
ECC Parity: A Technique for Efficient Memory
Error Resilience for Multi-Channel Memory Systems

Xun Jian
University of Illinois

at Urbana-Champaign
Email: xunjian1@illinois.edu

Rakesh Kumar
University of Illinois
at Urbana-Champaign

Email: rakeshk@illinois.edu

Abstract—

Servers and HPC systems often use a strong memory error
correction code, or ECC, to meet their reliability and availability
requirements. However, these ECCs often require significant
capacity and/or power overheads. We observe that since memory
channels are independent from one another, error correction
typically needs to be performed for one channel at a time. Based
on this observation, we show that instead of always storing in
memory the actual ECC correction bits as do existing systems,
it is sufficient to store the bitwise parity of the ECC correction
bits of different channels for fault-free memory regions, and store
the actual ECC correction bits only for faulty memory regions.
By trading off the resultant ECC capacity overhead reduction
for improved memory energy efficiency, the proposed technique
reduces memory energy per instruction by 54.4% and 20.6%,
respectively, compared to a commercial chipkill correct ECC
and a DIMM-kill correct ECC, while incurring similar or lower
capacity overheads.

I. INTRODUCTION

Error resilience in memory is an indispensable feature for
servers and HPC systems. Without adequate error resilience,
an error in memory can lead to expensive downtime and
corruption of application data. As the number of DRAMs and
DIMMs per system increases, faults in memory systems are
becoming increasingly common. As such, error resilience in
memory has been widely adopted [11], [5], [17]. However,
memory error resilience often incurs high power and/or ca-
pacity overheads [4], [24], [22].

In conventional memory error resilience designs, the mem-
ory system stores and manages an independent ECC for each
memory channel1. For systems with a few memory channels,
this simple design may be the best option. However, the
number of channels per server has been increasing to keep
up with the growing memory bandwidth requirement due to
the increase in the number of cores per processor. Some high-
performance processors, such as Intel Xeon 6500 and Xeon
7500, contain four and eight physical memory channels, re-
spectively [3], [22]. In this paper, we argue that independently
storing ECC resources for each channel may not be a capacity
or energy efficient option for such systems.

We observe that because memory channels are independent
from one another, faults typically occur in only one channel

1Unless stated otherwise, we refer to a memory channel as a logical memory
channel. A logical memory channel consists of one or more physical memory
channels.

at a time. Therefore, error correction typically needs to be
performed for only one channel at a time as well. As such, for
systems with many channels, we propose storing in memory
only the bitwise parity of the ECC correction bits (i.e., the bits
in an ECC that are used for correcting errors, as opposed to the
bits in an ECC that are used for detecting errors) of different
channels. We call this bitwise parity of the ECC correction bits
an ECC parity. When needed, the actual ECC correction bits of
a line in a faulty channel can be obtained by XORing the line’s
ECC parity with the ECC correction bits of appropriate lines
in the remaining healthy channels; the ECC correction bits of
lines in the healthy channels can be directly computed from
the lines. Only after a fault occurs in a channel do we store the
actual ECC correction bits of its faulty region(s) in memory;
this protects against the accumulation of faults across multiple
channels over time. In comparison, current systems always
store in memory the ECC correction bits of every channel.

Storing the ECC parity, instead of the actual ECC cor-
rection bits themselves, can significantly reduce the ECC
capacity overhead for systems with multiple channels. The
resultant ECC capacity overhead reduction can be traded off
for improved memory energy efficiency. When applied to
chipkill correct, the proposed optimization, ECC Parity (with
uppercase ‘P’, as opposed to the lower case ‘p’ in ECC parity)
reduces memory energy per instruction by 53% and 56%,
respectively, compared to a quad-channel and a dual-channel
memory system protected by a commercial chipkill correct
ECC [5]. When applied to a quad-channel and a dual-channel
memory system protected by a commercial DIMM-kill correct
ECC [17], ECC Parity reduces memory energy per instruction
by 21% and 18%, respectively.

The rest of the paper is organized as follows. Section
II provides the relevant background and motivations. Section
III describes ECC Parity. Section IV describes the evaluation
methodology. Section V presents the experimental results.
Section VI discusses system-level impacts. Section VII surveys
related work. Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

Large-scale field studies report that DRAMs are susceptible
to device-level faults that cause a significant fraction of an
entire memory device to become faulty [20], [21]. Correspond-
ingly, chipkill correct ECC, which is capable of tolerating
device-level faults in memory, is provided by virtually all
servers on the market [11] and is widely adopted by super-
computers and data centers [19], [20], [16], [12]. Chipkill

SC14, November 16-21, 2014, New Orleans, Louisiana, USA
978-1-4799-5500-8/14/$31.00 c©2014 IEEE

correct can tolerate up to a complete chip failure in a rank [9],
which is a group of DRAM chips in a channel that are always
accessed in parallel to serve each memory request. Stronger
error correction techniques that guard against complete DIMM
failure(s) per channel, or DIMM-kill correct, are also found in
commercial systems [17].

Providing memory error resilience often incurs high over-
heads, however. For example, RAIM, a commercial DIMM-kill
correct ECC, stripes each memory line and its ECC across
five DIMMs; as such, each rank consists of a large number
(i.e., 45) of DRAM chips [17]. Accessing such a large number
of memory chips for every memory request incurs a high
memory energy overhead. In addition, 13 out of the 45 chips
per rank are ECC chips, which lead to a high 13/32 = 40.6%
capacity overhead. As another example, a common commercial
chipkill correct implementation [5], which we refer to as the
36-device commercial chipkill correct in the rest of the paper,
stripes each line and its ECC across 36 DRAM chips, and
thus also suffer from a high memory power overhead [4], [24].
Although one can choose to stripe each line across fewer chips,
doing so increases the fraction of data in a line that can be
affected when a chip fails and thus increases the amount of
ECC bits per line, or capacity overhead, needed to support
chipkill correct. For example, LOT-ECC [22], a recent chipkill
correct proposal, stripes each line and its ECC bits across as
few as five chips to reduce the power overhead of chipkill
correct; however, it increases the capacity overhead from the
12.5% overhead found in commercial chipkill correct to a
40.6%2 overhead. The goal of our work is to explore memory
architecture level optimizations to reduce the overheads of
providing memory error resilience in the context of multi-
channel memory systems.

It is well known that a memory ECC can often be decom-
posed into ECC detection bits and ECC correction bits. For
example, 36-device commercial chipkill correct use four check
symbols per memory word [4], [24]; only two check symbols
are required for error detection [24], while the remaining two
are needed for correcting detected errors. Figure 1 shows the
breakdown of the capacity overheads of commercial chipkill
correct, commercial DIMM-kill correct, and two different
LOT-ECC implementations into ECC detection bits and ECC
correction bits; LOT-ECC I and LOT-ECC II in the figure stand
for the nine-chip per rank and five-chip per rank implemen-
tations of LOT-ECC, respectively. Typically 50% or more of
the ECC capacity overhead comes from the ECC correction
bits. This is a very high fraction considering that the ECC
correction bits are only needed to correct errors after memory
faults occur - typically a rare event. Our goal is to reduce the
overhead of memory error resilience by reducing the capacity
overhead of these rarely used ECC correction bits.

