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What’s ECE421?



Replace analog processing by digital

3

 Signal processing can be performed in analog

 Or digital
– Analog to digital conversion (A/D)
– Digital signal processing (DSP)
– Digital to analog conversion (D/A)

A/D converter DSP D/A converter
analog 
input

analog 
output

analog signal processing
analog 
input

analog 
output



Why replace analog by digital?
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 Both systems yield identical outputs!!!
– Technical conditions…

 But DSP is cheaper, more robust, everything can be stored, 
performance is improving all the time…

A/D converter DSP D/A converter
analog 
input

analog 
output

analog signal processing
analog 
input

analog 
output



Frequency perspective
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 Electrical engineers often “think” about signals in 
both time/spatial domain and frequency domain

 Why?



Frequency perspective
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 Electrical engineers often “think” about signals in 
both time/spatial domain and frequency domain

 Linear time invariant (LTI) systems 
– Linear/superposition: H(x1+x2) = H(x1) + H(x2)
– Time invariant:  shift(H(x)) = H(shift(x))

 Many systems are well-approximated as LTI



Frequency perspective
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 Electrical engineers often “think” about signals in 
both time/spatial domain and frequency domain

 Property #1 – sinusoids processed by LTI systems are still 
sinusoids, they are merely amplified somehow

 Take several sinusoids at the input
– Linear system  output is superposition of individual outputs
– Each sinusoid is amplified  superposition of amplified sinusoids

 Input superpositions of sinusoids  “easy” to understand 
output



Frequency perspective

8

 Electrical engineers often “think” about signals in 
both time/spatial domain and frequency domain

 Property #2 – LTI systems can be represented as convolution
– Convenient to work with convolution, especially because in the 

frequency domain it boils down to multiplication

 Bottom line: LTI systems appear in many engineering systems 
& mathematically tractable frequency perspective



Motivation for ECE421



Real story
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 Microwave radio links used for “last mile” communication
– Typical use - link base stations in rural areas without fiber network
– Data rates typically tens/hundreds Mbps

 Before late 90’s, microwave link modems were analog
 Instructor worked at startup that designed digital modems for 

microwave links
– 5x reduction in power  less power transmitted (cleaner EM 

spectrum) or can use less hardware



Applications
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 Deblurring – handshake introduce blurring artifacts
– Observed image=true image*kernel+noise
– Goal: estimate true image from noisy observations

 Seismic exploration/visualization/imaging
– Sensors send vibrations into ground, other sensors measure vibrations
– Goal is to estimate geological structure
– Useful to decide where to drill for oil, locate earthquake zones, …

 Medical imaging (replace “ground” by “patient”)

 Communications (phones), image processing (cameras), 
video, defense (radar, signals intelligence), finance…



Things you’ll learn about
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 AM radio  (example revisited during course)
– Narrow band signal (~10 KHz) modulated at carrier (~1 MHz) 
– Will learn to sample at ~20 K instead of ~2M samples/sec

 Multipath in mobile phones (discussed as digital filter)
– Urban environment with comm signal bouncing between buildings
– Can perform “echo cancelation” with digital processing; unrealistic 

with analog hardware due to changing nature of environment

 Sneak peak at compressed sensing 
– Modern signal acquisition approach
– State of art algos often allow 10x reduction in sensing rates



Matlab example
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 Start with superposition of two sinusoids

 Add noise

 In Fourier domain, coefficients corresponding to two sinusoids 
are bigger than other noise-induced coeffs

 Denoising approach – truncate small Fourier coeffs

 Matlab script available on course webpage



Administrative Details



Introduction
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 Many resources on course webpage
– Syllabus - updated
– Tentative schedule – updated
– Slides & handouts & supplements

 Webwork – homeworks & quizzes
– Are quizzes good in online format?

