
Lecture 7:

Spring 2022

ECE 2300
Digital Logic & Computer Organization

More Sequential Logic
Verilog

1

Lecture 7:

Announcements

2

• Updates to TA OH posted on Ed
• Prelab 2A due tomorrow

– Form groups on CMS for Lab 2A

• Prelim 1
– Thursday Feb 24, 1:00-2:15pm in class

• closed book, closed notes, closed Internet
– Coverage: Lectures 1~7

• Binary number, Boolean algebra, CMOS, combinational logic,
sequential logic, and Verilog

– An old prelim exam will be posted tomorrow
– More information to be announced soon

• TA-led review session will be scheduled (& recorded)

Lecture 7: 3

S-R Latch
• S-bar-R-bar latch

– Built from NAND gates
– Inputs are active low rather than active high

QS

R

S R Q QN

0 0 1 1

0 1 1 0

1 0 0 1

1 1 Last
Q

Last
QN

– When both inputs are 0, Q = QN = 1 (avoid!)

S

R

Q

QN

Lecture 7:

D Latch and Flip-Flop

4

• Latch: level sensitive
– Captures the input when enable signal asserted

• Flip-Flop (FF): edge sensitive
– Captures the input at the triggering clock edges

(e.g., LàH)
– A single FF is also called a one-bit register

Q

QN

D

C

QD

CLK

Lecture 7: 5

Recap: D Flip-Flop (DFF)

• Copies D to Q on the rising edge of the clock

QD

CLK

D CLK Q QN
0 0 1

1 1 0
X 0 Last Q Last QN
X 1 Last Q Last QN

CLK

QD

C

D

C

D Q

CLKL1

L1

CLKL2

L2
Q

QL1

Lecture 7: 6

DFF Timing Example

ZY

B
A

CLK

Circuit diagram

Waveform
(assuming Y & Z are

initialized with 0s)

Z

A

Y
B

CLK

Lecture 7: 7

Another Example

CLK

A

Z

B

Waveform
(assuming Y & Z are

initialized with 0s)

Y

Circuit diagram

ZY

B
A

CLK

Lecture 7:

T (Toggle) Flip-Flop

8

• Output toggles only if T=1
• Output does not change if T=0
• Useful for building counters

Q: 0, 1, 0, 1, 0, 1, 0, ...

Q

CLK

T
T QD

CLK
?

Lecture 7:

T (Toggle) Flip-Flop

9

• Output toggles only if T=1
• Output does not change if T=0
• Useful for building counters

Q: 0, 1, 0, 1, 0, 1, 0, ...

T QD

CLK

Qnext = T•Q’ + T’•Q

Q

CLK

T

Lecture 7:

Binary Counters
• Counts in binary in a particular sequence
• Advances at every tick of the clock
• Many types

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1...

Up Down
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0...

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0...
n-1

0 0 0
0 0 1

Divide-
by-n

n
n+1
n+2...
m-1
m
n

n+1...

n-to-m

10

Lecture 7:

Up Counter Sequence

11

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Toggles every clock tick

Toggles every clock tick
that right bit = 1

Toggles every clock tick
that two right bits = 11

Lecture 7:

Building Binary Up Counter

12

CLK
Q0

Q2

Q1

QT

QT

QT

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0
0 0 1

Q2 Q1 Q0
1

Q0 toggles at every rising edge
Q1 toggles at the rising edge when Q0=1
Q2 toggles at the rising edge when Q0=Q1=1

Lecture 7: 13

Up Counter Timing Diagram

Q0

Q2

Q1

CLK

Count 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0

Lecture 7: 14

Evolution of Design Abstractions

Design
Productivity

CAD Tool EffortMcKinsey S-Curve

Transistor-level entry

Gate-level entry

HDL (Verilog, VHDL)

High-level programming
language (?)

[Figure credit: Kurt Keutzer]

Lecture 7:

Hardware Description Languages

15

• Hardware Description Language (HDL):
a language for describing hardware
– Efficiently code large, complex designs

• Programming at a more abstract level than schematics
– CAD tools can automatically synthesize circuits

• Industry standards:
– Verilog: We will use it from Lab 2
– SystemVerilog: Successor to Verilog, gaining wide

adoption
– VHDL (Very High Speed Integrated Circuit HDL)

Lecture 7: 16

Verilog
• Developed in the early 1980s by Gateway Design

Automation (later bought by Cadence)

• Supports modeling, simulation, and synthesis
– We will use a (synthesizable) subset of the language

features

• Major language features (in contrast to software
programming languages)
– Structure and instantiation
– Concurrency
– Bit-level behavior

Lecture 7:

Values
• Verilog signals can take 4 values

0 Logical 0, or false
1 Logical 1, or true
x Unknown logical value
z High impedance (Hi-Z), floating/non-connected

17

x might be a 0, 1, z, or in transition, or don’t cares
Sometimes useful debugging and often exploited by CAD
tools during optimization

