ECE/ME/EMA/CS 759
High Performance Computing
for Engineering Applications

The Shift to Parallel Computing

ILP Wall
Power Wall

Big Iron HPC
Amdahl's Law

September 18, 2015

© Dan Negrut, 2015
ECE/ME/EMA/CS 759 UW-Madison

Quote of the Day

“How is education supposed to make me feel smarter? Besides, every time |
learn something new, it pushes some old stuff out of my brain. Remember
when | took that home winemaking course, and | forgot how to drive?”

Homer Simpson

Before We Get Started

e Issues covered last time:

e The virtual memory, wrap up.
The TLB

e The shift to parallel computing: three walls to sequential computing
The memory wall

e Today’s topics

e The shift to parallel computing: three walls to sequential computing

The ILP Wall
The Power Wall

e Biglron HPC
e Amdahl's Law

e Assignment:
e HWO03 - posted today and due on September 23 at 11:59 PM

No class on Mo and Wd of next week

Instruction Level Parallelism (ILP)

e |[LP: arelevant factor in reducing execution times after 1985

e The basic idea:
Overlap execution of independent instructions to improve overall performance
During the same clock cycle many instructions are being worked upon

e Two approaches to discovering ILP

Dynamic: relies on hardware to discover/exploit parallelism dynamically at run time
It is the dominant one in the market

Static: relies on compiler to identify parallelism in the code and leverage it (VLIW)

e Examples where ILP expected to improve efficiency

for(int=0; i<1000; i++) % fe ::ca:db
x[i] = x[i] + yil 3.g=e*f

ILP: Various Angles of Attack

Instruction pipelining: the execution of multiple instructions can be partially overlapped; where each
instructions is divided into series of sub-steps (termed: micro-operations)

Superscalar execution: multiple execution units are used to execute multiple instructions in parallel

Out-of-order execution: instructions execute in any order but without violating data dependencies

Register renaming: a technique used to avoid data hazards and thus lead to unnecessary serialization of
program instructions

Speculative execution: allows the execution of complete instructions or parts of instructions before being
sure whether this execution is required

Branch prediction: used to avoid delays (termed: stalls). Used in combination with speculative execution.
5

The ILP Journey,
Reflected into Instruction Execution

e Squeeze the most out of each cycle...
e Vertical axis: a summary of hardware assets
e Horizontal axis: time

Single Thread Coarse Grain Threadin

«

FX0
FX1
FPO
FP1
LSO
LS1
BRX [
CRL [[

ORO0O0M
B0000R0
oooomgon
BOR0000N
oooomaog
OR000000
mun iny |
CORORO0O00
OO0RUERD
nooaaooo

Simultaneous Multi-Threading

FX0
FX1
FPO
FP1
LSO
LS1
BRX
CRL

—

Fine Grain Threadin

[
[
[
|
[
1l
|
[
[
[
|

0R0000N
OOROR0O00
OR000R00
O0ORONED
] [u] [ujn] |n

Uoommooo
OROOOmN
OROOm00
BOR0000
OOROR00
ORORCRD
ORCOECEN
OROR00o0

I Thread 0 I Thread 1 No Thread
Executing Executing Executing

[IBM]—

The ILP Wall

For ILP to make a dent, you need large blocks of instructions that can be
[attempted to be] run in parallel

Dedicated hardware speculatively executes future instructions before the results of
current instructions are known, while providing hardware safeguards to prevent the
errors that might be caused by out of order execution

Branches must be “guessed” to decide what instructions to execute simultaneously
If you guessed wrong, you throw away that part of the result

Data dependencies may prevent successive instructions from executing in parallel,
even if there are no branches

The ILP Wall

e |LP, the good:
Existing programs enjoy performance benefits without any modification

Recompiling them is beneficial but entirely up to you as long as you stick
with the same ISA (for instance, if you go from Pentium 2 to Pentium 4
you don’t have to recompile your executable)

e ILP, the bad:

Improvements are difficult to forecast since the “speculation” success is
difficult to predict

Moreover, ILP causes a super-linear increase in execution unit
complexity (and associated power consumption) without linear speedup.

e |LP, the ugly: serial performance acceleration using ILP plateauing
because of these effects

From Simple to Complex:
Part 1

e The von Neumann architecture
e Red: refers to instructions
e Green: refers to data

