ECE 421 Introduction to Signal Processing

Dror Baron Associate Professor Dept. of Electrical and Computer Engr. North Carolina State University, NC, USA

What's ECE421?

Replace analog processing by digital

Signal processing can be performed in analog

- Or digital
 - Analog to digital conversion (A/D)
 - Digital signal processing (DSP)
 - Digital to analog conversion (D/A)

Why replace analog by digital?

- Both systems yield *identical* outputs!!!
 - Technical conditions...

 But DSP is cheaper, more robust, everything can be stored, performance is improving all the time...

- Electrical engineers often "think" about signals in both time/spatial domain and frequency domain
- Why?

- Electrical engineers often "think" about signals in both time/spatial domain and frequency domain
- Linear time invariant (LTI) systems
 - Linear/superposition: H(x1+x2) = H(x1) + H(x2)
 - Time invariant: shift(H(x)) = H(shift(x))
- Many systems are well-approximated as LTI

- Electrical engineers often "think" about signals in both time/spatial domain and frequency domain
- Property #1 sinusoids processed by LTI systems are still sinusoids, they are merely amplified somehow
- Take several sinusoids at the input
 - Linear system \rightarrow output is superposition of individual outputs
 - Each sinusoid is amplified \rightarrow superposition of amplified sinusoids
- Input superpositions of sinusoids → "easy" to understand output

- Electrical engineers often "think" about signals in both time/spatial domain and frequency domain
- Property #2 LTI systems can be represented as *convolution*
 - Convenient to work with convolution, especially because in the frequency domain it boils down to multiplication

Bottom line: LTI systems appear in many engineering systems
 & mathematically tractable frequency perspective

Motivation for ECE421

Real story

- Microwave radio links used for "last mile" communication
 - Typical use link base stations in rural areas without fiber network
 - Data rates typically tens/hundreds Mbps

- Before late 90's, microwave link modems were analog
- Instructor worked at startup that designed digital modems for microwave links
 - 5x reduction in power → less power transmitted (cleaner EM spectrum) or can use less hardware

Applications

- Deblurring handshake introduce blurring artifacts
 - Observed image=true image*kernel+noise
 - Goal: estimate true image from noisy observations
- Seismic exploration/visualization/imaging
 - Sensors send vibrations into ground, other sensors measure vibrations
 - Goal is to estimate geological structure
 - Useful to decide where to drill for oil, locate earthquake zones, ...
- Medical imaging (replace "ground" by "patient")
- Communications (phones), image processing (cameras), video, defense (radar, signals intelligence), finance...

Things you'll learn about

- AM radio (example revisited during course)
 - Narrow band signal (~10 KHz) modulated at carrier (~1 MHz)
 - Will learn to sample at ~20 K instead of ~2M samples/sec
- Multipath in mobile phones (discussed as digital filter)
 - Urban environment with comm signal bouncing between buildings
 - Can perform "echo cancelation" with digital processing; unrealistic with analog hardware due to changing nature of environment

- Sneak peak at compressed sensing
 - Modern signal acquisition approach
 - State of art algos often allow 10x reduction in sensing rates

Matlab example

- Start with superposition of two sinusoids
- Add noise
- In Fourier domain, coefficients corresponding to two sinusoids are bigger than other noise-induced coeffs
- Denoising approach truncate small Fourier coeffs

Matlab script available on course webpage

Administrative Details

Introduction

- Many resources on course webpage
 - Syllabus updated
 - Tentative schedule updated
 - Slides & handouts & supplements
- Webwork homeworks & quizzes
 Are quizzes good in online format?
- Projects
- Grade structure

Some details

- Prereqs:
 - ECE 301 (linear systems)
 - Matlab tutorials available from webpage
- Textbook
 - Proakis & Manolakis
 - Any recent edition should be fine

More details

- Change in grade structure:
 - Less weight on Webwork (intended to motivate you)
 - More weight on projects
 - More tests \rightarrow smaller per-test weight
- Occasional "active learning" exercises in class
 - Normal semester: students discuss in pairs/triples
 - After 2-3 minutes I poll responses / volunteers / etc.
 - Online semester: I'll give you time to pause video
 - Solutions on course webpage \odot

Expectations

- ECE 421 more open ended than some other courses
 - Less emphasis plugging numbers into formulas
 - More emphasis on deriving new results
 - Evaluating trade-offs critically
 - Applying knowledge to problems you haven't seen before
 - More projects
- This style can build strong foundation in signal processing

