
EasyMock

i

EasyMock

i

About the Tutorial

EasyMock is a mocking framework, JAVA-based library that is used for effective

unit testing of JAVA applications. EasyMock is used to mock interfaces so that a

dummy functionality can be added to a mock interface that can be used in unit

testing.

This tutorial will help you learn how to create unit tests with EasyMock as well as

how to use its APIs in a simple and intuitive way.

Audience

This tutorial is meant for Java developers, from novice to expert level, who would

like to improve the quality of their software through unit testing and test-driven

development.

After completing this tutorial, you will gain sufficient exposure to EasyMock from

where you can take yourself to next levels of expertise.

Prerequisites

Readers must have a working knowledge of JAVA programming language in order

to make the best of this tutorial. Knowledge of JUnit is an added advantage.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

EasyMock

ii

Table of Contents

About the Tutorial ··i

Audience ··i

Prerequisites ··i

Copyright & Disclaimer ···i

Table of Contents ·· ii

1. OVERVIEW ··· 1

What is Mocking? ··1

EasyMock ··1

2. ENVIRONMENT SETUP ··· 5

System Requirement ···5

Step 1 – Verify Java Installation on Your Machine ···5

Step 2: Set JAVA Environment ···6

Step 3: Download EasyMock Archive ··7

Step 4: Download EasyMock Dependencies ··7

Step 5: Set EasyMock Environment ···7

Step 5: Set CLASSPATH Variable ··8

Step 6: Download JUnit Archive ··8

Step 7: Set JUnit Environment ···8

Step 8: Set CLASSPATH Variable ··9

3. FIRST APPLICATION·· 10

4. JUNIT INTEGRATION ·· 15

5. ADDING BEHAVIOR ·· 19

Example without EasyMock.Replay() ·· 19

Example with EasyMock.Replay() ·· 23

EasyMock

iii

6. VERIFYING BEHAVIOR ·· 28

Example without EasyMock.Verify()·· 28

Example with EasyMock.Verify() ··· 32

7. EXPECTING CALLS ·· 37

Example with calcService.serviceUsed() called once ··· 37

Example with calcService.serviceUsed() Called Twice ··· 41

Example without Calling calcService.serviceUsed() ··· 45

8. VARYING CALLS ··· 50

Example with times (min,max) ·· 50

Example with atLeastOnce ·· 54

Example with anyTimes ·· 58

9. EXCEPTION HANDLING ·· 63

Example ·· 63

10. CREATEMOCK ·· 68

Example ·· 68

11. CREATESTRICTMOCK ··· 73

Example ·· 73

12. CREATENICEMOCK ·· 78

Example ·· 78

13. EASYMOCKSUPPORT ··· 83

Example ·· 83

EasyMock

4

What is Mocking?

Mocking is a way to test the functionality of a class in isolation. Mocking does not

require a database connection or properties file read or file server read to test a

functionality. Mock objects do the mocking of the real service. A mock object returns

a dummy data corresponding to some dummy input passed to it.

EasyMock

EasyMock facilitates creating mock objects seamlessly. It uses Java Reflection in

order to create mock objects for a given interface. Mock objects are nothing but proxy

for actual implementations. Consider a case of Stock Service which returns the price

details of a stock. During development, the actual stock service cannot be used to

get real-time data. So we need a dummy implementation of the stock service.

EasyMock can do the same very easily as its name suggests.

Benefits of EasyMock

 No Handwriting – No need to write mock objects on your own.

 Refactoring Safe – Renaming interface method names or reordering

parameters will not break the test code as Mocks are created at runtime.

 Return value support – Supports return values.

 Exception support – Supports exceptions.

 Order check support – Supports check on order of method calls.

 Annotation support – Supports creating mocks using annotation.

Consider the following code snippet.

package com.tutorialspoint.mock;

1. OVERVIEW

EasyMock

5

import java.util.ArrayList;

import java.util.List;

import org.easymock.EasyMock;

public class PortfolioTester {

 public static void main(String[] args){

 //Create a portfolio object which is to be tested

 Portfolio portfolio = new Portfolio();

 //Creates a list of stocks to be added to the portfolio

 List<Stock> stocks = new ArrayList<Stock>();

 Stock googleStock = new Stock("1","Google", 10);

 Stock microsoftStock = new Stock("2","Microsoft",100);

 stocks.add(googleStock);

 stocks.add(microsoftStock);

 //Create the mock object of stock service

 StockService stockServiceMock =

EasyMock.createMock(StockService.class);

