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Chapter 13

• Controller Area Network (CAN)
– An automotive and industrial communications network
– Initially developed and defined by Robert Bosch GmbH of 

Germany in early-to-mid 1980’s.
– Recognized/released by Society of Automotive Engineers (SAE) 

congress in Detroit, Michigan in 1986.
– CAN Specification 2.0 published by Bosch in 1991. 
– Primary CAN physical layer specifications

• # ISO 11898-1: CAN Data Link Layer and Physical Signaling
• # ISO 11898-2: CAN High-Speed Medium Access Unit
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Lower Layer Communication Protocol

• Physical Layer – the wires and signaling 
• Data Link Layer – turning the signaling into addresses, 

data, etc for higher layers of software to use

• Other protocols with well known lower layers
– RS-232
– Ethernet
– ATM
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Layered Approach in CAN (1 of 3) 

• Only the logical link and physical layers are described.
• Data link layer is divided into two sublayers: logical link 

control (LLC) and medium access control (MAC).

– LLC sublayer deals with message acceptance filtering, overload 
notification, and error recovery management. 

– MAC sublayer presents incoming messages to the LLC sublayer 
and accepts messages to be transmitted forward by the LLC 
sublayer. 

– MAC sublayer is responsible for message framing, arbitration, 
acknowledgement, error detection, and signaling. 

– MAC sublayer is supervised by the fault confinement mechanism.
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Layered Approach in CAN (2 of 3)

• The physical layer defines how signals are actually 
transmitted, dealing with the description of bit timing, bit 
encoding, and synchronization.  

• CAN bus driver/receiver characteristics and the wiring and 
connectors are not specified in the CAN protocol. 

• System designer can choose from several different media 
to transmit the CAN signals.
– Sunseeker uses a 4-conductor round cable and T-connectors
– CANOpen uses dB9 connectors and wires
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Application Layer

CAN LAYERS

Data Link
LLC sublayer

Acceptance filtering
Overload notification
Recovery management

MAC sublayer

Data encapsulation/decapsulation
Frame coding (stuffing/destuffing)
Medium access management
Error detection
Error signaling
Acknowledgement
Serialization/Deserialization

Physical Bit encoding/decoding
Bit timing
Synchronization

Figure 13.1 CAN layers

Driver/Receiver characteristics

Supervisor

Fault
Confinement

Bus Failure
Management

Layered Approach in CAN (3 of 3)



Material from or based on: The HCS12/9S12: An Introduction to Software & Hardware 
Interfacing, Thomson Delmar Learning, 2006.

CAN Physical Layer

• Data Frames are transmitted on a two-wire common bus as 
CAN high (CAN_H) and CAN low (CAN_L) signals.
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Physical Layer Signal Levels

• Both bus lines are at a nominal 2.5V
– CAN_H goes from recessive (“1”) to dominant (“0”) by going 

high to nominally 3.5 V
– CAN_L goes from recessive (“1”) to dominant (“0”) by going low 

to nominally 1.5 V

ECE 4510 8
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Figure 13.2 CAN Data frame

CAN Signaling Frame

• A data frame consists of seven fields: start-of-frame, 
arbitration, control, data, CRC, ACK, and end-of-frame.
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General Characteristics of CAN (1 of 3)

• Carrier Sense Multiple Access with Collision Detection 
(CSMA/CD) 
– Every node on the network must monitor the bus (carrier sense) for 

a period of no activity before trying to send a message on the bus. 
– Once the bus is idle, every node has equal opportunity to transmit a 

message.
– If two nodes happen to transmit simultaneously, a nondestructive 

arbitration method is used to decide which node wins.
• The node sending a dominant bit wins. 

The other node recognizes that the output doesn’t match what was 
“sent” and  is supposed to quits sending)
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General Characteristics of CAN (2 of 3)

• Message-Based Communication
– Each message contains an identifier (broadcast an ID).

• Identifiers allow messages to arbitrate and also allow each node to 
decide whether to work on the incoming message.

• The lower the value of the identifier, the higher the priority of the 
identifier.

– Each node uses one or more filters to compare the incoming 
messages to decide whether to take actions on the message.

– CAN protocol allows a node to request data transmission from 
other nodes.

– There is no need to reconfigure the system when a new node joins 
the system.
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General Characteristics of CAN (3 of 3)

• Error Detection and Fault Confinement
– The CAN protocol requires each node to monitor the CAN bus to 

find out if the bus value and the transmitted bit value are identical. 
– The CRC checksum is used to perform error checking for each 

message.
– The CAN protocol requires the physical layer to use bit stuffing to 

avoid long sequence of identical bit value. 
– Defective nodes are switched off from the CAN bus.
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Types of CAN Messages (1 of 2)

• Data frame
• Remote frame
• Error frame
• Overload frame
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Figure 13.2 CAN Data frame

Data Frame

• A data frame consists of seven fields: start-of-frame, 
arbitration, control, data, CRC, ACK, and end-of-frame.
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Start of Frame

• A single dominant bit to mark the beginning of a data 
frame.

• All nodes have to synchronize to the leading edge caused 
by this field.
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• There are two formats for this field: standard format and extended format.

• The identifier of the standard format corresponds to the base ID in the extended format.
• The RTR bit is the remote transmission request and must be 0 (dominant) in a data 

frame.
• The SRR bit is the substitute remote request and is recessive.
• The IDE field indicates whether the identifier is extended and should be recessive in the 

extended format.
• The extended format also contains the 18-bit extended identifier.

Start of frame 11 bit Identifier RTR

Arbitration field Control field
Interframe

space

Figure 13.3 Arbitration field

IDE r0 DLC

(a) standard format

Start of
frame 11-bit identifier

(b) extended format

SRR IDE 18-bit identifier RTR r0 r1 DLC

Arbitration field Control field

Arbitration Field
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Control FieldArbitration
field

Data field
or CRC field

IDE/r1 r0 DLC3 DLC2 DLC1 DLC0

reserved bits Data length code

Figure 13.4 Control field

Control Field

• The first bit is IDE (ID Extended) bit for the standard 
format but is used as reserved bit r1 in extended format.

• r0 is reserved bit.
• DLC3…DLC0 stands for data length of the data field

The data filed can be from 0000 (0) to 1000 (8)  bytes.
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Data Field

• May contain 0 to 8 bytes of data

• Sunseeker uses 8 byte data fields consisting of
– 2 32-bit floating point numbers
– 2 32-bit integers (broken up into 4 integers or 8 characters) for 

binary “flags” (on/off for ignition key, brakes, turn signals, tetc.)
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Data or
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Figure 13.5 CRC field

CRC Field

• It contains the 16-bit CRC sequence and a CRC delimiter.
• The CRC delimiter is a single recessive bit.
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ACK Field

• Consists of two bits
• The first bit is the acknowledgement bit. 

