ECE 5314: Power System Operation \& Control

Lecture 2: Convex Sets and Convex Functions

Vassilis Kekatos

R3 S. Boyd and L. Vandenberghe, Convex Optimization, Chapters 2.1-2.3, 3.1-3.3.

What is an optimization problem?

Minimization of a function subject to constraints on its variables

$$
\begin{array}{lll}
\min _{\mathbf{x}} & f_{0}(\mathbf{x}) & \\
\text { s.to } & g_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m & \text { (inequality constraints) } \\
& h_{j}(\mathbf{x})=0, \quad j=1, \ldots, p & \text { (equality constraints) }
\end{array}
$$

- vector of unknowns or variables $\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{\top}$
- objective or cost function $f_{0}(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$
- constraint functions $g_{i}(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $h_{j}(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$
- feasible set: the set of points satisfying all constraints

$$
\mathcal{X}:=\left\{\mathbf{x}: g_{i}(\mathbf{x}) \leq 0, i=1, \ldots, m ; h_{j}(\mathbf{x})=0, j=1, \ldots, p\right\}
$$

A simple example

$$
\begin{array}{ll}
\min _{x} & \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} \\
\text { s.to } & x_{1}^{2}-x_{2} \leq 0 \\
& x_{1}+x_{2} \leq 2
\end{array}
$$

Figure: Nocedal-Wright, Numerical Optimization

Economic dispatch problem

- N generation units serving load P_{L}
- power output of unit i is $P_{G_{i}}[\mathrm{MW}]$
- generation cost for unit is $C_{i}\left(P_{G_{i}}\right)[\$ / \mathrm{h}]$

Problem: find the most economical power schedule

$$
\begin{aligned}
\min _{\left\{P_{G_{i}}\right\}_{i=1}^{N}} & \sum_{i=1}^{N} C_{i}\left(P_{G_{i}}\right) \\
\text { s.to } & \sum_{i=1}^{N} P_{G_{i}}=P_{L} \\
& P_{G_{i}} \geq 0, i=1, \ldots, N
\end{aligned}
$$

Difficult versus easy problems

Convex vs. nonconvex: dividing line between easy and difficult problems

Convex problem: convex objective $f_{0}(\mathbf{x})$ and convex feasible set \mathcal{X}

$$
\min _{\mathbf{x} \in \mathcal{X}} f_{0}(\mathbf{x})
$$

Features of convex problems:

1. Every local minimum is a global minimum
2. Computationally tractable

- computation time grows gracefully with problem size
- non-heuristic stopping criteria and provable lower bounds

3. Occur often in engineering; yet sometimes hard to recognize

Convex sets

$\mathcal{X} \subseteq \mathbb{R}^{n}$ is convex if

$$
\mathbf{x}, \mathbf{y} \in \mathcal{X} \quad \Longrightarrow \theta \mathbf{x}+(1-\theta) \mathbf{y} \in \mathcal{X} \quad \text { for all } \theta \in[0,1]
$$

geometrically: $\mathbf{x}, \mathbf{y} \in \mathcal{X} \Rightarrow$ line segment from \mathbf{x} to \mathbf{y} belongs to \mathcal{X}

Examples: which are convex?

Q.2.1 Show that $\mathcal{X}=\left\{\mathbf{x}: \mathbf{x}=\mathbf{A v}+\mathbf{b}\right.$ for some $\left.\mathbf{v} \in \mathbb{R}^{m}\right\}$ is convex.
Q.2.2 Show that $\mathcal{X}=\{\mathbf{x}: \mathbf{B x}=\mathbf{d}\}$ is convex.