In the conventional memory system design, the memory
system stores the actual ECC correction bits of every channel
in memory. This approach can correct errors due to faults
occurring simultaneously in all channels. However, the mean
time between faults occurring in different channels is in the
order of 100’s of days, as shown in Figure 2. The mean time
between faults in different channels is high because memory

2Under this implementation, every four 72B (64B data + 8B ECC bits)
memory lines holding data are protected by one 72B memory line holding only
ECC bits. Therefore, the capacity overhead is (8 · 4+72)/(64 · 4) = 40.6%.

Fig. 1. The breakdown of the capacity overheads of different memory ECCs.
A significant fraction of the capacity overhead is due to ECC correction bits.

Fig. 2. Mean time between faults in different channels versus DRAM fault
rates for an eight-channel system with four ranks per channel and nine chips
per rank, assuming the exponential failure distribution. Sridharan et al. [21]
report an average DDR3 fault rate of 44 FIT/chip across different vendors.

channels are independent from one another so they also fail
independently from one another. For example, a DRAM failure
or a DIMM failure in one channel does not affect the DRAMs
or DIMMs in another channel because they do not share
any common circuitry. Therefore, instead of always storing
in memory the actual ECC correction bits of every channel, it
may be sufficient to store a reduced form of the ECC correction
bits that only provides full error correction coverage for one
faulty channel at a time. Because often half or more of the
capacity overhead of memory ECCs are due to their ECC
correction bits (see Figure 1), storing only a reduced form
of the ECC correction bits can result in significant capacity
overhead reduction. The resultant savings can either simply
remain as capacity overhead reduction or be traded off for
improved memory energy efficiency.

III. ECC PARITY

We propose a memory architectural level optimization for
multi-channel systems that can be applied on top of diverse
memory ECCs (e.g., chipkill correct, double chipkill correct,
DIMM-kill correct, etc.) to reduce the overheads of the under-
lying memory ECC. The optimization is to store in memory
the bitwise parity of the ECC correction bits instead of always
storing in memory the actual ECC correction bits as do existing
memory systems. ECC detection bits continue to be stored in
memory for every channel; this allows error detection to be
performed on the fly with each read access, which lies on
the critical path of execution. When errors are detected in
a channel, the ECC correction bits of the data lines in the
channel can be reconstructed from ECC parities and data lines

Fig. 3. Example ECC parities. ‘D’ stands for the eight detection check
symbols and ‘C’ stands for the eight correction check symbols per line.
‘C0C1C2’ stands for C0 ⊕ C1 ⊕ C2. Shaded boxes represent values that
are only calculated for the data lines but are not actually stored in memory.

in other channels as long as no two memory channels fail at
the same relative location. To guard against the event that a
second memory channel may later fail at the same location
as where another channel had failed earlier, we calculate and
store in memory the actual ECC correction bits of each faulty
memory region.

The rest of the section is organized as follows. Section
III-A describes the construction and layout of ECC parities.
Section III-B describes the layout of the ECC correction bits
after faults occur in memory. Section III-C describes added
steps to memory requests. Section III-D describes optimiza-
tions to mitigate the performance impact of the steps added to
regular memory accesses. Section III-E discusses the various
overheads.

A. ECC Parity Construction and Layout

We use a two-stage encoding procedure to obtain the final
redundancy bits for correcting detected errors. In the first stage
we compute an ECC specified by the system designer (e.g., one
that provides chipkill correct, double chipkill correct, DIMM-
kill correct, etc.) for a data line. In the second stage, we
compute a bitwise parity from the ECC correction bits of lines
in different channels that are obtained in stage one. We refer
to the end result as the ECC parity and store it in memory.

Specifically, to obtain an ECC parity in a memory system
with N channels, one first computes the ECC correction bits
of a memory line in each of N − 1 channels and evaluates the
bitwise XOR of these N − 1 values. The result, which is the
ECC parity, is then stored in the N th channel. When a fault
occurs in a channel, the ECC correction bits of an affected line
in the faulty channel can be reconstructed by XORing the line’s
ECC parity with the ECC correction bits of the appropriate
lines in the remaining channels. The ECC correction bits of
these latter lines can be directly computed if they are error-
free. The ECC parities guarantee the same error correction
coverage as provided by the underlying ECC correction bits
for faults within a single channel. However, when lines in
the same relative location in two or more channels contain
errors (e.g., due to the accumulation of faults across multiple
channels over time), one cannot reconstruct the ECC correction
bits of any of these erroneous lines from their ECC parity.
Therefore, we only store ECC parities for fault-free memory
regions; for memory regions with fault(s), we store their ECC
correction bits in memory, as will be described in Section III-B.

As an example, we demonstrate the construction of ECC
parities using the 36-device commercial chipkill correct as

Fig. 4. ECC Parity layout example. Row 0 represents a 4KB page. ‘0-2B0’
stands for all the ECC parities of lines in Rows 0, 1, and 2 of Bank 0.

the underlying ECC. 36-device commercial chipkill correct
stores a four-check-symbol code per word in memory; two
of these check symbols are needed for error detection [24],
while the remaining two are used for correcting detected errors.
These correction check symbols are used to construct ECC
parities. Let us assume that there are four words per line, and
therefore, eight detection check symbols and eight correction
check symbols per line. Figure 3 shows the data lines of a
quad-channel memory system, their detection check symbols,
as well as their ECC parities that replace the correction check
symbols, which are represented by the shaded boxes.

We store the ECC parities in memory regions separate from
the data lines to avoid complicating the address translation for
application read requests to memory, which often lie on the
critical path of execution. Figure 4 shows the layout of the
ECC parities for an example quad-channel memory system
in which the size of the ECC correction bits of each data
line is half the size of the data line. Each numbered row in
the figure represents a typical 4KB row that stores a 4KB
physical page. For simplicity, the figure only shows two banks
per channel. We reserve the last rows in each memory bank to
store the ECC parities. We evenly distribute the ECC parities
corresponding to the same banks of different channels across
these same banks. Each row of ECC parities protects (N −
1)/R rows of data, where R is the ratio of the size of the
ECC correction bits per data line to the size of the data line.
In the example in Figure 4, R = 0.5; therefore, a row of ECC
parities corresponds to (4− 1)/0.5 = 6 rows of data.

B. ECC Correction Bits Layout

While the ECC parities protect against faults in a single
channel, they do not protect against faults that have developed
in the same locations in different channels (e.g., due to the
accumulation of faults in memory over time). Compared to
storing the actual ECC correction bits, storing the ECC parities

also incurs significant performance overhead when errors need
to be corrected because error correction using an ECC parity
requires the additional step of reading out data lines from
multiple channels to reconstruct the ECC correction bits.
To overcome these problems, we store in memory the ECC
correction bits of a faulty memory region after the fault occurs.