From Simple to Complex: H
Part 2 :

e The architecture of the early to mid 1990s
e Pipelining was king

i

Stage 1

Stage 2

Memory

Link to Main
51215183y

T LT LT |

Stage 3

Caches (instruction, data)

1]

Stage M

10

From Simple to Complex:
Part 3 :

e The architecture of late 1990s, early 2000s
e |LP-centric

c
5 >
20
o E
= o
<2
—
—— 1

2| | Hardware Hardware (2
3 > ﬁ " %[| Resource 1 iRegs_| Resource 2 [
> o 2 i)
E) 5 — Hardware | | Hardware Hardware
£ = _ ® Resource 3 | | | Resource 4 Resource 5

8
| Regs. |—1| Hardware [Regs. |
Resource N
CPU Core

11

The Power Wall

Power, and not manufacturing, limits traditional general purpose

microarchitecture improvements (F. Pollack, Intel Fellow)

Leakage power dissipation gets worse as gates get smaller,
because gate dielectric thicknesses must proportionately decrease

Nuclear reactor

OCore DUO

1000
£ |h
-Jd00
< Pentium 4
10 Pentium IlI
Pentium Pro
1 m I I I I I I I I |

15 1

Technology from older to newer (um)

o7 05 035025018 0,13 0,1 0,07

Adapted from
F. Pollack (MICRO’99)

12

Intel’s Perspective

e Intel's “Platform 2015” documentation, see

First of all, as chip geometries shrink and clock frequencies rise,
the transistor leakage current increases, leading to excess power
consumption and heat.

[...]

Secondly, the advantages of higher clock speeds are in part
negated by memory latency, since memory access times have not
been able to keep pace with increasing clock frequencies.

[...]

Third, for certain applications, traditional serial architectures are
becoming less efficient as processors get faster further
undercutting any gains that frequency increases might otherwise
buy.

The Power Wall

e Power dissipation in clocked digital devices is related to the clock
frequency and feature length imposing a natural limit on clock rates

e Significant increase In clock speed without heroic (and expensive)
cooling is not possible. Chips would simply melt

e Clock speed increased by a factor of 4,000 in less than two decades
The ability of manufacturers to dissipate heat is limited though...
Look back at the last ten years, the clock rates are pretty much flat

14

Trivia 3

e NVIDIA Tesla K80

TDP: 300 Watts

e Intel® Xeon® Processor E7-8890 v3

e Human Brain

TDP: 165 Watts

20 W

Represents 2% of our mass

Burns 20% of all energy in the body at rest ,
Our entire body, ball park: 100 Watts o ; =

15

Conventional Wisdom
In Computer Architecture

e Old: power is free & transistors expensive

e New: power expensive & transistors free
(Can put more on chip than can afford to turn on)

e Old: multiplies are slow & memory access is fast

e New: memory slow & multiplies fast [‘Memory wall”]
(400-600 cycles for DRAM memory access, 1 clock cycle for FMA)

e Old : Increasing Instruction Level Parallelism via compilers, innovation (Out-of-
order, speculation, VLIW, ...)

e New: “ILP wall” — diminishing returns on more ILP

e New: Power Wall + Memory Wall + ILP Wall = Brick Walll

Old: Uniprocessor performance 2X / 1.5 yrs
New: Uniprocessor performance only 2X / 5 yrs?

Credit: D. Patterson, UC-Berkeley 16

e OK, now what?

17

e A bunch of bad news...

e ... with only one bright spot

Summarizing It All...

e The sequential execution model is losing steam
e The bright spot: number of transistors per unit area going up and up

10,000,000

Dual-Core ltanium 2 = /

1,000,000

100,000

Intel

(sources: Intel

CPU’

l, Wikipe:

Trends
dia, K. Olukotun)

10,000

1,000

100

10

]

@ Transisters (000)
@ Clock Speed (MHz)
A Power (W)

@ PerfClock (ILP)

1870

1975 1980

1985 1990 1995

2000 2005 2010

19

Moore's Law ceco

e 1965 paper: Doubling of the number of transistors on integrated
circuits every two years

e Moore himself wrote only about the density of components (or
transistors) at minimum cost

e Increase in transistor count is also a rough measure of computer
processing performance

Lty
el
1
L

http://news.cnet.com/Images-Moores-Law-turns-40/2009-1041 3-5649019.html 20

Moore’'s Law (1965)

e “The complexity for minimum component costs has increased at a
rate of roughly a factor of two per year (see graph on next page).
Certainly over the short term this rate can be expected to continue, if
not to increase. Over the longer term, the rate of increase is a bit
more uncertain, although there is no reason to believe it will not
remain nearly constant for at least 10 years. That means by 1975,
the number of components per integrated circuit for minimum cost
will be 65,000. | believe that such a large circuit can be built on a
single wafer.”

