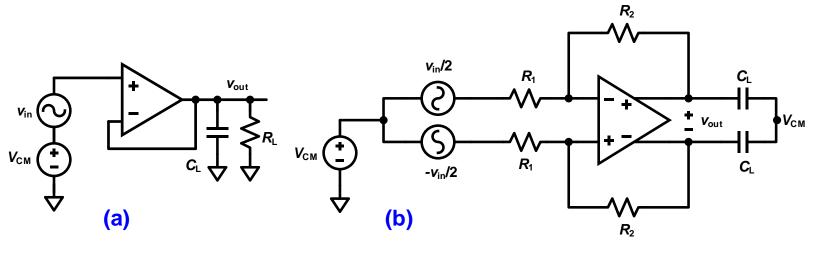
ECE 415/515 –ANALOG INTEGRATED CIRCUIT DESIGN


OPAMP DESIGN AND SIMULATION

© Vishal Saxena

OPAMP DESIGN PROJECT

ECE415/EO

ECE515

DESIGN SPECIFICATIONS

Parameter	Spec. for ECE 415	Spec. for ECE 515	
Technology	TSMC 180n CMOS		
Supply voltage, V_{DD}	$1.8\mathrm{V}$		
Common-mode voltage, V_{CM}	$0.9\mathrm{V}$		
Typical load	$100k\Omega 1pF$	$C_L = 1pF$	
Unit gain frequency (f_{un})	> 50 MHz		
Open-loop gain (A_{OL})	> 60 dB		
Closed-loop gain (A_{CL})	≥ 1	2	
Closed-loop bandwidth $(f_{3dB,CL})$		> 20 MHz	
Slew-rate (SR)	$> 100 \frac{V}{\mu s}$		
Phase margin (ϕ_M)	60°		
Output swing	$> 0 \cdot 75 V_{DD}$	$> 1.5 \cdot V_{DD}$	
Power consumption	Minimum possible		

זנ

TWO-STAGE OPAMP

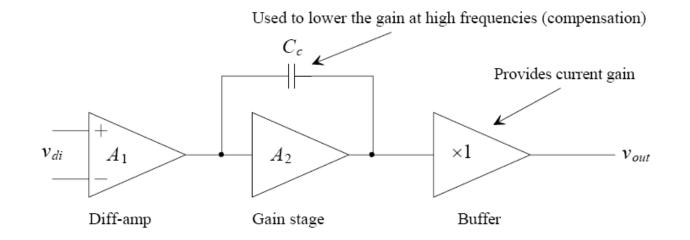
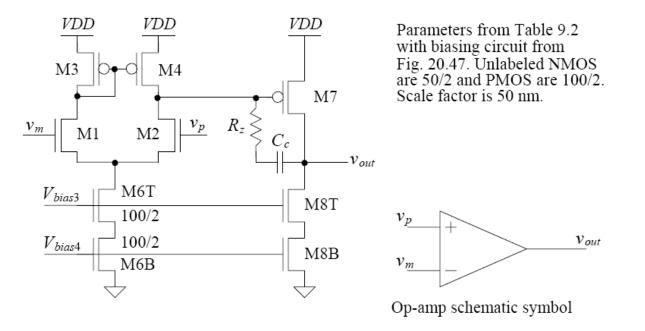
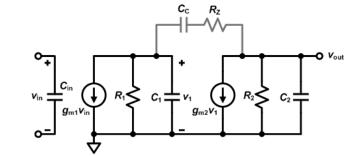
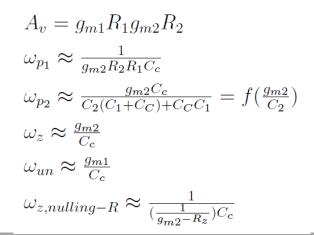
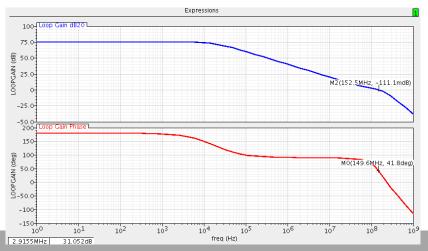


Figure 24.1 Block diagram of two-stage op-amp with output buffer.

TWO-STAGE OPAMP: MILLER COMPENSATION


Figure 24.2 Basic two-stage op-amp.