To store ECC parities for healthy memory regions and
ECC correction bits for faulty memory regions, there must
to be a way to record the type of error correction resources
that is currently stored for different data lines. A fine-grained
mechanism that tracks this information on a line-by-line basis
will incur prohibitive overheads. Instead, we track the type
of stored ECC resources at the much coarser granularity
of pairs of memory banks in the same channel. When the
combined number of errors encountered in a pair of banks in
the same channel exceeds a certain threshold, the actual ECC
correction bits for both banks are computed and then stored
in memory. To store the ECC correction bits for this pair of
banks, each bank in the pair stores the ECC correction bits
corresponding to data in the other bank, as shown in Figure
5; this layout minimizes the latency of error correction by
allowing the memory request to a data line and the request
to its corresponding ECC correction bits to partially overlap.
Meanwhile, all the ECC parity lines (i.e., memory lines that
store ECC parities) that are used to protect these two banks
have to be recalculated to remove the content of the two banks
from their construction. While recalculating the ECC parity
lines is expensive, it is performed rarely because the mean time
between DRAM faults in different channels is high (e.g., once
every hundreds of days, see Figure 2). Therefore, the impact
on performance due to this operation is negligible (e.g., a few
seconds, which is the time it takes to read out the entire content
of a typical memory system, of degraded memory performance
per hundreds of days).

Finally, to maintain the same protection level as the ECC

Fig. 5. Example illustrating the layout of both ECC parities and ECC
correction bits in a memory system with fault. The shaded regions represent
faulty banks. ‘0B1’ represents the ECC correction bits for Row 0 of Bank 1.
‘1,2B0’ represents the ECC parities for lines in Rows 1 and 2 of Bank 0.

parities, the ECC correction bits themselves require ECC
protection because a fault in a channel can also affect lines
storing the ECC correction bits; this increases the effective
amount of the ECC correction bits. This is illustrated in Figure
5, where each row of data in a faulty bank (e.g., Row 0 of
Bank 0) is protected by a full row of ECC correction bits
(e.g., ‘0B0’), whereas each row of data in a healthy bank
(e.g., Row 1 of Bank 0) is protected by only half a row of
ECC parities (e.g., ‘1,2B0’). The exact extent that the amount
of ECC correction bits has to be increased depends on the
underlying ECC. In general, if the underlying ECC incurs a
capacity overhead of x%, the effective amount of the ECC
correction bits has to be increased by x% as well when one
uses the same ECC to protect the ECC correction bits. For
simplicity, ECC Parity allocates twice as many bits to store
the ECC correction bits of a data line as the number of bits
used to store the ECC parity of a data line.

C. Added Steps In Memory Operations

The memory system needs to support periodic scanning for
memory errors (e.g., via a memory scrubber) to ensure a high
probability that the ECC correction bits of a faulty memory
region can be computed and stored before another fault occurs
in the same relative location in a different channel. An detected
error always increments the error counter corresponding to
the memory bank with the error. Before an error reaches
a threshold (e.g., set to a small number such as four to
differentiate bit and row faults from larger faults like bank
faults), the OS simply retires the physical page that contains
the detected error, as well as all physical pages that share
the same ECC parities as the faulty physical page; retiring the
physical page prevents permanent bit faults and permanent row
faults from repeatedly incrementing, and therefore, saturating
the error counter. When the error counter saturates, implying
a potential large device-level fault such as a bank fault, the
corresponding bank pair is recorded as faulty. The actual ECC
correction bits of this pair of banks are then to be calculated
and stored in memory.

The use of ECC parities also requires some modifications
to regular memory accesses. Figure 6 shows memory read and
write operations starting from the last level cache (LLC) of
the processor. In parallel to every application read request to
memory, the LLC controller performs a bank health lookup
(Step A1 in Figure 6) to check whether the bank containing
the requested line is currently recorded as faulty. If the bank
is recorded as faulty, the corresponding ECC line (i.e., a line
that only holds ECC correction bits) in memory have to be
read as well (Step B in Figure 6). If errors are detected in a
line arriving from memory and the bank is not recorded as
faulty, the ECC correction bits of the requested line have to
be first reconstructed (via Step C in Figure 6) from the line’s
ECC parities before error correction can proceed. We expect
the added bank health lookup step (Step A1) to have small
impact on performance because this information is kept on
chip in a small and, therefore, fast SRAM table. On the other
hand, individual error correction operations using ECC parities
are expensive because they require reading out all data lines
that share the same ECC parity; this requires a total of N-1
additional memory accesses. However, we expect the overall
impact of using ECC parity for error correction (Step C) on
performance to be small because we record which banks are

Fig. 6. Steps added to memory accesses to support ECC parities.

faulty and then store in memory the actual ECC correction
bits, not ECC parities, for these banks. Overall, we expect
the steady state behavior of reading the ECC line for every
application read request to a faulty bank (Step B) to be the
most expensive step among the added steps above.

Meanwhile, for each memory write request, ECC Parity
looks up whether the bank written to is recorded as faulty
(Step A2 in Figure 6) to properly update the dirty line’s error
correction resources (as ECC parities or ECC correction bits).
If the bank is recorded as faulty, ECC Parity simply calculates
the ECC correction bits of the written line and writes it to the
ECC line in memory (Step D). However, if the bank is not
recorded as faulty, the corresponding ECC parity needs to be
updated (Step E) using the following equation:

ECCPnew = ECCPold ⊕ ECCold ⊕ ECCnew (1)

In equation 1, ECCnew stands for the ECC correction bits
computed using the current value of the dirty line; ECCold

stands for the ECC correction bits of the old value of the dirty
line that is currently stored in memory before the writeback
to memory. ECCPnew is the new ECC parity to be written
to memory; ECCPold is the old value of the ECC parity that
is currently stored in memory. Again, we expect bank health
lookups (Step A2) to have small impact on performance. Up-
dating the ECC correction bits (Step D) requires an additional
write access to memory for every application write request to a
faulty bank, and thus may have substantial impact on memory
bandwidth. Finally, updating the ECC parity (Step E) requires
three additional memory accesses - reading the old value of
the dirty line from memory, reading the ECC parity line, and
then writing the updated ECC parity line back to memory. This
may incur significant bandwidth overhead even for a healthy

Fig. 7. Modifications to the LLC to mitigate the overheads of the added
steps to memory accesses in Figure 6. Added steps are highlighted in gray.

memory system.

D. Hardware Optimizations

This section describes hardware optimizations borrowed
from prior works [24], [13] to mitigate the potential per-
formance impact of steps B, D, and E in Figure 6. The
optimizations require modifications to the LLC controller.

To reduce the overheads of Steps B and D, we propose
using the LLC to cache ECC lines similar to VECC [24];
this allows future application read requests to faulty data lines
protected by the same ECC line to access the ECC line from
the LLC instead of from memory. Similarly, caching the ECC
line also helps to reduce the overhead of updating the ECC
lines for application write requests to faulty banks.

To mitigate the performance impact of Step E, we borrow
a caching technique from [13]; the technique eliminates the
read access to the old value of the dirty line in memory
and reduces the number of read-modify-write operations to
the ECC parity lines in memory. Functionally, the borrowed
technique compacts into a single LLC cacheline the old and
new ECC correction bits of all dirty data lines that are
protected by the same ECC parity line. It does so by storing
the bitwise XOR of these ECC correction bits, instead of the
ECC correction bits themselves, as only the XOR values are
needed to update the ECC parity (see Equation 1). We call
a cacheline that currently stores such an XOR value a XOR
cacheline. For managing the XOR cachelines in the LLC, each
XOR cacheline takes on the same physical address as the
corresponding ECC parity line in memory.

Figure 7 summarizes the added steps to the operations of
the LLC to implement all of the above optimizations, assuming
an inclusive cache hierarchy.

