
ECE 3567 Microcontrollers Lab

Spring 2020
Dr. Gregg Chapman

Laboratory #2 – Timers and Interrupts

1

BACKGROUND

PxSEL Settings, P1.6

Clock Modules

• Four Internal Clocks (Can be linked to CLK sources and adjusted) Typical Values
MCLK Master Clocks
SMCLK Subsystem Master Clock
MODCLK Module Clock
ACLK Auxiliary Clock 32.768 KHz

• Two External Clock Sources
LFXTCLK (Low Frequency XTALS) 32.768 KHz
HFXTC (High Frequency XTALS) 4 – 24 MHz

• Internal Clock Sources
DCOCLK Digitally Controlled Oscillator 2.7-24 MHZ (16MHz typ.)
VLOCLK Very Low Power Clock 10 KHz
MODCLK Module Clock 5 MHz

Here is some background on the MCU clock
configurations. Use the ACLK for Timer A0

Timer Hierarchy

Choosing Functionality
CAPTURE or COMPARE Modes

• Capture
• Compare

TIMER Counting Modes
• Stop
• Up
• Continuous
• Up/Down

OUTPUT Modes
• Output
• Set
• Toggle/Reset
• Set/Reset
• Toggle
• Reset
• Toggle/Set
• Reset/SetOUTPUT MODE 7: Pulse Width Modulation

UP Mode

Output Examples

“Pulse Width Modulation”

Project Set-up

1. Create a Lab 2 WorkSpace on the U: drive
2. Select File → Switch Workspace → Other, then navigate to your Lab 2 workspace and click LAUNCH
3. At the Getting Started Screen, Selet Project →New CCS Project
4. In the CCS Project window set Target to MSP430FRxxx and select MSP430FR6989
5. In the Project Templates and Examples window, scroll down to MPS430 DriverLib and select the

Empty Project with DriverLib Source beneath that level.
6. Enter the project name (Lab2) and click Finish.

NOTE: the project folder must match the project Name
7. Remember to Switch Workspace
8. Copy the main.c and 3567.h from Lab 1 into the Lab 2 project folder. This will save you an

incredible amount of time. GET THIS WORKING AGAIN FIRST.
7. Select Project → Rebuild Project
8. At this point it is essential to connect the hardware
9. Make sure that the Project is selected as [Active – Debug]
10. Select the Debug ICON
11. Once the GREEN ARROW comes up you can run the code
12. Halt execution with the RED SQUARE

ECE 3567 – Lab #2

1. One LED should flash at a time.
2. The GREEN LED should be the default after initialization
3. The LEDs should alternate, RED .. GREEN .. RED at a dismal

approximation of 1 Hz.

Checkpoint #1: Demonstrate that the Lab #1 project is
operating correctly in the Lab 2 environment before you
begin to edit the code.

ECE 3567 – Lab #2
Additional Files Needed

1. Download the Lab2.zip under Lab 2 on the
ECE 3567 website and add unused_interrupts.c
to the Lab 2 project.

unused_interrupts.c

// ***************************************// MSP430FR6989 Unused Vectors// **
// UNUSED_HWI_ISR()
// The default linker command file created by CCS links all interrupt vectors to their specified address location. This gives you a warning for vectors that are not
// associated with an ISR function. The following function (and pragma’s) handles all interrupt vectors.
// Just make sure you comment out the vector pragmas handled by your own code.
// For example, you will receive a "program will not fit into" error if you do not comment out the WDT vector below.
// This occurs since the linker tries to place both of the vector addresses into the same memory locations.
// Gregg Chapman, The Ohio State University, February 2018
// ***//
#pragma vector = ADC12_VECTOR // ADC
#pragma vector = AES256_VECTOR // AES256
#pragma vector = COMP_E_VECTOR // Comparator E
#pragma vector = DMA_VECTOR // DMA
#pragma vector = ESCAN_IF_VECTOR // Extended Scan IF
#pragma vector = LCD_C_VECTOR // LCD C
#pragma vector = PORT1_VECTOR // Port 1
#pragma vector = PORT2_VECTOR // Port 2
#pragma vector = PORT3_VECTOR // Port 3
#pragma vector = PORT4_VECTOR // Port 4
#pragma vector = RESET_VECTOR // Reset
#pragma vector = RTC_VECTOR // RTC
#pragma vector = SYSNMI_VECTOR // System Non-maskable
// #pragma vector = TIMER0_A0_VECTOR // Timer0_A5 CC0
// #pragma vector = TIMER0_A1_VECTOR // Timer0_A5 CC1-4, TA
#pragma vector = TIMER0_B0_VECTOR // Timer0_B3 CC0
#pragma vector = TIMER0_B1_VECTOR // Timer0_B3 CC1-2, TB
#pragma vector = TIMER1_A0_VECTOR // Timer1_A3 CC0
#pragma vector = TIMER1_A1_VECTOR // Timer1_A3 CC1-2, TA1
#pragma vector = TIMER2_A0_VECTOR // Timer2_A3 CC0
#pragma vector = TIMER2_A1_VECTOR // Timer2_A3 CC1, TA
#pragma vector = TIMER3_A0_VECTOR // Timer3_A2 CC0
#pragma vector = TIMER3_A1_VECTOR // Timer3_A2 CC1, TA
#pragma vector = UNMI_VECTOR // User Non-maskable
// #pragma vector = USCI_A0_VECTOR // USCI A0 Receive/Transmit
#pragma vector = USCI_A1_VECTOR // USCI A1 Receive/Transmit
#pragma vector = USCI_B0_VECTOR // USCI B0 Receive/Transmit
#pragma vector = USCI_B1_VECTOR // USCI B1 Receive/Transmit
#pragma vector = WDT_VECTOR // Watchdog Timer

