

How Docker Enables DevOps, Continuous
Integration and Continuous Delivery

Docker
From Code
to Container

EBOOK

O1	
Docker and DevOps - Enabling DevOps Teams Through Containerization

02	

Taking Docker to Production with Confidence

03	

How to Build Applications with Docker Compose

04

Docker Logging and Comprehensive Monitoring

Table of Contents

3

Software containers are a form of OS virtualization where the running
container includes just the minimum operating system resources,
memory and services required to run an application or service.
Containers enable developers to work with identical development
environments and stacks. But they also facilitate DevOps by
encouraging the use of stateless designs.

The primary usage for containers has been focused on simplifying
DevOps with easy developer to test to production flows for services
deployed, often in the cloud. A Docker image can be created that
can be deployed identically across any environment in seconds.
Containers offer developers benefits in three areas:

1. Instant startup of operating system resources
2. Container Environments can be replicated, template-ized and

blessed for production deployments.
3. Small footprint leads to greater performance with higher

security profile.

The combination of instant startup that comes from OS virtualization,
and the reliable execution that comes from namespace isolation
and resource governance makes containers ideal for application
development and testing. During the development process, developers
can quickly iterate. Because its environment and resource usage are
consistent across systems, a containerized application that works on
a developer’s system will work the same way in a production system.

The instant startup and small footprint also
benefits cloud scenarios.

The instant startup and small footprint also benefits cloud scenarios.
More application instances can fit onto a machine than if they were
each in their own VM, which allows applications to scale-out quickly.

Composition and Clustering
For efficiency, many of the operating system files, directories and
running services are shared between containers and projected
into each container’s namespace. This sharing makes deploying
multiple containers on a single host extremely efficient. That’s great
for a single application running in a container. In practice, though,
containers making up an application may be distributed across
machines and cloud environments.

The magic for making this happen is composition and clustering.
Computer clustering is where a set of computers are loosely or
tightly connected and work together so that they can be viewed as
a single system. Similarly container cluster managers handle the
communication between containers, manage resources (memory,
CPU, and storage), and manage task execution. Cluster managers also
include schedulers that manage dependencies between the tasks that
make up jobs, and assign tasks to nodes.

Docker
Docker needs no introduction. Containerization has been around
for decades, but it is Docker that has reinvigorated this ancient
technology. Docker’s appeal is that it provides a common toolset,
packaging model and deployment mechanism that greatly simplifies
the containerization and distribution of applications. These
“Dockerized” applications can run anywhere on any Linux host. But as
support for Docker grows organizations like AWS, Google, Microsoft,
and Apache are building in support.

01 | Docker and DevOps - Enabling DevOps Teams Through Containerization

Docker and DevOps –
Enabling DevOps Teams Through Containerization
By Michael Floyd

https://www.sumologic.com/author/mfloyd/

4

Software developers are challenged with
log files that may be scattered in a variety of
different isolated containers each with its own
log system dependencies.

To manage composition and clustering, Docker offers Docker
Compose that gives you a way of defining and running multi-container
distributed applications. (We’ll look at Docker Compose in-depth in a
later chapter.) Then developers can use Docker Swarm to turn a pool
of Docker hosts into a single, virtual Docker host. Swarm silently
manages the scaling of your application to multiple hosts.
Another benefit of Docker is Dockerhub, the massive and growing
ecosystem of applications packaged in Docker containers. Dockerhub
is a registry for Dockerized applications with currently well over
235,000 public repositories. Need a Web server in a container?
Pull Apache httpd. Need a database? Pull the MySQL image.
Whatever major service you need, there’s probably an image for it

on DockerHub. Docker has also formed the Open Container Initiative
(OCI) to ensure the packaging format remains universal and open.

Amazon EC2 Container Service
If you running on AWS, Amazon EC2 Container Service (ECS) is a
container management service that supports Docker containers
and allows you to run applications on a managed cluster of Amazon
EC2 instances. ECS provides cluster management including task
management and scheduling so you can scale your applications
dynamically. Amazon ECS also eliminates the need to install and
manage your own cluster manager. ECS allows you to launch and
kill Docker-enabled applications, query the state of your cluster, and
access other AWS services (e.g., CloudTrail, ELB, EBS volumes) and
features like security groups via API calls.