E. Overheads

ECC Parity incurs four kinds of memory capacity over-
heads: one for the ECC detection bits, one for the ECC parity
lines, one for the retired pages due to errors encountered before
the error counter of a bank pair reaches its threshold, and one
for the ECC lines. We use the dedicated ECC chips per DIMM
to store the ECC detection bits. Since the dedicated ECC
chips per DIMM typically incur a 12.5% capacity overhead,
the proposal also incurs a 12.5% capacity overhead for error
detection. Meanwhile, the ECC parity lines take up a constant
capacity overhead of (1+12.5%) ·R/(N −1), where N is the
number of channels that share ECC parities and R is the ratio
of the size of the ECC correction bits of a data line to the size
of the data line; the 12.5% term in the formula accounts for the
capacity overhead incurred by the error detection bits for the
ECC parity lines. Unlike the first two capacity overheads that
are static, the next two capacity overheads increase over time
as faults accumulate in memory. By setting the error counter
threshold for each bank pair to four, the maximum number of
retired pages before the error counter saturates is 4 · (N − 1)
pages, which is a negligible fraction out of the 100,000’s
of pages in a pair of memory banks. Next, we use Monte
Carlo simulation to estimate what fraction of memory per
memory system end up having their ECC correction bits stored
in memory after seven years of operation. The Monte Carlo
simulation models memory systems with different numbers of
channels, where each channel contains four ranks with nine
chips per rank; the simulations assume the average of DDR3
DRAM fault distributions of different DRAM vendors reported
in [21]. Figure 8 presents the results; it shows that only a small
fraction (i.e., 0.4%, on average) of memory per system end up
having their ECC correction bits stored in memory.

In addition to memory capacity overheads, ECC Parity
also incurs some area overhead on the processor. Each pair of
memory banks requires an error counter. By using 0.5B of on-
chip storage per pair of banks, the error counters require 512B
of on-chip storage to support a large (e.g., 512GB) memory
system with 1024 memory banks.

Fig. 8. The solid bars represent the average fraction of memory per system
that ends up having their ECC correction bits stored in memory after seven
years of operation. The horizontal lines indicate the upper limit of the fraction
of memory protected by ECC correction bits for 99.9% of the simulated
systems.

IV. METHODOLOGY

A. Baselines

To demonstrate that ECC Parity is a general optimization
that can be applied to diverse memory ECCs, we evaluate it
in the context of both DIMM-kill correct and chipkill correct.
For DIMM-kill correct, we apply ECC Parity to RAIM [17]
by storing in memory the parity of the ECC correction bits
of RAIM instead of the ECC correction bits themselves. For
chipkill correct, we apply ECC Parity to the most energy-
efficient LOT-ECC implementation, which we call LOT-ECC5,
that uses only five chips per rank; under this LOT-ECC
implementation, four out of the five chips per rank are X16
DRAMs and the fifth is a X8 DRAM with half the capacity and
I/O width as one of the X16 DRAMs. By itself, LOT-ECC5
incurs impractically high capacity overhead (i.e., 40.6%, see
Section II). By applying ECC parity to LOT-ECC5, we enable
the use of LOT-ECC5 by reducing its capacity overhead down
to practical levels (e.g., from 40.6% down to 16.5% in a system
with eight channels), while preserving its energy efficiency.
The end result is that one achieves similar energy efficiency
as LOT-ECC5, while incurring similar capacity overhead as
the more power hungry, but low capacity overhead 36-device
commercial chipkill correct. To quantify the above, we evaluate
LOT-ECC5 and 36-device commercial chipkill correct and
compare them against LOT-ECC5+ECC Parity. For additional
comparisons, we evaluate a second LOT-ECC implementation,
which we call LOT-ECC9, that uses nine chips per rank and
another recently proposed chipkill correct ECC - Multi-ECC
[13]. Finally, we also compare against a recent commercial
chipkill correct implementation, which we refer to as 18-device
commercial chipkill correct, that uses only two instead of
the usual four check symbols per word [6]; compared to 36-
device commercial chipkill correct, it requires accessing only
18 instead of 36 chips per memory request, but potentially
slightly impacts error detection coverage.

B. Experimental Setup

We use GEM5 [7] to model a 2GHz processor with eight
cores. Table I lists the core and cache parameters. We simulate
12 eight-core multiprogrammed SPEC workloads and four
eight-core multi-threaded PARSEC workloads. All selected
workloads consume at least 1% of the total bandwidth of
the evaluated memory systems. Each multiprogrammed SPEC
workload is generated using eight instances of the same
benchmark. We fast-forward one of the instances in each
workload one billion instructions before the SimPoint [1]
instruction. We fast-forward the remaining seven instances
such that all eight instances are separated from one another by
10 million instructions. After fast-forwarding, we also warm
up the cache until every instance has executed for the next
one billion instructions. Finally, we simulate each workload
in timing mode for 10 million cycles and collect statistics
over this period. For PARSEC workloads, we first fast-forward
to the beginning of the region of interest, then warm up the
cache until one of the threads has executed for the next one
billion instructions, and finally simulate in timing mode for the
next 10 million cycles. Figure 9 characterizes the bandwidth
utilization of the evaluated workloads assuming a dual-channel
commercial chipkill correct memory system.

TABLE I. PROCESSOR MICROARCHITECTURE

Issue width Type LSQ Size ROB Size
2 OO 32LQ/32SQ 64

L1 Line Size L1 D$, I$ L1 Assoc. L1 Latency
64B 32 KB 2 ways 2 cycles

L2 size L2 Assoc. L2 Latency L2 miss/write buffer size
8MB 16 ways 10 cycles 512/128

We use DRAMsim [2] to model memory power and
performance. We model 2Gb DDR3 DRAM chips with 1GHz
I/O frequency; their parameters are taken from die revision D
in [18]. We use the Most Pending memory access scheduling
policy from DRAMsim. Similar to [22], we use the close-
page row buffer policy, which allows a rank to be placed
in sleep mode when idle to reduce background power con-
sumption. For the device address mapping policy, we use the
High Performance Map from DRAMsim as the intra-channel
mapping policy and interleave adjacent physical pages across
different memory channels to balance the bandwidth utilization
across these channels. Similar to prior works [24], [22], we
configure all memory systems protected by the same type of
ECC (chipkill correct or DIMM-kill) with the same total phys-
ical memory capacity and I/O width to perform comparisons
across different ECC implementations. In addition, we note
that since ECC Parity is an optimization that exploits having
multiple channels in a memory system, its benefits strongly
depend on the number of channels in the memory system.
Therefore, we evaluate two memory system sizes, one with a
few channels where the expected benefits are small and one
with more channels where the expected benefits are high. For
the former, we evaluate memory systems that are equivalent
in physical bandwidth and size to a dual-channel commercial
ECC memory system (i.e., a memory system protected by
36-device commercial chipkill correct or by RAIM); for the
latter, we evaluate memory systems that are equivalent in
physical bandwidth and size to a quad-channel commercial
ECC memory system. Table II summarizes the evaluated
memory system configurations. Note from Table II that the
line size of 36-device commercial chipkill correct and RAIM
is 128B, which is twice as large as the 64B line size under
other memory error resilience schemes (i.e., 64B). The former
two schemes have a larger line size because they have a large
number of (i.e., 32) data chips per rank, which in aggregate
supply 128B of data per memory request. To maintain the same
number of memory I/O pins in the different systems given the
different line sizes, we let the number of logical (not physical)
channels of 36-device commercial chipkill correct and RAIM
be smaller than that of other techniques (see Table II).

