ECE 329 – Fall 2021

Prof. Ravaioli – Office: 2062 ECEB Section E – 1:00pm Form Lecture 19

Example

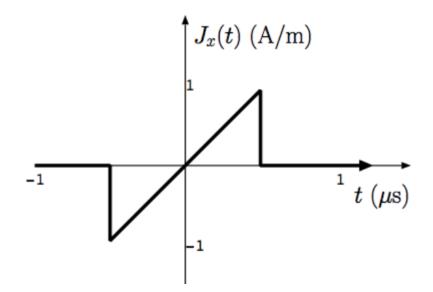
A current sheet on z = 0 surface is described by

$$\mathbf{J}_s(t) = \hat{x}f(t), \text{ with } f(t) = At \operatorname{rect}(\frac{t}{\tau}),$$

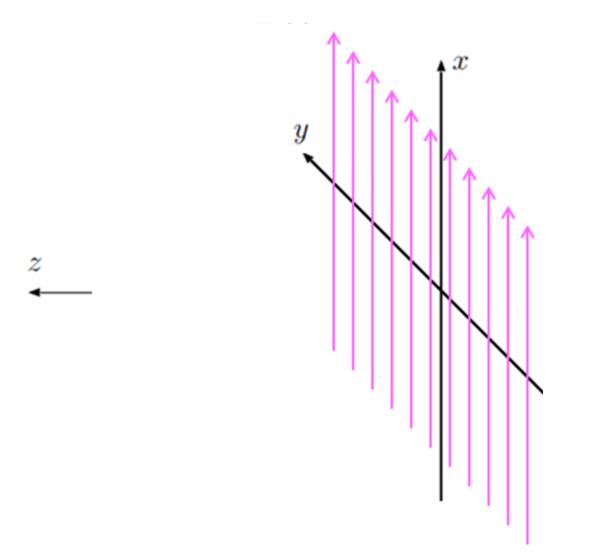
where $\tau = 1 \,\mu s$ and $A = 2 \,\frac{A/m}{\mu s}$. Assuming that the current sheet is embedded in free space, construct the following plots:

(a) Radiated
$$H_y(z, t = 2\mu s)$$
 vs z ,

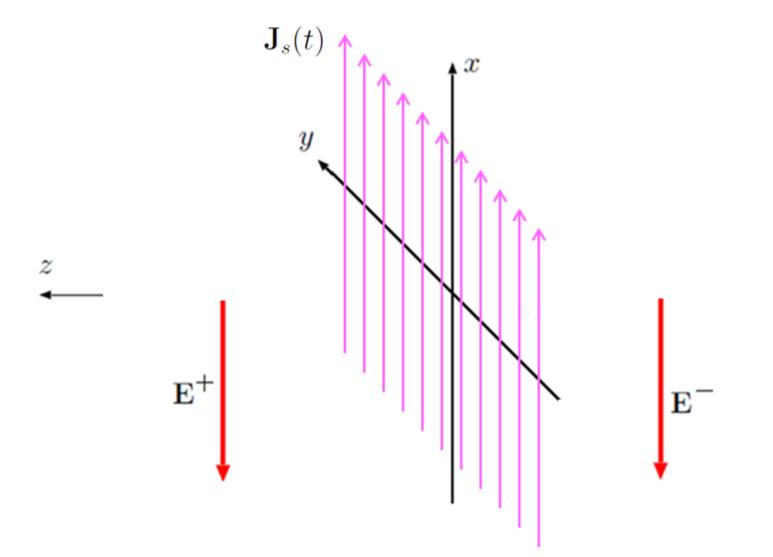
(b) Radiated $E_x(z, t = 2\mu s)$ vs z.



How are the electric fields oriented on the two sides?