With Change Comes New Challenges
While both DevOps and containers are helping improve software
quality and breaking down monolithic applications, the emphasis
on automation and continuous delivery also leads to new issues.

01 | Docker and DevOps - Enabling DevOps Teams Through Containerization

The Sumo Logic App for Docker provides a complete overview of your Docker environment including container consumption, actions, traffic and network errors.

5

Software developers are challenged with log files that may be
scattered in a variety of different isolated containers each with its
own log system dependencies. Developers often implement their own
logging solutions, and with them language dependencies. As Christian
Beedgen notes later in this book, this is particularly true of containers
built with earlier versions of Docker. To summarize, organizations are
faced with:

•• Organizing applications made up of different components to run
across multiple containers and servers.

•• Container security – (namespace isolation)
•• Containers deployed to production are difficult to update

with patches.
•• Logs are no longer stored in one uniform place, they are scattered in

a variety of different isolated containers.

A Model for Comprehensive Monitoring
In a later chapter, we’ll show how the Sumo Logic App for Docker uses
a container that includes a collector and a script source to gather
statistics and events from the Docker Remote API on each host. The
app basically wraps events into JSON messages, then enumerates
over all running containers and listens to the event stream. This
essentially creates a log for container events. In addition, the app
collects configuration information obtained using Docker’s Inspect
API. The app also collects host and daemon logs, giving developers
and DevOps teams a way to monitor their entire Docker infrastructure
in real time.

Using this approach, developers no longer have to synchronize
between different logging systems (that might require Java or Node.
js), agree on specific dependencies, or risk of breaking code in
other containers.

If you’re running Docker on AWS, you can of course monitor your
container environment as described above. But Sumo Logic also
provides a collection of Apps supporting all things AWS including out-
of-the-box solutions for Sumo Logic App for CloudTrail, AWS Config,
AWS ELB, and many others, thus giving you a comprehensive view of
your entire environment.

01 | Docker and DevOps - Enabling DevOps Teams Through Containerization

https://www.sumologic.com/application/docker/
https://www.sumologic.com/aws/
https://www.sumologic.com/application/cloudtrail/
https://www.sumologic.com/application/config/
https://www.sumologic.com/application/elb/

6

Many organizations developing software today use Docker in one
way or another. If you go to any software development or DevOps
conference and ask a big crowd of people “Who uses Docker?”, most
people in the room will raise their hands. But if you now ask the crowd,
“Who uses Docker in production?”, most hands will fall immediately.
Why is it, that such a popular technology that has enjoyed meteoric
growth is so widely used at early phases of the development pipeline,
but rarely used in production?

Software Quality: Developer Tested,
Ops Approved
A typical software delivery pipeline looks something like this (and has
done for over a decade!)

At each phase in the pipeline, the representative build is tested,
and the binary outcome of this build can only pass through to
the next phase if it passes all the criteria of the relevant quality
gate. By promoting the original binary we guarantee that the
same binary we built in the CI server is the one deployed or
distributed. By implementing rigid quality gates we guarantee the
access control to untested, tested and production-ready artifacts.

02 | Taking Docker to Production with Confidence

Taking Docker to Production with Confidence
By Baruch Sadogursky

Caption goes here. This should be in either White or Sumo Black. It needs to stand out against the background.

Source: Hüttermann, Michael. Agile ALM. Shelter Island, N.Y.: Manning, 2012. Print.

https://www.jfrog.com/author/jbaruch/

Caption goes here. This should be in either White or Sumo Black. It needs
to stand out against the background. 7

02 | Taking Docker to Production with Confidence

The Unbearable Lightness of $ Docker Build
Since running a Docker build is so easy, instead of a build passing
through a quality gate to the next phase…

… it is REBUILT at each phase.

“So what,” you say? So plenty. Let’s look at a typical build script.

To build your product, you need a set of dependencies, and the build
will normally download the latest versions of each dependency you
need. But since each phase of the development pipeline is built at a
different time, …

…you can’t be sure that the same version of each dependency in
 the development version also got into your production version.

But we can fix that. Let’s use:

FROM ubuntu:14.04.

Done.

Or are we?

Can we be sure that the Ubuntu version 14.04 downloaded in
development will be exactly the same as the one built for production?
No, we can’t. What about security patches or other changes that don’t
affect the version number? But wait; there IS a way. Let’s use the
fingerprint of the image. That’s rock solid! We’ll specify the base
image as:

But, what was that version again? Is it older or newer than the one I
was using last week?