MILLER COMPENSATION EQUATIONS

TWO-STAGE OPAMP: ZERO-NULLING R

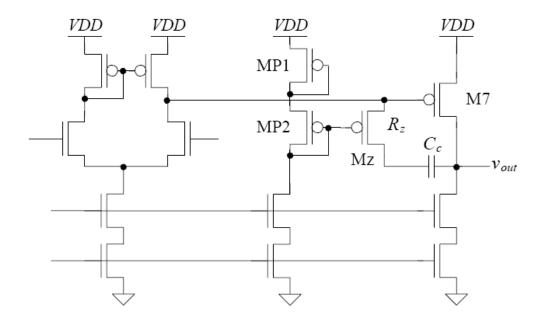


Figure 24.15 Making the zero-nulling resistor process independent.

VOLTAGE BUFFER COMPENSATION

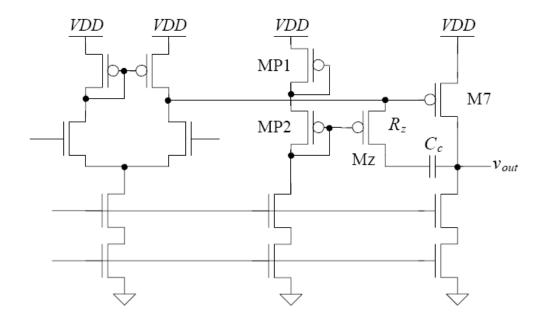


Figure 24.15 Making the zero-nulling resistor process independent.

COMMON-GATE COMPENSATION

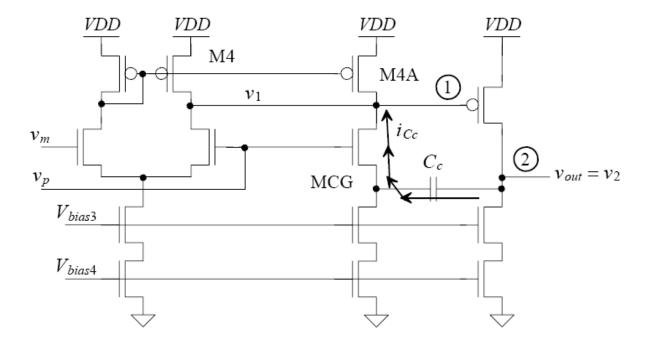


Figure 24.17 Feeding back a current indirectly to avoid the RHP zero.

University of Idaho

CLASS-A STAGE: SLEWING

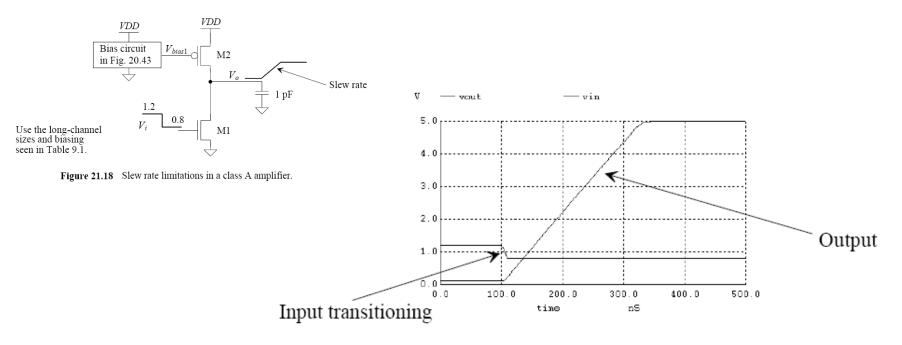
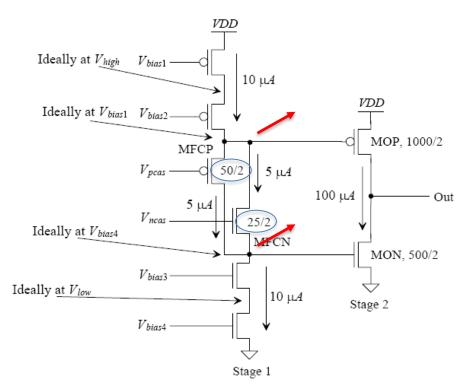
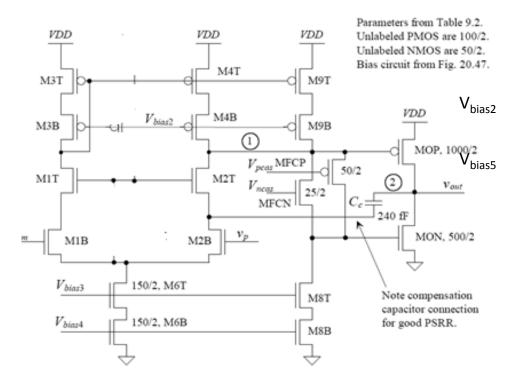



Figure 21.19 Verifying the results in Ex. 21.5


CLASS-AB STAGE: FLOATING MIRROR

Bias voltages come from Fig. 20.47 (short-channel parameters in Table 9.2). Unlabeled NMOS are 50/2, while unlabeled PMOS are 100/2.