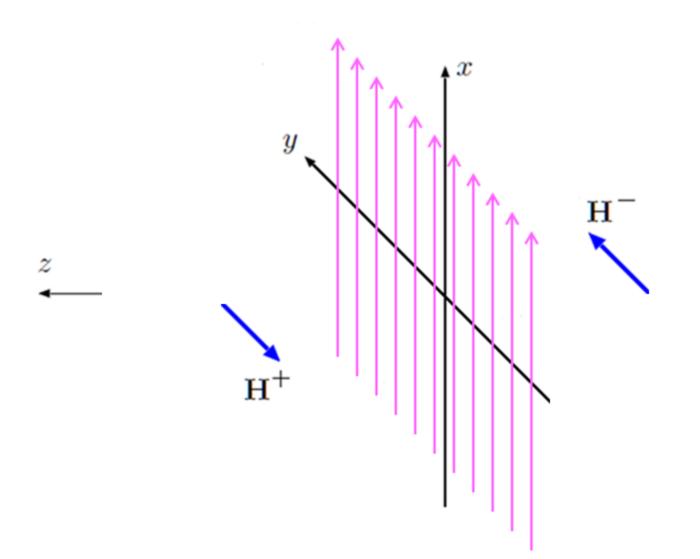


Electric Fields. How are the magnetic fields oriented on the two sides?