You get the picture. Using fingerprints is neither readable nor
maintainable, and in the end, nobody really knows what went into the
Docker image.

Using fingerprints is neither readable nor
maintainable…

And what about the rest of the dockerfile? Most of it is just a bunch
of implicit or explicit dependency resolution, either in the form of apt-
get, or wget commands to download files from arbitrary locations.
For some of the commands you can nail down the version, but with
others, you aren’t even sure they do dependency resolution! And what
about transitive dependencies?

So you end up with this:

Basically, by rebuilding the Docker image at each phase in the pipeline,
you are actually changing it, so you can’t be sure that the image that
passed all the quality gates is the one that got to production.

Rebuilding Docker images at each stage of the development cycle makes dependency
resolution difficult.

8

Promoting your Docker image as an immutable and stable binary through the quality gates to production is a better option.

Stop rebuilding, start promoting
What we should be doing, is taking our development build, and rather
than rebuilding the image at each stage, we should be promoting it,
as an immutable and stable binary through the quality gates
to production.

Sounds good. Let’s do it with Docker.

Wait, not so fast.

Docker tag is a drag
This is what a Docker tag looks like:

The Docker tag limits us to one registry per host.

How do you build a promotion pipeline if you can only work with one
registry?

“I’ll promote using labels,” you say. “That way I only need one Docker
registry per host.” That will work, of course, to some extent. Docker
labels (plain key:value properties) may be a fair solution for promoting
images through minor quality gates, but are they strong enough to
guard your production deployment? Considering you can’t manage
permissions on labels, probably not. What’s the name of the property?
Did QA update it? Can developers still access (and change) the
release candidate? The questions go on and on. Instead, let’s look at
promotion for a more robust solution. After all, we’ve been doing it for
years with Artifactory.

02 | Taking Docker to Production with Confidence

https://www.jfrog.com/confluence/display/RTF/Docker+Registry
https://www.jfrog.com/confluence/display/RTF/Docker+Registry

9

Virtual repositories tried and true
Virtual repositories have been in Artifactory since version 1.0. More
recently, we also added the capability to deploy artifacts to a virtual
repository. This means that virtual repositories can be a single entry
point for both upload and download of Docker images. Like the figure
on the top right.

Here’s what we’re going to do:

•• Deploy our build to a virtual repository which functions as our
development Docker registry

•• Promote the build within Artifactory through the pipeline
•• Resolve production ready images from the same (or even a

different) virtual repository now functioning as our production
Docker registry

This is how it works:

Our developer (or our Jenkins) works with a virtual repository that
wraps a local development repository, a local production repository,
and a remote repository that proxies Docker Hub (as the first step in
the pipeline, our developer may need access to Docker Hub in order
to create our image). Once our image is built, it’s deployed through the
docker-virtual repository to docker-dev-local. See the center image on
the right.

Now, Jenkins steps in again and promotes our image through the
pipeline to production. See the bottom image on the right.

At any step along the way, you can point a Docker client at any of the
intermediate repositories, and extract the image for testing or staging
before promoting to production.

Once your Docker image is in production, you can expose it to your
customers through another virtual repository functioning as your
production Docker registry. You don’t want customers accessing your
development registry or any of the others in your pipeline. Only the
production Docker registry. There is no need for any other repositories,
because unlike other package formats, the point of a docker image is
that it has everything it needs.

02 | Taking Docker to Production with Confidence

Deploying to a virtual repository.

The Docker image is promoted through the build, and deployed through the
docker-virtual repository to docker-dev-local.

You can point a Docker client at any of the intermediate repositories.

https://www.jfrog.com/blog/push-the-limits-of-virtual-repositories-2/
https://www.jfrog.com/blog/push-the-limits-of-virtual-repositories-2/

10

Exposing your image to customers through another virtual repository functioning as your production Docker registry.

So we’ve done it. We built a Docker image, promoted it through all
phases of testing and staging, and once it passed all those quality
gates, the exact same image we created in development is now
available for download by the end user or deployed to production
servers, without risk of a non-curated image being received.