“Cramming more components onto integrated circuits” by Gordon E.
Moore, Electronics, Volume 38, Number 8, April 19, 1965

21

Intel Roadmap

e 2013 -22 nm Tick: Ivy Bridge — Tock: Haswell

e 2015 - 14 nm Tick: Broadwell — Tock: Skylake

e 2016 —14nm “Refresh” Kaby Lake

e 2017 - 10 nm Cannonlake (delayed to 2" Half 2017)
e 2019 -7 nm

e 2021 —5nm

e 2023 — ??7? (your turn)

e Moore’s law moving from 18-24 month cycle to 24-30
month cycle for the first time in 50 years

22

Parallel Computing:
Some Black Spots

e More transistors = More computational units

e 2015 Vintage:
18-core Xeon Haswell-EX E7 8890 V3 — 5.6 billion transistors ($7200)

e Black silicon: because of high density and power leaks, we
might not be able to power these chips...
Black silicon: transistors that today don’t get used and are dead weight
Dennard’s scaling started to break down at the end of last decade
Dennard’s law is the secrete sauce for Moore’s law

The Ox vs. Chickens Analogy

Seymour Cray: "If you were plowing a field, which would
you rather use: Two strong oxen or 1024 chickens?"

e Chicken is gaining momentum nowadays:

For certain classes of applications, you can run many cores at lower
frequency and come ahead at the speed game

e Example:

Scenario One: one-core processor w/ power budget W

Increase frequency by 20%
Substantially increases power, by more than 50%
But, only increase performance by 13%

Scenario Two: Decrease frequency by 20% with a simpler core
Decreases power by 50%
Can now add another dumb core (one more chicken...)

24

Micro2015: Evolving Processor Architecture, Intel® Developer Forum, March 2005 000

. . 0000
Intel’s Vision: 8000
Evolutionary Configurable Architecture oo

Scalar plus many core for

highly threaded workloads B Al
Large, Scalar cores for Iy I H=_=I
high single-thread L s l Y
performance any-core array

e CMP with 10s-100s low
power cores

Scalar cores
Capable of TFLOPS+
Full System-on-Chip

Servers, workstations,
e CMP with ~10 cores embedded...

Multi-core array

Dual core
 Symmetric multithreading

lntel Presentation Paul Petersen,
CMP = “chip multi-processor” (> Sr. Principal Engineer, Intel 25

Two Examples of Parallel HW:

How Billions of Transistors are Put to Good Use

e Intel Haswell
e Multicore architecture

e NVIDIA Fermi
o Large number of scalar processors (“shaders”)

Intel Haswell

e June 2013

e 22 nm technology

e 1.4 billion transistors

e 4 cores, hyperthreaded

e Integrated GPU

e System-on-a-chip (SoC) design

System
Agent,
Display
Engine &
Memory
Controller

ncluding

luw.-u_uunm-_-.uu]ﬁul ﬁmﬂ““;,s
Shared L3 Cache** :
EIEEIEIEEIE m
8% Memory Controller l/D

Processor
Graphics

Intel Haswell:

Front End and Back End

e A high level organization:

e Decoding
e Scheduling
e Execution

Intel Haswell Front End

32KB L1
e Instruction
Prediction
Unit
Instruction Length Decoder
Instruction Queue
Complex 1.5K pop
Decoder Simple Simple Simple Cache
Decoder | Decoder | Decoder

56-entry Instruction Decode Queue

[http://www.realworldtech.com/haswell-cpu/ |—

Intel Haswell Execution Engine

56-entry Instruction Decode Queue

192-entry Reorder Buifer

60-entry Unified Reservation Station

Port 2 Fort 3 Fort 4 Fort 5

Load/ Load/ Integer

Store Store -
Address Address i LT

Integer
ALULEA

FMA FNMA Fhul
2560 FP 256b FP
Mul Add

Vector
Logicals

28

Intel Haswell:

Overall Perspective

e At the right: complete schematic

of microarchitecture

e More info: see online primer

IS

Branch
Predictors

Instruction
Fetch Unit

Haswell [L1 rrLsI

32KB L1 I-Cache (8 way)