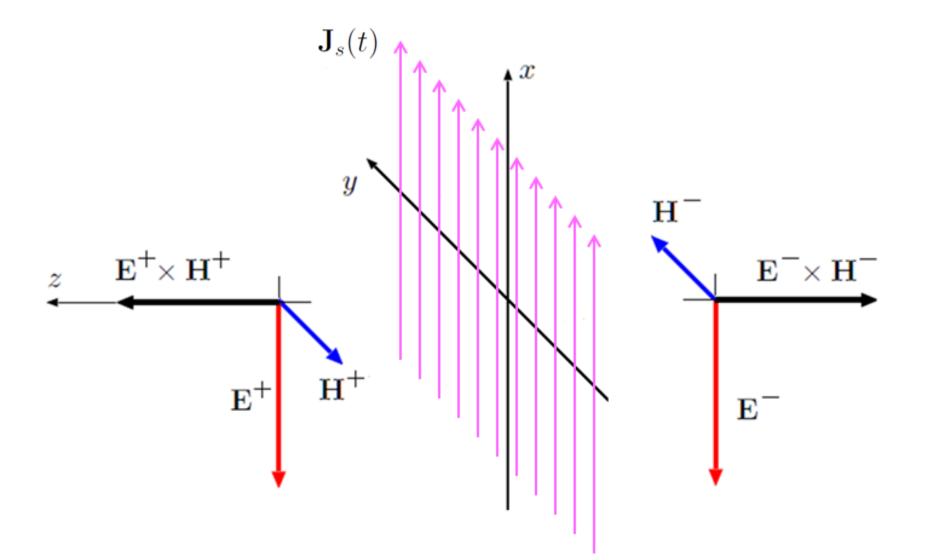


4

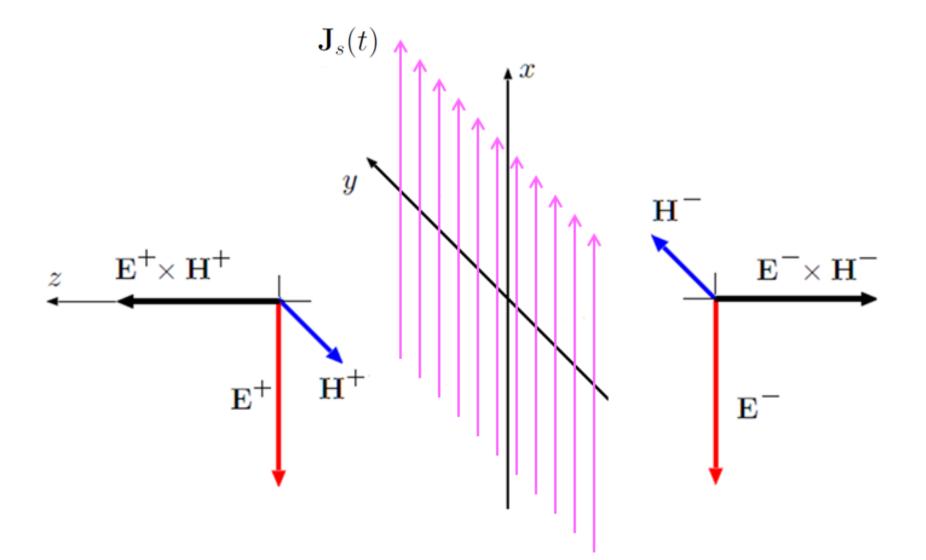
Magnetic fields



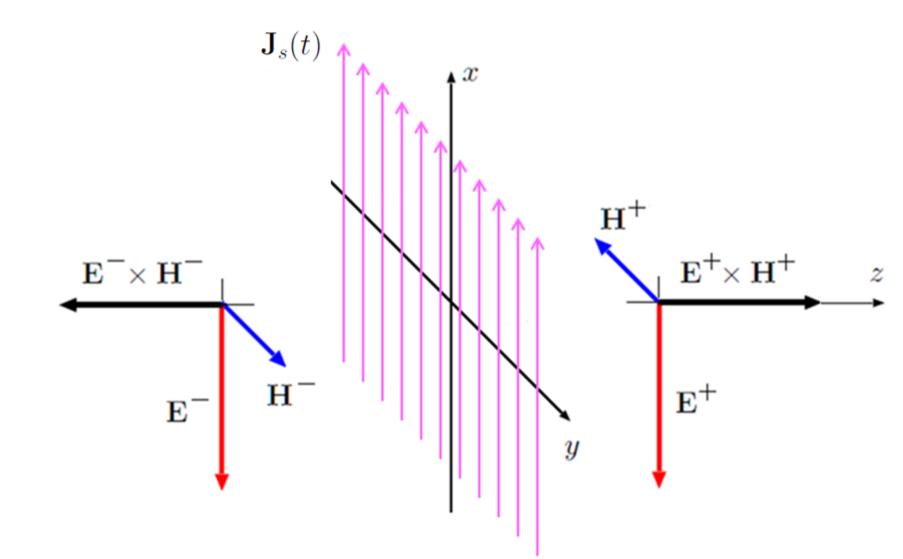
The complete diagram



3D Spatial Visualization Practice: Rotate by 180° about x in your head



The rotated diagram

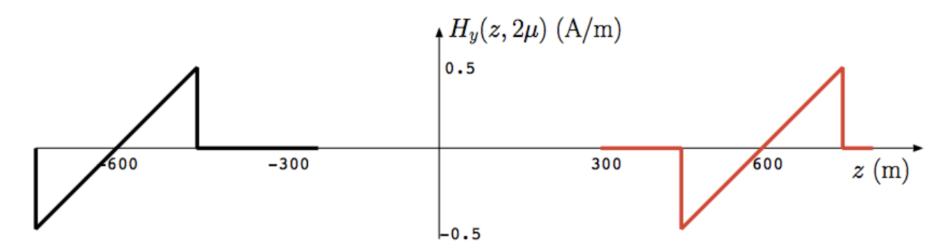


$$\mathbf{J}_{s}(t) = \hat{x}f(t), \text{ with } f(t) = At \operatorname{rect}(\frac{t}{\tau})$$

$$\tau = 1 \,\mu s \qquad A = 2 \,\frac{A/m}{\mu s}$$

(a) Radiated $H_y(z, t = 2\mu s)$ vs z

$$H_y(z, 2\mu \mathbf{s}) = \mp (2\mu \mp \frac{z}{c}) \operatorname{rect}(\frac{2\mu \mp \frac{z}{c}}{1\mu}) \frac{\mathbf{A}}{\mathbf{m}} \text{ for } z \ge 0$$