 Projects

 Grade structure



Some details
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 Prereqs: 
– ECE 301 (linear systems)
– Matlab – tutorials available from webpage

 Textbook
– Proakis & Manolakis
– Any recent edition should be fine



More details
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 Change in grade structure:
– Less weight on Webwork (intended to motivate you)
– More weight on projects
– More tests  smaller per-test weight

 Occasional “active learning” exercises in class
– Normal semester: students discuss in pairs/triples
– After 2-3 minutes I poll responses / volunteers / etc.
– Online semester: I’ll give you time to pause video
– Solutions on course webpage 



Expectations
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 ECE 421 more open ended than some other courses
– Less emphasis plugging numbers into formulas
– More emphasis on deriving new results
– Evaluating trade-offs critically
– Applying knowledge to problems you haven’t seen before
– More projects

 This style can build strong foundation in signal 
processing



Signals and Systems
[Reading material: Sections 1.1-1.4]



Signals
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 Signal – function of time (or space)
– Example: x1(t)=sin(10πt)

 Real-world signals are complicated
 Major theme of course – can express some signals 

compactly/sparsely as superpositions of sinusoids

 Types of signals
– Multidimensional – function of multiple inputs (e.g., image)
– Multichannel – has several outpus (e.g., complex valued signal)
– Continuous time (analog also features continuous amplitude)
– Discrete time 
– Digital - discrete time and discrete valued



Active learning (based on Problem 1.1 in textbook)

21

 Classify signals below as: one/multi dimensional; single/multi 
channel; continuous/discrete time; digital/analog amplitude
– Closing prices of stocks?

– Color movie?

– Weight/height measurements of child every month?

 Solution on webpage



Systems
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 System - device that responds to stimulus

 Signals are inputs and outputs of systems

 Can have various properties:
– Linear or non-linear
– Causal or anti-causal
– Random or deterministic (we focus on latter)
– Time invariant or not

 Digital systems can be implemented in an algorithm on a 
computer

 We focus on digital processing, which can emulate analog



Frequencies and Periodicity



Continuous time sinusoids
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 Continuous time sinusoid: xa(t)=Acos(Ωt+θ)
– A – amplitude
– Ω - frequency (radians per unit time)
– t – time
– θ - phase

 Can express w/cycles per unit time, xa(t)=Acos(2πFt+θ)

 Cont. time sinusoids periodic w/period Tp=1/F

 Increasing F  shorter period, faster oscillations



Discrete time sinusoids
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 Discrete time sinusoid: x(n)=Acos(ωn+θ)
– ω - frequency (radians per sample)
– n – discrete time index

 Can express w/cycles per sample, x(n)=Acos(2πfn+θ)

 Summary of notation for frequencies:
Radians Cycles

Continuous time Ω F

Discrete time ω f



What is periodicity in discrete time?
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 Discrete time sinusoid periodic if f is rational number

 Consider s(t)=ejΩt with period Tp

 Let’s accelerate the signal by factor k: sk(t)=ejkΩt 

 New signal sk(t) periodic with period Tp/k
 sk(t)=sk(t+lTp/k) for integers k,l



Example (based on Problem 1.2 in textbook)
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 What’s the fundamental period of the following signals?
– cos(0.01πn)?

– cos(30πn/105)?

– sin(3n)?



Tougher example
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 What’s the fundamental period of 
x(n)=0.1cos(65πn/40)+12sin(37 πn/4)?



Aliasing
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 Discrete time sinusoids w/frequencies  ω separated by 2π
radians per sample are indistinguishable – called aliasing
– Or f separated by 1 cycle per sample; or ω=2πk for integer k

 Example that demonstrates aliasing
– x1(t)=sin(0.01πt), x2(t)=sin(2.01πt)
– x1 has period of 200, because x1(200+t)=x1(t)
– x2 has period 2/2.01
– Sample with sampling frequency Fs=1  x1(n)=sin(0.01πn)
– Similarly, x2(n) = sin(2.01πn) = sin(2πn+0.01πn) = sin(0.01πn) = x1(n)

 Visual demos of aliasing: 
http://www.youtube.com/watch?v=jHS9JGkEOmA



A/D and D/A Conversion



Big picture

 Many real-world signals are analog
– Speech signals, images, video, seismic data, climate measurements, …