__interrupt void UNUSED_HWI_ISR (void)
{

__no_operation();
}
/** END OF CODE ***/

ECE 3567 – Lab #2
Additional Files Needed

2. Create a new Source File called myGpio.c.
File → New→ Source File
a. Add a standard header.
b. Move the Init_GPIO function from main.c to the new file.
c. Move the Init_GPIO function prototype to the 3567.h header file.

ECE 3567 – Lab #2
Additional Files Needed

3. Create a new Source File called Timer.c.
a. Add a function prototype in 3567.h called

void Init_Timer_A0(void);
b. Create the function Init_Timer_A0() in Timer.c.

ECE 3567 – Lab #2

Watchdog and GPIO Unlock

WDT_A_hold(__MSP430_BASEADDRESS_WDT_A__);

PMM_unlockLPM5();

4. Watchdog disable and GPIO unlock don’t change:

ECE 3567 – Lab #2
Variables

volatile unsigned int ISR_Counter; // Used to count to 10 in order to delay exactly 1 second
volatile unsigned char ISR_Flag = 0; // Flag to tell main() that a Timer A0 interrupt occurred
volatile unsigned char ISR_Flag_10 = 0; // Flag to tell main() that a Timer A0 interrupt occurred 10 times

5. Add the following variables in main.c:

MSP430FR6989 Project

6. EDIT the main function to conditionally reset the ISR_Flag as shown:

void main (void)
{
// Initializations go here including Init_GPIO(), Init_Timer_A0(), etc

while(1)
{

if(ISR_Flag==1) // Timer A0 has occurred.
{

ISR_Flag = 0;
}
if(ISR_Flag_10 ==1) // 1 Sec interval
{

ISR_Flag_10 = 0;
// MOVE YOUR LED XORs HERE

}
}

}

ECE 3567 – Lab #2

Timer A0 Initialization
Init_Timer_A0()

Timer A0 Initialization

OUT1 Signal

Counter TA0R

Digital Signal CH1
(OUT1, or TA0.1)

TA0CCR1

Comparator 1

Timer A0 Initialization

Overview:

You will configure Timer A0 to generate another
Interrupt every 100 milliseconds. To do this, you must
configure the following registers:

TA0CTL – Timer A0 Control Register
TA0CCTL0 – Compare 0 Control Register
TA0CCTL1 – Compare 1 Control Register
You must also write compare values to the following
registers

TA0CCR0 – Compare 0 Register
TA0CCR1 – Compare 1 Register

• To Set up the TA0 timer for an interrupt every 100 mSec:
• TA0CTL – Timer A0 Control register

• TASSEL = ACLK // 32.768 KHz
• ID = /1 // No Pre-Divide
• MC = Up Mode // Timer A0 in Up Mode

• TA0CCTL0 – Comparator 0 Control Register
• CCIE = enabled (1) // Interrupt enabled for CCR0

• TA0CCTL1 – Comparator 1 Control Register
• OUTMOD = Reset/Set (111) // Reset/Set Mode for PWM

• TA0CCR0 – Comparator 0
• = 0x???? // 100 mSec period

• TA0CCR1 – Comparator 1
• = 0x???? // 50% Duty Cycle

Timer A0 Initialization

Registers and Field:

Timer A0 Initialization

You should calculate the HEXADECIMAL value for the entire register and
write it with one command:

TA0CTL = 0xXXXX;

Timer A0 Initialization – Clock Source

6. Select the correct bits to use the ACLK.
These bits will go in the TASSEL 2-bit field

Timer A0 Initialization- Clock Divider

7. Select the correct bits to divide the ACLK by 1
These bits will go in the ID 2-bit field

Timer A0 Initialization – Timer Mode

8. Select the correct bits to Put the Timer A0 in UP MODE
These bits will go in the MC 2-bit field

Timer A0 Initialization – Other Settings

Let Bits 2, 1, and 0 remain 0 for now, and assume Bits 15, 14, 13, 12,
11, and 10, and 3 are 0s

Convert the 16-bit BINARY sequence of numbers that you derived
into a 4-character HEXADECIMAL VALUE

9. Set the TA0CTL to the HEXADECIMAL value that you derived Write
the value to the TA0CTL register with a single instruction (see next
slide).