Signals and Systems [Reading material: Sections 1.1-1.4]

Signals

- Signal function of time (or space)
 - Example: $x_1(t) = sin(10\pi t)$
- Real-world signals are complicated
- Major theme of course can express some signals compactly/sparsely as superpositions of sinusoids
- Types of signals
 - Multidimensional function of multiple inputs (e.g., image)
 - Multichannel has several outpus (e.g., complex valued signal)
 - *Continuous time* (analog also features continuous amplitude)
 - Discrete time
 - Digital discrete time and discrete valued

Active learning (based on Problem 1.1 in textbook)

- Classify signals below as: one/multi dimensional; single/multi channel; continuous/discrete time; digital/analog amplitude
 - Closing prices of stocks?

- Color movie?

– Weight/height measurements of child every month?

Solution on webpage

Systems

- *System* device that responds to stimulus
- Signals are inputs and outputs of systems
- Can have various properties:
 - Linear or non-linear
 - Causal or anti-causal
 - *Random* or *deterministic* (we focus on latter)
 - Time invariant or not
- Digital systems can be implemented in an algorithm on a computer
- We focus on digital processing, which can emulate analog

Frequencies and Periodicity

Continuous time sinusoids

- Continuous time sinusoid: x_a(t)=Acos(Ωt+θ)
 - A–amplitude
 - Ω *frequency* (radians per unit time)
 - t*—time*
 - θ-phase
- Can express w/cycles per unit time, x_a(t)=Acos(2πFt+θ)
- Cont. time sinusoids periodic w/period T_p=1/F
- Increasing $F \rightarrow$ shorter period, faster oscillations

Discrete time sinusoids

- Discrete time sinusoid: x(n)=Acos(ωn+θ)
 - ω frequency (radians per sample)
 - n discrete time index
- Can express w/cycles per sample, x(n)=Acos(2πfn+θ)

Summary of notation for frequencies:

	Radians	Cycles
Continuous time	Ω	F
Discrete time	ω	f

What is periodicity in discrete time?

- Discrete time sinusoid periodic if f is rational number
- Consider s(t)= $e^{j\Omega t}$ with period T_p
- Let's accelerate the signal by factor k: $s_k(t) = e^{jk\Omega t}$
- New signal $s_k(t)$ periodic with period T_p/k
- s_k(t)=s_k(t+IT_p/k) for integers k,I

Example (based on Problem 1.2 in textbook)

What's the fundamental period of the following signals?
 – cos(0.01πn)?

 $-\cos(30\pi n/105)?$

- sin(3n)?

Tougher example

 What's the fundamental period of x(n)=0.1cos(65πn/40)+12sin(37 πn/4)?

Aliasing

- Discrete time sinusoids w/frequencies ω separated by 2π radians per sample are indistinguishable – called *aliasing*
 - Or f separated by 1 cycle per sample; or ω =2 π k for integer k
- Example that demonstrates aliasing
 - $x_1(t) = sin(0.01\pi t), x_2(t) = sin(2.01\pi t)$
 - x_1 has period of 200, because $x_1(200+t)=x_1(t)$
 - $-x_2$ has period 2/2.01

- Similarly, $x_2(n) = sin(2.01\pi n) = sin(2\pi n+0.01\pi n) = sin(0.01\pi n) = x_1(n)$
- Visual demos of aliasing: http://www.youtube.com/watch?v=jHS9JGkEOmA

A/D and D/A Conversion

Big picture

- Many real-world signals are analog
 - Speech signals, images, video, seismic data, climate measurements, ...
- To enjoy benefits of DSP (reliable, cheap, fast, reproducible,...)
 - Convert from analog to digital (A/D)
 - Perform digital signal processing
 - Convert from digital back to analog (D/A)

Will soon see when this is equivalent to analog processing

A/D conversion

• Analog to digital (A/D) conversion comprised of three parts

Voltage

Successive sample points Time

- Sampling x(n)=x_a(nT) with sampling interval T
 - Sampling involves analog hardware
 - Non-uniform sampling can be used but complicated
- Quantization truncate/round x(n) to discrete valued x_q(n)
 - Uniform quantizers $x_q(n) = \lfloor x(n)/\Delta \rfloor$ commonly used
 - $\lfloor \cdot \rfloor$ rounds down; quantizer step size Δ
 - Non-uniform quantizers can use fewer levels
- Coding translate discrete valued x_a(n) to bits
 - Data compression allocates fewer bits to common quantization levels, more bits to rare ones (just like Morse code)