163\1\

(

16B Predecode, Fetch Buffer

6 |I‘\$lfUCli0ﬂ$$

|

2x20 Instruction Queue)
)

4 pops

[Complex] [Simple || Simple | Simple
[ueode l lDecodeJ [DecodeJ [Decoder] [Decode

1 pop 1 pop 1 pop

(1 .5K pop Cache (8 way)

56 uop Decode Queue

4 pops
32B

4 paps\l\

(

I
i

+ 4 4
168 Integer 168 AVX 48 Entry Branch 72 Entry 42 Entry
Registers Registers Order Buffer Load Buffer Store Buffer

92 Entry Reorder Buffer (ROB)]

60 Entry Unified Sched

uler

Port 0] Port 1] Port 5 Port& | Port 2

ALU 256-bit ALU ALU
Branch VMUL LEA Fast LEA
Shift VShift MUL

256-bit
VALU
VShuffle

256-bit] [256-hit ALU
VALU FShuffle| | Branch
VBlend) | FBlend Shift

29

The Fermi Architecture
| Schematic of a NVIDIA Stream Multiprocessor (SM)]

e Late 2009, early 2010

e 40 nm technology

e Three billion transistors

e 512 Scalar Processors (SP, “shaders”)

e L1 cache =

e L2 cache
e 6 GB of global memory
e Operates at low clock rate

e High bandwidth (close to 2
200 GB/s) # @

Fermi: 30,000 Feet Perspective

Lots of ALU (green), not much of CU (orange)
Explains why GPUs are fast for high arithmetic intensity applications

Arithmetic intensity: high when many operations performed per word of
memory

A Fermi Core
(or SM — Streaming Multiprocessor)

Fermi Core

Instruction Cache

32

Why is the GPU Fast?

e The GPU is specialized for compute-intensive, highly data parallel computation
(owing to its graphics rendering origin)
e More transistors devoted to data processing rather than data caching and
control flow

e Where are GPUs good: high arithmetic intensity (the ratio between
arithmetic operations and memory operations)

|
|
CPU }
|
|
|
|

e The large video game industry exerts strong economic pressure that forces

constant innovation in GPU computing 33

Key Parameters GPU, CPU

GPU — NVIDIA Tesla K80
(Dual GPU card) $4400

Processing Cores 2496x2 (4992 total)

Memory 12GBx2 (24GB)

Clock speed 562 MHz each

Memory bandwidth 240 GB/s per GPU

Floating point 2910 x 10° Double Precision
operations/s 8740 x 10° Single Precision

TDP 300 Watts

CPU — Intel® Xeon® Processor E7-
8890 v3 $7200

18 cores (36 threads)

- 64 KB L1 cache / core

- 256 KB L2 (I&D) cache / core
- 45 MB L3 (1&D) shared by all cores

2.5 GHz

102 GB/s
532 x 10° Double Precision

165 Watts

34

000
000
. . . . oo
Shift in Perception, Left to Right | ¢
e Increasing clock frequency is e Processors parallelism is
primary method of —_— primary method of performance
performance improvement improvement

o Less than linear scaling for a Given the switch to parallel hardware,
" < fail J - €Ven sub-linear speedups are
multiprocessor is Tailure beneficial as long as you beat the

sequential on a watt-to-watt basis

Implications in the Software Business

A

1 Growing gap!

v

Performance

ISV: Independent
Software Vendors

e “Parallelism for Everyone”
e Parallelism changes the game

Time

e A large percentage of people who provide applications are going

to have to care about parallelism in order to match the
capabilities of their competitors.

= ") Presentation Paul Petersen,
(lnte', Sr. Principal Engineer, Intel

36

Euler: CPU/GPU Heterogeneous Cluster | seee
~ Hardware Configuration ~ 13

File Server Architecture CPU/GPU Node Architecture
Legend, Connection Type: ~ CPU Intel Xeon 5620 CPU 0 Hard Disk
Intel Xeon 5520 .
===Gigabit Ethernetm _ T T Infiniband
Infiniband RAID 6 CPU1 HCA
HCA Intel Xeon 5520

=4 QDR Infinibands== S T GPUD GPUT
24x 2TB Hard Disks - --

Remote
Collaborators

AMD Node Architecture

CPUO CPU 2
AMD Opteron 6276 | AMD Opteron 6276

CPU 1 CPU 3
AMD Opteron 6276 | AMD Opteron 6276

Infiniband
HCA SSD

iil
™

Gigabit Ethernet 4x QDR Infiniband
Switch Head Node Switch

File Server CPU/GPU Node 1 CPU/GPU Node 2 CPU/GPU Node 14 AMD Node 1

Background: Lab’s
Research Cluster

FILE cPU nte L\ JETSON
SERVER | GPU x | APU INFINIBAND

EULER - Heterogeneous Research Cluster.