DO NOT USE BINARY NUMBERS TO CONFIGURE THE REGISTERS

Timer A0 Initialization- Initialize the Register

NOTE: When initializing a register for the first time, it is NOT
NECESSARY to use bitwise operations. Just write the derived value
to the register)(TA0CTL = 0xXXXX)

Timer A0 Initialization – Comparator 0

10. Enable the COMPARATOR 0 Interrupt for Timer A0 by SETTING
the CCIE BIT in the TA0CCTL0 Control Register

NOTE: Interrupts are enabled in the TA0CCTL0 Register, not the TA0CCTL1 Register

Timer A0 Initialization – Comparator 0

CAPTURE/ COMPARE MODE

NOTE: Bit 8 is Capture or Compare. It is Compare by DEFAULT.
Since this is one of the 3-tier settings for Timer Configuration,
it will likely show up on the quiz.

Timer A0 Initialization – Comparator 1

Configure COMPARATOR1 Control Register (TA0CCTL1)

Timer A0 Initialization – Out Mode 7

11. Select the Bits for RESET/SET in the 3-bit field for OUTMOD in
the TA0CCTL1 register.
Assume all other Bits are 0s

Timer A0 Initialization – Out Mode 7

12. Set the TA0CCTL1 Register Value to the HEXADECIMAL value
that you derived in Step 11. Write the value to the TA0CCTL1 register
with a single instruction.

DO NOT USE BINARY NUMBERS TO CONFIGURE THE REGISTERS

Timer A0 Initialization – Period

13. Set the TA0CCR0 Comparator Register for a 10 Hz frequency
(100 mSec. period) using the ACLK.

Timer A0 Initialization – Duty Cycle

14. Set the TA0CCR1 Comparator Register for a 50% duty cycle

ECE 3567 – Lab #2

Checkpoint #2: Ask a Lab Monitor to verify that your
Init_Timer_A0() function is correct

ECE 3567 – Lab #2

enable interrupts

15. Back in main(), use the TI macro to enable all configured
interrupts simultaneously at :

__enable_interrupt();

NOTE: This goes at the end of the initialization section,
before entering the while(1) loop .

ECE 3567 – Lab #2

Timer A0
Interrupt Service Routine

Interrupt Service Routines

• Require a #pragma vector= NAME_OF_VECTOR

• There is USUALLY an unused_interrupt file with #pragmas for all possible interrupts.
The vector you wish to use must be commented out in the unused_interrupt source
file.

• Any code for an Interrupt Service Routine must also be preceded by the reserved for
implementation name of :
__interrupt

Timer A0 ISR

16. Back in main.c, AFTER the main() function,
Create the Timer A0 Interrupt Service Routine:

USE THE FOLLOWING FORMAT:

#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A0(void)
{

return;
}

Timer A0 ISR

Inside the Timer_A0 ISR:

17. Set the ISR_Flag = 1;

18. Increment the ISR_Counter++;

Timer A0 ISR

Inside the Timer_A0 ISR, if the ISR_Counter is greater than or equal
to 10:

19. SET the ISR_Counter_10
20. Reset the ISR_Counter to 0

ECE 3567 – Lab #1

Checkpoint #3: Ask a Lab Monitor to verify that your TA0
Interrupt Service Routine is correct.

MSP430FR6989 Project

Timer A0 ISR

21. In unused_interrupts.c , comment out the if it is not
already commented out.

#pragma vector = TIMER0_A0_VECTOR

MSP430FR6989 Project

Lab 2

Your Lab 2 code should now compile and run.

What is generating the interrupt in the Timer A0 module?
You chose it in a configuration register.

ECE 3567 – Lab #1

1. One LED should flash at a time.
2. The GREEN LED should be the default after initialization
3. The LEDs should alternate, RED .. GREEN .. RED at EXACTLY 1 Hz.

Checkpoint #4: Demonstrate that the Lab #2 project is
operating correctly.

ECE 3567 – Lab #2

Pulse Width Modulation

Add code to the Timer A0 Interrupt Service Routine to

22. INCREMENT the Duty Cycle comparator (TA0CCR1) by 10 every
interrupt.

23. If the Duty Cycle is >= TAOCCR0, reset it to 0x0010

24. Configure P1.6 to output TA0.1
NOTE: You will need to change the pin function to TERTIARY, by
programming bit 6 in both P1SEL0 and P1SEL1 to 1. Don’t forget to make
P1.6 an OUTPUT.

25. Connect CHANNEL 1 of the oscilloscope to P1.6 on the Launchpad
header and observe the Pulse Width Modulation.

ECE 3567 – Lab #1

Checkpoint #5: Demonstrate the PWM signal on your
oscilloscope to one of the Lab Monitors

ECE 3567 – Lab #2

Pulse Width Modulation

26. Restore the 50% Duty Cycle comparator (TA0CCR1) value.

ECE 3567 – Lab #2

End of Laboratory #2