EasyMock

6

 // mock the behavior of stock service to return

// the value of various stocks

EasyMock.expect(stockServiceMock.getPrice(googleStock))

.andReturn(50.00);

EasyMock.expect(stockServiceMock.getPrice(microsoftStock))

.andReturn(1000.00);

EasyMock.replay(stockServiceMock);

//add stocks to the portfolio

portfolio.setStocks(stocks);

//set the stockService to the portfolio

portfolio.setStockService(stockServiceMock);

double marketValue = portfolio.getMarketValue();

//verify the market value to be

//10*50.00 + 100* 1000.00 = 500.00 + 100000.00 = 100500

System.out.println("Market value of the portfolio: "+ marketValue);

 }

}

EasyMock

7

Let's understand the important concepts of the above program. The complete code

is available in the chapter First Application.

 Portfolio – An object to carry a list of stocks and to get the market value

computed using stock prices and stock quantity.

 Stock – An object to carry the details of a stock such as its id, name, quantity,

etc.

 StockService – A stock service returns the current price of a stock.

 EasyMock.createMock(...) – EasyMock created a mock of stock service.

 EasyMock.expect(...).andReturn(...) – Mock implementation of getPrice

method of stockService interface. For googleStock, return 50.00 as price.

 EasyMock.replay(...) – EasyMock prepares the Mock object to be ready so

that it can be used for testing.

 portfolio.setStocks(...) – The portfolio now contains a list of two stocks.

 portfolio.setStockService(...) - Assigns the stockService Mock object to the

portfolio.

 portfolio.getMarketValue()() – The portfolio returns the market value

based on its stocks using the mock stock service.

http://www.tutorialspoint.com/easymock/easymock_first_application.htm

EasyMock

8

EasyMock is a framework for Java, so the very first requirement is to have JDK

installed in your machine.

System Requirement

JDK 1.5 or above.

Memory no minimum requirement.

Disk Space no minimum requirement.

Operating System no minimum requirement.

Step 1 – Verify Java Installation on Your Machine

Open the console and execute the following java command.

OS Task Command

Windows Open Command Console c:\> java -version

Linux Open Command Terminal $ java -version

Mac Open Terminal machine:~ joseph$ java -version

Let's verify the output for all the operating systems:

OS Output

Windows java version "1.6.0_21"

Java(TM) SE Runtime Environment (build 1.6.0_21-b07)

2. ENVIRONMENT SETUP

EasyMock

9

Java HotSpot(TM) Client VM (build 17.0-b17, mixed mode,

sharing)

Linux

java version "1.6.0_21"

Java(TM) SE Runtime Environment (build 1.6.0_21-b07)

Java HotSpot(TM) Client VM (build 17.0-b17, mixed mode,

sharing)

Mac

java version "1.6.0_21"

Java(TM) SE Runtime Environment (build 1.6.0_21-b07)

Java HotSpot(TM)64-Bit Server VM (build 17.0-b17, mixed

mode, sharing)

If you do not have Java installed, install the Java Software Development Kit (SDK)

from http://www.oracle.com/technetwork/java/javase/downloads/index.html.

We assume you have Java 1.6.0_21 installed on your system for this tutorial.

Step 2: Set JAVA Environment

Set the JAVA_HOME environment variable to point to the base directory location

where Java is installed on your machine. For example,

OS Output

Windows
Set the environment variable JAVA_HOME to C:\Program

Files\Java\jdk1.6.0_21

Linux export JAVA_HOME=/usr/local/java-current

Mac export JAVA_HOME=/Library/Java/Home

Append the location of the Java compiler to your System Path.

OS Output

http://www.oracle.com/technetwork/java/javase/downloads/index.html

EasyMock

10

Windows
Append the string ;C:\Program Files\Java\jdk1.6.0_21\bin to the

end of the system variable, Path.

Linux export PATH=$PATH:$JAVA_HOME/bin/

Mac not required

Verify Java Installation using the command java -version as explained above.

Step 3: Download EasyMock Archive

Download the latest version of EasyMock from

http://sourceforge.net/projects/easymock/files/EasyMock/3.2/easymock-

3.2.zip/download. Save the zip folder on your C drive, let’s say, C:\>EasyMock.

OS Archive name

Windows easymock-3.2.zip

Linux easymock-3.2.zip

Mac easymock-3.2.zip

Step 4: Download EasyMock Dependencies

Download the latest version of cglib jar file

from https://github.com/cglib/cglib/releases and copy it onto C:\>EasyMock folder.

