ECE321 – Electronics I

Lecture 1: Introduction to Digital Electronics

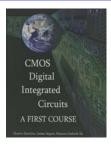
Payman Zarkesh-Ha

Office: ECE Bldg. 230B
Office hours: Tuesday 2:00-3:00PM or by appointment
E-mail: payman@ece.unm.edu

ECE321 - Lecture 1

University of New Mexico

Slide: 1


Textbook and Background

- Main reference material is your notes in the class and the handouts
- ☐ Two equally important textbooks are:
 - Charles Hawkins, Jaume Segura, and Payman Zarkesh-Ha, "CMOS Digital Integrated Circuits: A First Course," SciTech Publishing, December 15, 2012, ISBN: 978-1613530023
 - Neil Weste and David Harris, "CMOS VLSI Design: A Circuits and Systems Perspective," 4th Edition, Addison Wesley, March 11, 2010, ISBN-13: 978-0321547743
- □ Lecture Notes: combination of slides, homework and announcements
 - · Slides will be posted on the class webpage
 - Class webpage: ece-research.unm.edu/payman/classes/ECE321
 - User Name: studentPassword: electronics

ECE321 - Lecture 1

University of New Mexico

Textbooks and Outline

- · Basic CMOS Transistor Modeling
- CMOS Inverter
- · Delay and Power Calculations
- · Interconnect Modeling
- · Design Rules and Layout
- Design Tools
- CMOS Fabrication
- · Combinational / Sequential Logic
- · Static / Dynamic / Domino Logic
- · Basic Timing Analysis
- Basic SRAM and DRAM Memories

ECE321 - Lecture 1

University of New Mexico

Slide: 3

Grading Policy

☐ Your grade in the course will be comprised of:

Homework (20%)
Class Contribution (5%)
Design Project (15%)
Tests (30%)
Final Exam (30%)

- ☐ There will be 2 midterm tests, but only 1 will be considered and the worst test will be ignored. Therefore, there is no makeup tests or exams.
- ☐ Final letter grade will be based on curve and class performance
- ☐ Your participation in class is very important
- □ Suggestions for success:
 - Participate in the class and ask questions
 - · Read the textbook
 - Work on problems

ECE321 - Lecture 1

University of New Mexico

Homework Policy

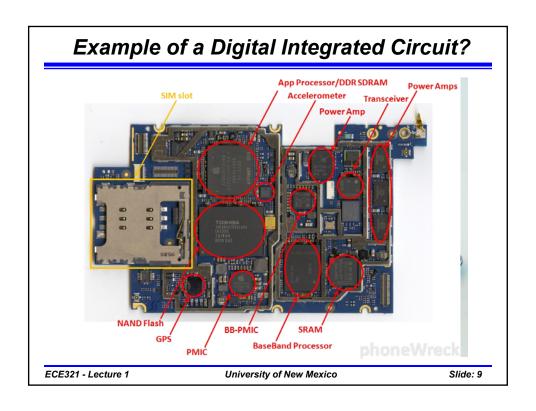
Homework will be assigned for each Monday of the class.
Please refer to the class website for the homework assignments.
Homework due at the beginning of the lecture. No exception!
Solutions will be posted on the class website as soon as it is available.
Late homework and projects will not be accepted

ECE321 - Lecture 1

University of New Mexico

Slide: 5

Course Project


- ☐ There will be design project assigned including:
 - Layout design using L-Edit
 - Circuit extract and spice simulation
- ☐ The design problem will be a team project. However, the roles of each team member should be rotated during the course of the project.
- ☐ Project grade will be based on:
 - · Quality of report
 - Performance (speed/delay)
 - Power dissipation
 - Layout area
- ☐ There will be a 10% extra credit for any design with minimum layout area, or maximum performance, or minimum power consumption

ECE321 - Lecture 1

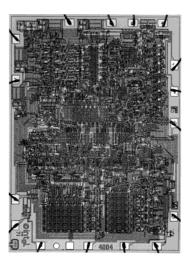
University of New Mexico

C	ourse Objectives	
☐ Analyze the basic of electrons and holes	device physics and predict the b s in a p-n junction	ehavior of
-	ode circuits with different types e linear model and the small-sig	
☐ Analyze the operati	ion of a field effect transistor an e of the FET	d determine
☐ Design and analyze NOR, and T-gates	e the operation of the CMOS Inve	erter, NAND,
☐ Determine the layo	ut diagram for various logic gate	es
☐ Draw the fabricatio	n steps for fabrication of logic g	ate circuits
Understanding the estimations	concept of timing analysis, dela	y, and power
ECE321 - Lecture 1	University of New Mexico	Slide: 7

