) throw();
virtual ~exception() throw();
virtual const char *what() const throw() ;
private:
//
Y

Additional Support

Each of these headers files—cstdarg, csetjmp, ctime, csignal, and cstdlib—includes
the corresponding C header file, stdarg.h, setjmp.h, time.h, signal.h, and stdlib.h.
Macros, types, and functions for each of these in the Standard C++ Library are listed in

Table 1.3.
File Macros Types Functions
cstdarg va_arg, va_end,va_start va_list
csetjmp Macro: setjmp jmp_buf longjmp
ctime CLOCKS_PER_SEC clock_t clock
csignal SIGABRT, SIGILL, SIGSEGV, sig_atomic_t raise, signal
SIG_DFL, SIG_IGN, SIGFPE,
SIGINT, SIGTERM, SIG_ERR
cstdlib getenv, system
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STL Review
The following review is included to help you formalize the structural components of the
Standard Template Library. You can logically divide the Standard Template Library into the
following categories:

A)STL headers can be grouped into three major organizing concepts:

1) Containers are template classes that support common ways to organize data:
<deque>, <list>, <map>, <multimap>, <queue>, <set>, <stack>, and <vector>

2) Algorithms are template functions for performing common operations on
sequences of objects including: <algorithm>, <functional>, and <numeric>.

3) Iterators are the glue that pastes together algorithms and containers and
include: <iterator>, <memory>, and <utility>

B) Input Output includes components for:
1) forward declarations of iostreams <ios fwd>
2) predefined iostreams objects <iostream>
3) base iostreams classes <ios>
4) stream buffering <streambuf>
5) stream formatting and manipulators: <iosmanip>, <istream>, and <ostream>
6) string streams <sstream>
7) file streams <fstream>

C) Other Standard C++ headers include:
1) Language Support
a) components for common type definitions used throughout the library <cstddef>
b) characteristics of the predefined types <limits>, <cfloat>, and <climits>
¢) functions supporting start and termination of a C++ program <cstdlib>
d) support for dynamic memory management <new>
e) support for dynamic type identification <typeinfo>
f) support for exception processing <exception>
g) other run-time support, <cstdarg>, <ctime>, <csetlmp>, and <csignal>
2) Diagnostics include components for:
a) reporting several kinds of exceptional conditions <stdexcept>
b) documenting program assertions <cassert>
¢) a global variable for error number codes <cerrno>
3) Strings include components for:

a) string classes <string>



PHO19-Murray0l 10/24/00 3:05 PM Page 30 $

30 Chapter 1 ¢ Easing into Standard Template Library (STL) Using Arrays—STL Vector

b) null-terminated sequence utilities: <cctype>, <cwctype>, and <cwchar>
4) Cultural Language components include:

a) internationalization support for character classification, string collation,
numeric, monetary, and date/time formatting and parsing, and message
retrieval using <locale> and <clocale>

Sample Code

The following four programs—find. cpp, mdshfl . cpp, removif . cpp, and setunon. cpp—
demonstrate several of the <algorithm> template functions. These examples lay down the
fundamental syntax requirements for using the <algorithm> template functions and STL
iterators.

The find. cpp Application

The first example application, £ind.cpp, shows how the £ind () function template can be
used to locate the first occurrence of a matching element within a sequence. The syntax for
find () looks like:

template<class InIt, class T>
InIt find(InIt first, InIt last, const T& wval);

find () expects two input iterators (see Chapter 2) and the address of the comparison value,
then returns an input iterator. The program looks like:

// find.cpp

// Testing <algorithm>

// find ()

// Chris H. Pappas and William H. Murray, 1999

#include <iostream>
#include <algorithm>

using namespace std;
#define MAX_ ELEMENTS 5

void main( void )

{
// simple character array declaration and initialization
char cArray[MAX_ELEMENTS] = { 'A', 'E', 'I', 'O', 'U' }

7

char *pToMatchingChar, charToFind = 'I';
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// find() passed the array to search, length +1, and charToFind ptr
pToMatchingChar = find(cArray, cArray + MAX_ ELEMENTS, charToFind) ;

if ( pToMatchingChar!= cArray + MAX_ELEMENTS )
cout << "The first occurrence of " << charToFind
<< " was at offset " << pToMatchingChar - cArray;
else
cout << "Match NOT found!";
};

Remember, all you need is the proper include statement to use any STL template func-
tion:

#include <algorithm> // for this chapter

and the using statement:

using namespace std;

The program first defines the character array, carray, and initializes it to uppercase
vowels. The program then searches the array, using the find () function template, for the letter
‘T’, and reports its offset into the carray if found. The output from the program looks like:

The first occurrence of I was at offset 2

The rndshfl. cpp Application

Randomization of data is an extremely important component to many applications, whether
it’s the random shuffle of a deck of electronic poker cards, to truly random test data. The
following application uses the random_shuffle () template function to randomize the con-
tents of an array of characters. This simple example can be easily modified to work on any
container element type.