At the time of writing this tutorial, the latest version was 3.1.

Download the latest version of objenesis zip file

from http://objenesis.org/download.html and copy it onto C:\>EasyMock folder. At

the time of writing this tutorial, the latest version was 2.1. Extract objenesis-2.1.jar

to C:\>EasyMock folder

http://sourceforge.net/projects/easymock/files/EasyMock/3.2/easymock-3.2.zip/download
http://sourceforge.net/projects/easymock/files/EasyMock/3.2/easymock-3.2.zip/download
https://github.com/cglib/cglib/releases
http://objenesis.org/download.html

EasyMock

11

Step 5: Set EasyMock Environment

Set the EasyMock_HOME environment variable to point to the base directory

location where EasyMock and dependency jars are stored on your machine. The

following table shows how to set the environment variable on differnet operating

systems, assuming we've extracted easymock-3.2.jar, cglib-3.1.jar, and objenesis-

2.1.jar onto C:\>EasyMock folder.

OS Output

Windows Set the environment variable EasyMock_HOME to C:\EasyMock

Linux export EasyMock_HOME=/usr/local/EasyMock

Mac export EasyMock_HOME=/Library/EasyMock

Step 6: Set CLASSPATH Variable

Set the CLASSPATH environment variable to point to the location where EasyMock

and dependency jars are stored. The following table shows how to set the CLASSPATH

variable on different operating systems.

OS Output

Windows

Set the environment variable CLASSPATH to

%CLASSPATH%;%EasyMock_HOME%\easymock-

3.2.jar;%EasyMock_HOME%\cglib-

3.1.jar;%EasyMock_HOME%\objenesis-2.1.jar;.;

Linux

export

CLASSPATH=$CLASSPATH:$EasyMock_HOME/easymock-

3.2.jar:$EasyMock_HOME/cglib-

3.1.jar:$EasyMock_HOME/objenesis-2.1.jar:.

Mac export

CLASSPATH=$CLASSPATH:$EasyMock_HOME/easymock-

EasyMock

12

3.2.jar:$EasyMock_HOME/cglib-

3.1.jar:$EasyMock_HOME/objenesis-2.1.jar:.

Step 7: Download JUnit Archive

Download the latest version of JUnit jar file from https://github.com/junit-

team/junit/wiki/Download-and-Install. Save the folder at the location C:\>Junit.

OS Archive name

Windows junit4.11.jar, hamcrest-core-1.2.1.jar

Linux junit4.11.jar, hamcrest-core-1.2.1.jar

Mac junit4.11.jar, hamcrest-core-1.2.1.jar

Step 8: Set JUnit Environment

Set the JUNIT_HOME environment variable to point to the base directory location

where JUnit jars are stored on your machine. The following table shows how to set

this environment variable on different operating systems, assuming we've stored

junit4.11.jar and hamcrest-core-1.2.1.jar at C:\>Junit.

OS Output

Windows Set the environment variable JUNIT_HOME to C:\JUNIT

Linux export JUNIT_HOME=/usr/local/JUNIT

Mac export JUNIT_HOME=/Library/JUNIT

Step 9: Set CLASSPATH Variable

Set the CLASSPATH environment variable to point to the JUNIT jar location. The

following table shows how it is done on different operating systems.

https://github.com/junit-team/junit/wiki/Download-and-Install
https://github.com/junit-team/junit/wiki/Download-and-Install

EasyMock

13

OS Output

Windows

Set the environment variable CLASSPATH to

%CLASSPATH%;%JUNIT_HOME%\junit4.11.jar;%JUNIT_HOME%\h

amcrest-core-1.2.1.jar;.;

Linux

export

CLASSPATH=$CLASSPATH:$JUNIT_HOME/junit4.11.jar:$JUNIT_HO

ME/hamcrest-core-1.2.1.jar:.

Mac

export

CLASSPATH=$CLASSPATH:$JUNIT_HOME/junit4.11.jar:$JUNIT_HO

ME/hamcrest-core-1.2.1.jar:.

EasyMock

14

Before going into the details of the EasyMock Framework, let’s see an application in

action. In this example, we've created a mock of Stock Service to get the dummy

price of some stocks and unit tested a java class named Portfolio.

The process is discussed below in a step-by-step manner.