– This bit is set to recessive by the transmitter, but will be reset to 
dominant if a receiver acknowledges the data frame.

• The second bit is the ACK delimiter and is recessive.
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Getting All the Bits Right

• The programmer writes/reads buffers in the peripheral 
devices for
– Identifier
– Control
– Data length
– Data 

• The peripheral handles the rest of the details
– CRC
– ACK
– Error detection and indication to host
– resynchronization
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Automatic Retransmission

• If there is a transmission error
and particularly if a message is not ACK (acknowledged)
it will automatically be retransmitted.
– Therefore for a bus with only one node:

no ACK is possible, therefore the message is infinitely resent.
(You can not just send CAN frames to see if they work,
you must have another active CAN device connected!!)

ECE 4510 22
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Figure 13.7 Remote frame

Remote Frame
(Retransmit Requests or RTRs)

• Used by a node to request other nodes to send certain type 
of messages

• Has six fields as shown in Figure 13.7
– These fields are identical to those of a data frame with the 

exception that the RTR bit in the arbitration field is recessive in the 
remote frame.

Start of frame 11 bit Identifier RTR

Arbitration field Control field
Interframe

space

IDE r0 DLC

(a) standard format



Material from or based on: The HCS12/9S12: An Introduction to Software & Hardware 
Interfacing, Thomson Delmar Learning, 2006.

CAN Message Bit Timing

• CAN uses a high rate clock to break the bit period into 
multiple segments.

• You program the segment lengths which sum up to the bit 
time.

• The setting of a bit time in a CAN system must allow a bit 
sent out by the transmitter to reach the far end of the CAN 
bus and allow the receiver to send back acknowledgement 
and reach the transmitter. 

• The number of bits transmitted per second is defined as the 
nominal bit rate.
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Nominal bit time

sync_seg prop_seg phase_seg1 phase_seg2

Sample point

Figure 13.12 Nominal bit time

Nominal Bit Time

• The inverse of the nominal bit rate is the nominal bit time.
• A nominal bit time is divided into four segments as shown 

in Figure 13.12.
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Time Quantum

• A fixed unit of time derived by dividing the oscillator 
period by a prescaler (derives the high rate clock)

• Length of time segments in time quantum
– sync_seg is 1 time quantum long
– prop_seg is programmable to be 1,2,…,8 time quanta long
– phase_seg1 is programmable to be 1,2,…,8 time quanta long
– phase_seg2 is programmable to be 2,3,…,8 time quanta long

• Information processing time is fixed at 2 time quanta for 
the HCS12.

• The total number of time quanta in a bit time must be 
programmable between 8 and 25.
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Segments

• Sync_seg Segment (1 Tq)
– It is used to synchronize the various nodes on the bus.
– An edge is expected to lie in this segment.

• Prop_seg Segment (nominally 2 Tq)
– Used to compensate for the physical delay times within the 

network (CAN busses have limited length!)
– Equals twice the sum of the signal’s propagation time on the CAN 

bus line, the comparator delay, and the output driver delay

• Phase_seg1 and Phase_seg2 Segment (TBD Tq)
– Used to compensate for edge phase errors
– Both can be lengthened or shortened by synchronization
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Sample Point

• At the end of phase_seg1 segment.
• Users can choose to take three samples instead of one.
• A majority function determines the bit value when three 

samples are taken. (2 of 3 or 3 of 3)
• Each sample is separated by half time quantum from the 

next sample.
• The time spent on determining the bit value is the 

information processing time.
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Nominal bit time

sync_seg prop_seg phase_seg1 phase_seg2

Sample point

Figure 13.12 Nominal bit time

Nominal Bit Time (repeat)

• The inverse of the nominal bit rate is the nominal bit time.
• A nominal bit time is divided into four segments as shown 

in Figure 13.12.

Bit_time (nTq) = 
Sync_seg (1 Tq)+ (PROPSEG+TSEG1)(k Tq )+ TSEG2(m Tq) 
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Synchronization Issue 

• All CAN nodes must be synchronized while receiving a transmission. 
• The beginning of each received bit must occur during each node’s 

sync_seg segment. 
• Synchronization is needed to compensate for the difference in 

oscillator frequencies of each node, the change in propagation delay 
and other factors.

• Two types of synchronizations are defined: hard synchronization and 
resynchronization.

– Hard synchronization is performed at the beginning of a message frame, 
when each CAN node aligns the sync_seg of its current bit time to the 
recessive-to-dominant transition.

– Resynchronization is performed during the remainder of the message 
frame whenever a change of bit value from recessive to dominant occurs 
outside the expected sync_seg segment.
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Resynchronization Jump Width 

• The incoming recessive to dominant edge can occur
– After the sync_seg segment but before the sample point. This is a late 

edge. A node will attempt to resynchronize by increasing the length of 
phase_seg1 segment.

– After the sample point but before the sync_seg segment of the next bit. 
This is a early bit. The node will attempt to resynchronize by shortening 
the duration of phase_seg2 segment.

– Within the sync_seg segment of the current bit time. No synchronization 
error.

• The amount of adjustment that can be made to the phase_seg1 or 
phase_seg2 is limited by the resynchronization jump width.

• The resynchronization jump width (SJW) is programmable to be 
between 1 and the smaller of 4 and phase_seg1 time quanta.
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Overview of the HCS12 CAN Module 
(1 of 2) 

• An HCS12 device may have from one to five 
on-chip CAN modules.

• Each CAN module has five receive buffers with 
FIFO storage scheme and three transmit buffers.

• Each of the three transmit buffers may be 
assigned with a local priority.

• Maskable identifier filter supports two full size 
extended identifier filters (32-bit), four 16-bit 
filters, or eight 8-bit filters.

– Only receive frames within a range of predefined 
identifiers (don’t have to deal with all the traffic)

• The CAN module has a programmable loopback 
mode that supports self-test operation.

• The CAN module has a listen-only mode for 
monitoring of the CAN bus.
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Overview of the HCS12 CAN Module 
(2 of 2) 

• The CAN module has separate signaling and interrupts for all CAN 
receiver and transmitter error states (warning, error passive, and bus off).