What about setup?
You might ask if getting Docker to work with all these repositories in
JFrog Artifactory is easy to setup? Well, it’s now easier than ever with
our new Reverse Proxy Configuration Generator. Stick with Artifactory
and NGINX or Apache and you can easily access all of your Docker
registries to start promoting Docker images to production.

02 | Taking Docker to Production with Confidence

https://www.jfrog.com/artifactory/
https://www.jfrog.com/confluence/display/RTF/Configuring+a+Reverse+Proxy

11

Application development for the cloud has always been challenging.
Cloud applications tend to run on headless Linux machines, with
little or no development tools installed. According to a recent survey,
most developers either use Windows or Mac OS X as their primary
platform. Statistically, only 21% of all developers appear to use Linux
as their primary OS. About 26% use Mac OS X, and the remaining
53% of developers use various versions of Microsoft Windows. So for
developers who use Windows or Mac as their primary OS, developing
for Linux would require running a Linux VM to test their code. While
this isn’t difficult in itself, replicating this VM environment for new
team members isn’t easy, especially if there are a lot of tools and
libraries that need to be installed to run the application code.

Docker For Development
Docker is a container mechanism that runs on Linux and allows you to
package an application with all of its dependencies into a standardized
unit for software development. While it is meant to act primarily as
a delivery platform, it also makes for a nice standard development
platform. Recent versions of the Docker toolbox aimed at Windows
and Mac provide an easy path to running Docker in a VM while
simultaneously providing access to the host machine’s filesystem
for shared access from within the Docker containers running in the
VM. For applications that require extraneous services like MySQL,
Postgres, Redis, Nginx, HAProxy, etc., Docker provides a simple way
to abstract these away into containers that are easy to manage and
deploy for development or production. This allows you to focus on
writing and testing your application using the OS of your choice while
still being able to easily run and debug the full application stack
using Docker.

Docker Compose
Docker Compose is an orchestration tool for Docker that allows you
to define a set of containers and their interdependencies in the form
of a YAML file. You can then use Docker Compose to bring up part or

the whole of your application stack, as well as track application output,
etc. Setting up the Docker toolbox on Mac OSX or Windows is fairly
easy. Head over to https://www.docker.com/products/docker-toolbox
to download the installer for your platform. On Linux, you simply install
Docker and Docker Compose using your native packaging tools.

An Example Application
For the sake of this exercise, let’s look at a simple Python app that
uses a web framework, with Nginx acting as a reverse proxy sitting
in front. Our aim is to run this application stack in Docker using the
Docker Compose tool. This is a simple “Hello World” application. Let’s
start off with just the application. This is a single Python script that
uses the Pyramid framework. Let’s create a directory and add the
application code there. Here’s what the directory structure looks like:

helloworld
 app.py

I have created a directory called helloworld, in which there’s a single
Python script called app.py. helloworld here represents my checked
out code tree.

This makes up the contents of my example application app.py:

03 | How to Build Applications with Docker Compose

How to Build Applications with Docker Compose
By Faisal Puthuparackat

12

It simply listens on port 5000 and responds to all HTTP requests with
“Hello World!” If you wanted to run this natively on your Windows or
Mac machine, you would need to install Python, and then the
Pyramid module, along with all dependencies. Let’s run this under
Docker instead.

It’s always a good idea to keep the
infrastructure code separate from the
application code.

It’s always a good idea to keep the infrastructure code separate
from the application code. Let’s create another directory here called
compose and add files here to containerize this application.

Here’s what my file structure now looks like. The text in bold
represents new files and folders:

 compose

 docker-compose.yml

 helloworld

 app.py

This makes up the contents of the docker-compose.yml:
Let’s break this down to understand what our docker-compose
definition means. We start off with the line “version: ‘2’”, which tells

Let’s break this down to understand what our docker-compose
definition means. We start off with the line “version: ‘2’”, which tells
Docker Compose we are using the new Docker Compose syntax.

We define a single service called helloworld, which runs from an image
called helloworld:1.0. (This of course doesn’t exist. We’ll come to that
later.) It exposes a single port 5000 on the docker host that maps to
port 5000 inside the container. It maps the helloworld directory that
holds our app.py to /code inside the container.