Hyperplanes and halfspaces

hyperplane $\left\{\mathbf{x} \mid \mathbf{a}^{\top} \mathbf{x}=b\right\}$
alternative representation $\left\{\mathbf{x} \mid \mathbf{a}^{\top}\left(\mathbf{x}-\mathbf{x}_{0}\right)=0\right\}$
\mathbf{a} is normal vector; \mathbf{x}_{0} lies on hyperplane
halfspace $\left\{\mathbf{x} \mid \mathbf{a}^{\top} \mathbf{x} \leq b\right\}$
alternative representation $\left\{\mathbf{x} \mid \mathbf{a}^{\top}\left(\mathbf{x}-\mathbf{x}_{0}\right) \leq 0\right\}$
\mathbf{a} is outward normal vector; \mathbf{x}_{0} lies on boundary

Q.2.3 Show that both sets are convex.

Set operations that preserve convexity

Intersection: the intersection of convex sets is also a convex set!
Q.2.4 How about unions or differences of convex sets?

Convex hull: $\operatorname{conv}(\mathcal{X})$ is the set of all convex combinations of the points in \mathcal{X}

- Convex combination of $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right\}$ is

$$
\mathbf{x}_{\theta}=\theta_{1} \mathbf{x}_{1}+\ldots+\theta_{k} \mathbf{x}_{k} \text { with } \theta_{i} \geq 0 \text { and } \sum_{i=1}^{k} \theta_{i}=1
$$

- Examples:

Q.2.5 If $\mathcal{X}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ and \mathbf{e}_{i} are the canonical vectors in \mathbb{R}^{3}, find $\operatorname{conv}(\mathcal{X})$? Repeat for $\mathcal{X}=\left\{\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$?

Polyhedra

Polyhedron is the solution set of finitely many linear inequalities and equalities

$$
\mathcal{P}=\{\mathbf{x} \mid \mathbf{A} \mathbf{x} \preceq \mathbf{b}, \mathbf{C x}=\mathbf{d}\}
$$

Symbol \preceq for component-wise inequality. Equalities as two inequalities.

Figure: Source [R3]

A bounded polyhedron is called a polytope

Economic dispatch

- N generators serve load P_{L}
- generation costs $C_{i}\left(P_{G_{i}}\right) \$ / \mathrm{h}$

$$
\begin{aligned}
\min _{\left\{P_{G_{i}}\right\}_{i=1}^{N}} & \sum_{i=1}^{N} C_{i}\left(P_{G_{i}}\right) \\
\text { s.to } & \sum_{i=1}^{N} P_{G_{i}}=P_{L} \\
& 0 \leq P_{G_{i}} \forall i
\end{aligned}
$$

- Is the feasible set convex? Polyhedron?
- What if units have production limits, i.e., $P_{G_{i}} \leq P_{G_{i}}^{\max }$?

Norm balls and cones

Norm ball: $\mathcal{B}=\left\{\mathbf{x}:\left\|\mathbf{x}-\mathbf{x}_{c}\right\| \leq 1\right\} \subset \mathbb{R}^{N}$ is convex
example: ℓ_{p}-norms in \mathbb{R}^{2}

Norm cone: $\mathcal{C}=\{(\mathbf{x}, t):\|\mathbf{x}\| \leq t\} \subset \mathbb{R}^{N+1}$ is a convex cone example: second-order cone or Lorentz cone $S=\left\{(\mathbf{x}, t):\|\mathbf{x}\|_{2} \leq t\right\}$

Q.2.6 The second-order cone (SOC) constr. $\|\mathbf{A x}+\mathbf{b}\|_{2} \leq \mathbf{c}^{\top} \mathbf{x}+d$ is convex

Ellipsoids

$$
\mathcal{E}_{1}=\left\{\mathbf{x}:\left(\mathbf{x}-\mathbf{x}_{c}\right)^{\top} \mathbf{A}^{-1}\left(\mathbf{x}-\mathbf{x}_{c}\right) \leq 1\right\} \text { where } \mathbf{A} \in \mathbb{S}_{++}^{n} \text { and } \mathbf{x}_{c} \in \mathbb{R}^{n} \text { (center) }
$$

- semiaxis length: $\sqrt{\lambda_{i}} ; \lambda_{i}$ eigenvalues of \mathbf{A}
- semiaxis directions: eigenvectors of \mathbf{A}

Figure: Source [R3]
Q.2.7 Show that an ellipsoid is a convex set.
Q.2.8 Find matrix \mathbf{B} so that $\mathcal{E}_{2}=\left\{\mathbf{B u}+\mathbf{x}_{c}:\|\mathbf{u}\|_{2} \leq 1\right\}$ is an alternative representation for ellipsoid \mathcal{E}_{1}.

