

M.J. Gilbert ECE 340 - Lecture 28

I-V in an Illuminated Junction	
And, naturally, where there is diffusion there is also drift current	
•The drift current is relatively insensitive to the he	eight of the potential barrier.
•The drift current is not limited by how fast carrie but instead it is limited by how often they are swe	rs are swept down the barrier pt down the barrier. Depletion layer
•Minority carriers wander too close to the space charge region and are swept across.	
•This leads to a drift current.	Carrier concentration
•But there are not many carriers available to be swept across so this leads to a small current.	Injected dectrons I Injected holes P _{n0}
•Every minority carrier that participates will be swept across regardless of the size of the barrier.	•EHPs generated within $L_{\rm p}$ or $L_{\rm N}$ of the SCR will participate
 Minority carriers are generated by thermal 	
excitation of EHPs.	 Referred to as generation current.
M.J. Gilbert ECE 340 - Lecture 28	

M.J. Gilbert ECE 340 - Lecture 28

Photodetectors
What can we use these devices for beyond solar cells? $R = \frac{E}{ $
•Independent of applied voltage. •Proportional to the optical generation rate.
What if we want to detect a series of pulses 1 ns apart? $-V_r$ + 3rd quadrant
•Photogenerated carriers must diffuse to the junction and swept I across in a time much less than 1 ns.
-W of depletion region should be large enough that most photons
•Then most EHPs created are swept across as drift current, which is very fast.
•We must dope one side lightly to allow for a large depletion region.
I M.J. Gilbert ECE 340 - Lecture 28