Figure 20.49 Biasing with a floating current source.

TELESCOPIC+CLASS-AB STAGE

- Note that in this schematic, Indirect compensation is used.
 - Cc is connected between *v*_{out} and an internal low-impedance node
- For Miller compensation, connect Cc between nodes 1 and 2.
- V_{bias5} is generated using a replica bias circuit

FOLDED-CASCODE STAGE

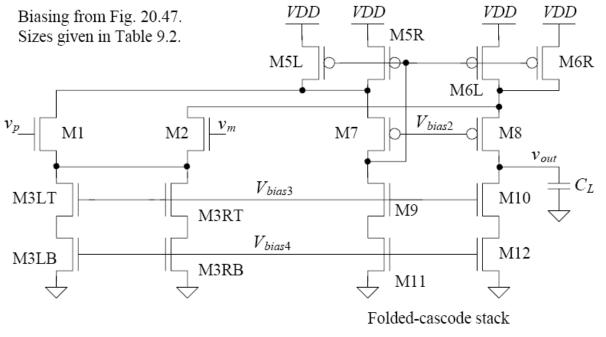


Figure 24.42 A folded-cascode OTA.

FOLDED-CASCODE WITH CLASS-AB OUTPUT

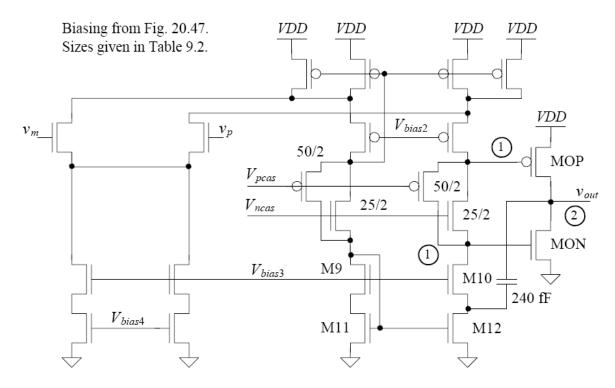
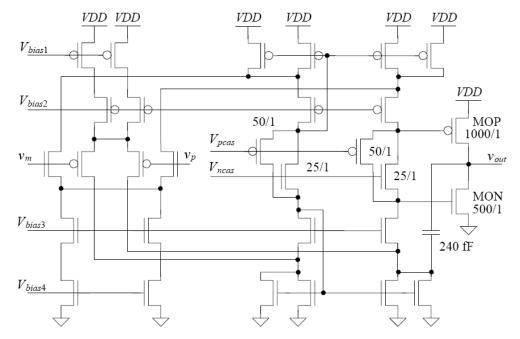
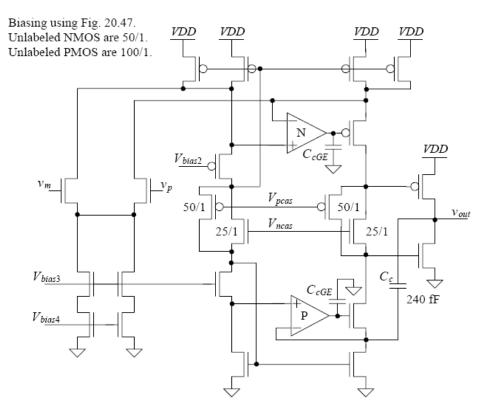



Figure 24.44 Folded-cascode op-amp with class AB output buffer.

- Note that in this schematic, Indirect compensation is used.
 - Cc is connected between v_{out} and an internal lowimpedance node
- For Miller compensation, connect Cc between nodes 1 and 2.

FC+CLASS-AB+RAIL-TO-RAIL INPUT


Biasing from Fig. 20.47. Unlabeled NMOS are 50/1. Unlabeled PMOS are 100/1.

Γ

Figure 24.48 An op-amp with an input common-mode range that extends beyond the power supply rails and that can drive heavy loads.