• Clock signal for CAN bus can come from either the bus clock or oscillator 
clock. (Pick the OSCCLOCK)

• The CAN module supports time-stamping for received and transmitted 
messages

– The CAN module has a 16-bit free-running timer.

• The CAN module requires a transceiver (e.g., MCP2551, PCA82C250) to 
interface with the CAN bus. It is built into your modules.
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MSCAN Module Memory Map

• Each CAN module occupies 64 bytes of memory space.
• The MSCAN register organization is shown in Figure 

13.15.
• Each receive buffer and each transmit buffer occupies 16 

bytes of space.
• Only one of the three transmit buffers is accessible to the 

user at a time.
• Only one of the five receive buffers is accessible to the 

user at a time.
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address register name access

$_00
$_01
$_02
$_03
$_04
$_05
$_06
$_07
$_08
$_09
$_0A
$_0B
$_0C
$_0D
$_0E
$_0F
$_10
$_11
$_12
$_13
$_14
$_15
$_16
$_17
$_18
$_19
$_1A
$_1B
$_1C
$_1D
$_1E
$_1F
$_20
$_2F
$_30
$_3F

MSCAN control register 0 (CANCTL0)
MSCAN control register 1 (CANCTL1)
MSCAN bus timing register 0 (CANBTR0)
MSCAN bus timing register 1 (CANBTR1)
MSCAN receiver flag register (CANRFLG)
MSCAN receiver interrupt enable register (CANRIER)
MSCAN transmitter flag register (CANTFLG)
MSCAN transmitter interrupt enable register (CANTIER)
MSCAN transmitter message abort request(CANTARQ)
MSCAN transmitter message abort acknowledge (CANTAAK)
MSCAN transmit buffer selection (CANTBSEL)
MSCAN identifier acceptance control register (CANIDAC)
reserved
reserved
MSCAN receive error counter register (CANRXERR)
MSCAN transmit error counter register (CANTXERR)
MSCAN identifier acceptance register 0 (CANIDAR0)
MSCAN identifier acceptance register 1 (CANIDAR1)
MSCAN identifier acceptance register 2 (CANIDAR2)
MSCAN identifier acceptance register 3 (CANIDAR3)
MSCAN identifier mask register 0 (CANIDMR0)
MSCAN identifier mask register 1 (CANIDMR1)
MSCAN identifier mask register 2 (CANIDMR2)
MSCAN identifier mask register 3 (CANIDMR3)
MSCAN identifier acceptance register 4 (CANIDAR4)
MSCAN identifier acceptance register 5 (CANIDAR5)
MSCAN identifier acceptance register 6 (CANIDAR6)
MSCAN identifier acceptance register 7 (CANIDAR7)
MSCAN identifier mask register 4 (CANIDMR4)
MSCAN identifier mask register 5 (CANIDMR5)
MSCAN identifier mask register 6 (CANIDMR6)
MSCAN identifier mask register 7 (CANIDMR7)

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

R
R/W
R/W

R
R

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

Foreground receive buffer (CANRXFG)

Foreground transmit buffer (CANTXFG)

R

R/W

Figure 13.16 CAN module memory map

MSCAN Registers

Setup
Flags
Int Enable

Identifiers 
Accepted &
Identifier Masks

Frame:
Identifiers &
Data
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address register name

$_x0
$_x1
$_x2
$_x3
$_x4
$_x5
$_x6
$_x7
$_x8
$_x9
$_xA
$_xB
$_xC
$_xD
$_xE
$_xF

Identifier register 0
Identifier register 1
Identifier register 2
Identifier register 3

Data segment register 0
Data segment register 1
Data segment register 2
Data segment register 3
Data segment register 4
Data segment register 5
Data segment register 6
Data segment register 7

Data length register
Transmit buffer priority register1

Time stamp register high byte2

Time stamp register low byte2

Note 1. Not applicable for receive buffer.
          2. Read only for CPU

Figure 13.33 MSCAN message buffer organization

MSCAN Message Buffers

• The receive message and transmit message buffers have 
the same outline.
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address register name

$_x0
$_x1
$_x2
$_x3
$_x4
$_x5
$_x6
$_x7
$_x8
$_x9
$_xA
$_xB
$_xC
$_xD
$_xE
$_xF

Identifier register 0
Identifier register 1
Identifier register 2
Identifier register 3

Data segment register 0
Data segment register 1
Data segment register 2
Data segment register 3
Data segment register 4
Data segment register 5
Data segment register 6
Data segment register 7

Data length register
Transmit buffer priority register1

Time stamp register high byte2

Time stamp register low byte2

Note 1. Not applicable for receive buffer.
          2. Read only for CPU

Figure 13.33 MSCAN message buffer organization

MSCAN Message Buffers

• The receive message and transmit message buffers have 
the same outline.
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ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

ID20 ID19 ID18 SRR(=1)IDE(=1) ID17 ID16 ID15

ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7

ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR

7 6 5 4 3 2 1 0

Figure 13.34 Receive/transmit message buffer extended identifier

IDR0

IDR1

IDR2

IDR3

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3

ID2 ID1 ID0 RTR IDE(=0)

7 6 5 4 3 2 1 0

Figure 13.35 Receive/transmit message buffer standard identifier

IDR0

IDR1

IDR2

IDR3

Identifier Registers (IDR0~IDR3)

• All four identifier registers are compared when a message 
with extended identifier is received.

• Only the first two identifier registers are compared when a 
message with standard identifier is received.
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Message Buffer Fields

• Data Segment Registers (DSR0~DSR7)
– These registers contain the data to be transmitted or received.
– The number of bytes to be transmitted or received is determined by the 

data length code.
• Data Length Register (DLR)

– The lowest four bits of this register indicate the number of bytes contained 
in the message.