Now if you tried to run this as-is, using “docker-compose up”, docker
could complain that it couldn’t find helloworld:1.0. That’s because it’s
looking on the docker hub for a container image called helloworld:1.0.
We haven’t created it yet. So now, let’s add the recipe to create this
container image. Here’s what the file tree now looks like:

 compose

 docker-compose.yml

 helloworld

 Dockerfile

 helloworld

 app.py

We’ve added a new directory called helloworld inside the compose
directory and added a file called Dockerfile there. The following makes
up the contents of Dockerfile:

03 | How to Build Applications with Docker Compose

13

This isn’t a very optimal Dockerfile, but it will do for us. It’s derived
from Ubuntu 14.04, and it contains the environment needed to run
our Python app. It has the Python interpreter and the Pyramid Python
module installed. It also defines /code as the working directory and
defines an entry point to the container, namely: “python app.py”. It
assumes that /code will contain a file called app.py that will then be
executed by the Python interpreter.

We’ll now change our docker-compose.yml to add a single line that
tells Docker Compose to build the application container for us if
needed. This is what it now looks like:

We’ve added a single line “build: ./helloworld” to the helloworld service.
It instructs Docker Compose to enter the compose/helloworld
directory, run a docker build there, and tag the resultant image as
helloworld:1.0. It’s very concise. You’ll notice that we haven’t added the
application app.py into the container. Instead, we’re actually mapping
the helloworld directory that contains app.py to /code inside the
container, and asking docker to run it from there. What that means is that
you are free to modify the code using the developer IDE or editor of your
choice on your host platform, and all you need to do is restart the docker
container to run new code. So let’s fire this up for the first time.

Before we start, let’s find out the IP address of the docker machine so
we can connect to our application when it’s up. To do that, type

$ docker-compose up

03 | How to Build Applications with Docker Compose

14

You should see something like the following:

NAME ACTIVE DRIVER STATE URL

SWARM DOCKER ERRORS

default * virtualbox Running tcp://1

92.168.99.100:2376

v1.11.0

This tells us that the Docker VM is running on 192.168.99.100. Inside
the Docker terminal, navigate to the compose directory and run:

$ docker-compose up

You’re running docker-compose in the foreground. You should see
something similar to this:

$ docker-compose up

Building helloworld

Step 1 : FROM ubuntu:14.04

 ---> b72889fa879c

Step 2 : MAINTAINER Your Name <your-email@

somedomain.com>

 ---> Running in d40e1c4e45d8

 ---> f0d1fe4ec198

Removing intermediate container d40e1c4e45d8

Step 3 : ENV HOME /root

 ---> Running in d6808a44f46f

 ---> b382d600d584

Removing intermediate container d6808a44f46f

Step 4 : ENV DEBIAN_FRONTEND noninteractive

 ---> Running in d25def6b366b

 ---> b5d310716d1f

Removing intermediate container d25def6b366b

Step 5 : RUN apt-get -yqq update

 ---> Running in 198faaac5c1b

 ---> fb86cbdcbe2e

Removing intermediate container 198faaac5c1b

Step 6 : RUN apt-get install -yqq python python-

dev python-pip

 ---> Running in 0ce70f832459

Extracting templates from packages: 100%

Preconfiguring packages ...

Selecting previously unselected package

libasan0:amd64.

...

 ---> 4a9ac1adb7a2

Removing intermediate container 0ce70f832459

Step 7 : RUN pip install pyramid

 ---> Running in 0907fb066fce

Downloading/unpacking pyramid

...

Cleaning up...

 ---> 48ef0b2c3674

Removing intermediate container 0907fb066fce

Step 8 : WORKDIR /code

 ---> Running in 5c691ab4d6ec

 ---> 860dd36ee7f6

Removing intermediate container 5c691ab4d6ec

Step 9 : CMD python app.py

 ---> Running in 8230b8989501

 ---> 7b6d773a2eae

Removing intermediate container 8230b8989501

Successfully built 7b6d773a2eae

Creating compose_helloworld_1

Attaching to compose_helloworld_1

…And it stays stuck there. This is now the application running inside
Docker. Don’t be overwhelmed by what you see when you run it for the
first time. The long output is Docker attempting to build and tag the
container image for you since it doesn’t already exist. After it’s built
once, it will reuse this image the next time you run it.

Now open up a browser and try navigating to
http://192.168.99.100:5000.

You should be greeted by a page that says Hello World!

So, that’s our first application running under Docker. To stop the
application, simply type Ctrl-C at the terminal prompt and Docker
Compose will stop the container and exit. You can go ahead and
change the code in the helloworld directory, add new code or modify
existing code, and test it out using “docker-compose up” again.