 To enjoy benefits of DSP (reliable, cheap, fast, reproducible,…) 
– Convert from analog to digital (A/D)
– Perform digital signal processing
– Convert from digital back to analog (D/A)

 Will soon see when this  is equivalent to analog processing

A/D converter DSP D/A converter
analog 
input

analog 
output

analog signal processing
analog 
input

analog 
output



A/D conversion
 Analog to digital (A/D) conversion comprised of three parts

 Sampling – x(n)=xa(nT) with sampling interval T
– Sampling involves analog hardware
– Non-uniform sampling can be used but complicated 

 Quantization – truncate/round x(n) to discrete valued xq(n)
– Uniform quantizers xq(n)=x(n)/∆ commonly used

• ⋅ rounds down; quantizer step size ∆
– Non-uniform quantizers can use fewer levels

 Coding – translate discrete valued xq(n) to bits
– Data compression allocates fewer bits to common quantization levels, 

more bits to rare ones (just like Morse code) 



D/A conversion

 How can digital to analog (D/A) converters interpolate 
between samples?

 Zero order hold – maintain x(n) at output for T time
– Results in staircase-like pattern at output

 First order hold “connects the dots”
– Output becomes smoother (continuous)
– Will see later what this means in frequency domain

 Higher order interpolation can be used
– Will see that sinc is theoretically appealing



Sampling

 Sampling – x(n)=xa(t=nT) 
– Sampling interval T
– Sampling rate Fs=1/T
– Sampling times t=nT=n/Fs 

 Consider sampling a cosine, xa(t)=Acos(2πFt+θ)
x(n) = xa(t=nT) = Acos(2πnF/Fs+θ)

 Contrast to discrete cosine, x(n)=Acos(2πfn+θ)  f=F/Fs=FT
– Remark: because Ω=2πF and ω=2πf  ω= ΩT

 Want f∈(-0.5,0.5), requires  F/Fs∈(-0.5,0.5) 
 Need -0.5Fs < F < 0.5Fs or Fs>2|F| to avoid aliasing



Example (based on Example 1.4.2 in textbook)
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 Consider xa(t)=3cos(100πt)
1. What’s minimum sampling rate required to avoid aliasing?

2. Suppose Fs=200 Hz, what’s the discrete time signal?

3. Suppose Fs=75 Hz, what’s the discrete time signal?



The Sampling Theorem



The sampling theorem

 Consider band limited signal; all frequencies are below Fmax

 Can find Fs=1/T large enough such that Fs>2Fmax
– Every analog F can be determined from corresponding discrete f

 Theorem: [Shannon, Nyquist, Whittaker, Kotelnikov]

If highest frequency in xa(t) is Fmax=B, and we sample at rate 
Fs>2Fmax=2B, then xa(t) can be recovered perfectly,

xa(t)=Σn xa(n/Fs)g(t-n/Fs),
where g(t)=sin(2πBt)/(2πBt)

• Fs called Nyquist rate
• g(t) involves non-causal sinc interpolation  not implementable

x(n)



Active learning (Example 1.4.4 in textbook)
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 Consider xa(t)=3cos(2000πt)+5sin(6000πt)+10cos(12000πt)
1. What is the Nyquist rate?

2. We use Fs=5000 Hz, what is the discrete time signal?

3. What analog signal is obtained with ideal sinc interpolation?



Discrete Time Signals and Systems
[Reading material: Sections 2.1-2.5]



General comments about this material
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 DSP can help emulate end to end analog systems  focus on 
discrete time signals & systems

 Much of this material should be review  fast paced

 Our emphasis will be notations and terminology used in book

 Let’s cover this quickly and move to new material 



Notation for discrete time signals
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 Discrete time signal can be expressed in different ways