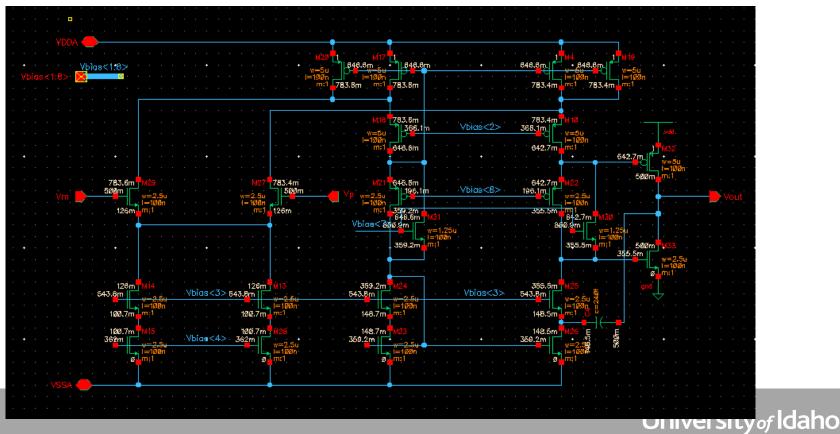
College of Engineering

GAIN ENHANCEMENT

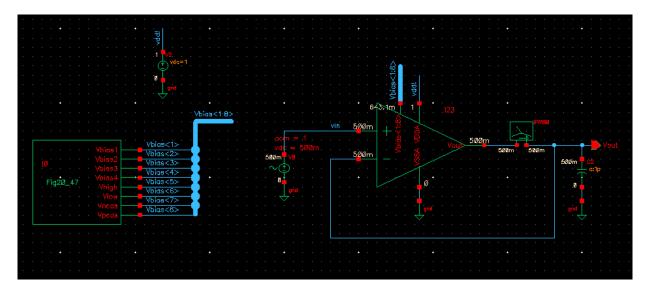
- Note that in this schematic, Indirect compensation is used.
 - Cc is connected between v_{out} and an internal lowimpedance node
- For Miller compensation, connect Cc between nodes 1 and 2.

Figure 24.51 Folded-cascode op-amp with class AB output buffer and gain-enhancement.

CADENCE SPECTRE STB ANALYSIS


SPECTRE STB ANALYSIS

- The STB analysis linearizes the circuit about the DC operating point and computes the loop-gain, gain and phase margins (if the sweep variable is frequency), for a feedback loop or a gain device [1].
- Refer to the Spectre Simulation Refrence [1] and [2] for details.



EXAMPLE SINGLE-ENDED OPAMP SCHEMATIC

College of Engineering

STB ANALYSIS TEST BENCH

- Pay attention to the iprobe component (from analogLib)
 - Acts as a short for DC, but breaks the loop in stb analysis
- Place the probe at a point where it completely breaks (all) the loop(s).

DC ANNOTATION

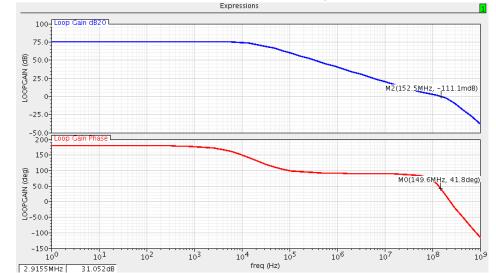
pamp_test1	Virtuoso® Schematic Editor XL Reading: Opamp_test1 Opamp1 schematic	_
h24_IC61 h25_IC61 h26_IC61	Launch Eile Edit View Greate Check Options Migrate Window NCSU Calibre Help	cādence
h27_IC61 h28_IC61 h29_IC61 h30_IC61	🎦 🗟 🖶 🗇 🖾 🗶 🛈 🖼 🥱 🦿 🍳 🔍 🍳 🍳 🍳 🏹 🥼 🥼 🖉 Morkspace: Basic	
DOpamps ayTapeout	Mavigator ? 5×	
saxena/Opamp1_AC/spect	Name 🗸	· · · · • • · ·
kB Nz 🕈 Virtuoso® Analog	Design Environment (6) - Opamp_test1 Opamp1_AC schematic = 🗆 🗙	
kH MF Session Setup Analys	es Variables Outputs Simulation Results Tools Help cadence	· · · · · · · ·
MA MA MA	C Simulator: spectre St Direct Plot	
MF Design Variables	Analyses Print Pri	
ke Name A Value 15	a rupe∧ nable Binocate DD Node Voltages	
7 L 00	2 stb ⊻ 1 1G / Ctruit Conditions Model Parameters	
	Save Respectively and the second se	- Vout
ISE	Select Net Names Select Net Names Outputs Delete Component Parameters Select Select	
	Name/Signal/Expr ∧ Printing/Plotting Options 1 Loop Gain Phase wave ♥	
a lu	2 Loop Gain dB20 wave 2 Hide Parasities	
	3 Phase Margun Vita 355.2 m Vita 4 4 Phase Margun Freq Voide 355.5 m Vita 355.2 m Vita 355.2 m Vita 355.5	
> Pesulte in /tmp/sim	Plotting mode: Replace / 148.mg vd8 g g ulation/vsaxena/Dpamp1_AC/spectre/schematic / 148.mg vd8 g g ulation/vsaxena/Dpamp1_AC/spectre/schematic / 148.mg vd8 g g	
or 60 DC Node Voltages		
= 233.963 ms, elapsed = used 31.2 Mytes.		