• Transmit Buffer Priority Register (TBPR)
– This register defines the local priority of the associated message buffer.
– All transmit buffer with a cleared TXEx flag participate in the 

prioritization.
– The transmit buffer with the lowest local priority field wins the 

prioritization. 
– In case of more than one buffer having the same lowest priority, the 

message buffer with the lowest index number wins
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Table 13.2a CAN foreground receive buffer x variable names
Name Address Description

CANxRIDR0
CANxRIDR1
CANxRIDR2
CANxRIDR3
CANxRDSR0
CANxRDSR1
CANxRDSR2
CANxRDSR3
CANxRDSR4
CANxRDSR5
CANxRDSR6
CANxRDSR7
CANxRDLR

$_0
$_1
$_2
$_3
$_4
$_5
$_6
$_7
$_8
$_9
$_A
$_B
$_C

CAN foreground receive buffer x identifier register 0
CAN foreground receive buffer x identifier register 1
CAN foreground receive buffer x identifier register 2
CAN foreground receive buffer x identifier register 3
CAN foreground receive buffer x data segment register 0
CAN foreground receive buffer x data segment register 1
CAN foreground receive buffer x data segment register 2
CAN foreground receive buffer x data segment register 3
CAN foreground receive buffer x data segment register 4
CAN foreground receive buffer x data segment register 5
CAN foreground receive buffer x data segment register 6
CAN foreground receive buffer x data segment register 7
CAN foreground receive buffer x data length register

Note 1. x can be 0, 1, 2, or 3
          2. The absolute address of each register is equal to the sum of the base address
              of the CAN foreground receive buffer base x address and the address
              field of the corresponding register.

CAN Foreground Receive 
Buffer Register Names
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Table 13.2b CAN foreground transmit buffer x variable names
Name Address Description

CANxTIDR0
CANxTIDR1
CANxTIDR2
CANxTIDR3
CANxTDSR0
CANxTDSR1
CANxTDSR2
CANxTDSR3
CANxTDSR4
CANxTDSR5
CANxTDSR6
CANxTDSR7
CANxTDLR
CANxTBPR
CANxTSRH
CANxTSRL

$_0
$_1
$_2
$_3
$_4
$_5
$_6
$_7
$_8
$_9
$_A
$_B
$_C
$_D
$_E
$_F

CAN foreground transmit buffer x identifier register 0
CAN foreground transmit buffer x identifier register 1
CAN foreground transmit buffer x identifier register 2
CAN foreground transmit buffer x identifier register 3
CAN foreground transmit buffer x data segment register 0
CAN foreground transmit buffer x data segment register 1
CAN foreground transmit buffer x data segment register 2
CAN foreground transmit buffer x data segment register 3
CAN foreground transmit buffer x data segment register 4
CAN foreground transmit buffer x data segment register 5
CAN foreground transmit buffer x data segment register 6
CAN foreground transmit buffer x data segment register 7
CAN foreground transmit buffer x data length register
CAN foreground transmit buffer x priority register
CAN foreground transmit buffer x time stamp register high
CAN foreground transmit buffer x time stamp register low

Note 1. x can be 0, 1, 2, or 3
          2. The absolute address of each register is equal to the sum of the base
              address of the CAN foreground transmit buffer x and the address field of the
              corresponding register.

CAN Foreground Transmit 
Buffer Register Names
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Figure 13.37 User model for transmit buffer organization

Transmit Storage Structure

• Multiple messages can be 
set up in advance and 
achieve real-time 
performance.

• A transmit buffer is made 
accessible to the user by 
writing appropriate value 
into the  CANxTBSEL 
register.
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Procedure for Message Transmission

• Step 1
– Identifying an available transmit buffer by checking the TXEx flag 

associated with the transmit buffer. (CANxTFLG)

• Step 2
– Setting a pointer to the empty transmit buffer by writing the 

CANxTFLG register to the CANxTBSEL register. This makes the 
transmit buffer accessible to the user. (Moves it to the foreground.)

• Step 3
– Storing the identifier, the control bits, and the data contents into 

one of the foreground transmit buffers.

• Step 4
– Flagging the buffer as ready by clearing the associated TXE flag.
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Figure 13.38 User model for receive buffer organization

Receive Storage Structure (1 of 2)

• Received messages are 
stored in a five-stage FIFO 
data structure.

• The message buffers are 
alternately mapped into a 
single memory area 
referred to as the 
foreground receive buffer.

• The application reads the 
foreground receive buffer 
to access the received 
message.
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Receive Storage Structure (2 of 2)

• When a valid message is received at the background 
receive buffer, it will be transferred to the foreground 
receive buffer and the RXF flag will be set to 1. 
(CANxRFLG & RXF)

• The user’s program has to read the received message from 
the RxFG and then clear the RXF flag to acknowledge the 
interrupt and to release the foreground receive buffer.

• When all receive buffers in the FIFO are filled with 
received messages, an overrun condition may occur. 
(CANxRFLG & OVRIF)
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Initialization

• 5.1 MSCAN initialization
– The procedure to initially start up the MSCAN module out of reset is as 

follows:
1. Assert CANE [CAN0CTL1 = CANE;]
(INITRQ and INITAK cycle inserted here in ECE code)
2. Write to the configuration registers in Initialization Mode
3. Clear INITRQ to leave Initialization Mode and enter Normal Mode

[CAN0CTL0 &= ~(INITRQ);
while((CAN0CTL0 & SYNCH) == 0x00)  { asm("nop");}]

– If the configuration of registers which are writable in Initialization Mode 
only needs to be changed when the MSCAN module is in Normal Mode:

1. Make sure that the MSCAN transmission queue gets empty and bring the 
module into Sleep Mode by asserting SLPRQ and awaiting SLPAK

2. Enter Initialization Mode: Assert INITRQ and await INITAK
3. Write to the configuration registers in Initialization Mode
4. Clear INITRQ to leave Initialization Mode and continue in Normal Mode

ECE 4510 47
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Initialization Request and 
Acknowledge

• Initialization request and acknowledgement phases
CAN0CTL0 = INITRQ;                  //initialize the CAN
while((CAN0CTL1 & INITAK)==0x00)
{

asm("nop"); // Waiting for the acknowledge of the init req.
}

ECE 4510 48
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RXFRM RXACT CSWAI SYNCH TIME WUPE SLPRQ INITRQ

01234567

0 0 0 0 0 0 0 1reset:

RXFRM: Received frame flag
    0 = no valid message was received
    1 = a valid message was received since last clearing of this flag
RXACT: Receiver active status
    0 = MSCAN is transmitting or idle
    1 = MSCAN is receiving a message (including when arbitration is lost)
CSWAI: CAN stops in wait mode
    0 = the module is not affected during wait  mode
    1 = the module ceases to be clocked during wait mode
SYNCH: synchronization status
    0 = MSCAN is not synchronized to the CAN bus
    1 = MSCAN is synchronized to the CAN bus
TIME: Timer enable
    0 = disable internal MSCAN timer
    1 = enable internal MSCAN timer and hence enable time stamp
WUPE: Wake-up enable
    0 = wake-up disabled (MSCAN ignores traffic on CAN bus)
    1 = wake-up enabled (MSCAN is able to restart)
SLPRQ: Sleep mode request
    0 = running--The MSCAN functions normally
    1 = sleep mode request--The MSCAN enters sleep mode when CAN is idle
INITRQ: Initialization mode request
    0 = normal operation
    1 = MSCAN in initialization mode