Fig. 9. Workload memory bandwidth utilization in a dual-channel commercial
ECC memory system.

TABLE II. SUMMARY OF EVALUATED ECC IMPLEMENTATIONS.

Rank Line Ranks/ Logical Total I/O
Config. Size Chan Channels Pin Count

36-device
Commercial

Chipkill Correct 36 X4 128B 1 2, 4 288, 576
18-device

Commercial
Chipkill Correct 18 X4 64B 1 4, 8 288, 576

4 X16,
LOT-ECC5 1 X8 64B 4 4, 8 288, 576
LOT-ECC9 9 X8 64B 2 4, 8 288, 576
Multi-ECC 9 X8 64B 2 4, 8 288, 576
LOT-ECC5 4 X16,

+ ECC Parity 1 X8 64B 4 4, 8 288, 576
RAIM 45 X4 128B 1 2, 4 360, 720
RAIM

+ ECC Parity 18 X4 64B 1 5, 10 360, 720

C. Modeling Details of ECC Caching

LOT-ECC, Multi-ECC, and resilience schemes with ECC
Parity all require additional memory accesses to update the
corresponding ECC-related lines in memory for application
write requests. We model caching of the ECC parities in
the LLC for the schemes with ECC parities. We also model
caching the ECC correction bits of LOT-ECC and Multi-ECC
in the LLC for fair comparison. In our evaluation, we treat
the ECC-related cachelines the same way as data cachelines
in terms of LLC insertion and replacement policies and begin
caching them at the start of the warm-up period. Our modeling
of ECC caching for Multi-ECC is identical to [13] with the
exception that we cache the ECC correction bits in the 8MB
LLC instead of a much smaller but dedicated 128KB ECC
cache. To model ECC caching for LOT-ECC, we let each
ECC cacheline cover four and eight logically adjacent data
lines in LOT-ECC5 and LOT-ECC9, respectively; when the
LLC evicts an ECC cacheline, the memory controller issues
a memory write request. To model ECC caching for LOT-
ECC5+ECC Parity, we let each XOR cacheline cover the same
group of four logically adjacent data lines in N-1 logically
adjacent physical pages, where N is the number of channels in
the memory system. When the LLC evicts an XOR cacheline,
the memory controller issues both a memory read request and
then a memory write request. In general, the higher the number
of data lines that each ECC/XOR cacheline covers, the lower
the bandwidth overhead of the resilience scheme; the logically
closer to each other the data lines that are protected by the
same ECC line are, the lower the bandwidth overhead as well.
The final memory bandwidth overhead also depends largely
on the locality in the memory access pattern of the application
and its ratio of memory write to memory read requests.

V. EXPERIMENTAL RESULTS

In this section, we compare the memory system energy,
memory capacity overhead, memory traffic overhead, and the
overall system performance for different resilience schemes.

A. Memory System Energy

Figure 10 shows the memory energy reduction over the
baselines in memory systems that are equivalent in physical
bandwidth and size to the quad-channel commercial ECC
memory systems. The figure shows that for the eight workloads

Fig. 10. Memory EPI reduction in systems equivalent in physical bandwidth
and size to one of the quad-channel commercial ECC memory systems.

Fig. 11. Memory EPI reduction in systems equivalent in physical bandwidth
and size to one of the dual-channel commercial ECC memory systems.

with higher memory access rates (i.e., Bin2 workloads), the av-
erage reduction in memory system energy per instruction (EPI)
is higher than that of the eight workloads with lower memory
access rates (i.e., Bin1 workloads): for Bin2 workloads, the EPI
reductions are 59.5%, 48.9%, 23.1%, and 20.5% vs. 36-device
commercial chipkill correct, 18-device commercial chipkill
correct, LOT-ECC9, and Multi-ECC, respectively, while for
Bin1 workloads they are 46.0%, 34.6%, 12.8%, and 11.3%,
respectively. This is because LOT-ECC5+ECC Parity reduces
memory energy by reducing the number of chips accessed per
memory request; therefore, the smaller the memory access
rate of the workload, the smaller the amount of memory
energy savings. For the same reason, the energy reduction
of RAIM+ECC Parity for Bin2 workloads (i.e., 22.6%) is
higher than that for Bin1 workloads (i.e., 18.5%). The same
trend exists in memory systems that are equivalent in physical
bandwidth and size to one of the dual-channel commercial
ECC memory systems, as shown in Figure 11. On the other
hand, the memory EPI of LOT-ECC5+ECC Parity is similar to
that of LOT-ECC5, as shown in Figures 10 and 11; the primary
advantage of LOT-ECC5+ECC Parity over LOT-ECC5 is in
terms of capacity overhead, as will be presented in Section
V-B. Finally, both Figure 10 and 11 show that for a few
workloads (e.g., sjeng, omnetpp, etc.), there is a slight increase
in memory energy compared to one or more baselines. This is
because the memory traffic overhead for updating ECC parities
is higher than the memory traffic overhead of one or more
baselines for these workloads. Detailed analysis of memory
traffic overhead will be presented in Section V-D.

The overall memory system energy reduction described
above can be attributed to reduction in both dynamic energy
(i.e., energy consumed by read, write, and activate com-
mands) and background energy (i.e., all other energy con-

Fig. 12. Reduction in memory system dynamic EPI over baselines in systems
that are equivalent in physical bandwidth and size to one of the quad-channel
commercial ECC memory systems.

Fig. 13. Reduction in memory system background EPI over baselines in
systems that are equivalent in physical bandwidth and size to one of the quad-
channel commercial ECC memory systems.

sumptions in the memory system). LOT-ECC5+ECC Parity
and RAIM+ECC Parity consume lower dynamic energy than
their respective baselines because they require reading/writing
to fewer chips per memory request due to their smaller rank
size. Figure 12 presents the reduction in dynamic energy per
instruction of LOT-ECC5+ECC Parity and RAIM+ECC Parity
over the dynamic energy per instruction of the baselines. LOT-
ECC5+ECC Parity and RAIM+ECC Parity also consume lower
background energy than their respective baselines because
fewer chips have to be switched to active mode per memory
request than the baseline systems; as such, when a DRAM
chip is put into sleep mode it can often remain in sleep mode
for longer before it needs to be put back into active mode to
serve a memory request. Figure 13 presents the reduction in
memory background energy per instruction of schemes with
ECC Parity over the baselines.

B. Capacity Overhead

Table III presents the memory capacity overheads of vari-
ous memory error resilience schemes. Notably, Table III shows
that applying ECC Parity to LOT-ECC5 reduces the capacity
overhead from an impractically high 40.6% down to 16.5%
in an eight-channel system. Similarly, the capacity overhead
of a 10-channel system with RAIM+ECC Parity (i.e., 18.8%)
is significantly lower than that of an equally sized system
with RAIM alone. Table III also shows that the capacity
overhead savings from applying ECC Parity to a baseline is
less pronounced in the smaller memory systems with fewer
channels. This is as expected because the use of ECC parities
reduces the capacity overhead of ECC correction bits by a
factor of N-1, where N is the number of channels sharing

TABLE III. CAPACITY OVERHEADS. EOL STANDS FOR END OF LIFE.