Linear matrix inequalities
Symmetric matrices: $\mathbb{S}^{n}=\left\{\mathbf{X} \in \mathbb{R}^{n \times n}: \mathbf{X}=\mathbf{X}^{\top}\right\}$ (set of linear equalities)

Symmetric PSD cone: $\mathbb{S}_{+}^{n}=\left\{\mathbf{X} \in \mathbb{S}^{n}: \mathbf{X} \succeq \mathbf{0}\right\}$ is a convex cone

$$
\mathbf{X} \in \mathbb{S}_{+}^{n} \quad \Longleftrightarrow \quad \mathbf{z}^{\top} \mathbf{X} \mathbf{z} \geq 0 \text { for all } \mathbf{z} \in \mathbb{R}^{n}
$$

(intersection of infinite number of halfspaces)

Example:

$\mathbb{S}_{+}^{2}:=\left\{(x, y, z):\left[\begin{array}{ll}x & y \\ y & z\end{array}\right] \succeq 0\right\}$

Figure: Source [R3]

Convex functions

- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if its domain is convex set and for all \mathbf{x}, \mathbf{y} :

$$
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}) \text { for all } \theta \in[0,1]
$$

Figure: Source [R3]

- f is concave if $-f$ is convex
- f is strictly convex if strict inequality for $\theta \in(0,1)$

First- and second-order conditions for convexity

1st-order condition: differentiable f is convex iff

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{\top}(\mathbf{y}-\mathbf{x}) \text { for all } \mathbf{x}, \mathbf{y} \in \operatorname{dom} f
$$

- first-order (Taylor's series) approximation of f is a global underestimator

2nd-order conditions: twice differentiable f with convex $\operatorname{dom} f$:

- f is convex iff $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for all $\mathbf{x} \in \operatorname{dom} f$
- if $\nabla^{2} f(\mathbf{x}) \succ \mathbf{0}$ for all $\mathbf{x} \in \operatorname{dom} f$, then f is strictly convex

Operations that preserve convexity

nonnegative multiple: f convex, $\alpha \geq 0 \Longrightarrow \alpha f$ convex
finite sum: f_{1}, f_{2} convex $\Longrightarrow f_{1}+f_{2}$ convex
pointwise maximum: f_{1}, f_{2} convex $\Longrightarrow \max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x})\right\}$ convex
partial minimization if $f(\mathbf{x}, \mathbf{y})$ is convex in (\mathbf{x}, \mathbf{y}) and C is a convex set, then

$$
g(\mathbf{x})=\min _{\mathbf{y} \in C} f(\mathbf{x}, \mathbf{y}) \text { is convex }
$$

affine transformation of domain: f is convex $\Longrightarrow f(\mathbf{A x}+\mathbf{b})$ convex

Function examples

Examples in \mathbb{R} :

- x^{α} is convex on \mathbb{R}_{++}for $\alpha \geq 1, \alpha \leq 0$; concave for $\alpha \in[0,1]$
- $e^{\alpha x}$ is convex; $\log x$ is concave
- $|x|, \max \{0, x\}, \max \{0,-x\}$ are convex

Examples in \mathbb{R}^{n} :

- linear and affine functions are both convex and concave!
- vector norms are convex
- piecewise linear functions $f(\mathbf{x})=\max _{i}\left\{\mathbf{a}_{i}^{\top} \mathbf{x}+b_{i}\right\}$ are convex
Q.2.9 Show three of the above claims.