- Annotating the node voltages and DC operating points of the devices helps debug the design
 - Check device gds to see if its in triode or saturation regions

SIMULATION SETUP

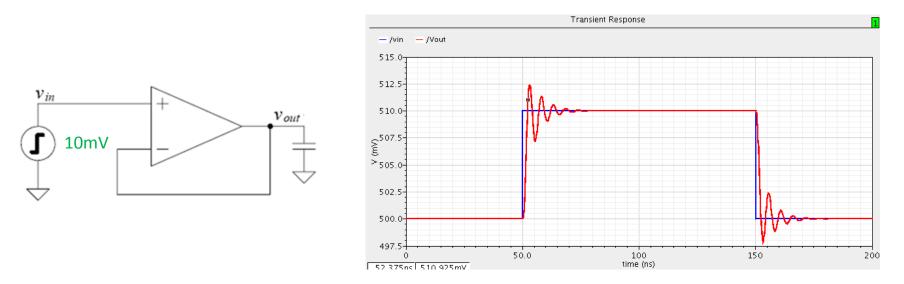
🔣 Virtuoso® Analog Design Environment (1) - Opamp_test1 Opamp1_AC schematic 💶 🗆 🗙	🗖 Choosing Analyses Virtuoso® Analog Design E 🗵
Session Setup Analyses Variables Outputs Simulation Results Lools Help cadence	Analysis 🔾 tran 🔾 dc 📿 ac 📿 noise
"Status: Ready T=27 C Simulator: spectre State: spectre_state1	○xf ○ sens ○ dcmatch ● stb
Design Variables Analyses	⊖ pz ⊖ sp ⊖ envlp ⊖ pss
Design Variables Hnalyses Name Value Type Inable	🔾 pac 🔾 pstb 🔾 pnoise 🔾 pxf
1 dc ⊻ t •	Opsp Opps Oppac Oppoise
2 stb 🗹 1 1G /IPRBO Automatic Start-Stop 📄 🔾 🛛 🖉	◯ qpxf ◯ qpsp
○ Trans	Stability Analysis
	Sweep Variable
= Outputs →	• Frequency
🗧 📃 Name/Signal/Expr ^ /alue Plot Save Save Options 🛆 🔎	Design Variable
1 Loop Gain Phase wave 🗹 🗌 🛛 🗙	O Temperature
	Component Parameter
	🔾 Model Parameter
	Sweep Range
> Results in /tmp/simulation/vsaxena/Opamp1_AC/spectre/schematic 16 Netlist and Run	• Start-Stop Start 🛽 Stop 1G
16 Netlist and Run	Center-Span
· · · ·	Sweep Type
	Automatic 🔽
· · · · · ·	Add Specific Poin
M: schHiMousePopUp()	Probe Instance / IPRB0 Select
R: schHiMousePopUp()	
COULD HOU GET A LICENSE TOT HUE L. HIging a Higher-tiered license	Enabled 🗹 Options
) Checked out the license for ADE XL to run ADE L	OK Cancel Defaults Apply Help
	OK Cancel Defaults Apply Help Yof
	College of Engineering