36-device commercial chipkill correct 12.5%
18-device commercial chipkill correct 12.5%

LOT-ECC9 26.5%
Multi-ECC 12.9%
LOT-ECC5 40.6%

8 chan LOT-ECC5 + ECC Parity 16.5%, EOL avg: 16.7%
4 chan LOT-ECC5 + ECC Parity 21.9%, EOL avg: 22.1%

RAIM 40.6%
10 chan RAIM + ECC Parity 18.8%, EOL avg: 19.1%
5 chan RAIM + ECC Parity 26.6%, EOL avg: 26.9%

the same ECC parities; therefore, the higher the number
of channels in the memory system, the more effective the
optimization.

C. Performance

Figure 14 shows performance normalized to the various
baselines in systems equivalent in physical size and bandwidth
to one of the quad-channel commercial ECC systems. LOT-
ECC5+ECC Parity has more ranks per channel than LOT-
ECC9, Multi-ECC, 36-device commercial chipkill correct, and
18-device commercial chipkill correct (see Table II) because it
requires fewer chips per rank. As demonstrated in other works
[24], [23], having high rank-level parallelism in memory can
improve performance. On average across all the workloads, the
performance of LOT-ECC5+ECC Parity is slightly higher (<
5%) than the aforementioned baselines. Similarly, RAIM+ECC
Parity has a slight performance improvement (by 1.5%) over
RAIM. On the other hand, compared to LOT-ECC5, which has
the same number of ranks per channel as LOT-ECC5+ECC
Parity, the performance difference is negligible (< 1%). We
do not observe any significant performance degradation for any
individual workload except when comparing against 36-device
commercial chipkill correct and RAIM. For example, Figure
14 shows that for some workloads such as streamcluster, LOT-
ECC5+ECC Parity and RAIM+ECC Parity perform almost
20% slower than 36-device commercial chipkill correct and
RAIM, respectively. This performance difference is due to
the larger line size of 36-device commercial chipkill and
RAIM. It is well known that having a larger line size can
improve performance for applications with high spatial locality
at the cost of a memory bandwidth overhead; for example,
Figure 16 shows that LOT-ECC5+ECC Parity has 20% fewer
memory accesses per instruction, on average, than 36-device
commercial chipkill correct.

Fig. 14. Performance normalized to the baselines in systems that are equiv-
alent in physical bandwidth and size to one of the quad-channel commercial
ECC memory systems.

Fig. 15. Performance normalized to the baselines in systems that are equiv-
alent in physical bandwidth and size to one of the dual-channel commercial
ECC memory systems.

Figure 15 shows the performance normalized to the various
baselines in systems equivalent in size to one of the dual-
channel commercial ECC systems. The results exhibit similar
behavior as those in Figure 14.

D. Memory Bandwidth Overhead

We measure the memory bandwidth overheads of the dif-
ferent schemes by measuring the number of memory accesses
per instruction. Having a smaller number of memory accesses
per instruction means that the bandwidth overhead is also
smaller. Figure 16 shows the number of memory accesses
per instruction normalized to the various baselines in systems
equivalent in physical bandwidth and size to one of the quad-
channel commercial ECC systems. The figure shows that there
is significant variation in the normalized number of memory
accesses per instruction across different workloads within the
same set of comparisons (e.g., see LOT-ECC5+ECC parity
vs. LOT-ECC9). This is due to the differences in the amount
of locality in the memory access patterns of the workloads
and in the caching details of the ECC-related cachelines of
the different resilience schemes, as described in Section IV-C.
Figure 16 shows that the number of memory accesses per
instruction of LOT-ECC5+ECC Parity is 13.3% higher than
that of 18-device commercial chipkill correct, which does not
require any overhead memory requests for updating ECC bits.
For scenarios where memory bandwidth is the bottleneck,
this bandwidth overhead can lead to significant performance
degradation (e.g., 13.3% slowdown). One way to avoid the
potential performance degradation for this scenario is to use
DRAM chips with a slightly higher frequency (e.g., 13.3%
higher), if available. We estimate using [18] that DRAMs in
a 16% faster speed bin consume roughly 5% higher memory
EPI. However, this 5% increase in memory EPI due to using
higher-speed DRAMs is small compared to the 48.9% reduc-
tion in memory EPI achieved by LOT-ECC5+ECC Parity over
18-device commercial chipkill correct for memory intenstive
workloads (see Figure 10).

Figure 17 shows the number of memory accesses per
instruction normalized to the various baselines in systems
equivalent in size to one of the dual-channel commercial ECC
systems. As expected, the bandwidth overhead of LOT-ECC5+
ECC Parity and RAIM+ECC Parity are higher in these smaller
memory systems because each ECC parity line is shared across
fewer channels; this reduces the number of data lines covered
by each XOR cacheline, and therefore, increases the miss rate
of the XOR cachelines.

Fig. 16. Memory accesses (each 64B of data read from or written to memory
is counted as an access) per instruction normalized to the baselines in systems
that are equivalent in physical bandwidth and size to one of the quad-channel
commercial ECC memory systems. The lower the better.

Fig. 17. Memory accesses per instruction normalized to the baselines in
systems equivalent in physical bandwidth and size to one of the dual-channel
commercial ECC memory systems. The lower the better.

VI. ANALYSIS AND DISCUSSION

A. Impact on Maximum Memory Capacity

Commercial chipkill correct uses narrow X4 DRAMs,
while energy-efficient chipkill correct implementations, such
as LOT-ECC and LOT-ECC5+ECC Parity, use wider X8 and
X16 DRAMs. Due to their higher DRAM I/O widths, these
energy-efficient chipkill correct implementations require more
ranks per channel than commercial chipkill correct to provide
the same total physical memory capacity for the same total
physical I/O width; see Table II for example. However, the
total number of ranks that can reside in each channel is often
limited by electrical constraints; therefore, requiring more
ranks per channel to provide the same total physical capacity
is problematic in scenarios where one is concerned with the
maximum supportable memory system capacity.

One way to mitigate the issue above is to use a mixture
of ranks with narrow DRAMs and ranks with wide DRAMs
in the same channel. This may be practical because these
ranks all share the same external interface (e.g., they all have
a 72-bit data bus) and have the same DRAM electrical and
timing parameters. By placing hot pages in ranks with wide
DRAMs, one may achieve most of the energy savings of
using wide DRAMs alone, while achieving high maximum
supportable memory capacity through the ranks with narrow
DRAMs. One drawback of the scheme is that ranks with
narrow DRAMs must also use the same high strength, and,
therefore, high capacity overhead ECC as the ranks with wide
DRAMs, because a faulty wide DRAM can affect multiple
narrow DRAMs by sharing the same I/O lanes with them [20].
Fortunately, the high capacity overheads of both types of ranks

can be effectively reduced by storing ECC parities instead of
the ECC correction bits.