Overview of Large Multiprocessor
Hardware Configurations (“Big lron™)

Larger
multiprocessors
|
I |
Shared address Distributed
space address space
I |
| | | |
Symmetric shared
memory (SMP) Distributed shared Commodity clusters: Custom
Examples: IBM eserver, memory (DSM) Beowulf and others cluster
SUN Sunfire

Cache coherent:
CoNUMA:
SGI Origin/Altix

Noncache coherent:
Cray T3E, X1

£ 2007 Elsavier, Inc. All rights resarved.

Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fourth edition

Euler

Uniform cluster:
IBEM BlueGene

Constellation cluster of
DSMs or SMPs
SG| Altix, ASC Purple

Some Nomenclature...

Shared addressed space: when you invoke address “0x0043fc6f” on one machine
and then invoke “0x0043fc6f” on a different machine they actually point to the same
global memory space

Issues: memory coherence
Fix: software-based or hardware-based

Distributed addressed space: the opposite of the above

Symmetric Multiprocessor (SMP): you have one machine that shares amongst all
its processing units a certain amount of memory (same address space)

Mechanisms should be in place to prevent data hazards (RAW, WAR, WAW). Brings back the issue of
memory coherence

Distributed shared memory (DSM) — aka distributed global address space (DGAS)

Although physically memory is distributed, it shows as one uniform memory
Memory latency is highly unpredictable

Example

e Distributed-memory multiprocessor architecture (Euler, for instance)

(e ' Memory I— I/O Memory I——@ Memory I—

1/0

Interconnection network

(I/O ' Memory' (I/O ' Memory' i l/O ' Memory'

Multicore Multicore Multicore Multicore
MP MP MP MP

Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fifth edition

/0

42

Comments, distributed-memory
multiprocessor architecture

e Basic architecture consists of nodes containing a processor, some
memory, typically some 1/O, and an interface to an interconnection
network that connects all nodes

e Individual nodes may contain a small number of processors, which may
be interconnected by a small bus or a different interconnection
technology, which is less scalable than the global interconnection
network

e Popular interconnection network: Mellanox and Qlogic InfiniBand
Bandwidth range: 1 through 50 Gb/sec (about 6 GB/s)
Latency: in the microsecond range (approx. 1E-6 seconds)
Requires special network cards: HCA — “Host Channel Adaptor”

Example, SMP 1

[This is not “Big Iron”, rather a desktop nowadays]

e Shared-Memory Multiprocessor Architecture

Processor Processor Processor Processor

One or
more levels
of cache

One or One or One or
Usual Iy SRAM ————3 more levels more levels more levels

of cache of cache of cache

Private
caches

Shared cache

Usually DRAM ———>{ main memory I /O system '

Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fifth edition 44

Comments, SMP Architecture

e Multiple processor-cache subsystems share the same physical off-chip memory

e Typically connected to this off-chip memory by one or more buses or a switch

e Key architectural property: uniform memory access (UMA) time to all of memory
from all the processors

e Thisis why it's called symmetric

Examples...

e Shared-Memory

e Intel Xeon Phi available as of 2012
Packs 61 cores, which are on the basic (unsophisticated) side

e AMD Opteron 6200 Series (16 cores: Opteron 6276) — Bulldozer architecture

e Sun Niagara

e Distributed-Memory
e [BM BlueGene/L

o Cell (see)

Big Iron: Where Are We Today? | s2:¢

[Info lifted from Top500 website: hitp://www.top500.0rg/]