Several of the applications use additional STL templates. Each chapter will emphasize, in the dis-
cussion, only those code segments relating to that chapter’s STL template. Without this
approach, each chapter would endlessly digress. With patience and practice you will soon under-
stand how the support STL templates work together, in much the same way someone learning to
speak a new language may know how to use a verb without really knowing the details of sen-
tence construction.
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The syntax for random_shuffle () looks like:

template<class RanIt>
void random_shuffle (RanIt first, RanIt last);

random_shuf fle requires two random access iterator formal arguments (discussed in the
next chapter). The program looks like:

// rndshuf.cpp

// Testing <algorithm>

// random_shuffle ()

// Chris H. Pappas and William H. Murray, 1999

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;
#define MAX_ELEMENTS 5

void main( void )

{
// typedef for char vector class and iterator
typedef vector<char> cVectorClass;
typedef cVectorClass::iterator cVectorClassIt;

//instantiation of character vector
cVectorClass cVowels (MAX ELEMENTS) ;

// additional iterators
cVectorClassIt start, end, pToCurrentcVowels;

cVowels[0] = 'A';
cVowels[1l] = 'E';
cVowels([2] = 'I';
cVowels[3] = 'O';
cVowels[4] = 'U';
start = cVowels.begin() ; // location of first cVowels
end = cVowels.end() ; // one past the last cVowels

cout << "Original order looks like: ";
cout << "{ ";
for (pToCurrentcVowels = start; pToCurrentcVowels != end;
pToCurrentcVowels++)
cout << *pToCurrentcVowels << " ";
cout << "}\n" << endl;

e
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random_shuffle (start, end); // <algorithm> template function

cout << "Shuffled order looks like: ";
cout << "{ " ;
for (pToCurrentcVowels = start; pToCurrentcVowels != end;
pToCurrentcVowels++)
cout << *pToCurrentcVowels << " ";
cout << "}" << endl;

Notice the application incorporates to STL templates: <vector> and <algorithm>.
The STL <vector> template provides the definitions necessary to create the character vec-
tor container, while <algorithm> defines the random_shuffle () template function. The
application uses the <vector> templates begin () and end () to locate the front and back
offset addresses into the cvowles container. These two parameters are then passed to the
random_shuffle () template function so the algorithm knows where the container starts and
ends in memory. The output from the program looks like:

Original order looks like: { A E I O U }

Shuffled order looks like: { UO A I E }

The removif.cpp Application

This next application uses the remove_1if () template function along with the <functional>
less_equal () template to remove any container elements matching the test value. The syn-
tax for remove_if () looks like:

FwdIt remove_if (FwdIt first, FwdIt last, Pred pr);
template<class InIt, class OutIt, class T>

remove_if () is passed to two forward iterators (discussed in chapter 2) and a predicate
telling remove_if () what comparison test to perform. The program looks like:

// removif.cpp

// Testing <algorithm>

// remove_if ()

// Chris H. Pappas and William H. Murray, 1999

#include <iostream>
#include <algorithm>
#include <vector>
#include <functional>

using namespace std;
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#define MAX_ELEMENTS 10
void main( void )
{
typedef vector<int> cVectorClass ;
typedef cVectorClass::iterator cVectorClassIt;

cVectorClass iVector (MAX_ELEMENTS) ;

cVectorClassIt start, end, pToCurrentint, last;

start = iVector.begin() ; // location of first iVector
end = iVector.end(); // location of one past last iVector
ivector[0] = 7;

iVector[1l] = 16;
iVector[2] = 11;
iVector[3] = 10;
iVector[4] = 17;
iVector[5] = 12;
iVector([6] = 11;
iVector[7] = 6;
iVector([8] = 13;
iVector[9] = 11;

cout << "Original order: {";

for (pToCurrentint = start; pToCurrentint != end;
pToCurrentint++)
cout << *pToCurrentint << " " ;
cout << " }\n" << endl ;

// call to remove all values less-than-or-equal to the value 11
last = remove_if (start, end, bind2nd(less_equal<int>(), 11) ) ;

cout << end-last << " elements were removed.\n" << endl;

cout << "The " << MAX_ ELEMENTS- (end-last)
<< " valid remaining elements are: { " ;
for (pToCurrentint = start; pToCurrentint != last;
pToCurrentint++)
cout << *pToCurrentint << " " ;
cout << " }\n" << endl ;
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While many components of this application are similar to the two previous examples, this
program uses the <functional> template function bind2nd (), along with the less_equal
template class, as the second argument to remove_if (), to find all occurrences with values
less than or equal to the integer value 11. The output from the program looks like:

Original order: { 7 16 11 10 17 12 11 6 13 11 }
6 elements were removed.
The 4 valid remaining elements are: { 16 17 12 13 }

Notice that the values 7, 11, 10, 11, 6, and 11, respectively, were removed.