B. Impact on a HPC System

For memory systems with ECC Parity, the effective mem-
ory capacity reduces when a device-level fault (such as bank
fault, rank fault, etc., see Sections III-B, III-E) occurs. Reduced
capacity may lead to thrashing to disk in the node with the
reduced memory capacity. In an HPC system, thrashing in one
node can lead to unacceptable performance degradation in the
entire system. We note that many HPC systems contain spare
nodes for taking over from faulty nodes after a checkpoint-
restart [10], and, therefore, propose resolving the above issue
for such HPC systems by migrating the threads in an affected
node to a fault-free spare node. Migrating the threads from a
faulty node to a healthy spare node also eliminates potential
jittering effects due to error correction. The cost of this
approach is that the entire HPC system may stall during
the migration process. The duration of the stall will also
include the time it takes to reconstruct the ECC correction
bits (see Section III-B) before the faulty memory regions can
be corrected. The overall performance degradation due to these
stalls is small, however. We estimate that a large HPC system
with 2PB of total memory, 128GB of memory per node, and
a node NIC bandwidth of 1GB/s will be stalled only 0.35% of
the time due to thread migration and the reconstruction of ECC
correction bits. The calculation assumes that thread migration
is performed each time a column, bank, multi-bank, or multi-
rank fault occurs, and uses the average of the fault distributions
of DDR3 DRAM of different DRAM vendors reported in [21].

C. Impact on Uncorrectable Error Rate

Storing ECC parities in memory, instead of always storing
the actual ECC correction bits of every channel in memory,
incurs a higher uncorrectable error rate because ECC parities
lower error correction coverage for faults accumulated across
different channels over time. To protect against the accumu-
lation of faults, we rely on periodic memory scrubbing to
detect faults and then reactively calculate and store in memory
the actual ECC correction bits of faulty regions (see Section
III-C). Memory scrubbing too frequently can lead to high
memory power and performance overheads; on the other hand,
memory scrubbing too infrequently decreases the probability
of timely detecting and, therefore, reacting to a fault in a
channel before a second fault occurs in a different channel in
the same relative location, which cannot be corrected by ECC
parities. To investigate the relationship between memory scrub
rate and increase in uncorrectable error rate, we calculate the
probability that two or more channels develop faults within
any single detection window (i.e., the time interval between
successive memory scrubs) during the lifespan of a server.
Figure 18 presents the results, assuming an eight-channel
system with four ranks per channel, and nine chips per rank.
Figure 18 shows that for a detection window of eight hours,
there is only 0.00020 chance that two or more channels develop
faults in any single detection window during the seven years
of operation even for a pessimistic DRAM fault rate of 100
FIT/chip. What does the probability of 0.0002 mean in terms
of reliability? For simplicity, let us assume that ECC parities
cannot guard against any combination of faults affecting two

Fig. 18. Probability of faults occurring in more than one channel within any
single time interval during the seven-year lifespan of an eight-channel system.

or more channels; note, however, that the ECC parities can
still correct errors in different channels as long as they do not
occur in the same relative locations in these channels. Under
this simplistic but pessimistic assumption, the probability value
means that if the memory is scrubbed once every eight hours,
the memory system incurs only one additional uncorrectable
error every 1/0.0002·7 ≈ 35, 000 years of operation compared
to always storing the ECC correction bits for each channel. In
comparison, a common uncorrectable error rate target is one
uncorrectable error per 10 years per server [8]. A recent field
study of failures in the Blue Waters supercomputer reports a
similar failure rate of one failure per 12 years per node [16].

D. Impact on Undetectable Error Rate

ECC Parity does not modify the ECC detection bits of
the underlying ECC, and therefore, does not affect its error
detection coverage. For example, when applying ECC Parity to
LOT-ECC5 in Section IV, the error detection coverage of LOT-
ECC5+ECC Parity is the same as LOT-ECC5. However, since
LOT-ECC relies on intra-chip checksums (i.e., checksums
computed from data stored in a single chip) for error detection,
it cannot detect address decoder errors [13]; on the other
hand, commercial chipkill correct can because it uses inter-chip
ECC bits (i.e., ECC bits computed from data from different
chips) for error detection. Therefore, a straightforward LOT-
ECC5+ECC Parity implementation may also not be able to
detect address errors. However, one of the following two
modifications can be used to enable LOT-ECC5+ECC Parity
to reliably detect address errors depending on whether the read
request is to a bank marked as faulty or not.

For banks marked as faulty, we observe that LOT-ECC con-
tains some inter-chip ECC check bits (i.e., its ECC correction
bits); these bits can be reused to guarantee detection of address
errors in any single DRAM chip in the rank. This requires
changing the way LOT-ECC’s check bits are used. Originally,
LOT-ECC uses the intra-chip checksums both to localize errors
to support erasure correction and to detect errors, and uses
inter-chip ECC correction bits to perform erasure correction
on detected errors. Instead, the inter-chip ECC correction bits
can now be used to both detect errors and perform erasure
correction, while the intra-chip ECC checksums are used only
to localize detected errors. Note, however, that LOT-ECC
stores the inter-chip ECC check bits in a separate line from
the data it protects; therefore, reusing the inter-chip ECC
correction bits for error detection can increase memory access
latency. ECC Parity reduces this latency overhead by reading

the ECC correction bits of a line in faulty banks in parallel
with the line (see Figure 6).

For banks not yet recorded as faulty, the approach described
above incurs high overheads because the ECC correction bits
of these banks have to be reconstructed from ECC parities. A
better way to detect address errors in these banks that does
not require changing the rank size or capacity overhead of
LOT-ECC5+ECC Parity is to use a Reed-Solomon code as the
inter-device ECC, instead of the parity originally used by LOT-
ECC. The new inter-device ECC computes two 16-bit check
symbols from each word of eight 16-bit data symbols that
are interleaved evenly across the four X16 chips in the rank.
Using one of the two check symbols per word to detect errors
enables the new encoding to detect address errors; meanwhile,
this modified encoding corrects detected errors by using the
intra-chip checksums to localize detected errors and using both
check symbols together to perform erasure correction. The
check bits of the new encoding are laid out as follows: the
second check symbol and the intra-chip checksums are stored
via ECC parities, while the first check symbol is stored in
the X8 ECC chip in the rank so that error detection can be
performed on-the-fly. Note that a single check symbol per word
(e.g., the check symbol in the X8 ECC chip) cannot guarantee
detection of errors affecting two symbols (e.g., the two data
symbols per word in a faulty X16 device). However, since a
bank is recorded as faulty after encountering a small number
(e.g., four, see Section III-B) of errors, the probability of an
error escaping undetected in a bank before it is recorded as
faulty is low. Using the fault distribution in Section III-E and
pessimistically assuming that all faults are address decoder
faults which manifest as random bit flips, we estimate that the
combined undetectable error rate of all banks not recorded as
faulty in an eight-channel system is once per 300,000 years
for the new encoding. In comparison, a common undetectable
error rate target is once per 1000 years per server [8].

VII. RELATED WORK

Several works in the literature, such as LOT-ECC [22]
and Multi-ECC [13], have sought to reduce the overheads of
chipkill correct. Unlike these prior works, which are specific
chipkill correct implementations, our proposal of storing the
parity of ECC correction bits instead of the ECC correction bits
themselves is a general optimization for multi-channel systems
that can be applied to diverse memory ECCs (e.g., chipkill
correct, double chipkill correct, DIMM-kill correct, etc.).