[Tyl] WIS e
| Tianhe-Z [Milkyway-Z] Irkel vy Bricge {12C 22 GHz) & ¥ean Phi (57C 1.1 GHD), Custom intereonnaet HUDT
2 Titan Cray ¥KT. Dpteran 6274 {16C 2.2 5Hz) + Mvdia Kepler GPL. Custom interconnect DOE/SCIORML
4 Sequoia IBM Bluetiens/0. Powsr BAE {16C 1.60 GHz). Custormn interconnzct DOE/MNSALLNL
4L K computer Fujitau SPARCES WIlEx {0C 2.0 GHz), Custor intercannect RIKCN AICS
5 Mira IBM Bluetiens/0 Powsr BAE (16C 1.60 GHz). Custorn interconnzct DOE/SCIANL
["
b e g B
s v 0=
s, i a &7 - ®
Sim o L "
| A . L] v
. - ® s s L ' e *
R -""".. GI-T-:-' -
e 5
= s u® .t " L o
m.-' R . [=500 y
e 3 aw®
W- e e e” . ®
b T T . B 0T
I -]
| T g & "y
0.4 arues . *
Igin i B

] o o S SEEd

China 3,130,000 EEE 17.8
LA, 564,640 16 8.2
LTS 1,572,864 172 7.8
Jmpar TOG.024 105 12.7
Usa T8 432 BSY 305
FESRE TR

L]
L] L
™
L]
,.ll !l

47

Big Iron: Where Are We Today?

[Cntd.]

ARCHITECTURES CHIF TECHNOGLOGY
s SIMD Ty
- Comstellations W

LIS TE
- MEFP B Hl
MIPS Intel
Baw s
SFARC
iy il
AMI
R AT EWET FETGTSE EWE TR EITYEE®S ¥ AW E YW ETWmAaT™W ETENSETESE ™I FTIE™

e Abbreviations/Nomenclature
° MPP — Massively Parallel Processing
e Constellation — subclass of cluster architecture envisioned to capitalize on data locality

° MIPS — “Microprocessor without Interlocked Pipeline Stages”, a chip design of the MIPS Computer Systems
of Sunnyvale, California

e SPARC - “Scalable Processor Architecture” is a RISC instruction set architecture developed by Sun
Microsystems (now Oracle) and introduced in mid-1987

e Alpha - a 64-bit reduced instruction set computer (RISC) instruction set architecture developed by DEC
(Digital Equipment Corporation was sold to Compagq, which was sold to HP) — adopted by Chinese chip 48
manufacturer (see primer)

Short Digression: Massively Parallel Processing

What 1s a MPP?

e A very large-scale computing system with commodity
processing nodes interconnected with a custom-made
high-bandwidth low-latency interconnect

Memories are physically distributed
Nodes often run a microkernel
Rather blurred line between MPPs and clusters

Example:
Euler (our machine) is a cluster
An IBM BG/Q machine is a MPP (because of the interconnect)

Big Iron: Where Are We Today?

[Cntd.]

INSTALLATION TYPE ACCELERATORS/CO-PROCESSORS

. Vend .I.

i I I)]
] l m
e

‘ -
Indwstry .l

NVIDIA
Massiiaad Gavernment

Academic
i B Cell

R EE N BREE R R R E R R E R R E R RN W W W @ n E m % %
e How is the speed measured to put together the Top5007?

e Basically reports how fast you can solve a dense linear system

A Portable Implementation of the High Performance
Linpack Benchmark for Distributed Memory Computers

= Algorithm: recursive panel factorizations, multiple lookahead depths,
bandwidth reducing swapping

= Easy toinstall, only needs MPI + BLAS ar VSIPL

= Highly scalable and efficient from the smallest cluster to the largest 50
supercomputers in the world

] FIND OUT MORE AT http://icl.eecs.utk.edu/hpl/

Flynn’s Taxonomy of Architectures

e There are several ways to classify architectures (we just saw one
based on how memory is organized/accessed)

o Belo_vv, classification based on how instructions are executed In
relation to data

e SISD - Single Instruction/Single Data
e SIMD - Single Instruction/Multiple Data
e MISD - Multiple Instruction/Single Data

e MIMD - Multiple Instruction/Multiple Data

Single Instruction/Single Data
Architectures

SISD Instruction Pool

Data Pool
me
c
1

PU — Processing Unit

Your desktop, before the spread of dual core CPUs

Slide Source: Wikipedia, Flynn’s Taxonomy

Increasing Throughput of SISD

.. O
Instructions: ALl

n O|er
HE=CNne= -
= t = Alo

Pipelining

Multiple Issue

Single Instruction/Multiple Data
Architectures

SIMD Instruction Pool
»|PU |
é »|PU |+
£
A /| PU |
> PU |+

Processors that execute same instruction on
multiple pieces of data: NVIDIA GPUs

Slide Source: Wikipedia, Flynn’s Taxonomy

Single Instruction/Multiple Data 3
[Cntd] oo

e Each core runs the same set of instructions on different data

e Examples:
e Graphics Processing Unit (GPU): processes pixels of an image in parallel
e CRAY'’s vector processor, see image below

Slide Source: Klimovitski & Macri, Intel

SISD versus SIMD

. x>
. S Ve,

B Instructions
[] Data
B Results

Writing a compiler for SIMD architectures is difficult
(inter-thread communication complicates the picture...)