 Function, x(n)=n+13

 Table representation

 Sequence  x(n)={…, 0, 0, 1, 4, 2, 1, 0, 0, …} 
– Underline (arrow in book) points to time origin (n=0)

n … -2 -1 0 1 2 …
x(n) 1 0 3 1 4



Some standard discrete time signals
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 Unit impulse sequence 𝛿𝛿 𝑛𝑛 = �1 𝑛𝑛 = 0
0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 Unit step 𝑢𝑢 𝑛𝑛 = � 1 𝑛𝑛≥0
0 𝑛𝑛 < 0

 Unit ramp 𝑢𝑢𝑟𝑟 𝑛𝑛 = 𝑛𝑛𝑛𝑛 𝑛𝑛 = � 𝑛𝑛 𝑛𝑛≥0
0 𝑛𝑛 < 0

 Exponent x 𝑛𝑛 =an

– Can be complex, can write 
(rejΦ)n = rnejΦn = rn[cos(Φn)+jsin(Φn)]



More definitions
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 Energy 𝐸𝐸 = ∑𝑛𝑛=−∞+∞ |𝑥𝑥 𝑛𝑛 |2

– Often called squared-ℓ2 norm, ||x||2=E0.5

 Power 𝑃𝑃 = lim
𝑁𝑁→∞

1
2𝑁𝑁+1

∑𝑛𝑛=−𝑁𝑁+𝑁𝑁 |𝑥𝑥(𝑛𝑛)|2
– Average energy per sample

 Periodic signal x(n+N)=x(n), ∀n

 Symmetric (even) signal x(-n)=x(n) , ∀n
 Antisymmetric (odd) x(-n)=-x(n)

– Note that x(0)=-x(-0)=0



Operations on discrete time signals
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 Time shift x(n-k)

 Folding or reflection x(-n)

 Time scaling or down-sampling x(µn) for integer µ

 Addition or sum y(n)=x1(n)+ x2(n)

 Product y(n)=x1(n)x2(n)

 Scaling y(n)=Ax(n)



Discrete time systems
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 Discrete time systems operate on discrete time signals

 Input x(n) transformed to output y(n)

 Can write y(n)=T[x(n)]
– T for transformation

discrete time systemx(n)
input

y(n)
output



Sketches of systems
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 Can sketch discrete time systems using components below

 Sometimes want to add memory to system

x1(n)

x2(n)
y(n)=x1(n)+x2(n)

x1(n) y(n)=Ax(n)
A

x1(n)

x2(n)
y(n)=x1(n)x2(n)

x(n) y(n)=x(n-1)z-1



Connecting systems

47

 Cascade

 Parallel connection

x(n) T1 T2 y(n)=T2[T1[x(n)]]

x(n) T1

T2

y(n)=T1[x(n)]+ T2[x(n)]



Types/Properties of Discrete Time Systems



Types of systems
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 Static – memoryless

 Dynamic – contains memory

 Time invariant – y(n)=T[x(n)]  y(n-k)=T[x(n-k)], ∀x(n), k
– Suffices to prove for k=1

 Time variant – not invariant (example coming up)



Example time variant system (see supplement)

50

 System y(n)=nx(n)

 Input x(n)=δ(n)
– n≠0: x(n)=0  y(n)=0
– n=0: x(n)=1  y(n)=0⋅1=0
– Output always zero (even if we apply time shift by k, any k)

 Input x(n)= δ(n-k)       it’s one when n=k
– n≠k: x(n)=0  y(n)=0
– n=k: x(n)=1  y(n)=k⋅1=k
– Output not always zero

 Key point: k-shifted input doesn’t yield k-shifted output



More types of systems

51

 Linear – T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)]
– Also called superposition
– Must hold for all scalars a, b, signals x1(n), x2(n)
– Suffices to prove T[x1(n)+x2(n)]=T[x1(n)]+T[x2(n)] and T[ax(n)] = aT[x(n)]

 Causal – output depends only on present/past inputs
– Also have anti-causal (depends on present/future), non-causal



Stable Discrete Time Systems



Stability
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 Intuitively, want “well behaved” system
 Various types of stability possible