Our work is closely related to RAID5, an ECC technique
commonly used for hard drives that relies on a parity block
stored in one disk to correct errors in data blocks stored
in other disks. Although originally proposed for hard drives,
RAID5 has also been proposed to protect custom DIMMs that
allow accesses to a single DRAM device [23], [25]. The parity
line in both proposals is also a direct bitwise XOR of data lines.
Compared to these prior works, we target a different problem -
error resilience for multi-channel memory systems. A straight-
forward application of RAID5 in this context results in high
capacity overhead (e.g., 50% for a quad-channel system). We
extend RAID5 by first computing an ECC specified by the
system designer (e.g., one that provides chipkill correct, double
chipkill correct, DIMM-kill correct, etc.) from the data and
then computing the bitwise parity from the correction bits of

the ECC, instead of directly from the data as does RAID5. The
bitwise parity of ECC correction bits of data lines incurs lower
capacity overhead than the parity of the data lines because
the number of correction bits for a line is often significantly
smaller than the number of data bits in the line for many ECC
schemes.

Similar to our proposal, ARCC [14] and Mage [15] also
share ECC resources across multiple memory channels. They
combine the ECC resources of different memory channels to
form a stronger ECC when needed to increase fault coverage
within a single channel. For example, when faults occur in
a channel, ARCC combines the ECC bits of two channels,
initially designed to cover a single chip failure per rank,
to store a stronger ECC that covers two chip failures per
rank. Similarly, Mage combines the ECC resources of multiple
channels, initially designed to only cover bit faults in a single
channel, into a stronger code that covers one or two chip
failures in any of the combined channels when a higher
reliability target is needed. In contrast, ECC Parity neither
increases nor decreases the coverage of faults within a single
channel, and is, therefore, orthogonal to these works.

VIII. CONCLUSION

Memory error resilience is a common feature in servers
and HPC systems. However, it often incurs high capacity
and/or energy overheads. Conventionally, the ECC correction
bits of every channel are stored in memory. We observe that
because faults in different channels are often independent
from one another, error correction is typically needed only
for one channel at a time. Therefore, we propose a memory
architectural optimization that stores in memory the bitwise
parity of the ECC correction bits of different channels; the
ECC parity only provides full correction coverage for faults
within a single channel. We store the ECC parity for healthy
memory regions and store the ECC correction bits only for
fault memory regions. By trading off the resultant reduction in
capacity overhead for energy efficiency, our evaluation of ECC
Parity reduces memory EPI by 54.4% and 20.6%, on average
across two memory system configurations, compared to 36-
device commercial chipkill correct and commercial DIMM-kill
correct, at similar or lower capacity overheads.

IX. ACKNOWLEDGEMENTS

This work was partly supported by NSF and AMD. We
thank Vilas Sridharan and the anonymous reviewers for valu-
able feedback and Mattan Erez for shepherding our work.

REFERENCES

[1] “Simpoints.” [Online]. Available: http://cseweb.ucsd.edu/˜calder/
simpoint/

[2] University of Maryland Memory System Simulator Manual. [On-
line]. Available: http://www.eng.umd.edu/˜blj/dramsim/v1/download/
DRAMsimManual.pdf

[3] A. Acosta and J. Pledge, “Dell PowerEdge 11th Generation Servers:
R810, R910, and M910 Memory Guidance.” [Online]. Available:
http://www.dell.com/downloads/global/products/pedge/en/poweredge-
server-11gen-whitepaper-en.pdf

[4] J. Ahn, N. Jouppi, C. Kozyrakis, J. Leverich, and R. Schreiber, “Future
scaling of processor-memory interfaces,” in SC ’09. New York, NY,
USA: ACM, 2009, pp. 1–12.

[5] AMD, “AMD, BIOS and Kernel Developer’s Guide for
AMD NPT Family 0Fh Processors,” 2009. [Online]. Available:
http://developer.amd.com/wordpress/media/2012/10/325591.pdf

[6] ——, “BIOS and Kernel Developers Guide (BKDG) for
AMD Family 15h Models 00h-0Fh Processors,” 2013. [Online].
Available: http://support.amd.com/TechDocs/42301 15h Mod 00h-
0Fh BKDG.pdf

[7] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The M5 simulator: modeling networked systems,”
MICRO, vol. 26, no. 4, pp. 52–60, 2006.

[8] D. C. Bossen, “Cmos soft errors and server design,” IEEE Reliability
Physics Tutorial Notes, Reliability Fundamentals, April 2002.

[9] T. J. Dell, “A white paper on the benefits of chipkill correct ECC for
PC server main memory,” 1997, IBM Microelectronics Division.

[10] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault
tolerance mechanisms and checkpoint/restart implementations for high
performance computing systems,” J. Supercomput., vol. 65, no. 3, pp.
1302–1326, Sep. 2013.

[11] Hewlett-Parkard Development Company, L.P., “RAS features of the
mission-critical converged infrastructure,” June 2010.

[12] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays
don’t strike twice: Understanding the nature of dram errors and the
implications for system design,” SIGARCH Comput. Archit. News, pp.
111–122, 2012.

[13] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Kumar, “Low-power,
low-storage-overhead chipkill correct via multi-line error correction,” in
SC ’13. New York, NY, USA: ACM, 2013, pp. 24:1–24:12.

[14] X. Jian and R. Kumar, “Adaptive reliability chipkill correct (ARCC),”
in HPCA, 2013, pp. 270–281.

[15] S. Li, D. H. Yoon, K. Chen, J. Zhao, J. H. Ahn, J. B. Brockman, Y. Xie,
and N. P. Jouppi, “MAGE: Adaptive granularity and ECC for resilient
and power efficient memory systems,” in SC ’12. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2012, pp. 33:1–33:11.

[16] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons learned from the analysis of system failures at
petascale: The case of blue waters,” in DSN ’14, 2014.

[17] P. Meaney, L. Lastras-Montano, V. K. Papazova, E. Stephens, J. S.
Johnson, L. Alves, J. O’Connor, and W. Clarke, “IBM zEnterprise
redundant array of independent memory subsystem,” IBM Journal of
Research and Development, vol. 56, no. 1.2, pp. 4:1–4:11, Jan 2012.

[18] MICRON, “2Gb: x4, x8, x16 DDR3 SDRAM.” [Online]. Available:
https://www.micron.com/˜/media/Documents/Products/Data%20Sheet/
DRAM/DDR3/2Gb DDR3 SDRAM.pdf

[19] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild:
A large-scale field study,” in SIGMETRICS ’09. New York, NY, USA:
ACM, 2009, pp. 193–204.

[20] V. Sridharan and D. Liberty, “A study of DRAM failures in the field,”
in SC ’12. Los Alamitos, CA, USA: IEEE Computer Society Press,
2012, pp. 76:1–76:11.

[21] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gu-
rumurthi, “Feng Shui of supercomputer memory: positional effects in
DRAM and SRAM faults,” in SC ’13. New York, NY, USA: ACM,
2013, pp. 22:1–22:11.

[22] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and N. P.
Jouppi, “LOT-ECC: LOcalized and Tiered Reliability Mechanisms for
commodity memory systems,” ISCA, pp. 285 – 296, 2012.

[23] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi, “Rethinking DRAM design and organization
for energy-constrained multi-cores,” in ISCA. New York, NY, USA:
ACM, 2010, pp. 175–186.

[24] D. H. Yoon and M. Erez, “Virtualized ECC: Flexible reliability in main
memory,” in ASPLOS XV. New York, NY, USA: ACM, 2010, pp.
397–408.

[25] D. H. Yoon, M. K. Jeong, M. Sullivan, and M. Erez, “The dynamic
granularity memory system,” in ISCA. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 548–559.