D/A conversion

- How can *digital to analog* (D/A) converters interpolate between samples?
- Zero order hold maintain x(n) at output for T time
 - Results in staircase-like pattern at output
- First order hold "connects the dots"
 - Output becomes smoother (continuous)
 - Will see later what this means in frequency domain

Will see that sinc is theoretically appealing

Sampling

- Sampling $x(n) = x_a(t=nT)$
 - Sampling interval T
 - Sampling rate $F_s = 1/T$
 - Sampling times t=nT=n/F_s

- Consider sampling a cosine, x_a(t)=Acos(2πFt+θ)
 x(n) = x_a(t=nT) = Acos(2πnF/F_s+θ)
- Contrast to discrete cosine, $x(n)=Acos(2\pi fn+\theta) \rightarrow f=F/F_s=FT$
 - <u>Remark</u>: because $\Omega = 2\pi F$ and $\omega = 2\pi f \rightarrow \omega = \Omega T$
- Want f \in (-0.5,0.5), requires F/F_s \in (-0.5,0.5)
- Need -0.5F_s < F < 0.5F_s or F_s>2|F| to avoid aliasing

Example (based on Example 1.4.2 in textbook)

- Consider x_a(t)=3cos(100πt)
- 1. What's minimum sampling rate required to avoid aliasing?

2. Suppose F_s =200 Hz, what's the discrete time signal?

3. Suppose $F_s = 75$ Hz, what's the discrete time signal?

The Sampling Theorem
The sampling theorem

- Consider band limited signal; all frequencies are below F_{max}
- Can find $F_s=1/T$ large enough such that $F_s>2F_{max}$
 - Every analog F can be determined from corresponding discrete f
- Theorem: [Shannon, Nyquist, Whittaker, Kotelnikov]

If highest frequency in $x_a(t)$ is F_{max} =B, and we sample at rate F_s >2 F_{max} =2B, then $x_a(t)$ can be recovered <u>perfectly</u>, $x_a(t)=\sum_n x_a(n/F_s)g(t-n/F_s)$,

where $g(t)=sin(2\pi Bt)/(2\pi Bt)$

e

- F_s called *Nyquist rate*
- g(t) involves non-causal sinc interpolation \rightarrow not implementable

Active learning (Example 1.4.4 in textbook)

- Consider x_a(t)=3cos(2000πt)+5sin(6000πt)+10cos(12000πt)
- 1. What is the Nyquist rate?

2. We use F_s =5000 Hz, what is the discrete time signal?

3. What analog signal is obtained with ideal sinc interpolation?

Discrete Time Signals and Systems [Reading material: Sections 2.1-2.5]

General comments about this material

 DSP can help emulate end to end analog systems → focus on discrete time signals & systems

- Much of this material should be review \rightarrow fast paced
- Our emphasis will be notations and terminology used in book
- Let's cover this quickly and move to new material ③

Notation for discrete time signals

- Discrete time signal can be expressed in different ways
- Function, x(n)=n+13
- Table representation

n ... -2 -1 0 1 2 x(n) 1 0 3 1 4

- Sequence x(n)={..., 0, 0, 1, 4, 2, 1, 0, 0, ...}
 - Underline (arrow in book) points to time origin (n=0)

Some standard discrete time signals

• Unit impulse sequence
$$\delta(n) = \begin{cases} 1 \ n = 0 \\ 0 \ else \end{cases}$$

• Unit step
$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

• Unit ramp
$$u_r(n) = nu(n) = \begin{cases} n & n \ge 0 \\ 0 & n < 0 \end{cases}$$

- Exponent $x(n) = a^n$
 - Can be complex, can write

$$(re^{j\Phi})^n = r^n e^{j\Phi n} = r^n [cos(\Phi n) + jsin(\Phi n)]$$

More definitions

• Energy
$$E = \sum_{n=-\infty}^{+\infty} |x(n)|^2$$

- Often called squared- ℓ_2 norm, $||x||_2 = E^{0.5}$

• Power
$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{+N} |x(n)|^2$$

Average energy per sample

- Periodic signal x(n+N)=x(n), ∀n
- *Symmetric* (even) signal x(-n)=x(n) , ∀n
- Antisymmetric (odd) x(-n)=-x(n)
 - Note that x(0)=-x(-0)=0