Figure 13.17 MSCAN control register 0 (CANxCTL0, x = 0, 1, 2, 3, or 4)

MSCAN Control Register 0 
(CANxCTL0)
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CANE CLKSRC LOOPB LISTEN 0 WUPM SLPAK INITAK

01234567

0 0 0 1 0 0 0 1reset:

CANE: MSCAN enable
    0 = The MSCAN module is disabled.
    1 = The MSCAN module is enabled.
CLKSRC: MSCAN clock source
    0 = The MSCAN clock source is the oscillator clock.
    1 = The MSCAN clock source is the bus clock.
LOOPB: Loop back self test mode
    0 = Loop back self test disabled
    1 = Loop back self test enabled
LISTEN: Listen only mode
    0 = Normal operation
    1 = Listen only mode activated.
WUPM: Wake-up mode
    0 = MSCAN wakes up the CPU after any recessive to dominant edge on the
          CAN bus and WUPE bit of the CANCTL0 register is set to 1.
    1 = MSCAN wakes up the CPU only in case of a dominant pulse on the CAN
          bus that has a length of TWUP and the WUPE bit is set to 1.
SLPAK: Sleep mode acknowledge
    0 = running--The MSCAN functions normally
    1 = sleep mode active--The MSCAN has entered sleep mode.
INITAK: Initialization mode acknowledge
    0 = normal operation--The MSCAN operates normally.
    1 = Initialization mode active--The MSCAN is in initialization mode.

Figure 13.18 MSCAN control register 1 (CANxCTL1, x = 0, 1, 2, 3, or 4)

MSCAN Control Register 1 
(CANxCTL1)



Material from or based on: The HCS12/9S12: An Introduction to Software & Hardware 
Interfacing, Thomson Delmar Learning, 2006.

CAN Modes after Initialization

ECE 4510 51

• Typically: 
Idle to TX/RX 
message active to Idle 
again.

• Sleep Mode used for 
powering down uP 
and CAN.
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fTq = fCANCLK  prescaler

Bus clock

Oscillator clock

CLKSRC

Prescaler
(1...64)

MSCAN

Time quanta clock (Tq)

CLKSRC

CANCLK

Figure 13.39 MSCAN clocking scheme

MSCAN Clock System

• Either the bus clock or the crystal oscillator output can be used as the 
CANCLK.

• The clock source has to be chosen so that it meets the 0.4% tolerance 
requirement of the CAN protocol. (Use OSCCLOCK)

• If the bus clock is generated from a PLL, it is recommended to select 
the oscillator clock rather than the bus clock due to the jitter 
considerations, especially at the higher baud rate.

• A programmable prescaler generates the time quanta (Tq) clock from 
the CANCLK.
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NRZ signal

SYNC_SEG Time segment 1
(prop_seg + phase_seg1)

Time segment 2
(phase_seg2)

1 4 ... 16 2 ... 8

8 ... 25 time quanta
= 1 bit time

Sample point
(single or tripple sampling)

Transmit point

Figure 13.40 Segments within the bit time

MSCAN Bit Time

• MSCAN divides a bit time into three segments:
– Sync_seg: fixed at one time quantum
– Time segment 1: This segment includes the prop_seg and 

phase_seg1 of the CAN standard.
– Time segment 2: This segment represents the phase_seg2 of the 

CAN standard.

//supports 1 Mbps using a 16 MHz crystal 
//and 8 MHz OSCCLOCK 
//Baud Rate Prescaler for 8 MHz TQ clock (8 MHz/1)
CAN0BTR0 |= 0x00; .
//synchronizaiton jump width are one (SJW = 1Tq). 
CAN0BTR0 &= ~(SJW1 | SJW0);
//one sample per bit, TSEG2 = 3 Tq, TSEG1+PROPSEG = 4 Tq

//8Tq = 1 Sync_seg + 4 (TSEG1+PROPSEG) + 3 TSEG2 
CAN0BTR1 |= (TSEG21 |TSEG11 |TSEG10 );
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SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0

01234567

0 0 0 0 0 0 0 0reset:

SJW1, SJW0: Synchronization jump width
    00 = 1 Tq clock cycle
    01 = 2 Tq clock cycle
    10 = 3 Tq clock cycle
    11 = 4 Tq clock cycle
BRP5~BRP0: Baud rate prescaler
    000000 = 1
    000001 = 2
    000010 = 3
    ....
    111110 = 63
    111111 = 64

Figure 13.19 MSCAN bus timeing register 0 (CANxBTR0, x = 0, 1, 2, 3, or 4)

MSCAN Bus Timing Register 0 
(CANxBTR0)

• This register selects the synchronization jump width and 
the baud rate prescale factor.

OSCCLOCK
qunata f

T rBRPrescala
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SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10

01234567

0 0 0 0 0 0 0 0reset:

SAMP: Sampling
    0 = One sample per bit
    1 = Three samples per bit
TSEG22~TSEG20: Time segment 2
    000 = 1 Tq clock cycle
    001 = 2 Tq clock cycles
    ....
    110 = 7 Tq clock cycles
    111 = 8 Tq clock cycles
TSEG13~TSEG10:  Time segment 1
    0000 = 1 Tq clock cycle
    0001 = 2 Tq clock cycles
    ....
    1110 = 15 Tq clock cycles
    1111 = 16 Tq clock cycles

Figure 13.20 MSCAN bus timeing register 1 (CANxBTR1, x = 0, 1, 2, 3, or 4)

MSCAN Bus Timing Register 1 
(CANxBTR1)

• This register provides control on phase_seg1 and phase_seg2.
• Time Segment1 consists of prop_seg and phase_seg1.

 )211_ TSEGTSEG
f

rBRPrescalatimeBit
OSCCLOCK
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Identifier Acceptance Filter 

• Identifier acceptance registers define the acceptance patterns of the 
standard or extended identifier.

• A message is accepted only if its associated identifier matches one of 
the identifier filters.

– Any of the bits in the acceptance identifier can be marked “don’t care” in the 
MSCAN identifier mask registers.

• A filter hit is indicated by setting a RXF flag to 1 and the three hit bits 
in the CANIDAC register.