To run it in the background:

$ docker-compose up -d

03 | How to Build Applications with Docker Compose

15

To tail the container standard output:

$ docker-compose logs -f

This is a minimal application. Let’s now add a commodity container
to the mix. Let’s pull in Nginx to act as the front-end to our application.
Here, Nginx listens on port 80 and forwards all requests to
helloworld:5000. This isn’t useful in itself, but helps us demonstrate
a few key concepts, primarily inter-container communication. It also
demonstrates the container dependency that Docker Compose can
handle for you, ensuring that your application comes up before Nginx
comes up, so it can then forward connections to the application
correctly. Here’s the new docker-compose.yml file:

As you can see, we’ve added a new service here called nginx. We’ve
also removed the port’s entry for helloworld, and instead we’ve added
a link to it from nginx. What this means is that the nginx service
can now communicate with the helloworld service using the name
helloworld. Then, we also map the new nginx/conf.d directory to /etc/
nginx/conf.d inside the container. This is what the tree now looks like:

 compose

 docker-compose.yml

 helloworld

 Dockerfile

 nginx

 conf.d

 helloworld.conf

 helloworld

 app.py

The following makes up the contents of compose/nginx/conf.d

This tells nginx to listen on port 80 and forward all requests for / to
helloworld:5000. Although port 5000 is no longer being forwarded
to by Docker, it’s still exposed on the helloworld container and is
accessible from all other containers on the machine. This is how the
connections now work:

browser -> 192.168.99.100(docker machine) ->

nginx:80 -> nginx-process -> hellworld:5000

Commodity Containers And Docker Hub
The nginx container for this example comes from the official Nginx
image on the Docker Hub. This version uses Alpine Linux as its base
OS, instead of Ubuntu. Not only is the Alpine Linux version smaller in
size, it also demonstrates one of the advantages of dockerization—
running commodity containers without worrying about underlying
distribution. I could swap it out for the Debian version tomorrow
without breaking a sweat.

It’s possible that your cloud application actually uses cloud services
like Amazon’s RDS for the database, or S3 for the object store, etc. You
could of course let your local instance of the application talk to the
services too, but the latency and the cost involved may beg for a more

03 | How to Build Applications with Docker Compose

Caption goes here. This should be in either White or Sumo Black. It needs
to stand out against the background. 16

developer-friendly solution. The easy way out is to abstract the access
to these services via some configuration and point the application
to local containers that offer the same service instead. So instead of
Amazon’s RDS, spin up a MySQL container and let your application
talk to that. For Amazon S3, use LeoFS or minio.io in containers,
for example.

Container Configuration
Unless you’ve created your own images for the commodity services,
you might need to pass on configuration information in the form of
files or environment variables. This can usually be expressed in the
form of environment variables defined in the docker-compose.yml file,
or as mapped directories inside the container for configuration files.
We’ve already seen an example of overriding configuration in the nginx
section of the docker-compose.yml file.

Managing Data, Configuration and Logs
For a real-world application, it’s very likely that you have some
persistent storage in the form of RDBMS or NoSQL storage. This will
typically store your application state. Keeping this data inside the
commodity container would mean you couldn’t really swap it out for
a different version or entity later without losing your application data.
That’s where data volumes come in. Data volumes allow you to keep
state separately in a different container volume. Here’s a snippet from

the official Docker Compose documentation about how to use
data volumes:

The volume is defined in the top level volumes section as mydata.
It’s then used in the volumes section of the db service and maps the
mydata volume to /var/lib/postgesql/data, so that when the postgres
container starts, it actually writes to a separate container volume
named mydata.

While our example only mapped code into the application container,
you could potentially get data out of the container just as easily. In our
data volume example, we map a directory called logs to /var/log inside
the postgres container. So all postgres logs should end up in the logs
directory, which we could then analyze using our native Windows/
Mac tools. The Docker toolbox maps volumes into the VM running
the docker daemon using vboxfs, Virtualbox’s shared filesystem
implementation. It does so transparently, so it’s easy to use without
any extra setup.

Docker is constantly evolving, and each version of the core Docker
Engine, as well as the associated tools, are constantly improving.
Utilizing them effectively for development should result in a dramatic
improvement in productivity for your team.