 Bounded input bounded output (BIBO)
– Common way to evaluate stability
– Output must be bounded for all bounded inputs



Example non-BIBO system (see supplement)
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 System y(n)=y(n-1)+x(n)

 Input x(n)=u(n)     step input
– n<0: y(n)=0
– n=0: y(0)=y(-1)+x(0)=0+1=1
– n=1: y(1)=y(0)+x(1)=1+1=2
– n=2: y(2)=y(1)+x(2)=2+1=3
– …
– Can show y(n)=n+1 for n≥0  y(n)=ur(n)+u(n)  ramp+step

 Key point: bounded input & unbounded output  not BIBO



Same example another input
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 System y(n)=y(n-1)+x(n)

 Input x(n)=δ(n)     impulse instead of step
– n<0: y(n)=0
– n=0: y(0)=y(-1)+x(0)=0+1=1
– n=1: y(1)=y(0)+x(1)=1+0=1
– n=2: y(2)=y(1)+x(2)=1+0=1
– Can show y(n)=1 for n≥0  y(n)=u(n)

 Bounded input (impulse) & bounded output (step)

 BIBO unstable system can have bounded output
– Only need one bad input to demonstrate non-BIBO



Example BIBO system (modified system)
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 We saw that y(n)=y(n-1)+x(n) not BIBO stable
 Slightly modified system: y(n)=0.5y(n-1)+x(n)

 Input x(n)=u(n)     step
– n<0: y(n)=0
– n=0: y(0)=0.5y(-1)+x(0)=0+1=1
– n=1: y(1)=0.5y(0)+x(1)=0.5+1=1.5
– n=2: y(2)=0.5y(1)+x(2)=0.75+1=1.75
– Can show y(n)=2-0.5n for n ≥ 0

 Modified system can be shown to be BIBO stable



Linear Time Invariant  (LTI)
Discrete Time Systems



Linear time invariant (LTI) systems
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 Many real-world systems can be approximated as LTI

 Convenient mathematical properties

 Can be expressed as convolution

𝑦𝑦 𝑛𝑛 = �
𝑘𝑘=−∞

+∞

𝑥𝑥 𝑘𝑘 ℎ(𝑛𝑛 − 𝑘𝑘)

– System H coincides to impulse response h(⋅)
– h called convolution kernel 
– Can be computed as impulse response



Example impulse responses

59

 Recall two systems: 
– H1: y (n)=y (n-1)+x(n)
– H2: y (n)=0.5y (n-1)+x(n)

 First system: 
– Already saw impulse response h1(n)=u(n) step function

 Second system:
– Let’s show h2(n)=0.5nu(n)



Properties of convolution
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 Identity operator: x(n)*δ (n)=x(n)  
 Time shift: x(n)*δ (n-k)=x(n-k) 
 Commutative: x(n)*h(n)=h(n)*x(n)
 Associative: [x(n)*h1(n)]*h2(n)=x(n)*[h1(n)*h2(n)]
 Distributive: x(n)*[h1(n)+h2(n)]=x(n)*h1(n)+x(n)*h2(n)



Properties of LTI systems
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 LTI system H is causal iff (if and only if) h(n)=0  for n<0

 LTI system H is BIBO stable iff ∑𝑘𝑘=−∞∞ ℎ 𝑘𝑘 < ∞

 Finite impulse response (FIR) systems have finite duration

 Infinite impulse response (IIR) – unbounded duration; can 
sometimes be implemented recursively



Example BIBO system
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 Recall two systems: 
– H1: y (n)=y (n-1)+x(n)
– H2: y (n)=0.5y (n-1)+x(n)

 First system: h1(n)=u(n)
– ∑𝑘𝑘=−∞∞ ℎ1 𝑘𝑘 is infinite  not stable

 Second system: h2(n)=0.5nu(n)
– ∑𝑘𝑘=−∞∞ ℎ2 𝑘𝑘 = 2 BIBO stable



Implementing Discrete Time Systems
[Reading material: Section 2.5]