)[


BODE PLOT SETUP

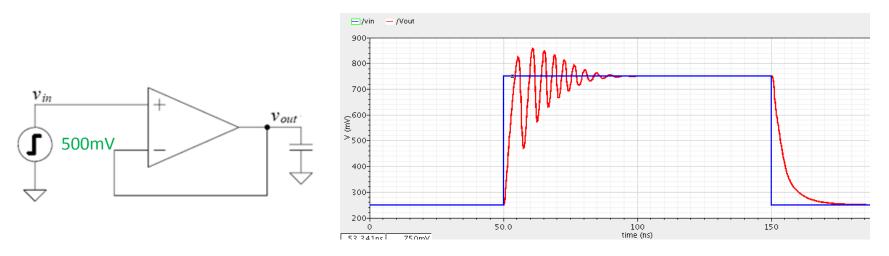
Direct Plot Form	👫 Virtuoso® Analog Des	sign Environment (3) - FDOpamps sim_Opamp1_/	AC schemat 🗕 🗆 🗙
Plotting Mode Append	S <u>e</u> ssion Set <u>u</u> p <u>A</u> nalyses <u>∨</u>	ariables <u>O</u> utputs <u>S</u> imulation <u>Results Tools Help</u>	cādence
Analysis		ulator: spectre State: spe Plot Outputs	
● stb	Design Variables	Main Form Direct Plot	
Function	Name \land Value	Transient Signal Annotate	🖻
● Loop Gain		Transient Sum	AC DC
O Phase Margin O Gain Margin		Transient Difference Circuit <u>C</u> onditions	
PM Frequency O GM Frequency		AC Magnitude Save	三 三 「 記
Modifier		AC dB20 Select Delete	
		AC Phase - Printing/Plotting Ontions	Options
Magnitude O Phase I Magnitude and Phase		AC Magnitude _Phase and AC Gain & Phase ally	×
Magnitude Modifier		Equivalent <u>O</u> utput Noise	
🔾 None 🔾 dB10 💿 dB20		Equivalent Input Noise Sguared Output Noise	
	K-1	Squared Input Noise	
Add To Outputs 🗹 🛛 Plot	> Results in /tmp/simulation/vsa	Noise Eigure	1
> Press plot button on this form	10 Main Form		
OK Cancel Help			

• Results->Direct Plot-> Main Form



OPEN-LOOP RESPONSE (BODE PLOTS)

- Here, *f*_{un}=152.5 MHz, PM=41.8°
- Best to use the stb analysis with circuit is in the desired feedback configuration
 - Break the loop with realistic DC operation points


SMALL STEP RESPONSE

Observe the ringing (PM was 41°)

• Compensate more (\uparrow Cc and/or \uparrow g_{m2})

LARGE STEP RESPONSE

Note the slewing in the output

- Class-A: I₂/C_L
- Class-AB: I_{SS}/C_C

XF ANALYSIS (FOR CMRR, PSRR)

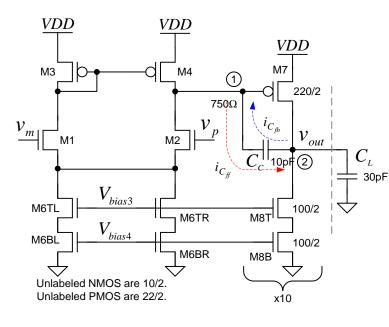
- For CMRR and PSRR plots, you can use **xf** analysis.
- Set up your testbench sources for the supplies (of course), but also a source representing the common mode voltage.
- Then run an xf analysis and tell it where the output of the circuit.
- You can then plot the transfer function from every source to the differential output of the circuit.

http://www.designers-guide.org/books/dg-spice/ch3.pdf

XF ANALYSIS

 XF analysis simultaneously computes individual transfer functions from every independent source to a single output.

🧠 Applications Places System 🛞 🗾		10:47 AM 🕔
Virtuoso® Analog Des	Choosing Analyses Virtuoso® Analog Design Env	× _ • ×
Launch Eile Edit View Create Check Options Migrate	Analysis tran dc ac noise Analysis tran dc ac noise Analysis dc ac noise Analysis dc ac noise Analysis dc ac noise provember of the stb provember of	Cādence Kalence Kalence
	XF Analysis	
Session Setup Analog Design En Design Variables Name Value Image: Setup Image: Set		
	O probe Negative Output Node Select	I.
Immouse L: schS Immouse L: 4(10) > 6(20) Choose Analyses	OK Cancel Defaults Apply Help	- neady 1-27 C Chinarator: opecare
😻 🔲 [root@vlsiclient4:~/caden) 🚺 virtuoso	float_inv_test 👫 Virtuoso® A	nalog Design


College of Engineering

TWO-STAGE OPAMP COMPENSATION TECHNIQUES

MILLER COMPENSATION

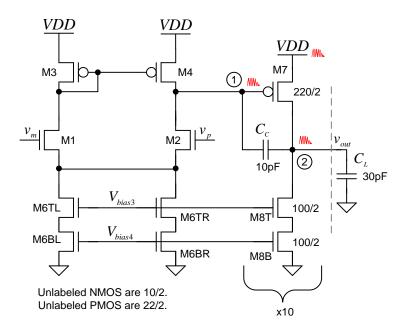
Compensation capacitor (C_c) between the output of the gain stages causes pole-splitting and achieves dominant pole compensation.