• The identifier acceptance filter can be programmed to operate in one of 
the four modes:
– Two 32-bit identifier acceptance filters. This mode may cause up to 2 hits.
– Four 16-bit identifier acceptance filters. This mode may cause up to 4 hits.
– Eight 8-bit identifier acceptance filters. This mode may cause up to 8 hits.
– Closed filter. No CAN message is copied into the foreground buffer 

RxFG.
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32-bit Identifier Acceptance
(MASK and ID Values)

• CANxIDMR0-7 provide masking of whether an identifier 
bit is tested or not

• CANxIDR0-7 provides the value to compare for unmasked 
bits

ECE 4510 57
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16-bit Identifier Acceptance
(MASK and ID Values)

ECE 4510 58

• CANxIDMR0-7 provide masking 
of whether an identifier bit is 
tested or not

• CANxIDR0-7 provides the value 
to compare for unmasked bits
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ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

ID20 ID19 ID18 SRR(=1)IDE(=1) ID17 ID16 ID15

ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7

ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR

7 6 5 4 3 2 1 0

Figure 13.34 Receive/transmit message buffer extended identifier

IDR0

IDR1

IDR2

IDR3

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3

ID2 ID1 ID0 RTR IDE(=0)

7 6 5 4 3 2 1 0

Figure 13.35 Receive/transmit message buffer standard identifier

IDR0

IDR1

IDR2

IDR3

Identifier Registers (IDR0~IDR7)

• Only the “first two” identifier registers are compared when 
a message with standard identifier is received.

CANxIDAC
32-bit: IDR0-3 and IDR4-7
16-bit: IDR0-1, IDR2-3, IDR4-5, 

IDR6-7
8-bit: IDRx, x=0-7

For 11-bit address frames, 
use 4x16-bit
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ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

ID20 ID19 ID18 SRR(=1)IDE(=1) ID17 ID16 ID15

ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7

ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR

7 6 5 4 3 2 1 0

Figure 13.34 Receive/transmit message buffer extended identifier

IDR0

IDR1

IDR2

IDR3

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3

ID2 ID1 ID0 RTR IDE(=0)

7 6 5 4 3 2 1 0

Figure 13.35 Receive/transmit message buffer standard identifier

IDR0

IDR1

IDR2

IDR3

ID MASK Registers 
(IDMR0~IDMR7)

• Masks whether to compare (set to 0) or not compare the bit 
(set to 1).

CANxIDAC
32-bit: IDMR0-3 and IDMR4-7
16-bit: IDMR0-1, IDMR2-3, 

IDMR4-5, IDMR6-7
8-bit: IDMRx, x=0-7

For 11-bit address frames, 
use 4x16-bit
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MSCAN Interrupt Operation

• Transmit interrupt (CANxTFLG and CANxTIER)
– At least one of the three transmit buffers is empty, its TXEx flag is set.

• Receive interrupt (CANxRFLG and CANxRIER)
– When a message is successfully received and shifted to the foreground 

buffer of the receive FIFO. The associated RXF flag is set.
• Wakeup interrupt (CANxRFLG and CANxRIER)

– Activity on the CAN bus occurred during the MSCAN internal sleep 
mode generates this type of interrupts.

• Error interrupt (CANxRFLG and CANxRIER)
– An overrun of the receiver FIFO, error, warning, or bus-off condition may 

generate an error interrupt.
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Receiving Data

• CANxRFLG
– Check for RXF to make sure 

foreground receibve buffer is full

• Collect the address, 11-bit in 
CANxIDRO0 and CANxIDRO1
– Right align address

• Check Data size
– Read CANxRXDLR

• Collect the Received data into a 
buffer

ECE 4510 62

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3

ID2 ID1 ID0 RTR IDE(=0)

7 6 5 4 3 2 1 0

Figure 13.35 Receive/transmit message buffer standard identifier

IDR0

IDR1

IDR2

IDR3

can.data.data_u8[0] = CAN0RXDSR0;
can.data.data_u8[1] = CAN0RXDSR1;
can.data.data_u8[2] = CAN0RXDSR2;
can.data.data_u8[3] = CAN0RXDSR3;
can.data.data_u8[4] = CAN0RXDSR4;
can.data.data_u8[5] = CAN0RXDSR5;
can.data.data_u8[6] = CAN0RXDSR6;
can.data.data_u8[7] = CAN0RXDSR7;
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WUPIF CSCIF RSTAT1 RSTAT0 TSTAT1 TSTAT0 OVRIF RXF

01234567

0 0 0 0 0 0 0 0reset:

WUPIF: Wake-up interrupt flag
    0 = No wake-up activity observed while in sleep mode
    1 = MSCAN detected activity on the bus and requested wake-up
CSCIF: CAN status change interrupt flag
    0 = No change in bus status occurred since last interrupt
    1 = MSCAN changed current bus status
RSTAT1~RSTAT0:  Receiver status bits
    00 = RxOK: 0  Receive error counter 96
    01 = RxWRN: 96 < Receive error counter 127
    10 = RxERR: 127 < Receive error counter
    11 = Bus-off1: Transmit error counter > 255
TSTAT1~TSTAT0: Transmitter status bits
    00 = TxOK: 0  Transmit error counter  96
    01 = TxWRN: 96 < Transmit error counter  127
    10 = TxERR: 127 < Transmit error counter
    11 = Bus-off: Transmit error counter > 255
OVRIF: Overrun interrupt flag
    0 = No data overrun occurred
    1 = A data overrun detected
RXF: Receive buffer full flag
    0 = No new message availale within the RxFG
    1 = The receive FIFO is not empty. A new message is available in the RxFG.
Note 1. This information is redundant. As soon as the transmitter leaves its bus
    off state, the receiver state skips to RxOK too.

Figure 13.21 MSCAN receiver flag register (CANxRFLG, x = 0, 1, 2, 3, or 4)

MSCAN Receiver Flag Register 
(CANxRFLG)

• The flag bits 
WUPIF, CSCIF, 
OVRIF, and RXF 
are cleared by 
writing a “1” to 
them.
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Transmit Data

• Find an empty transmit buffer
– CANxTFLG: TXE2, TXE1 or TXE0
– Wait until one is available

• Select the transmit buffer to write to
– CANxTBSEL:  TX2, TX1, or TX0
– CANxTBSEL = CANxTFLG; // select the lowest numbered TX buffer

• Write Address (CANxTXIDRO0-4)
• Write Data Length (CANxTXDLR)
• Write Data (CANxTXDSR0-7)
• Set the buffer as ready to send

– CANxTFLG |= CANTBSEL

ECE 4510 64
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0 0 0 0 0 TXE2 TXE1 TXE0

01234567

0 0 0 0 0 1 1 1reset:

TXE2~TXE0: Transmitter buffer empty
    0 = The associated message buffer is full (loaded with a message due for
           transmission).
    1 = The associated message buffer is empty.