Lecture 7: 18

Bit Vectors
• Multi-bit values are represented by bit vectors

(i.e., grouping of 1-bit signals)
– Right-most bit is always least significant
– Example

• input[7:0] a1, a2, a3; /* three 8-bit inputs */

• Constants
4’b1001

Decimal number representing bit width

Base format (b,d,h,o)

• Binary Constants
– 8’b00000000
– 8’b0xx01xx1

• Decimal Constants
– 4’d10
– 32’d65536

Lecture 7: 19

Operators
• Bitwise Boolean operators

~ NOT
& AND
^ Exclusive OR
| OR

• Arithmetic operators
+ Addition
– Subtraction
* Multiplication

/ Division
% Modulus

<< Shift left
>> Shift right

Lecture 7: 20

Verilog Program Structure
• System is a collection of

modules
– Module corresponds to a

single piece of hardware

• Declarations
– Describe names and types of inputs and outputs
– Describe local signals, variables, constants, etc.

• Statements specify what the module does

declarations

statements

module

Lecture 7:

moduleM_2_1 (x, y, sel, out);
input x, y;
input sel;
output out;
wire tx, ty;

AND and0 (x, ~sel, tx);
AND and1 (y, sel, ty);
OR or0 (tx, ty, out);

endmodule

21

Verilog Program Structure

Declarations

Statements

Lecture 7: 22

Verilog
Hierarchy

declarations

statements

declarations

statements

declarations

statements

declarations

statements

module A

module C module D

module F

A module can instantiate
other modules forming a
module hierarchy

Lecture 7: 23

Verilog Programming Styles
• Structural

– Shows how a module is built from other modules via
instance statements

– Textual equivalent of drawing a schematic

• Behavioral
– Specify what a module does in high-level description
– Use procedural code (e.g., in always block) and

continuous assignment (i.e., assign) constructs to
indicate what actions to take

We can mix the structural and behavioral styles
in a Verilog design

Lecture 7: 24

Structural Style

The order of the module instantiation does not matter
Essentially describing the schematic textually

tx

ty

module M_2_1 (x, y, sel, out);
input x, y;
input sel;
output out;

wire tx, ty;

AND and0 (x, ~sel, tx);
AND and1 (y, sel, ty);
OR or0 (tx, ty, out);

endmodule

x

y

sel

out

Lecture 7: 25

• An assign statement represents continuously
executing combinational logic

• Multiple continuous assignments happen in
parallel; the order does not matter

module MUX2_1 (x, y, sel, out);
input x, y;
input sel;
output out;

assign out = (~sel & x) | (sel & y);

endmodule

Behavioral Style with
Continuous Assignments

Lecture 7: 26

Assignments in Verilog
• Continuous assignments apply to

combinational logic only

• Always blocks contain a set of procedural
assignments (blocking or nonblocking)
– Can be used to model either combinational or

sequential logic
– Always blocks execute concurrently with other

always blocks, instance statements, and
continuous assignment statements in a module

Lecture 7: 27

(Behavioral Style) Combinational
Logic with Always Blocks

module MUX2_1 (x, y, sel, out);
input x, y;
input sel;
output reg out;

always @(x, y, sel)
begin
out <= (~sel & x) | (sel & y);

end

endmodule

• An always block is
reevaluated whenever a
signal in its sensitivity
list changes

• Formed by procedural
assignment statements
– reg needed on the LHS of

a procedural assignment

Lecture 7:

Sequential Logic in Always Blocks

28

reg Q;

always @(clk, D)
begin
if (clk)

Q <= D;
end

always @(posedge clk)
begin
Q <= D;

end

• Sequential logic can
only be modeled using
always blocks

• Q must be declared as a
“reg”

D latch

DFF

QD

C

QD

CLK

Lecture 7: 29

Blocking Assignments
• Blocking assignments (=)

input A, B;
reg Y, Z;
always @ (posedge clk)
begin

Y = A & B;
Z = ~Y;

end

When a reg appears on RHS of a blocking
assignment (“Y” here), use its input for
connection (“A&B” here)

Ynext = A & B
Znext = ~(A & B) /* negating the new Y */

Simulation behavior

ZY

B
A

Actual circuit

Y and Z are inferred as FFs
since the always block is
sensitive to the clock edge

• Right-hand side (RHS) evaluated sequentially
• Assignment to LHS is immediate

Lecture 7: 30

Nonblocking Assignments
• Nonblocking assignment (<=)

Znext = ~Y /* negating the old Y */
Ynext = A & B

Simulation behavior

ZY

B
A

Actual circuit

When a reg appears on RHS of a
nonblocking assignment (Y here), use
its output for connection

• RHS evaluated in parallel (order doesn’t matter)
• Assignment to LHS is delayed until end of

always block

input A, B;
reg Y, Z;
always @ (posedge clk)
begin

Y <= A & B;
Z <= ~Y;

end

Y and Z are inferred as FFs
since the always block is
sensitive to the clock edge

Lecture 7: 31

Before Next Class

Next Time

Finite State Machines

• H&H 3.4, 4.6