Step 1: Create a JAVA class to represent the Stock

Stock.java

public class Stock {

 private String stockId;

 private String name;

 private int quantity;

 public Stock(String stockId, String name, int quantity){

 this.stockId = stockId;

 this.name = name;

 this.quantity = quantity;

 }

 public String getStockId() {

 return stockId;

 }

3. FIRST APPLICATION

EasyMock

15

 public void setStockId(String stockId) {

 this.stockId = stockId;

 }

 public int getQuantity() {

 return quantity;

 }

 public String getTicker() {

 return name;

 }

}

Step 2: Create an interface StockService to get the price of a stock

StockService.java

public interface StockService {

 public double getPrice(Stock stock);

}

Step 3: Create a class Portfolio to represent the portfolio of any client

Portfolio.java

import java.util.List;

public class Portfolio {

 private StockService stockService;

EasyMock

16

 private List<Stock> stocks;

 public StockService getStockService() {

 return stockService;

 }

 public void setStockService(StockService stockService) {

 this.stockService = stockService;

 }

 public List<Stock> getStocks() {

 return stocks;

 }

 public void setStocks(List<Stock> stocks) {

 this.stocks = stocks;

 }

 public double getMarketValue(){

 double marketValue = 0.0;

 for(Stock stock:stocks){

 marketValue += stockService.getPrice(stock) * stock.getQuantity();

 }

EasyMock

17

 return marketValue;

 }

}

Step 4: Test the Portfolio class

Let's test the Portfolio class, by injecting in it a mock of stockservice. Mock will be

created by EasyMock.

PortfolioTester.java

import java.util.ArrayList;

import java.util.List;

import org.easymock.EasyMock;

public class PortfolioTester {

 Portfolio portfolio;

 StockService stockService;

 public static void main(String[] args){

 PortfolioTester tester = new PortfolioTester();

 tester.setUp();

 System.out.println(tester.testMarketValue()?"pass":"fail");

 }

 public void setUp(){

 //Create a portfolio object which is to be tested

EasyMock

18

 portfolio = new Portfolio();

 //Create the mock object of stock service

 stockService = EasyMock.createMock(StockService.class);

 //set the stockService to the portfolio

 portfolio.setStockService(stockService);

 }

 public boolean testMarketValue(){

 //Creates a list of stocks to be added to the portfolio

 List<Stock> stocks = new ArrayList<Stock>();

 Stock googleStock = new Stock("1","Google", 10);

 Stock microsoftStock = new Stock("2","Microsoft",100);

 stocks.add(googleStock);

 stocks.add(microsoftStock);

 //add stocks to the portfolio

 portfolio.setStocks(stocks);

 // mock the behavior of stock service to return

 // the value of various stocks

EasyMock.expect(stockService.getPrice(googleStock))

.andReturn(50.00);

EasyMock.expect(stockService.getPrice(microsoftStock))

EasyMock

19

.andReturn(1000.00);

 // activate the mock

 EasyMock.replay(stockService);

 double marketValue = portfolio.getMarketValue();

 return marketValue == 100500.0;

 }

}

Step 5: Verify the result

Compile the classes using javac compiler as follows:

C:\EasyMock_WORKSPACE>javac Stock.java StockService.java Portfolio.java
PortfolioTester.java

Now run the PortfolioTester to see the result:

C:\EasyMock_WORKSPACE>java PortfolioTester

pass

EasyMock

20

In this chapter, we'll learn how to integrate JUnit and EasyMock together. For JUnit

tutorial, please refer to JUnit. Here we will create a Math Application which uses

CalculatorService to perform basic mathematical operations such as addition,

subtraction, multiply, and division. We'll use EasyMock to mock the dummy

implementation of CalculatorService. In addition, we've made extensive use of

annotations to showcase their compatibility with both JUnit and EasyMock.

The process is discussed below in a step-by-step manner.

Step 1: Create an interface called CalculatorService to provide mathematical

functions

CalculatorService.java

public interface CalculatorService {

 public double add(double input1, double input2);

 public double subtract(double input1, double input2);

 public double multiply(double input1, double input2);

 public double divide(double input1, double input2);

}

Step 2: Create a JAVA class to represent MathApplication

MathApplication.java

public class MathApplication {

 private CalculatorService calcService;

 public void setCalculatorService(CalculatorService calcService){

4. JUNIT INTEGRATION

http://www.tutorialspoint.com/junit/index.htm

EasyMock

21

 this.calcService = calcService;

 }

 public double add(double input1, double input2){

 return calcService.add(input1, input2);

 }

 public double subtract(double input1, double input2){

 return calcService.subtract(input1, input2);

 }

 public double multiply(double input1, double input2){

 return calcService.multiply(input1, input2);

 }

 public double divide(double input1, double input2){

 return calcService.divide(input1, input2);

 }

}

Step 3: Test the MathApplication class

Let's test the MathApplication class, by injecting in it a mock of calculatorService.