An RHP zero exists at $z_1 = \frac{g_{m2}}{C_c}$ • Due to feed-forward component of the

compensation current (i_c).

The second pole is located at $-\frac{g_{m2}}{C_1 + C_2}$ The unity-gain frequency is $f_{un} = \frac{g_{m1}}{2\pi C_c}$

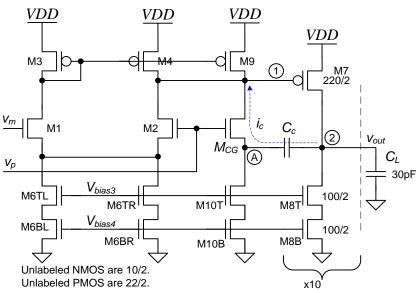
A benign undershoot in step-response due to the RHP zero


University of Idaho

College of Engineering

*All the op-amps presented have been designed in AMI C5N 0.5μm CMOS process with scale=0.3 μm and L_{min}=2. The op-amps drive a 30pF off-chip load offered by the test-setup.

DRAWBACKS OF MILLER COMPENSATION

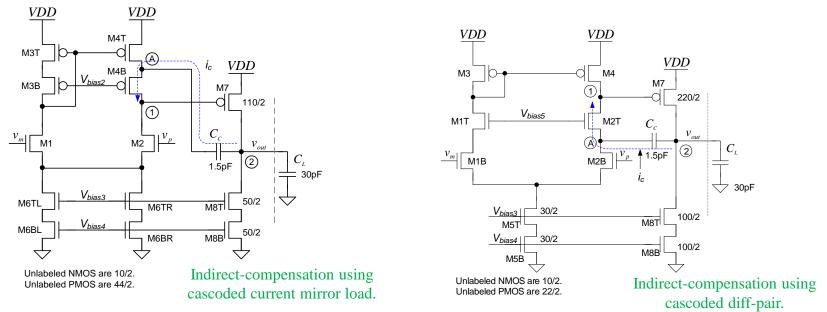

- The RHP zero decreases phase margin
 - Requires large C_c for compensation (10pF here for a 30pF load!).
- Slow-speed for a given load, C_L
- Poor PSRR
 - Supply noise feeds to the output through C_c.

University of Idaho

College of Engineering

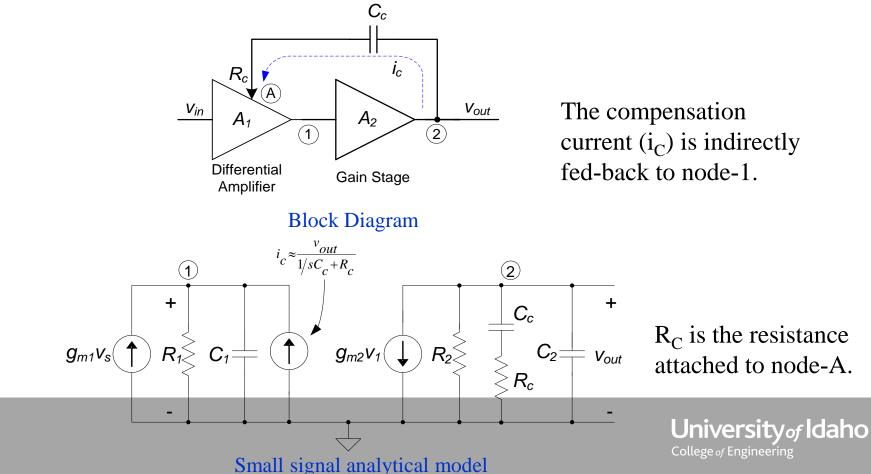
• Large layout size.

INDIRECT (AHUJA) COMPENSATION

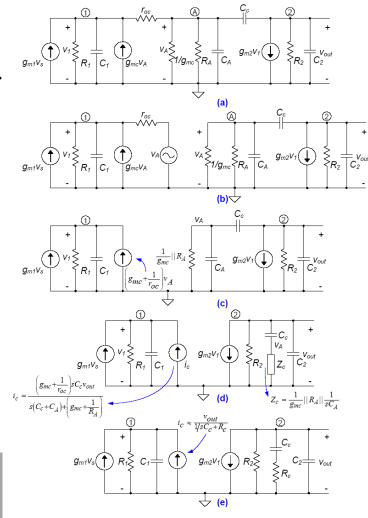

An indirect-compensated op-amp using a common-gate stage.