Slide Source: ars technica, Peakstream article

Q
Q
XY
<><><>

2

Multiple Instruction/Single Data

MISD Instruction Pool

Data Pool
|
v
—
=
1
—
C
t

Not useful, not aware of any commercial implementation...

Slide Source: Wikipedia, Flynn’s Taxonomy

Multiple Instruction/Multiple Data

MIMD Instruction Pool

—|PU| |PU|—

—|PU|— |PU|—

Data Pool

—|PU|+ |PU|—

—|PU|~ Ls|PU|—

Almost all our desktop/laptop chips are MIMD systems

Slide Source: Wikipedia, Flynn’s Taxonomy

Multiple Instruction/Multiple Data

e The sky is the limit: each PU is free to do as it pleases

e Can be of either shared memory or distributed memory categories

Instructions:

O

]
L]

Time
LIO|p>|nn

L3O
O[» ||

Thread-Level Parallelism (TLP)

Amdahl's Law

Excerpt from “Validity of the single processor approach to achieving large
scale computing capabilities,” by Gene M. Amdahl, in Proceedings of the
“AFIPS Spring Joint Computer Conference,” pp. 483, 1967

“A fairly obvious conclusion which can be drawn at this point is that the effort
expended on achieving high parallel processing rates is wasted unless it is
accompanied by achievements in sequential processing rates of very nearly the same
magnitude”

e Let rg capture the amount of time that a program spends in components that can only be run sequentially

Let 7, capture the amount of time spent in those parts of the code that can be parallelized.

Assume that r5 and r, are normalized, so that s + 7, =1

Let n be the number of threads used to parallelize the part of the program that can be executed in parallel

The “best case scenario” speedup S is

S:Toldzrs_‘_r.p 1
Tnew Ts""Tl TS—I__

n

Amdahl’'s Law

[Cntd.]

Sometimes called the law of diminishing returns

In the context of parallel computing used to illustrate how going parallel
with a part of your code is going to lead to overall speedups

The art is to find for the same problem an algorithm that has a large r,
Sometimes requires a completely different angle of approach for a solution

Nomenclature
Algorithms for which r,=1 are called “embarrassingly parallel”

Example: Amdahl's Law

Suppose that a program spends 60% of its time in I/O operations, pre and post-processing
The rest of 40% is spent on computation, most of which can be parallelized

Assume that you buy a multicore chip and can throw 6 parallel threads at this problem.
What is the maximum amount of speedup that you can expect given this investment?

Asymptotically, what is the maximum speedup that you can ever hope for?

A Word on “Scaling”

[important to understand]

Algorithmic Scaling of a solution algorithm
You only have a mathematical solution algorithm at this point
Refers to how the effort required by the solution algorithm scales with the size of the problem

Examples:
Naive implementation of the N-body problem scales like O(N?), where N is the number of bodies

Sophisticated algorithms scale like O(N logN)
Gauss elimination scales like the cube of the number of unknowns in your linear system

e Implementation Scaling of a solution on a certain architecture
Intrinsic Scaling: how the execution time changes with an increase in the size of the problem
Strong Scaling: how the execution time changes when you increase the processing resources

Weak Scaling: how the execution time changes when you increase the problem size but also the
processing resources in a way that basically keeps the ratio of problem size/processor constant

A Word on “Scaling”

[important to understand]

e Two follow up comments

1. Worry about this: Is the Intrinsic Scaling similar to the Algorithmic Scaling?

If Intrinsic Scaling significantly worse than Algorithmic Scaling you then probably memory
transactions are dominating the implementation

2. If the problem doesn’t scale can be an interplay of several factors
The intrinsic nature of the problem at hand
The attributes (organization) of the underlying hardware
The algorithm used to solve the problem; i.e., the amount of parallelism it exposes