Mock will be created by EasyMock.

MathApplicationTester.java

import org.easymock.EasyMock;

import org.easymock.EasyMockRunner;

import org.easymock.Mock;

import org.easymock.TestSubject;

EasyMock

22

import org.junit.Assert;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

// @RunWith attaches a runner with the test class to initialize

// the test data

@RunWith(EasyMockRunner.class)

public class MathApplicationTester {

 // @TestSubject annotation is used to identify class which is

 // going to use the mock object

 @TestSubject

 MathApplication mathApplication = new MathApplication();

 //@Mock annotation is used to create the mock object to be injected

 @Mock

 CalculatorService calcService;

 @Test

 public void testAdd(){

 //add the behavior of calc service to add two numbers

 EasyMock.expect(calcService.add(10.0,20.0)).andReturn(30.00);

EasyMock

23

 //activate the mock

 EasyMock.replay(calcService);

 //test the add functionality

 Assert.assertEquals(mathApplication.add(10.0, 20.0),30.0,0);

 }

}

Step 4: Create a class to execute to test cases

Create a java class file named TestRunner in C:\ > EasyMock_WORKSPACE to

execute Test case(s).

TestRunner.java

import org.junit.runner.JUnitCore;

import org.junit.runner.Result;

import org.junit.runner.notification.Failure;

public class TestRunner {

 public static void main(String[] args) {

 Result result = JUnitCore.runClasses(MathApplicationTester.class);

 for (Failure failure : result.getFailures()) {

 System.out.println(failure.toString());

 }

EasyMock

24

 System.out.println(result.wasSuccessful());

 }

}

Step 5: Verify the Result

Compile the classes using javac compiler as follows:

C:\EasyMock_WORKSPACE>javac CalculatorService.java MathApplication.java
MathApplicationTester.java TestRunner.java

Now run the Test Runner to see the result:

C:\EasyMock_WORKSPACE>java TestRunner

Verify the output.

true

EasyMock

25

EasyMock adds a functionality to a mock object using the methods expect() and

expectLassCall(). Take a look at the following code snippet.

//add the behavior of calc service to add two numbers

EasyMock.expect(calcService.add(10.0,20.0)).andReturn(30.00);

Here we've instructed EasyMock to give a behavior of adding 10 and 20 to the add

method of calcService and as a result, to return the value of 30.00.

At this point of time, Mock simply recorded the behavior but it is not working as a

mock object. After calling replay, it works as expected.

//add the behavior of calc service to add two numbers

EasyMock.expect(calcService.add(10.0,20.0)).andReturn(30.00);

//activate the mock

//EasyMock.replay(calcService);

Example without EasyMock.Replay()

Step 1: Create an interface called CalculatorService to provide mathematical

functions

CalculatorService.java

public interface CalculatorService {

 public double add(double input1, double input2);

 public double subtract(double input1, double input2);

5. ADDING BEHAVIOR

EasyMock

26

 public double multiply(double input1, double input2);

 public double divide(double input1, double input2);

}

Step 2: Create a JAVA class to represent MathApplication

MathApplication.java

public class MathApplication {

 private CalculatorService calcService;

 public void setCalculatorService(CalculatorService calcService){

 this.calcService = calcService;

 }

 public double add(double input1, double input2){

 return calcService.add(input1, input2);

 }

 public double subtract(double input1, double input2){

 return calcService.subtract(input1, input2);

 }

 public double multiply(double input1, double input2){

 return calcService.multiply(input1, input2);

 }

 public double divide(double input1, double input2){

 return calcService.divide(input1, input2);

 }

EasyMock

27

}

Step 3: Test the MathApplication class

Let's test the MathApplication class, by injecting in it a mock of calculatorService.

Mock will be created by EasyMock.