References
Developer OS split statistics
Docker toolbox
Docker Compose reference

03 | How to Build Applications with Docker Compose

http://stackoverflow.com/research/developer-survey-2016#technology-desktop-operating-system
https://www.docker.com/products/docker-toolbox
https://docs.docker.com/compose/

17

Support for Docker logging has evolved over the past two years,
and the improvements made from Docker 1.6 to today have greatly
simplified both the process and the options for logging. However,
DevOps teams are still challenged with monitoring, tracking and
troubleshooting issues in a context where each container emits its
own logging data. Machine data can come from numerous sources,
and containers may not agree on a common method. Once log
data has been acquired, assembling meaningful real-time metrics
such as the condition of your host environment, the number of
running containers, CPU usage, memory consumption and network
performance can be arduous. And if a logging method fails, even
temporarily, that data is lost.

Docker Logging
When it comes to logging in Docker, the recommended pathway for
developers has been for the container to write to its standard output,
and let Docker collect the output. Then you configure Docker to either
store it in files, or send it to syslog. Another option is to write to a
directory, so the plain log file is the typical /var/log thing, and then you
share that directory with another container.

In practice, When you stop the first container, you indicate that /var/
log will be a “volume,” essentially a special directory, that can then be
shared with another container. Then you can run tail -f in a separate
container to inspect those logs. Running tail by itself isn’t extremely
exciting, but it becomes much more meaningful if you want to run a
log collector that takes those logs and ships them somewhere. The
reason is you shouldn’t have to synchronize between application and
logging containers (for example, where the logging system needs Java
or Node.js because it ships logs that way). The application and logging
containers should not have to agree on specific dependencies, and
risk breaking each others’ code.

The application and logging containers should
not have to agree on specific dependencies,
and risk breaking each others’ code.

Another issue is aligning logging methods. Prior to Docker 1.6, there
were no less than 10 options for container logging - some better than
others. You could:

1. Log Directly from an Application
2. Install a File Collector in the Container
3. Install a File as a Container
4. Install a Syslog Collector as a Container
5. Use Host Syslog for Local Syslog
6. Use a Syslog Container for Local Syslog
7. Log to Stdout and use a file collector
8. Log to StdOut and use Logspout
9. Collect from the Docker File systems (Not recommended)
10. Inject Collector via Docker Exec

Logging drivers have been a very large step forward in the last
12 months, and there have been incremental logging
enhancements since.

However, there are still different methods to log in Docker, and there’s
little guarantee that containers will agree on a method, especially in
a distributed microservices environment. Following the principles
of the 12-Factor app, a methodology for building SaaS applications,
we recommend as a best practice that you limit to one process per
container, with each running unbuffered and sending data to Stdout.

04 | Docker Logging and Comprehensive Monitoring

Docker Logging and Comprehensive Monitoring
By Michael Floyd

Caption goes here. This should be in either White or Sumo Black. It needs to stand out against the background.

http://12factor.net/
https://www.sumologic.com/author/mfloyd/

18

Logging Drivers In Docker Engine
Docker 1.6 added 3 new log drivers: docker logs, syslog, and log-driver
null. The driver interface was meant to support the smallest subset
available for logging drivers to implement their functionality. Stdout
and stderr would still be the source of logging for containers, but
Docker takes the raw streams from the containers to create discrete
messages delimited by writes that are then sent to the logging drivers.
Version 1.7 added the ability to pass in parameters to drivers, and in
Docker 1.9 tags were made available to other drivers. Importantly,
Docker 1.10 allows syslog to run encrypted, thus allowing companies
like Sumo Logic to send securely to the cloud.

More recently we’ve seen proposals for Google Cloud Logging
driver, and the TCP, UDP, Unix Domain Socket driver. As Sumo Logic
co-founder and CTO, Christian Beedgen, points out “As part of the
Docker engine, you need to go through the engine commit protocol.
The benefit is there’s a lot of review stability. But it can also be
suboptimal because it is not really modular, and it adds more and
more dependencies on third party libraries.” So he poses the question
of whether this should be decoupled.

In fact, others have suggested the drivers be external plugins, similar
to how volumes and networks work. Plugins would allow developers
to write custom drivers for their specific infrastructure, and it would
enable third-party developers to build drivers without having to get
them merged upstream and wait for the next Docker release.