Difference equations
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 Common type of LTI system (convention: a0=1) 

�
𝑘𝑘=0

𝑁𝑁

𝑎𝑎𝑘𝑘𝑦𝑦(𝑛𝑛 − 𝑘𝑘) = �
𝑘𝑘=0

𝑀𝑀

𝑏𝑏𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑘𝑘)

 Can be solved by splitting into components
– Zero input response – reaction to initial conditions from feedback of 

{a} coefficients
– Zero state response – assumes zero initial conditions



Direct form I
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 Difference equation yields following implementation
– ∑𝑘𝑘=0𝑁𝑁 𝑎𝑎𝑘𝑘𝑦𝑦(𝑛𝑛 − 𝑘𝑘) = ∑𝑘𝑘=0𝑀𝑀 𝑏𝑏𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑘𝑘)
– v(n)=b0x(n)+b1x(n-1)+…
– y(n)=v(n)-a1y(n-1)-a2y(n-2)-…

 Known as direct form I



Direct form II
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 Left and right sides are commutative  can swap sides
x(n)*L(n)*R(n)=x(n)*R(n)*L(n)

 Known as direct form II

 Note savings in memory units; they often consume resources 
(space / power)



Correlation
[Reading material: Section 2.6]



Motivation
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 Correlation measures similarity between signals
– Often used with signals that feature randomness
– Book takes deterministic (non-random) viewpoint

 Radar application/motivation
– Signal x is transmitted
– Reflected off target with delay D, attenuation a
– Additive noise w(n)
– y(n)=ax(n-D)+w(n)

 Correlation tells us how similar y is to versions of x delayed by 
different amounts



Revisiting real story
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 Key component in microwave link modems is measuring delay 
between devices

 Radios have slightly different clocks  delay D varies
 Want to sample incoming communication signal “right” time

– Sample at correct time  interpolation (e.g. sinc) works well
– Incorrect synchronization  interpolation yields garbage

 Synchronization approach
– Periodically transmit sequence with spiky correlation properties

• This is (small) overhead…
– Receiver occasionally sees spike
– Receiver can estimate delay D relatively well



Matlab example (visualizing correlation)
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 Take signal x and add low-amplitude noise
– Scatter plot resembles line

 Noise amplitude = signal amplitude
– Elliptical plot

 Large amplitude noise
– Circular plot  uncorrelated

 Matlab script available on course webpage



Correlation and its Properties



Some definitions
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 Cross correlation, rxy(l)=Σnx(n)y(n-l) 
– Can be re-expressed, rxy(l)=Σnx(n+l)y(n) 

 Let’s swap roles of sequences x and y 
– ryx(l) = Σny(n)x(n-l) = Σny(n+l)x(n) = rxy(-l) 

 Autocorrelation
– Correlation between sequence and itself
– rxx(l)=Σnx(n)x(n-l) =Σnx(n+l)x(n)
– Due to symmetry, rxx(l)=rxx(-l)  even function



Active learning
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 Consider 𝑥𝑥 𝑛𝑛 = �
2, 𝑛𝑛 = 0
1, 𝑛𝑛 = 1
0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 Compute rxx(l) for:
– l=0

– l=-1

– l=+1

– Other



Properties
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 Sum of squares of sequences expressed using correlation

 Will show Σn[ax(n)+by(n-l)]2 =a2rxx(0)+2abrxy(l)+b2ryy(0) 



Correlation and energy
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 Relation to energy: rxx(0)=Ex, ryy(0)=Ey

 Energy is non-negative  Σn[ax(n)+by(n-l)]2 ≥0
– rxx(0)(a/b)2+2rxy(l)(a/b)+ryy(0)(1) ≥0

– Will use quadratic eq. to show |𝑟𝑟𝑥𝑥𝑥𝑥 𝑙𝑙 | ≤ 𝑟𝑟𝑥𝑥𝑥𝑥 0 𝑟𝑟𝑦𝑦𝑦𝑦 0 ≤ 𝐸𝐸𝑥𝑥𝐸𝐸𝑦𝑦



Normalized correlation
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 Correlation greatest for x(n)=y(n)  𝑟𝑟𝑥𝑥𝑥𝑥 𝑙𝑙 ≤ 𝑟𝑟𝑥𝑥𝑥𝑥 0 = 𝐸𝐸𝑥𝑥

