ECE232: Hardware Organization and Design

Part 1: Introduction
http://www.ecs.umass.edu/ece/ece232/

Adapted from Computer Organization and Design, Patterson \& Hennessy, UCB

Course Administration - 1

- Instructors: Israel Koren
koren@ecs.umass.edu
- Mani Krishna
krishna@ecs.umass.edu
- TAs: Daniel Gomez-Prado

Kunal Ganeshpure
Nitin Prakash

Office Hours \& e-mail addresses posted on the course web page

- URL: http://www.ecs.umass.edu/ece/ece232/
- SPARK: http://spark.oit.umass.edu/
- Text: Required: Computer Organization and Design, The Hardware/Software Interface by D. A. Patterson and J. L. Hennessy, Morgan Kaufmann; 4th Edition, ISBN 978-0123744937

Course Administration - 2

- Slides will be posted in spark (https://spark.oit.umass.edu)
- Grading Policy
- Midterm 1 25\% March 7, 2011, 4-6 pm
- Midterm 2 25\% April 14, 2011, 4-6 pm
- Final 40\% TBA
- Homework 10\%
- No Midterm make-up exams
- Percentages adjusted for justified absence
- Homework policy
- Students are encouraged to work in groups. Maximum group size is 4. All names must be clearly noted. Solutions are returned during discussion
- Homework must be submitted through spark.oit.umass.edu
- If you work in a group indicate all names at the top of the page; every student must submit homework through spark
- Late policy: 20\% deducted for homework turned in late
- Homework must be picked up within 2 weeks

Course Content \& Goals

- Content
- Principles of computer architecture: CPU datapath and control unit design
- Assembly language programming in MIPS
- Memory hierarchies and design
- I/O organization and design
- Possible advanced topics
- Course goals
- To learn the organizational structures that determine the capabilities and performance of computer systems
- To understand the interactions between the computer's architecture and its software
- To understand cost performance trade-offs

What You Should Know

- Binary numbers
- Read and write basic C/java programs
- Understand the steps in compiling and executing a program
- Basic Verliog constructs
- To deal with HW assignments
- Logic design
- logical equations, schematic diagrams
- Combinational vs. sequential logic
- Finite state machines (FSMs)

Why you should know hardware organization?

- Computer organization principles are everywhere
- Embedded computer vs. general-purpose computers:
- Cellphone
- Digital Camera
- MP3 music player
- Industrial process control
- Complex system design
- How to partition a problem
- Functional Spec \rightarrow Control \& Datapath \rightarrow Physical implementation
- Modern CAD tools

Computing Systems

Abstractions: ISA and ABI

- Abstraction helps us deal with complexity
- Hide lower-level detail
- Instruction set architecture - ISA: An abstract interface between the hardware and the lowest level software of a machine
- Encompasses all the information necessary to write a machine language program that will run correctly, including
- instructions, registers, memory access, I/O
- ABI (application binary interface): The user portion of the instruction set plus the operating system interfaces used by application programmers
- Defines a standard for binary portability across computers

System Layers

- Application software
- Written in high-level language
- System software
- Compiler: translates HLL code to machine code

- Operating System: service code
- Handling input/output
- Managing memory and storage
- Scheduling tasks \& sharing resources
- Hardware
- Processor, memory, I/O controllers

Levels of Program Code

- High-level language
- Level of abstraction closer to problem domain
- Provides for productivity and portability
- Assembly language
- Textual representation of instructions
- Hardware representation
- Binary digits (bits)
- Encoded instructions and data

High-level language language program

 program(I C)

Assembly
language program
(for MIPS)
(int int v[]. int k)
lint temp:
temp $=\mathrm{v}[\mathrm{k}]$;
$v[k]=v[k+1]:$
, $v[k+1]$ - temp;
1

swap:

Swap:			
muli	$\$ 2$,	$\$ 5.4$	
add	$\$ 2$,	$\$ 4, \$ 2$	
	1 w	$\$ 15$,	$0(\$ 2)$
	7 w	$\$ 16$.	$4(\$ 2)$
	sw	$\$ 16$,	$0(\$ 2)$
	5 w	$\$ 15$,	$4(\$ 2)$
	jr	$\$ 31$	

Binary machine
language
program
(for MIPS)

00000000101000010000000000011000 00000000000110000001100000100001 10001100011000100000000000000000 10001100011000100000000000000000
1000110011110010000000000000100 10001100111100100000000000000100
10101100111100100000000000000000 10101100011000100000000000000100 00000011111000000000000000001000

μ Processor Advances - Moore's Law

- In 1965, Gordon Moore predicted that the number of transistors that can be integrated on a die would double every 18 to 24 months (i.e., grow exponentially with time).
- Amazingly visionary - million transistor/chip barrier was crossed in the 1980's.
- 2300 transistors, 1 MHz clock (Intel 4004)-1971
- 16 Million transistors (Ultra Sparc III)
- 42 Million transistors, 2 GHz clock (Intel Xeon) - 2001
- 55 Million transistors, $3 \mathrm{GHz}, 130 \mathrm{~nm}$ technology, $250 \mathrm{~mm}^{2}$ die (Intel Pentium 4)-2004
- 140 Million transistor (HP PA-8500)
- 1.8 Billion transistors (Itanium II)

Moore's Law \& Intel Processors

Uniprocessor Performance

Moore's law in GPU world

Observation

- Transistor count increases to meet demand for performance and functionality
- New applications create demand for increase in performance GPU Pixel Fill-rates Doubling every 1 year !

How is that possible?

- Scale the transistor channel length

Feature size scaling to reduce die size

Impacts of Advancing Technology

- Processor
- logic capacity: increases about 30\% per year
- performance: 2x every 1.5 years
- Memory
- DRAM capacity: $4 x$ every 3 years, now $2 x$ every 2 years
- speed: $1.5 x$ every 10 years
- cost per bit: decreases about 25\% per year
- Disk
- capacity: increases about 60\% per year

ISA Type Sales

Example Machine Organization

- Workstation design target
- 25% of cost - processor
- 25% of cost - memory (minimum memory size)
- Rest - I/O devices, power supplies, box

PC Motherboard Closeup

Inside the Pentium 4 Processor Chip

Inside the Processor

- AMD Barcelona: 4 processor cores

Reading assignment: Chapter 1

Manufacturing ICs

- Yield: proportion of working dies per wafer

AMD Opteron X2 Wafer

- X2: 300mm wafer, 117 chips, 90 nm technology