Operations on discrete time signals

- Time shift x(n-k)
- Folding or reflection x(-n)
- Time scaling or down-sampling x(μn) for integer μ
- Addition or sum $y(n)=x_1(n)+x_2(n)$
- Product $y(n)=x_1(n)x_2(n)$
- Scaling y(n)=Ax(n)

Discrete time systems

- Discrete time systems operate on discrete time signals
- Input x(n) transformed to output y(n)

- Can write y(n)=T[x(n)]
 - T for transformation

Sketches of systems

Can sketch discrete time systems using components below

Sometimes want to add *memory* to system

 $x(n) \rightarrow z^{-1} \rightarrow y(n)=x(n-1)$

Connecting systems

Cascade

$$x(n) \rightarrow T_1 \rightarrow T_2 \rightarrow y(n) = T_2[T_1[x(n)]]$$

Parallel connection

$$x(n) \xrightarrow{T_1} y(n) = T_1[x(n)] + T_2[x(n)]$$

Types/Properties of Discrete Time Systems

Types of systems

- Static memoryless
- Dynamic contains memory
- Time invariant y(n)=T[x(n)] → y(n-k)=T[x(n-k)], ∀x(n), k
 Suffices to prove for k=1
- Time variant not invariant (example coming up)

Example time variant system (see supplement)

- System y(n)=nx(n)
- Input x(n)=δ(n)
 - n≠0: $x(n)=0 \rightarrow y(n)=0$
 - n=0: x(n)=1 → y(n)=0·1=0
 - Output always zero (even if we apply time shift by k, any k)
- Input $x(n) = \delta(n-k)$ it's one when n=k
 - n≠k: x(n)=0 → y(n)=0
 - n=k: x(n)=1 → y(n)=k·1=k
 - Output not always zero
- Key point: k-shifted input doesn't yield k-shifted output

More types of systems

- Linear $T[ax_1(n)+bx_2(n)]=aT[x_1(n)]+bT[x_2(n)]$
 - Also called *superposition*
 - Must hold for *all* scalars a, b, signals $x_1(n)$, $x_2(n)$
 - Suffices to prove $T[x_1(n)+x_2(n)]=T[x_1(n)]+T[x_2(n)]$ and T[ax(n)] = aT[x(n)]

- Causal output depends only on present/past inputs
 - Also have anti-causal (depends on present/future), non-causal

Stable Discrete Time Systems

Stability

- Intuitively, want "well behaved" system
- Various types of stability possible
- Bounded input bounded output (BIBO)
 - Common way to evaluate stability
 - Output must be bounded for *all* bounded inputs

Example non-BIBO system (see supplement)

- System y(n)=y(n-1)+x(n)
- Input x(n)=u(n) step input
 - n<0: y(n)=0
 - n=0: y(0)=y(-1)+x(0)=0+1=1
 - n=1: y(1)=y(0)+x(1)=1+1=2
 - n=2: y(2)=y(1)+x(2)=2+1=3
 - ...
 - Can show y(n)=n+1 for $n\geq 0 \rightarrow y(n)=u_r(n)+u(n)$ ramp+step

• <u>Key point</u>: bounded input & unbounded output \rightarrow not BIBO

Same example another input

- System y(n)=y(n-1)+x(n)
- Input $x(n)=\delta(n)$ impulse instead of step
 - n<0: y(n)=0
 - n=0: y(0)=y(-1)+x(0)=0+1=1
 - n=1: y(1)=y(0)+x(1)=1+0=1
 - n=2: y(2)=y(1)+x(2)=1+0=1
 - − Can show y(n)=1 for $n \ge 0 \rightarrow y(n)=u(n)$
- Bounded input (impulse) & bounded output (step)
- BIBO unstable system can have bounded output
 - Only need one bad input to demonstrate non-BIBO

Example BIBO system (modified system)

- We saw that y(n)=y(n-1)+x(n) not BIBO stable
- Slightly modified system: y(n)=0.5y(n-1)+x(n)
- Input x(n)=u(n) step
 - n<0: y(n)=0
 - n=0: y(0)=0.5y(-1)+x(0)=0+1=1
 - n=1: y(1)=0.5y(0)+x(1)=0.5+1=1.5
 - n=2: y(2)=0.5y(1)+x(2)=0.75+1=1.75
 - Can show $y(n)=2-0.5^n$ for $n \ge 0$