MathApplicationTester.java

import org.easymock.EasyMock;

import org.easymock.EasyMockRunner;

import org.easymock.Mock;

import org.easymock.TestSubject;

import org.junit.Assert;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

//@RunWith attaches a runner with the test class to

//initialize the test data

@RunWith(EasyMockRunner.class)

public class MathApplicationTester {

 // @TestSubject annotation is used to identify the class which

EasyMock

28

 // is going to use the mock object

 @TestSubject

 MathApplication mathApplication = new MathApplication();

 //@Mock annotation is used to create the mock object to be injected

 @Mock

 CalculatorService calcService;

 @Test

 public void testAdd(){

 //add the behavior of calc service to add two numbers

 EasyMock.expect(calcService.add(10.0,20.0)).andReturn(30.00);

 //activate the mock

 //EasyMock.replay(calcService);

 //test the add functionality

 Assert.assertEquals(mathApplication.add(10.0, 20.0),30.0,0);

 }

}

Step 4: Execute test cases

Create a java class file named TestRunner in C:\>EasyMock_WORKSPACE to

execute the test case(s).

EasyMock

29

TestRunner.java

import org.junit.runner.JUnitCore;

import org.junit.runner.Result;

import org.junit.runner.notification.Failure;

public class TestRunner {

 public static void main(String[] args) {

 Result result = JUnitCore.runClasses(MathApplicationTester.class);

 for (Failure failure : result.getFailures()) {

 System.out.println(failure.toString());

 }

 System.out.println(result.wasSuccessful());

 }

}

Step 5: Verify the Result

Compile the classes using javac compiler as follows:

C:\EasyMock_WORKSPACE>javac CalculatorService.java MathApplication.java
MathApplicationTester.java TestRunner.java

Now run the Test Runner to see the result:

C:\EasyMock_WORKSPACE>java TestRunner

Verify the output.

testAdd(MathApplicationTester): expected:<0.0> but was:<30.0>

EasyMock

30

false

Example with EasyMock.Replay()

Step 1: Create an interface called CalculatorService to provide mathematical

functions.

CalculatorService.java

public interface CalculatorService {

 public double add(double input1, double input2);

 public double subtract(double input1, double input2);

 public double multiply(double input1, double input2);

 public double divide(double input1, double input2);

}

Step 2: Create a JAVA class to represent MathApplication.

MathApplication.java

public class MathApplication {

 private CalculatorService calcService;

 public void setCalculatorService(CalculatorService calcService){

 this.calcService = calcService;

 }

 public double add(double input1, double input2){

 return calcService.add(input1, input2);

 }

EasyMock

31

 public double subtract(double input1, double input2){

 return calcService.subtract(input1, input2);

 }

 public double multiply(double input1, double input2){

 return calcService.multiply(input1, input2);

 }

 public double divide(double input1, double input2){

 return calcService.divide(input1, input2);

 }

}

Step 3: Test the MathApplication class

Let's test the MathApplication class, by injecting in it a mock of calculatorService.

Mock will be created by EasyMock.

MathApplicationTester.java

import org.easymock.EasyMock;

import org.easymock.EasyMockRunner;

import org.easymock.Mock;

import org.easymock.TestSubject;

import org.junit.Assert;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

EasyMock

32

// @RunWith attaches a runner with the test class to

// initialize the test data

@RunWith(EasyMockRunner.class)

public class MathApplicationTester {

 // @TestSubject annotation is used to identify class which is

 // going to use the mock object

 @TestSubject

 MathApplication mathApplication = new MathApplication();

 // @Mock annotation is used to create the mock object to be injected

 @Mock

 CalculatorService calcService;

 @Test

 public void testAdd(){

 // add the behavior of calc service to add two numbers

 EasyMock.expect(calcService.add(10.0,20.0)).andReturn(30.00);

 //activate the mock

 EasyMock.replay(calcService);

 // test the add functionality

EasyMock

33

 Assert.assertEquals(mathApplication.add(10.0, 20.0),30.0,0);

 }

}

Step 4: Execute test cases

Create a java class file named TestRunner in C:\>EasyMock_WORKSPACE to

execute Test case(s).

TestRunner.java

import org.junit.runner.JUnitCore;

import org.junit.runner.Result;

import org.junit.runner.notification.Failure;

public class TestRunner {

 public static void main(String[] args) {

 Result result = JUnitCore.runClasses(MathApplicationTester.class);

 for (Failure failure : result.getFailures()) {

 System.out.println(failure.toString());

 }

 System.out.println(result.wasSuccessful());

 }

}

Step 5: Verify the Result

Compile the classes using javac compiler as follows:

EasyMock

34

C:\EasyMock_WORKSPACE>javac CalculatorService.java MathApplication.java
MathApplicationTester.java TestRunner.java

Now run the Test Runner to see the result.

C:\EasyMock_WORKSPACE>java TestRunner

Verify the output.

EasyMock

35

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

