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Example

A current sheet on z = 0 surface is described by
t
Jo(t) =af(t), with f(t) = Atrect(—).

-
A/ 111
n

embedded in free space, construct the following plots:

where 7 =1 pusand A = 2 . Assuming that the current sheet is

(a) Radiated H,(z,t = 2us) vs 2
(b) Radiated £, (z,t = 2us) vs z




How are the electric fields oriented on the two sides?




Electric Fields. How are the magnetic fields oriented on the two sides?
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Magnetic fields




The complete diagram




3D Spatial Visualization Practice: Rotate by 180° about x in your head




The rotated diagram
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Lecture 20 — Outline

* Poynting vector as power flux carried by EM fields
* Poynting Theorem

* Time-harmonic source

* Monochromatic wave

Reading assighment
Prof. Kudeki’s ECE 329 Lecture Notes on Fields and Waves:
20) Poynting theorem and monochromatic waves



Poynting Vector and Energy Flux

* The magnitude of the Poynting Vector represents instantaneous
power (energy per second) per unit area carried by an EM wave

S=ExH (W/m?
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Poynting Theorem — Derivation from Maxwell’s equations

Dot Faraday and Ampere law by H and E, respectively

0B 0B
oD oD
H: _— p— —_—] .
(V X J+(‘)t) (V x H J+@t)E

and take the difference
H VXE-E - VxH =
OB oD

-H -E—-J-E
ot ot

We are going to use

V:-(AxXxB)=B:-(VxA)—-A - (V xB) -




The various terms can be manipulated as

H- VXE-E-VxH =V (ExH)

0B OouH 0 1
H = . H = —uH - H
Ot Ot o7 ot H)
oD JeE 0 1
B = -E =——(-€¢E - E
Ot Ot B
Putting it all together
V- (ExH)= 8(1E E+1HH)—J-E
( )= 515 ol
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Energy conservation law

J 1 | |
—(=cE-E+-yH-H)+ V- (ExH)+J-E=0
Ot 2 ) N /
Y Y
rate of change in time of electric flux of power out of

energy and magnetic energy elementary volume

J-E=0CE -E=0CGE"

positive value if current density induced by the wave
causes loss in medium with finite conductivity o
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However, a negative valueof J:-E indicates
generation of power fed to the wave. For instance
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Example — Time-harmonic surface current

A

J,=af(t) =12 cos(wt) —

111

® is an arbitrary angular
frequency of oscillation
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Example — Time-harmonic surface current

A
Js=af(t) = 12 cos(wt) —

® is an arbitrary angular
frequency of oscillation

(a) Determine the radiated TEM wave fields E(z, t)

and H(z,?) in the regions z =2 0,

(b) The associated Poynting vectors E x H, and

(¢) Js - E on the current sheet.

Consider free space

f )

f=— and n=mn, ~ 1207

C
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Example — Time-harmonic surface current J if(f) _ 49 (*0‘%(*‘ 1{) A
S J — s b LU -
1m

(a) Determine the radiated TEM wave fields E(z, t)

and H(z,t) in the regions z 2 0

;g

f(f$%)—2£0a[w(z‘i|: )]=2cos(w f¢“:—_f) =2cos(wt F 3z)

N \%
3 (tF — ) n cos(wt F 32) -

Vv vV
E(z,t)=FE, 1 — = —ncos(wt F Bz)r —

111 111

1 z A
H, = $§f(t == ;) = Fcos(wt F B2) 1q

H(z.t) = H,j 4 = F cos(wt F 3@)3’)%




Example — Time-harmonic surface current J - if(f) ) CO‘%(" ,f) A
s — , y — ' AoV WL ) ——
m

(b) The associated Poynting vectors E x H

50 2
ExH=[E, 0 O0|=2EH,
0 H, 0

-' 2 V
E, = _ (tF —) = —ncos(wt FBz) —

2 v m
1 z S0 A
H, = $§f(t T z_) = Fcos(wt F B2) 1q
* W
S=E x H = 49 cos*(wt F 52)% —
111=
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Example — Time-harmonic surface current J, = if(t) = 32 cos(wt) A
S y — AoV W) —
m

(¢) Js - E on the current sheet

_ v
<=0 E(0,t) = —ncos(wt)r —
)
3.(0) - B(0.1) = (&2 cos(wt) =) - (— cos(wt)i ~)
') JU) = (4L COS(Wl) — ) - (—NCOS\WT )xU —
s : X4 COS - 1 CO T -
W

J.(t) - E(0,t) = —2ncos” (wt) —

m2

This term is negative and behaving like a source
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The time-harmonic source we have examined has
produced monochromatic waves characterized by a
single frequency (literally, a single color).

For a monochromatic wave, the instantaneous

Poynting vector is proportional to the square of the
cosine term that can be also written as

; |
cosz(wt + @) = 5{1 + cos(2wt + 2¢)]

For a periodic signal, it is more meaningful to evaluate the

time-average of the Poynting vector, since it quantifies the
overall power flow over time.
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Time average of the Poynting vector

(S(1)) = % [ sy dr = % [ E@xHQ) dr

For our example:  (cos*(wt + ¢)) = (%[1 + cos(2wt + 20)]) = =
(T2 _
(S(z‘)) = iZTJ. COS (a)l‘+ ,BZ) dt

:J_réT 0 2[1+cos 2wt F2z) | dt

time-average power per unit area transported by the radiated
waves on each side of the sheet of current. 25



Injected (generated) Power Density

We have calculated earlier the instantaneous power density
injected by the sheet of current (including both sides):

W

m?2

The time average is obtained from the same integration:

(=Js - B) ' m-? m m>

—J.-E = 2ncos*(wt) —

which is indeed equal to the total time-average power injected
in the space surrounding the sheet of current, as it should be
for conservation of energy.
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