Figure 13.23 MSCAN transmitter flag register (CANxTFLG, x = 0, 1, 2, 3, or 4)

MSCAN Transmitter Flag Register 
(CANxTFLG)

• This flag indicates that the associated transmit message 
buffer is empty, and thus not scheduled for transmission. 

• The CPU must clear the flag after a message is set up in 
the transmit buffer and is due for transmission. Write of ‘1’ 
clears flag, write of ‘0’ ignored

• The MSCAN sets the flag after the message is sent 
successfully.
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0 0 0 0 0 TX2 TX1 TX0

01234567

0 0 0 0 0 0 0 0reset:

TX2~TX0: Transmit buffer select bits
    0 = The associated message buffer is deselected.
    1 = The associated message buffer is selected, if it is the lowest numbered bit.

Figure 13.27 MSCAN transmitter buffer select register
                      (CANxTBSEL, x = 0, 1, 2, 3, or 4)

MSCAN Transmit Buffer Selection 
(CANxTBSEL)

• This register selects the actual message buffer that will be 
accessible in the CANTxFG register space.

• The lowest numbered bit which is set makes the respective 
transmit buffer accessible to the user.
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Figure 13.41 A typical CAN bus setup using cable

CAN_H

CAN_L

RT
(120 

Physical CAN Bus Connection

• CAN is designed for data communication over a short 
distance.

• CAN protocol does not specify what medium to use for 
data communication.

• Using a shielded or unshielded cable is recommended for a 
short distance communication.

• A typical CAN bus setup using a cable is shown. 
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Interfacing the CAN to the HCS12
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CAN Transceiver PCA82C250

ECE 4510 69

• Built into the Adapt modules for CAN0 (J6) and CAN1 (J7)
– Rs=10k
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Sunseeker Based CAN C functions

• CAN function calls for initialization, can_receive and 
can_transmit. 
– can0_hcs.c
– can0_hcs.h

• Transmit uses of to three predefined addresses or makes a new one 
when a transmit is to be sen

• Receive is based on an interrupt or poll identifying that a can_receive 
is required prior to the function call.

• The original Tritium driver controller MSP430 code that 
calls can-transmit and can-receive.
– tri63.c
– tri63.h

ECE 4510 70
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Miscellaneous Textbook Info

• CAN Timing Parameters
• Optimal Bit Timing Parameters
• Example 13.1
• C function to initialize the CAN1 Module
• C function for CAN1 Data Transmission
• C function for Interrupt Driven Data Reception

ECE 4510 71
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• Let tBUS, tTX, and tRX represent the data traveling time 
on the bus, transmitter propagation delay, and receiver 
propagation delay, respectively.
– The worst-case value for tPROP_SEG is 
– tPROP_SEG = 2  (tBUS + tTX + tRX)

(13.4)
– In units of time quantum,
– prop_seg = round_up (tPROP_SEG  tQ) (13.5)

Table 13.3 CAN bus bit rate /bus length relation

Bit rate (kbit/s) Bus length

1000
500
250
125
62.5

40
100
250
500

1000

Setting the CAN Timing Parameters 
(1 of 2)



Material from or based on: The HCS12/9S12: An Introduction to Software & Hardware 
Interfacing, Thomson Delmar Learning, 2006.

Setting the CAN Timing Parameters 
(2 of 2)

• In the absence of bus errors, bit stuffing guarantees a maximum 10-bit 
period between resynchronization edges.

• The accumulated phase errors are due to the tolerance in the CAN 
system clock. This requirement can be expressed as 

• (2  f)  10  tNBT < tRJW (13.6)
• where,  f is the largest crystal oscillator frequency variation.

• When bus error exists, an error flag from an error active node consists 
of six dominant bits, and there could be up to six dominant bits before 
the error flag, if, for example, the error was a stuff error.

• A node must correctly sample the 13th bit after the last 
resynchronization. This can be expressed as

• (2   f)  (13  tNBT – tPHASE_SEG2) < min (tPHASE_SEG1, 
tPHASE_SEG2) (13.7)
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Procedure for Determining the Optimum 
Bit Timing Parameters (1 of 2)

• Step 1
– Determine the minimum permissible tprop_seg using equation 

13.4.

• Step 2
– Choose the CAN system clock frequency. The CAN system clock 

frequency will be either the CPU oscillator output or the bus clock 
divided by a prescale factor. The chosen clock frequency must 
make the tNBT an integral multiple of tQ  from 8 to 25.

• Step 3
– Calculate the prop_seg duration using equation 13.5. If the 

resultant value is greater than 8, go back to Step 2 and choose a 
lower CAN system clock frequency.
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Procedure for Determining the Optimum 
Bit Timing Parameters (2 of 2)

• Step 4
– Determine phase1_seg and phase_seg2. Subtract the prop_seg value and 1 

from the time quanta contained in a bit time. If the difference is less than 3 
than go back to Step 2 and select a higher CAN system clock frequency. If 
the difference is 3, then phase_seg1 = 1 and phase_seg2 = 2 and only one 
sample per bit may be chosen. If the difference is an odd number greater 
than 3, then add 1 to the prop_seg value and recalculate. Otherwise divide 
the remaining number by two and assign the result to phase_seg1 and 
phase_seg2.

• Step 5 
– Determine the resynchronization jump width (RJW). RJW is the smaller 

one of 4 and phase_seg1. 
• Step 6

– Calculate the required oscillator tolerance from equation 13.6 and 13.7. If 
phase_seg1 > 4, it is recommended that you repeat Steps 2 to 6 with a 
larger value for the prescaler.
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• Example 13.1 Calculate the CAN bit segments for the following constraints:

– Bit rate = 1 Mbps
– Bus length = 25 m
– Bus propagation delay = 5  10-9 sec/m
– CAN transceiver plus receiver propagation delay = 150 ns at 85oC
– CPU oscillator frequency = 24 MHz

• Solution:

– Step 1
Physical delay of the CAN bus = 25  5 = 125 ns
tPROP_SEG = 2  (125 + 150) = 550 ns 
– Step 2
A prescaler of 1 for 24 MHz gives a time quantum of 41.67 ns. 
One bit time is 1/1 Mbps = 1 s. 
One bit time (NBT) corresponds to 24 (= 1000 ns  41.67) time quanta.