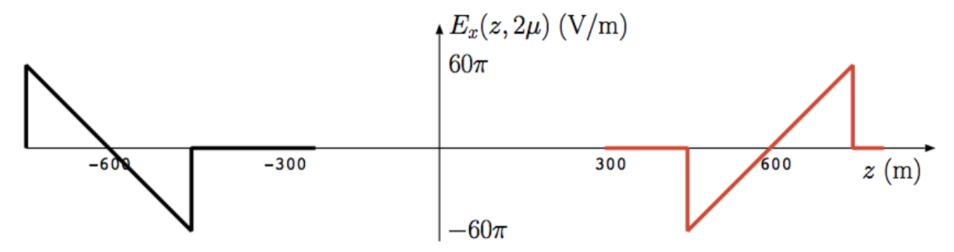


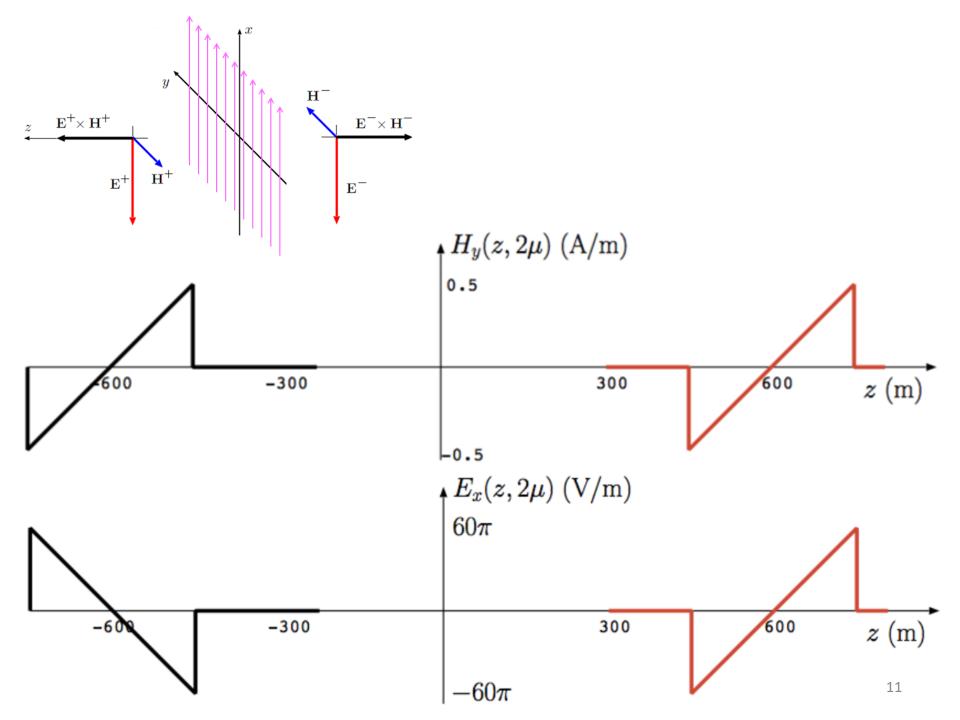
$$\mathbf{J}_{s}(t) = \hat{x}f(t), \text{ with } f(t) = At \operatorname{rect}(\frac{t}{\tau})$$

$$\tau = 1 \,\mu s \qquad A = 2 \,\frac{A/m}{\mu s}$$

(b) Radiated $E_x(z, t = 2\mu s)$ vs z

$$E_x(z, 2\mu \mathbf{s}) = -120\pi (2\mu \mp \frac{z}{c}) \operatorname{rect}(\frac{2\mu \mp \frac{z}{c}}{1\mu}) \frac{\mathbf{V}}{\mathbf{m}} \text{ for } z \ge 0$$





ECE 329 – Fall 2021

Prof. Ravaioli – Office: 2062 ECEB Section E – 1:00pm Lecture 20

Lecture 20 – Outline

- Poynting vector as power flux carried by EM fields
- Poynting Theorem
- Time-harmonic source
- Monochromatic wave

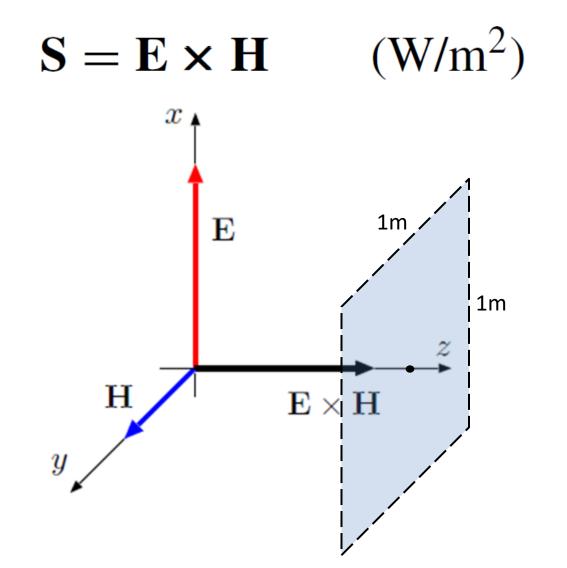
Reading assignment

Prof. Kudeki's ECE 329 Lecture Notes on Fields and Waves:

20) Poynting theorem and monochromatic waves

Poynting Vector and Energy Flux

 The magnitude of the Poynting Vector represents instantaneous power (energy per second) per unit area carried by an EM wave



Poynting Theorem – Derivation from Maxwell's equations

Dot Faraday and Ampere law by H and E, respectively

and take the difference

$$\mathbf{H} \cdot \nabla \times \mathbf{E} - \mathbf{E} \cdot \nabla \times \mathbf{H} = -\frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} \cdot \mathbf{E} - \mathbf{J} \cdot \mathbf{E}$$

We are going to use

$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$

The various terms can be manipulated as

$$\mathbf{H} \cdot \nabla \times \mathbf{E} - \mathbf{E} \cdot \nabla \times \mathbf{H} = \nabla \cdot (\mathbf{E} \times \mathbf{H})$$

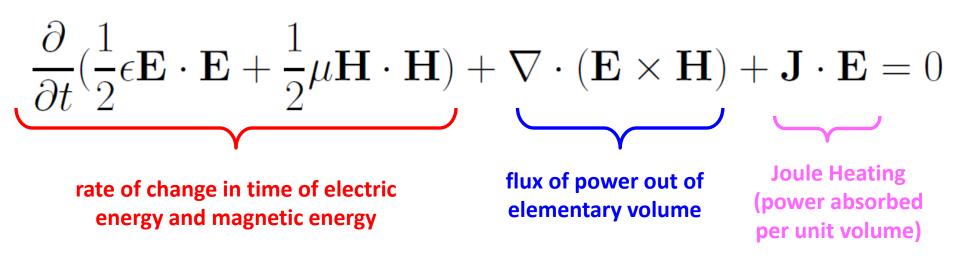
$$-\frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{H} = -\frac{\partial \mu \mathbf{H}}{\partial t} \cdot \mathbf{H} = -\frac{\partial}{\partial t} (\frac{1}{2} \mu \mathbf{H} \cdot \mathbf{H})$$

$$-\frac{\partial \mathbf{D}}{\partial t} \cdot \mathbf{E} = -\frac{\partial \epsilon \mathbf{E}}{\partial t} \cdot \mathbf{E} = -\frac{\partial}{\partial t} (\frac{1}{2} \epsilon \mathbf{E} \cdot \mathbf{E})$$

Putting it all together

$$\nabla \cdot (\mathbf{E} \times \mathbf{H}) = -\frac{\partial}{\partial t} (\frac{1}{2} \epsilon \mathbf{E} \cdot \mathbf{E} + \frac{1}{2} \mu \mathbf{H} \cdot \mathbf{H}) - \mathbf{J} \cdot \mathbf{E}$$

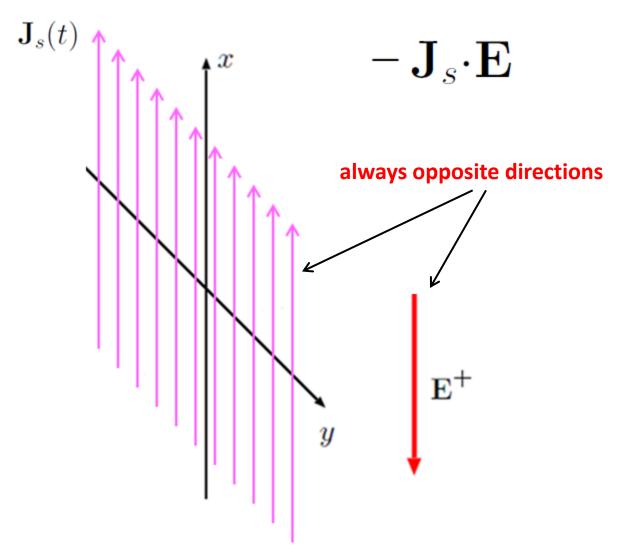
Energy conservation law



$$\mathbf{J} \cdot \mathbf{E} = \boldsymbol{\sigma} \mathbf{E} \cdot \mathbf{E} = \boldsymbol{\sigma} \mathbf{E}^2$$