A Comprehensive Approach For Monitoring
And Logging
As the saying goes, you can’t live on logs alone. To get real value
from machine-generated data, you need to look at “comprehensive
monitoring.” There are five requirements to enable comprehensive
monitoring:
•• Events
•• Configurations
•• Logs
•• Stats
•• Host and daemon logs

For events, you can send each event as a JSON message, which
means you can use JSON as a way of logging each event. You

04 | Docker Logging and Comprehensive Monitoring

https://www.sumologic.com/company/who-we-are/

enumerate all running containers, then start listening to the event
stream. Then you start collecting each running container and each
start event. For configurations, you call the inspect API and send that
in JSON, as well. “Now you have a record,” he said. “Now we have all
the configurations in the logs, and we can quickly search for them
when we troubleshoot.” For logs, you simply call the logs API to open a
stream and send each log as, well, a log.

Similarly for statistics, you call the stats API to open a stream for each
running container and each start event, and send each received JSON
message as a log. “Now we have monitoring,” says Christian. “For host
and daemon logs, you can include a collector into host images or run
a collector as a container. This is what Sumo Logic is already doing,
thanks to the API.”

Monitor Your Entire Docker Ecosystem
Sumo Logic delivers a comprehensive strategy for monitoring
Docker infrastructure with a native collection source for events,
stats, configurations and logs. Sumo Logic’s advanced machine-
learning and analytics capabilities enable DevOps teams to analyze,
troubleshoot, and perform root cause analysis of issues surfacing
from distributed container-based applications and Docker containers
themselves. There’s no need to parse different log formats, or manage
logging dependencies between containers.

The App for Docker comes with pre-built dashboards and search
queries that enable you to correlate container events, configuration
information, host and daemon logs to get a complete overview
your Docker environment. Quickly view Top 10 Active containers by
memory consumption, CPU consumption or by traffic sent
and received.

The Sumo Logic App for Docker provides:
•• Native collection source for entire Docker infrastructure
•• Real-time monitoring of Docker infrastructure including stats,

events and container logs
•• Ability to troubleshoot issues and set alerts on abnormal container

or application behavior

•• Visualizations of key metrics and KPIs, including image usage,
container actions and faults, as well as CPU/Memory/
Network statistics

•• Ability to easily create custom and aggregate KPIs and metrics
using Sumo Logic’s powerful query language

•• Advanced analytics powered by Log Reduce, Anomaly Detection,
Transaction Analytics, and Outlier Detection

The Sumo Logic App for Docker uses a container that includes a
collector and a script source to gather statistics and events from the
Docker Remote API on each host. The app wraps events into JSON
messages, then enumerates over all running containers and listens to
the event stream. This essentially creates a log for container events.
In addition, the app collects configuration information obtained using
Docker’s Inspect API, and collects host and daemon logs, giving
developers and DevOps teams a way to monitor their entire Docker
infrastructure in real time.

Sumo Logic’s advanced machine-learning and analytics capabilities
enable DevOps teams to analyze, troubleshoot, and perform root
cause analysis of issues surfacing from distributed container-based
applications and Docker containers themselves.

To learn more, please visit any of the following resources for
more information:
•• Official SumoLogic Collector Docker Image
•• Sumo Logic Docker Blog
•• Collect Docker Logs w/Sumo Logic
•• Docker Website

Download Christian’s Docker presentation on Slideshare.

04 | Docker Logging and Comprehensive Monitoring

Toll-Free: 1.855.LOG.SUMO | Int’l: 1.650.810.8700
305 Main Street, Redwood City, CA 9460

www.sumologic.com

© Copyright 2016 Sumo Logic, Inc. All rights reserved. Sumo Logic, Elastic Log Processing,

LogReduce, Push Analytics and Big Data for Real-Time IT are trademarks of Sumo Logic, Inc.

All other company and product names mentioned herein may be trademarks of their respective

owners. WP-0616. Updated 06/16

https://github.com/SumoLogic/sumologic-collector-docker
https://www.sumologic.com/2015/09/22/sumo-logic-docker-app/
https://www.sumologic.com/blog-using-sumo/four-ways-to-collect-docker-logs-in-sumo-logic/
https://www.docker.com/
http://www.slideshare.net/raychaser/comprehensive-monitoring-for-docker