Example 13.1 
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– Step 3
Prop_seg = round_up (550 ns  41.67) = 14 > 8. Set prescaler to 2. Then one time quantum is 
83.33 ns and one bit time is 12 time quanta. The new prop_seg = 7.
– Step 4
NBT – prop_seg1 – sync_seg = 12 – 7 – 1 = 4.
phase_seg1 = 4/2 = 2, 
phase_seg2 = 4 – phase_seg1 = 2
– Step 5
RJW = min (4, phase_seg1) = 2
– Step 6
From equation 13.7,

f < RJW  (20  NBT) = 2  (20  12) = 0.83% 

From equation 13.8,
f < min(phase_seg1, phase_seg2)  [2  (13  NBT – phase_seg2)]
= 2  308 = 0.65%

The desired oscillator tolerance is 0.65%.
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• Most crystal oscillators have tolerance smaller than 0.65%.
•In summary,

Prescaler = 2
Nominal bit time = 12
prop_seg = 7
sync_seg = 1
phase_seg1 = 2
phase_seg2 = 2
RJW = 2
oscillator tolerance = 0.65% 
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void openCan1(void)
{

CAN1CTL1 |= CANE; /* enable CAN, required after reset */
CAN1CTL0 |= INITRQ; /* request to enter initialization mode */
while(!(CAN1CTL1&INITAK)); /* wait until initialization mode is entered */
CAN1CTL1 = 0x84;    /* enable CAN1, select oscillator as MSCAN clock

source, enable wakeup filter */
CAN1BTR0 = 0x41;    /* set SJW to 2, set prescaler to 2 */
CAN1BTR1 = 0x18;    /* set phase_seg2 to 2Tq, phase_seg1 to 2Tq,

prop_seg to 7 Tq */
CAN1IDAR0 = 0x54;   /* set acceptance identifier "T1" */
CAN1IDAR1 = 0x3C;   /* "   */
CAN1IDAR2 = 0x40;   /* "   */
CAN1IDAR3 = 0x00;   /* "   */
CAN1IDMR0 = 0x00;   /* acceptance mask for "T1" */
CAN1IDMR1 = 0x00;   /* "          */
CAN1IDMR2 = 0x3F;   /* "          */
CAN1IDMR3 = 0xFF;   /* "          */

C Function to Initialize the CAN1 
Module
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CAN1IDAR4 = 0x50;   /* set acceptance identifier "P1" */
CAN1IDAR5 = 0x3C;   /* "   */ CAN1IDAR6 = 0x40;   /* "   */
CAN1IDAR7 = 0x00;   /* "   */
CAN1IDMR4 = 0x00;   /* acceptance mask for "P1" */
CAN1IDMR5 = 0x00;   /* "          */
CAN1IDMR6 = 0x3F;   /* "          */
CAN1IDMR7 = 0xFF;   /* "          */
CAN1IDAC  = 0x00;   /* select two 32-bit filter mode */

CAN1CTL0  &= ~INITRQ; /* exit initialization mode *
CAN1CTL0 = 0x24;    /* stop clock on wait mode, enable wake up */

}
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void snd2can1(char *ptr)
{

int tb,i,*pt1,*pt2;
pt1 = (int *)ptr;  /* convert to integer pointer */
while(1) { /* find an empty transmit buffer */
if(CAN1TFLG & 0x01){

tb = 0;
break;

}
if(CAN1TFLG & 0x02){

tb = 1;
break;

}
if(CAN1TFLG & 0x04){

tb = 2;
break;

}
}
CAN1TBSEL = CAN1TFLG; /* make empty transmit buffer accessible */
pt2 = (int *)&CAN1TIDR0;      /* pt2 points to the IDR0 of TXFG */

C Function for CAN1 Data 
Transmission
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for (i = 0; i < 7; i++) /* copy the whole transmit buffer */
*pt2++ = *pt1++;
if (tb == 0)

CAN1TFLG = 0x01;   /* mark buffer 0 ready for transmission */
else if (tb == 1)

CAN1TFLG = 0x02;   /* mark buffer 1 ready for transmission */
else

CAN1TFLG = 0x04;   /* mark buffer 2 ready for transmission */
}
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#include “c:\egnu091\include\hcs12.h”
#include “c:\egnu091\include\vectors12.h”
#include “c:\egnu091\include\delay.c”
#include “c:\egnu091\include\lcd_util_SSE256.c”
#define INTERRUPT __attribute__((interrupt))
void INTERRUPT RxISR(void);
void openCan1(void);
char *t1Msg = "Temperature is";
char *v1Msg = "Voltage is";
int main (void)
{

UserMSCAN1Rx = (unsigned short) &RxISR;
openCan1();
openlcd();
CAN1RIER = 0x01;    /* enable CAN1 RXF interrupt only */
asm("cli");
while(1); /* wait for RXF interrupt */
return 0;

}

C Program for the Interrupt-driven 
Data Reception in CAN Bus
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void INTERRUPT RxISR (void)
{

char tmp,i,*ptr;
if (!(CAN1RFLG & RXF))  /* interrupt not caused by RXF, return */

return;
tmp = CAN1IDAC & 0x07;  /* extract filter hit info */
if (tmp == 0) { /* filter 0 hit */

if (CAN1RDLR==0)     /* data length 0, do nothing */
return;

cmd2lcd(0x80); /* set LCD cursor to first row */
puts2lcd(t1Msg); /* output "Temperature is" on LCD */
cmd2lcd(0xC0); /* set LCD cursor to second row */
ptr = (char *)&CAN1RDSR0;  /* ptr points to the first data byte */
for (i = 0; i < CAN1RDLR; i++)

putc2lcd(*ptr++); /* output temperature value on the LCD 2nd row */
}
else if (tmp == 1) { /* filter 1 hit */

if(CAN1RDLR == 0)   /* data length 0, do nothing */
return;

cmd2lcd(0x80); /* set LCD cursor to first row */
puts2lcd(v1Msg); /* output "Voltage is" on the 1st row of LCD */
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cmd2lcd(0xC0); /* set LCD cursor to second row */
ptr = (char *)&CAN1RDSR0;  /* PTR points to the first data byte */
for(i = 0; i < CAN1RDLR; i++)

putc2lcd(*ptr++); /* output voltage value on the 2nd row of LCD */
}
else asm(“nop”);  /* other hit, do nothing */

}