Modified system can be shown to be BIBO stable

Linear Time Invariant (LTI) Discrete Time Systems

Linear time invariant (LTI) systems

- Many real-world systems can be approximated as LTI
- Convenient mathematical properties
- Can be expressed as *convolution*

$$y(n) = \sum_{k=-\infty}^{+\infty} x(k)h(n-k)$$

- System H coincides to impulse response $h(\cdot)$
- h called convolution kernel
- Can be computed as *impulse response*

Example impulse responses

- Recall two systems:
 - $H_1: y(n)=y(n-1)+x(n)$
 - $H_2: y(n) = 0.5 y(n-1) + x(n)$
- First system:
 - Already saw impulse response $h_1(n)=u(n)$ step function
- Second system:
 - Let's show $h_2(n)=0.5^n u(n)$

Properties of convolution

- *Identity* operator: $x(n)*\delta(n)=x(n)$
- *Time shift*: x(n)*δ (n-k)=x(n-k)
- Commutative: x(n)*h(n)=h(n)*x(n)
- Associative: [x(n)*h₁(n)]*h₂(n)=x(n)*[h₁(n)*h₂(n)]
- Distributive: x(n)*[h₁(n)+h₂(n)]=x(n)*h₁(n)+x(n)*h₂(n)

Properties of LTI systems

- LTI system H is causal iff (if and only if) h(n)=0 for n<0</p>
- LTI system H is BIBO stable iff $\sum_{k=-\infty}^{\infty} |h(k)| < \infty$
- *Finite impulse response* (FIR) systems have finite duration
- Infinite impulse response (IIR) unbounded duration; can sometimes be implemented recursively

Example BIBO system

- Recall two systems:
 - $H_1: y(n)=y(n-1)+x(n)$
 - $H_2: y(n) = 0.5 y(n-1) + x(n)$
- First system: h₁(n)=u(n)
 - $-\sum_{k=-\infty}^{\infty} |h_1(k)|$ is infinite → not stable

■ Second system: $h_2(n)=0.5^n u(n)$ - $\sum_{k=-\infty}^{\infty} |h_2(k)| = 2 \rightarrow BIBO$ stable

Implementing Discrete Time Systems [Reading material: Section 2.5]

Difference equations

- Common type of LTI system (convention: $a_0=1$) $\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$
- Can be solved by splitting into components
 - Zero input response reaction to initial conditions from feedback of {a} coefficients
 - *Zero state response* assumes zero initial conditions

Direct form I

Difference equation yields following implementation

$$-\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

- $v(n)=b_0x(n)+b_1x(n-1)+...$
- $y(n)=v(n)-a_1y(n-1)-a_2y(n-2)-...$
- Known as direct form I

Direct form II

- Left and right sides are commutative → can swap sides x(n)*L(n)*R(n)=x(n)*R(n)*L(n)
- Known as *direct form II*

 Note savings in memory units; they often consume resources (space / power)

Correlation

[Reading material: Section 2.6]

Motivation

- *Correlation* measures similarity between signals
 - Often used with signals that feature randomness
 - Book takes deterministic (non-random) viewpoint
- Radar application/motivation
 - Signal x is transmitted
 - Reflected off target with delay D, attenuation a
 - Additive noise w(n)
 - y(n)=ax(n-D)+w(n)

 Correlation tells us how similar y is to versions of x delayed by different amounts

Revisiting real story

- Key component in microwave link modems is measuring delay between devices
- Radios have slightly different clocks \rightarrow delay D varies
- Want to sample incoming communication signal "right" time
 - Sample at correct time \rightarrow interpolation (e.g. sinc) works well
 - Incorrect synchronization \rightarrow interpolation yields garbage
- Synchronization approach
 - Periodically transmit sequence with spiky correlation properties
 - This is (small) overhead...
 - Receiver occasionally sees spike
 - Receiver can estimate delay D relatively well

Matlab example (visualizing correlation)

- Take signal x and add low-amplitude noise
 - Scatter plot resembles line
- Noise amplitude = signal amplitude
 - Elliptical plot
- Large amplitude noise
 - − Circular plot → uncorrelated