C	He	ss Schedu	le	
Date	Day	Topic	Reading/Coverage	
August 17	Mon	Introduction to Digital Electronics	Handout	
August 19	Wed	Basic Circuits with Diodes	1.1 - 1.8	
August 24	Mon	Basic Solid State Physics	21-23	
August 26	Wed	Physics of Semiconductor Diodes	2.4 - 2.6	
August 31	Mon	Physics of Semiconductor MOSFETs	3.1	
September 02	Wed	MOSFET I-V Characteristics	3.2	
September 07	Mon	Labor Day		
September 9	Wed	Basic Circuits with MOSFET	Handout	
September 14	Mon	MOSFET Threshold Voltage & Parasitic Capacitance	Handout	
September 16	Wed	PSPICE Review		
September 21	Mon	MOSFET Scaling Issues	Handout	
September 23	Wed	Basic Digital Circuits with MOSFETs	Handout	
September 28	Mon	CMOS Inverter VTC & ITC	5.1 - 5.4	
September 30	Wed	CMOS Inverter Noise Margin & Delay Model	5.5	
October 05	Mon	CMOS Inverter Power	5.6	
October 07	Wed	TEST		
October 12	Mon	CMOS Inverter Short Circuit Power	5.6	
October 14	Wed	CMOS Inverter Leakage Power	5.7	
October 19	Mon	Gate Sizing (Inverter Chain)	5.8	
October 21	Wed	Interconnect Modeling I	4.1 - 4.2	
October 26	Mon	Interconnect Modeling II	4,3 - 4,4	
October 28	Wed	CMOS Fabrication	12.1 - 12.9	
November 02	Mon	Design Rules & Basic Layout Techniques	11.1 - 11.6	
November 04	Wed	TEST		
November 09	Mon	Combinational Logic: NAND & NOR Gates	6.1 - 6.2	
November 11	Wed	Combinational Logic; Transmission Gates	6.3	
November 16	Mon	Logic Design Style: Static Logic	7.1	
November 18	Wed	Logic Design Style: Dynamic & Damino Logics	7.2 - 7.3	
November 23	Mon	Sequential Logic: D Flip-Flop	8.1 - 8.4	
November 25	Wed	Timing Analysis	8.9	
November 30	Mon	SRAM Memories	9.1 - 9.3	
December 02	Wed	DRAM & FLASH Memories	9.4 - 9.6	
December 07	Mon	Final Exam (5:30-7:30PM)	-	

Introduction

Beginning of the Computer: ENIAC, the first electronic computer (1946)

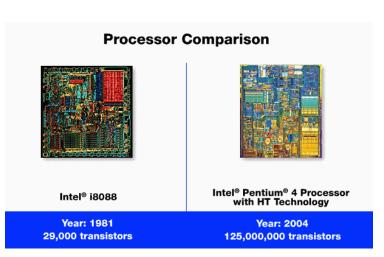


- 333 integer multiplication/second
- A six-week run was equivalent to 100 person-years of manual computation
- Program resides in the wired connections