 Normalized autocorrelation, 𝜌𝜌𝑥𝑥𝑥𝑥 𝑙𝑙 = 𝑟𝑟𝑥𝑥𝑥𝑥(𝑙𝑙)
𝑟𝑟𝑥𝑥𝑥𝑥(0)

∈ −1,1

 Normalized cross-correlation, 𝜌𝜌𝑥𝑥𝑦𝑦 𝑙𝑙 = 𝑟𝑟𝑥𝑥𝑦𝑦(𝑙𝑙)
𝐸𝐸𝑥𝑥𝐸𝐸𝑦𝑦

∈ −1,1

 Revisit active learning; compute 𝜌𝜌𝑥𝑥𝑥𝑥(1)



Correlation in LTI systems
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 Cross correlation, rxy(l) =Σnx(n)y(n-l)=Σnx(n+l)y(n) 
 Flipped version, �𝑦𝑦 𝑛𝑛 = 𝑦𝑦(−𝑛𝑛)
 Express as convolution: 𝑟𝑟𝑥𝑥𝑥𝑥 𝑙𝑙 = {𝑥𝑥 ∗ �𝑦𝑦}(𝑙𝑙)

 Consider LTI system H with input x, output y

 𝑟𝑟𝑦𝑦𝑦𝑦 = 𝑦𝑦 ∗ �𝑥𝑥 = ℎ ∗ 𝑥𝑥 ∗ �𝑥𝑥 = ℎ ∗ 𝑥𝑥 ∗ �𝑥𝑥 = ℎ ∗ 𝑟𝑟𝑥𝑥𝑥𝑥
 Similarly, 𝑟𝑟𝑥𝑥𝑥𝑥 = �ℎ ∗ 𝑟𝑟𝑥𝑥𝑥𝑥
𝑟𝑟𝑦𝑦𝑦𝑦 = 𝑦𝑦 ∗ �𝑦𝑦 = ℎ ∗ 𝑥𝑥 ∗ �ℎ ∗ �𝑥𝑥 = ℎ ∗ �ℎ ∗ 𝑥𝑥 ∗ �𝑥𝑥 = 𝑟𝑟ℎℎ ∗ 𝑟𝑟𝑥𝑥𝑥𝑥

 Useful for power spectrum in communications systems

x(n) y(n)H



Computation of correlation
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 Cross correlation expressed as convolution, 𝑟𝑟𝑥𝑥𝑥𝑥 = 𝑥𝑥 ∗ �𝑦𝑦

 Will see how fast Fourier transform (FFT) provides fast 
computation of convolution

 Correlation typically computed via FFT



Radar Example



Radar example (Problem 2.65 in textbook)
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 Radar transmission, xa(t)
 Received signal, ya(t)=αxa(t-td)+va(t)

– td time delay
– α attenuation
– va(t) noise

 Convert to discrete time (sampling)
– x(n)=xa(nT)
– Y(n)= αx(n-D)+v(n)

 Matlab script available on course webpage

xa(t)

va(t)

ya(t)delay



Radar example – Part 2
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a) How to estimate delay D with cross-correlation rxy(l)?

b) Simulate input x(n)={1,1,1,1,1,-1,-1,1,1,-1,1,-1,1}
– Gaussian noise v(n) with variance=0.01
– Matlab: v(n)=sqrt(variance)*randn(N,1);
– Generate y(n), 0≤n≤199, α=0.9, D=20

c) Compute and plot cross-correlation; estimate delay D



Radar example – Part 3
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d) Repeat with variance 0.1 and 1

e) Repeat with modified sequence
X={-1,-1,-1,1,1,1,1,-1,1,-1,1,1,-1,-1,1}
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