- The RHP zero can be eliminated by blocking the feed-forward compensation current component by using
 - A common gate stage,
 - A voltage buffer,
 - Common gate "embedded" in the cascode diffamp, or
 - A current mirror buffer.
- Now, the compensation current is fed-back from the output to node-1 indirectly through a low-Z node-A.
- Since node-1 is not loaded by C_c, this results in higher unity-gain frequency (f_{un}).

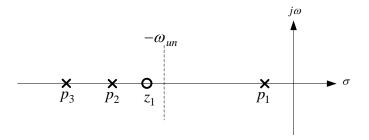
INDIRECT (CASCODE) COMPENSATION


Employing the common gate device "embedded" in the cascode structure for indirect compensation avoids a separate buffer stage.

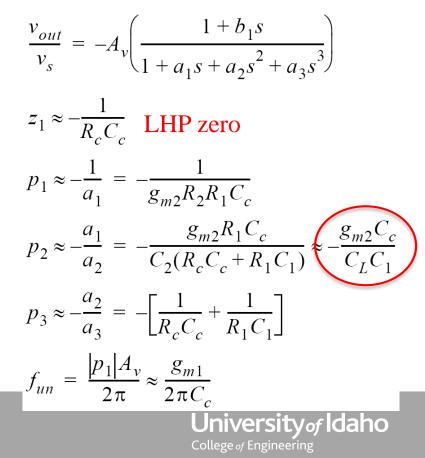
Lower power consumption.


Also voltage buffer reduces the swing which is avoided here.

INDIRECT COMPENSATION: MODELING

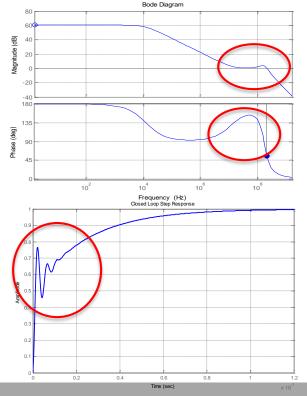

Resistance r_{oc} is assumed to be large.

 $g_{mc} >> r_{oc}^{-1}, R_{A}^{-1}, C_{C} >> C_{A}$



The small-signal model for a common gate indirect compensated opamp topology is approximated to the simplified model seen in the last slide.

INDIRECT COMPENSATION: EQUATIONS



- Pole p_2 is much farther away from f_{un} .
 - Can use smaller g_{m2} =>less power!
- LHP zero improves phase margin.
- Much faster op-amp with lower power and smaller C_C.
- Better slew rate as C_C is smaller.

EFFECT OF LHP ZERO ON SETTLING

- In certain cases with indirect compensation, the LHP-zero ($\omega_{z,LHP}$) shows up near f_{un} .
 - Causes gain flattening and degrades PM
 - Hard to push out due to topology restrictions
- Ringing in closed-loop step response
 - Used to be a benign undershoot with the RHP zero, here it can be pesky
 - Is this settling behavior acceptable?
- Watch out for the $\omega_{z,LHP}$ for clean settling behavior!
- When using indirect compensation be aware of the LHP-zero induced transient settling issues

Small step-inputisettling in follower configurationing

REFERENCES

- 1. The Designer's Guide to SPICE and Spectre: <u>http://www.designers-guide.org/books/dg-spice/</u>
- 2. Spectre User Simulation Guide, pages 160-165: <u>http://www.designers-guide.org/Forum/YaBB.pl?num=1170321868</u>
- M. Tian, V. Viswanathan, J. Hangtan, K. Kundert, "Striving for Small-Signal Stability: Loop-based and Device-based Algorithms for Stability Analysis of Linear Analog Circuits in the Frequency Domain," *Circuits and Devices*, Jan 2001. <u>http://www.kenkundert.com/docs/cd2001-01.pdf</u>
- 4. <u>https://secure.engr.oregonstate.edu/wiki/ams/index.php/Spectre/STB</u>
- 5. Saxena V, Baker R.J., "Indirect feedback compensation of CMOS op-amps," IEEE WMED 2006.

University of Idaho

College of Engineering

REFERENCES

- 6. Saxena V, Baker R.J., "Indirect compensation techniques for three-stage CMOS op-amps," IEEE MWSCAS 2009.
- 7. Saxena V., Baker R.J., "Indirect compensation techniques for three-stage fully-differential op-amps," IEEE MWSCAS 2010.
- 8. Saxena V. "Indirect Feedback Compensation Technique for Multi-Stage Operational Amplifiers," MS Thesis, Boise State University, 2007.