ECE321 - Lecture 1

University of New Mexico

Intel 4004 Microprocessor


- 1971
- 10 um NMOS-only
- · 2300 transistors
- 1 MHz

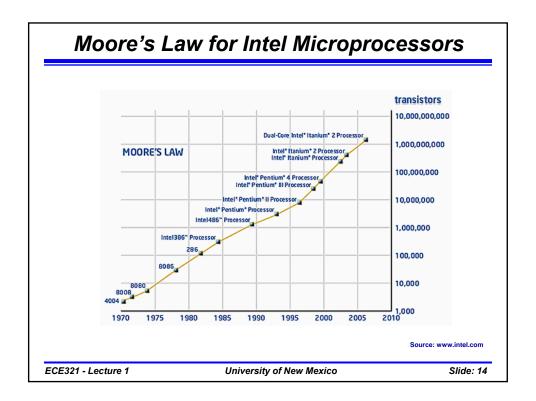
ECE321 - Lecture 1

University of New Mexico

Slide: 11

Intel Technology Advancement

ECE321 - Lecture 1

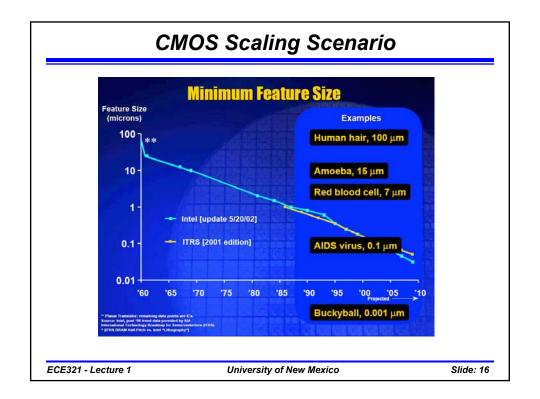

University of New Mexico

Moore's Law

- ☐ In 1965, Gordon Moore (founder of Intel) had a very interesting observation. He noticed that the number of transistors on a chip doubled every 18 to 24 months.
- ☐ He made a prediction that semiconductor technology would double its effectiveness every two years.

ECE321 - Lecture 1

University of New Mexico


Moore's Law in Travel Industry

ECE321 - Lecture 1

University of New Mexico

Why Scaling?

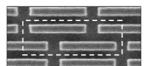
- ☐ What are the benefits of technology scaling?
- Why smaller device is better?

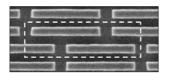
ECE321 - Lecture 1

University of New Mexico

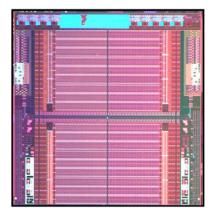
Slide: 17

CMOS Scaling Calculation


Scaling Calculator

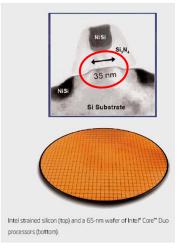

ECE321 - Lecture 1

University of New Mexico


22nm SRAM Testchip (Intel)

0.092 um² SRAM cell for high density applications

0.108 um² SRAM cell for low voltage applications


10 million of these cells could fit in a square millimeter
– about the size of the tip of a ballpoint pen

ECE321 - Lecture 1

University of New Mexico

Slide: 19

MOS in 65nm of Core Due Processor

Distance between Si atoms = 5.43 °A

No. of atoms in channel = 35 nm / 0.543 nm = 64 Atoms!

Problem: Uncertainty in transistor behavior and difficult to control variation!

ECE321 - Lecture 1

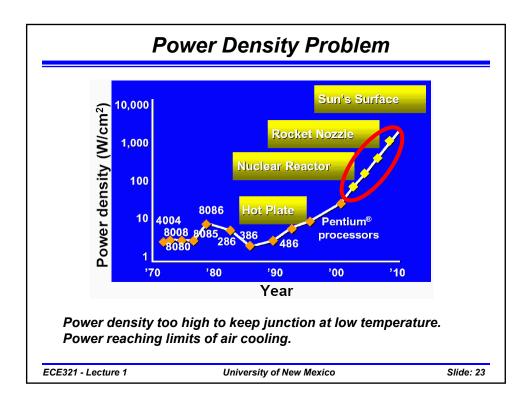
University of New Mexico

Benefit of Smaller Transistors

- 1) More transistors in the same foot-print
- 2) More functionality
- 3) Reduced cost per function
- 4) Faster devices and higher performance
- 5) Lower switching energy per transistor

ECE321 - Lecture 1

University of New Mexico

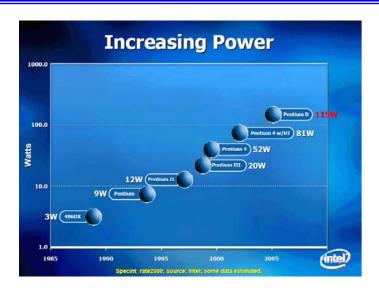

Slide: 21

Transistor Scaling Challenges

- 1) Feature sizes down to few atomic layers
- 2) Increase uncertainty of transistor behavior
- 3) Increase leakage power consumption
- 4) Difficult to maintain performance enhancement
- 5) Thermal limit issue

ECE321 - Lecture 1

University of New Mexico


Heat Management Consideration

ECE321 - Lecture 1

University of New Mexico

ECE321 - Lecture 1

University of New Mexico

Slide: 25

Some Calculations!

