

Haiyong Zhang, hzhang@email.arizona.edu
Julian Sosa, jsosamol@email.arizona.edu
Julian Sosa, jsosamo@email.arizona.edu
Lab Sections:

ECE 274 - Digital Logic (Optional Textbook)

Digital Design
Author: Frank Vahid
ISBN: 0471467847

Website: http://www.cs.ucr.edu/~vahid/dd/

Highly Recommended

ECE 274 - Digital Logic
(Syllabus)

- Course Breakdown:
- Final

25\%

- Midterms 40\%
- Quizzes 5\%
- Homework 10\%
- Lab Assignments 20\%

ECE 274 - Digital Logic

(Grading)

- Grading:
- $90-100 \%$
- $80-90 \%$
- 70-80\% C
- 60-70\% D
- Below 60\% F
- All grades are assigned on an individual basis.

ECE 274 - Digital Logic
 (Course Policies)

- Punctuality:
- Don't be late!
- Cell Phones:
- Please turn your cell phone off before coming to class!

ECE 274 - Digital Logic
(Course Policies)

- Reading:
- Be prepared, read over material BEFORE class.
- Regrades:
- All requests for regrades must be submitted in writing within one week of the distribution of graded material.
- Academic Dishonesty:
- Any academic dishonesty will no be tolerated, please consult the UA Code of Academic Integrity.
- All course work should be completed entirely on your own
- You are allowed to discuss general concepts and ideas
- But you should not discuss homework or lab assignments

Digital Design

Field-Programmable Gate Array (Spartan3 Die Photo)

Digital Design

Moore's Law

- Gordon Moore: co-founder of Intel.
- Predicted that number of transistors per chip would grow exponentially (double every 18 months).
- Exponential improvement in technology is a natural trend: steam engines, dynamos, automobiles.

What of the following is the largest (in terms of number of transistors)?
A) Pentium 4 Extreme Edition
B) Xilinx FPGA
C) Geforce 6800 Ultra

Answer:
A) Pentium 4 Extreme Edition (178 million)
B) Xilinx FPGA (1 billion)
C) Geforce 6800 Ultra (222 million)

Digital Design
Analog \& Digital Signals (converting analog to digital)

Digital Design
Encodings

Encoding: Number Systems
Base 10 (decimal) Number System

Encoding: Number Systems
 Base 10 (decimal) Arithmetic

- Uses the ten numbers from 0 to 9
- Each column represents a power of 10

Encoding: Number Systems
 Positional Number Systems

- Convert the following value from binary (zero's and one's) to a decimal value
$100110_{2}=\quad$? in Decimal

Choose your answer:

Encoding: Number Systems
 Positional Number Systems

What is the highest value you can count to using your 5 -fingers? 10 -fingers?

Digital Design

Encoding: Number Systems: System Conversion

- Converting the decimal number 12 to binary using the divide-by-2 method.

Digital Design

Encoding: Number Systems:' System Conversion

- Convert the following decimal value to a binary (zero's and one's) value

$54_{10}=\quad$? in Binary
Choose your answer: A) 110110 B) 100010 C) 1000010

NOTE: Generally, a number can be converted from one base to another by 1) converting the number to base 10 , then 2) converting the base ten number to the desired base using the divide-by- n method. May not always be the easiest way...

Digital Design

Base 16 (hexadecimal) Number System

Digital Design

Microprocessor: Motion Detector: Software Implementation
Circuit Description: using a microprocessor
Inputs: 3 motion sensors
Outputs: 1 signal to buzzer Functional Description:

System activates a buzzer when any of the three motion sensors is activated.

Digital Design

Microprocessors: Trouble in Paradise

- With microprocessors so readily available, why would anyone ever need to design new digital circuits?

When analyzing needs for a particular system:

- Software may be too slow
- May be too much circuitry than needed
- Can be costly for simple circuits
- Power hungry

Solution?

Digital Design
Partitioning: Possible Digital Camera Implementations

- Design Partitioning
- Deciding which tasks to implement on the microprocessor and which to implement as a custom digital circuit

Digital Design
Partitioning: Possible Digital Camera Implementations

Digital Camera Task	$\mu \mathrm{P}$	Custom digital circuit	Hybrid: $\mu \mathrm{P}$ + Custom Digital
Read	5	0.1	0.1
Compress	8	0.5	0.5
Store	1	0.8	1
Total	14	1.4	1.6

Digital Design
 Where do we go from here?

- ECE 274 Course Goals:
- Combinational Logic Design
- Sequential Logic Design
- Design of Common Components
- Register-Transfer Level (RTL) Design
- Modern approach to Digital Design
- Optimization of Digital Circuits
- Digital Design using HDL (Verilog)