The setunon.cpp Application

This last application uses the <algorithm> sort () and set_union () template functions.
First, the program instantiates two integer vectors, iVectorl and ivVector2, and a third,
iUnionedvector, twice the length of the first two. Sorting is necessary for the
set_union () template function to correctly locate and eliminate all duplicate values. The
syntax for set_union () looks like:

template<class InItl, class InIt2, class OutIt>
OutIt set_union(InItl firstl, InItl lastl,
InIt2 first2, InIt2 last2, OutlIt x);

set_union () uses four input iterators and one output iterator to point to the comparison
containers and output the results. The program looks like:

// setunon.cpp

// Testing <algorithm>

// set_union|()

// Chris H. Pappas and William H. Murray, 1999

#include <iostream>
#include <algorithm>
#include <vector>
#include <functional>

using namespace std;
#define MAX_ELEMENTS 10
void main( void )

{

typedef vector<int> cVectorClass ;
typedef cVectorClass::iterator cVectorClassIt;
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cVectorClass iVectorl (MAX_ELEMENTS), iVector2 (MAX_ELEMENTS),
iUnionedVector (2 * MAX_ ELEMENTS) ;

cVectorClassIt startl, endl,
start2, end2,
pToCurrentint, unionStart;

startl = iVectorl.begin() ; // location of first iVectorl
endl = iVectorl.end(); // location of one past last iVectorl
start2 = iVector2.begin() ; // location of first iVector2
end2 = iVector2.end() ; // location of one past last iVector2

// locating the first element address of result union container

unionStart = iUnionedVector.begin() ;

iVectorl[0] = 7; iVector2[0] = 14;

iVectorl[1l] = 16; iVector2[1l] = 11;

iVectorl[2] = 11; iVector2[2] = 2;

iVectorl[3] = 10; iVector2[3] = 19;

iVectorl([4] = 17; iVector2[4] = 20;

iVectorl[5] = 12; iVector2[5] = 7;

iVectorl[6] = 11; iVector2([6] = 1;

iVectorl[7] = 6; iVector2[7] = O0;

iVectorl[8] = 13; iVector2[8] = 22;

iVectorl[9] = 11; iVector2[9] = 18;

cout << "iVectorl as is : { ";

for (pToCurrentint = startl; pToCurrentint != endl;
pToCurrentint++)

cout << *pToCurrentint << " " ;

cout << "}\n" << endl ;

cout << "iVector2 as is : { ";

for (pToCurrentint = start2; pToCurrentint != end2;
pToCurrentint++)

cout << *pToCurrentint << " " ;
cout << "}\n" << endl ;

// sort of both containers necessary for correct union
sort (startl,endl) ;

sort (start2,end2) ;

cout << "\niVectorl sorted: { ";
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for (pToCurrentint = startl; pToCurrentint != endl;
pToCurrentint++)
cout << *pToCurrentint << " " ;
cout << "}\n" << endl ;

cout << "\niVector2 sorted: { ";

for (pToCurrentint = start2; pToCurrentint != end2;
pToCurrentint++)
cout << *pToCurrentint << " " ;
cout << "}\n" << endl;

// call to set_union() with all necessary pointers
set_union (startl,endl, start2,end2,unionStart) ;

cout << "After calling set_union()\n" << endl ;

cout << "iUnionedVector { " ;
for (pToCurrentint = iUnionedVector.begin() ;
pToCurrentint != iUnionedVector.end(); pToCurrentint++)
cout << *pToCurrentint << " " ;
cout << "}\n" << endl ;

The output from the program looks like:

iVectorl as is : { 7 16 11 10 17 12 11 6 13 11 }

iVector2 as is: { 14 11 2 19 20 7 1 0 22 18 }

iVectorl sorted: { 6 7 10 11 11 11 12 13 16 17 }

iVector2 sorted: { 0 1 2 7 11 14 18 19 20 22 }

After calling set_union() :

iUnionedVector { 0 1 2 6 7 10 11 11 11 12 13 14 16 17 18 19 20 22 0 0 }

Notice that the union of ivectorl’s and ivector2’s value of 11 removes their duplicate
occurrences, explaining the last two 0s in iUnionedvector, which indicate null elements.

Conclusion

In this chapter you explored several of the STL <algorithm> template functions as they
relate to integer <vector> classes. The applications demonstrated how to find a container
element, how to randomly shuffle container contents, how to scan a container for certain
comparison conditions (less-than-or-equal-to), and how to perform a union.
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