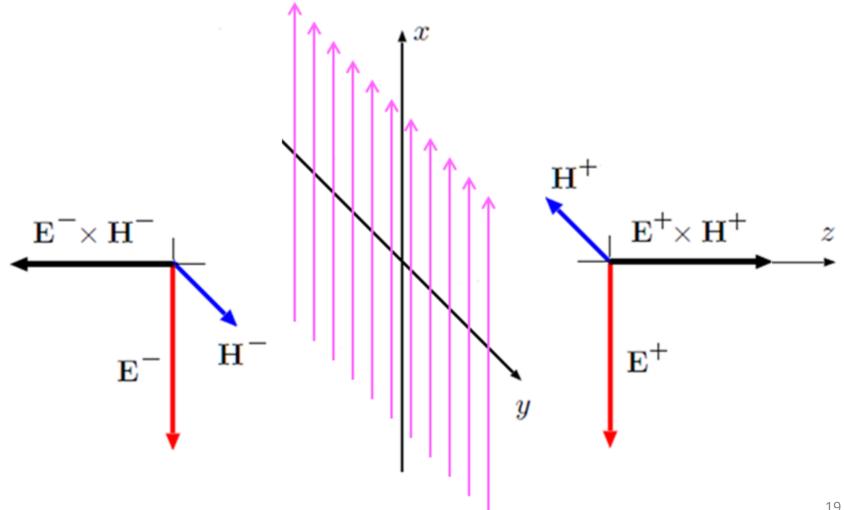
positive value if current density *induced* by the wave causes loss in medium with finite conductivity σ

However, a negative value of $J \cdot E$ indicates *generation of power* fed to the wave. For instance



 $\mathbf{J}_s = \hat{x}f(t) = \hat{x}2\,\cos(\omega t)\,\frac{\mathbf{A}}{\mathbf{m}}$ m

 $\boldsymbol{\omega}$ is an arbitrary angular frequency of oscillation



$$\mathbf{J}_s = \hat{x}f(t) = \hat{x}2\,\cos(\omega t)\,\frac{\mathbf{A}}{\mathbf{m}}$$

 $\boldsymbol{\omega}$ is an arbitrary angular frequency of oscillation

- (a) Determine the radiated TEM wave fields $\mathbf{E}(z, t)$ and $\mathbf{H}(z, t)$ in the regions $z \ge 0$,
- (b) The associated Poynting vectors $\mathbf{E}\times\mathbf{H},$ and
- (c) $\mathbf{J}_s \cdot \mathbf{E}$ on the current sheet.

Consider free space

$$\beta = \frac{\omega}{c}$$
 and $\eta = \eta_o \approx 120\pi\,\Omega$

$$\mathbf{J}_s = \hat{x}f(t) = \hat{x}2\,\cos(\omega t)\,\frac{\mathbf{A}}{\mathbf{m}}$$

(a) Determine the radiated TEM wave fields $\mathbf{E}(z, t)$ and $\mathbf{H}(z, t)$ in the regions $z \ge 0$

$$f(t \mp \frac{z}{v}) = 2\cos\left[\omega(t \mp \frac{z}{v})\right] = 2\cos\left(\omega t \mp \frac{\omega z}{v}\right) = 2\cos(\omega t \mp \beta z)$$
$$E_x = -\frac{\eta}{2}f(t \mp \frac{z}{v}) = -\eta\cos(\omega t \mp \beta z) \quad \frac{V}{m}$$
$$\mathbf{E}(z,t) = E_x \ \hat{x} \frac{V}{m} = -\eta\cos(\omega t \mp \beta z)\hat{x} \frac{V}{m}$$
$$H_y = \pm \frac{1}{2}f(t \mp \frac{z}{v}) = \pm\cos(\omega t \mp \beta z) \quad \frac{A}{m}$$
$$\mathbf{H}(z,t) = H_y \ \hat{y} \frac{A}{m} = \pm\cos(\omega t \mp \beta z)\hat{y} \frac{A}{m}$$

$$\mathbf{J}_s = \hat{x}f(t) = \hat{x}2\,\cos(\omega t)\,\frac{\mathbf{A}}{\mathbf{m}}$$