Matlab script available on course webpage

Correlation and its Properties

Some definitions

- Cross correlation, $r_{xy}(I) = \sum_{n} x(n)y(n-I)$
 - Can be re-expressed, $r_{xy}(I)=\Sigma_n x(n+I)y(n)$
- Let's swap roles of sequences x and y - $r_{yx}(I) = \Sigma_n y(n)x(n-I) = \Sigma_n y(n+I)x(n) = r_{xy}(-I)$
- Autocorrelation
 - Correlation between sequence and itself
 - $\mathbf{r}_{xx}(\mathbf{I}) = \sum_{n} \mathbf{x}(n) \mathbf{x}(n-\mathbf{I}) = \sum_{n} \mathbf{x}(n+\mathbf{I}) \mathbf{x}(n)$
 - Due to symmetry, $r_{xx}(I)=r_{xx}(-I) \rightarrow$ even function
Active learning

• Consider
$$x(n) = \begin{cases} 2, n = 0 \\ 1, n = 1 \\ 0, else \end{cases}$$

Compute r_{xx}(l) for:
 - I=0

- I=-1

— l=+1

Properties

- Sum of squares of sequences expressed using correlation
- Will show $\Sigma_n[ax(n)+by(n-l)]^2 = a^2 r_{xx}(0)+2abr_{xy}(l)+b^2 r_{yy}(0)$

Correlation and energy

- Relation to energy: $r_{xx}(0)=E_x$, $r_{yy}(0)=E_y$
- Energy is non-negative $\rightarrow \Sigma_n[ax(n)+by(n-l)]^2 \ge 0$

 $- r_{xx}(0)(a/b)^2 + 2r_{xy}(I)(a/b) + r_{yy}(0)(1) \ge 0$

- Will use quadratic eq. to show $|r_{xy(l)}| \le \sqrt{r_{xx}(0)r_{yy}(0)} \le \sqrt{E_xE_y}$

Normalized correlation

- Correlation greatest for x(n)=y(n) $\rightarrow |r_{xx}(l)| \leq r_{xx(0)} = E_x$
- Normalized autocorrelation, $\rho_{xx(l)} = \frac{r_{xx}(l)}{r_{xx}(0)} \in [-1,1]$
- Normalized cross-correlation, $\rho_{xy(l)} = \frac{r_{xy}(l)}{\sqrt{E_x E_y}} \in [-1,1]$

• Revisit active learning; compute $\rho_{xx}(1)$

Correlation in LTI systems

- Cross correlation, $r_{xy}(I) = \sum_{n} x(n)y(n-I) = \sum_{n} x(n+I)y(n)$
- Flipped version, $\tilde{y}(n) = y(-n)$
- Express as convolution: $r_{xy(l)} = \{x * \tilde{y}\}(l)$
- Consider LTI system H with input x, output y

$$x(n) \longrightarrow H \longrightarrow y(n)$$

$$r_{yx} = y * \tilde{x} = (h * x) * \tilde{x} = h * (x * \tilde{x}) = h * r_{xx}$$

- Similarly, $r_{xy} = \tilde{h} * r_{xx}$ $r_{yy} = y * \tilde{y} = (h * x) * (\tilde{h} * \tilde{x}) = (h * \tilde{h}) * (x * \tilde{x}) = r_{hh} * r_{xx}$
- Useful for power spectrum in communications systems

Computation of correlation

- Cross correlation expressed as convolution, $r_{xy} = x * \tilde{y}$
- Will see how fast Fourier transform (FFT) provides fast computation of convolution
- Correlation typically computed via FFT

Radar Example

Radar example (Problem 2.65 in textbook)

- Radar transmission, x_a(t)
- Received signal, y_a(t)=αx_a(t-t_d)+v_a(t)
 - t_d time delay
 - α attenuation
 - v_a(t) noise

- Convert to discrete time (sampling)
 - $x(n)=x_a(nT)$
 - $Y(n) = \alpha x(n-D) + v(n)$
- Matlab script available on course webpage

Radar example – Part 2

a) How to estimate delay D with cross-correlation $r_{xy}(I)$?

- b) Simulate input x(n)={1,1,1,1,1,-1,-1,1,1,-1,1,1,-1,1}
 - Gaussian noise v(n) with variance=0.01
 - <u>Matlab</u>: v(n)=sqrt(variance)*randn(N,1);
 - Generate y(n), $0 \le n \le 199$, $\alpha = 0.9$, D=20

c) Compute and plot cross-correlation; estimate delay D

Radar example – Part 3

d) Repeat with variance 0.1 and 1

e) Repeat with modified sequenceX={-1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,1}