(b) The associated Poynting vectors $\mathbf{E} \times \mathbf{H}$

$$\mathbf{E} \times \mathbf{H} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ E_x & 0 & 0 \\ 0 & H_y & 0 \end{vmatrix} = \hat{z} E_x H_y$$

$$E_x = -\frac{\eta}{2} f(t \mp \frac{z}{v}) = -\eta \cos(\omega t \mp \beta z) \frac{V}{m}$$
$$H_y = \pm \frac{1}{2} f(t \mp \frac{z}{v}) = \pm \cos(\omega t \mp \beta z) \frac{A}{m}$$

 $\mathbf{S} = \mathbf{E} \times \mathbf{H} = \pm \eta \cos^2(\omega t \mp \beta z) \hat{z} \, \frac{\mathbf{W}}{\mathbf{m}^2}$

$$\mathbf{J}_s = \hat{x}f(t) = \hat{x}2\,\cos(\omega t)\,\frac{\mathbf{A}}{\mathbf{m}}$$

(c) $\mathbf{J}_s \cdot \mathbf{E}$ on the current sheet

$$z = 0 \qquad \mathbf{E}(0, t) = -\eta \cos(\omega t) \hat{x} \frac{\mathbf{V}}{\mathbf{m}}$$

$$\mathbf{J}_{s}(t) \cdot \mathbf{E}(0, t) = (\hat{x}2 \, \cos(\omega t) \, \frac{\mathbf{A}}{\mathbf{m}}) \cdot (-\eta \cos(\omega t) \hat{x} \, \frac{\mathbf{V}}{\mathbf{m}})$$

$$\mathbf{J}_{s}(t) \cdot \mathbf{E}(0, t) = -2\eta \cos^{2}(\omega t) \frac{W}{m^{2}}$$

This term is negative and behaving like a source

The time-harmonic source we have examined has produced *monochromatic waves* characterized by a single frequency (literally, a single color).

For a monochromatic wave, the *instantaneous* Poynting vector is proportional to the square of the cosine term that can be also written as

$$\cos^{2}(\omega t + \phi) = \frac{1}{2}[1 + \cos(2\omega t + 2\phi)]$$

For a periodic signal, it is more meaningful to evaluate the time-average of the Poynting vector, since it quantifies the overall power flow over time.

Time average of the Poynting vector

$$\left\langle \mathbf{S}(t) \right\rangle = \frac{1}{T} \int_{0}^{T} \mathbf{S}(t) \, dt = \frac{1}{T} \int_{0}^{T} \mathbf{E}(t) \times \mathbf{H}(t) \, dt$$

For our example: $\left\langle \cos^{2}(\omega t + \phi) \right\rangle = \left\langle \frac{1}{2} [1 + \cos(2\omega t + 2\phi)] \right\rangle = \frac{1}{2}$

$$\langle \mathbf{S}(t) \rangle = \pm \hat{z} \frac{\eta}{T} \int_{0}^{T} \cos^{2} \left(\omega t \mp \beta z \right) dt$$

$$= \pm \hat{z} \frac{\eta}{T} \int_{0}^{T} \frac{1}{2} \left[1 + \cos \left(2\omega t \mp 2\beta z \right) \right] dt$$

$$= \pm \hat{z} \frac{\eta}{2} \frac{W}{m^{2}} \approx \pm \hat{z} \ 60\pi \frac{W}{m^{2}}$$

time-average power per unit area transported by the radiated waves on each side of the sheet of current.

Injected (generated) Power Density

We have calculated earlier the instantaneous power density injected by the sheet of current (including both sides):

$$-\mathbf{J}_s \cdot \mathbf{E} = 2\eta \cos^2(\omega t) \frac{W}{m^2}$$

The time average is obtained from the same integration:

$$\langle -\mathbf{J}_s \cdot \mathbf{E} \rangle = \eta \frac{W}{m^2} = 120\pi \frac{W}{m^2}$$

which is indeed equal to the total time-average power injected in the space surrounding the sheet of current, as it should be for conservation of energy.