Power = 115 Watts

Supply Voltage = 1.2 V

Supply Current = 115 W / 1.2 V = 96 Amps!

Problem: Current density becomes a serious problem!

This is known as electromigration

Note: Fuses used for household appliances = 15 to 40 Amps

ECE321 - Lecture 1

University of New Mexico

Another Calculations!

Power = 115 Watts

Chip Area = 2.2 Cm²

Heat Flux = 115 W / 2.2 Cm² = 50 W/Cm²!

Problem: Heat flux is another serious issue!

Notes:

Heat flux in iron = 0.2 W/Cm² Heat flux in frying pan = 10 W/Cm²

ECE321 - Lecture 1

University of New Mexico

Slide: 27

Method of Heat Management

- 1) Proper heat removal system (expensive)
- 2) Improve manufacturing for low power MOS
- 3) Architectural solutions (multi-cores)

ECE321 - Lecture 1

University of New Mexico

Hitachi Water Cooling Laptop

ECE321 - Lecture 1

University of New Mexico

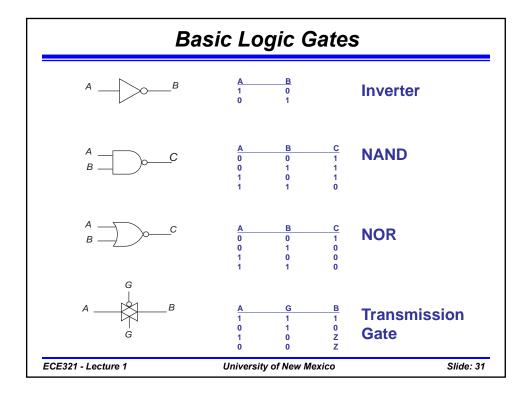
Slide: 29

Summary

Digital IC Business is Unique

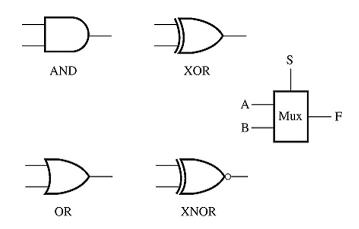
Things Get Better Every Few Years Companies Have to Stay on Moore's Law Curve to Survive

Benefits of Transistor Scaling


Higher Frequencies of Operation
Massive Functional Units, Increasing On-Die Memory
Cost/Functionality Going Down


Downside of Transistor Scaling

Power (Dynamic and Static)
Design and Manufacturing Cost


ECE321 - Lecture 1

University of New Mexico

Example 1: Use Basic Gates to Create Each

ECE321 - Lecture 1

University of New Mexico

Slide: 33

Review: DeMorgan's Theorem

- 1. Product terms (AND) in the original function transform to sum (OR) terms in the DeMorgan equivalence.
- 2. Sum (OR) terms in the original function transform to product (AND) terms in the DeMorgan equivalence.
- 3. All variables are inverted when transforming to and from a DeMorgan equivalence.
- 4. An overbar on the original function transforms to no overbar in the DeMorgan equivalence, and vice versa.

$$\overline{X+Y} = \overline{X}\overline{Y}$$

$$\overline{XY} = \overline{X} + \overline{Y}$$

ECE321 - Lecture 1

University of New Mexico

Basic Boolean Properties

$$X + Y = Y + X$$

$$X + 0 = X$$

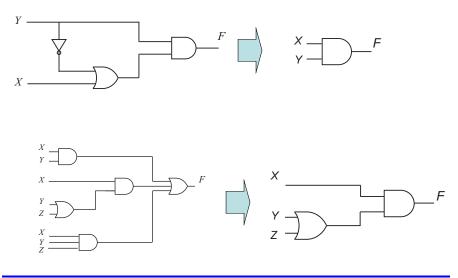
$$X + 1 = 1$$

$$X0 = 0$$

$$X + X = X$$

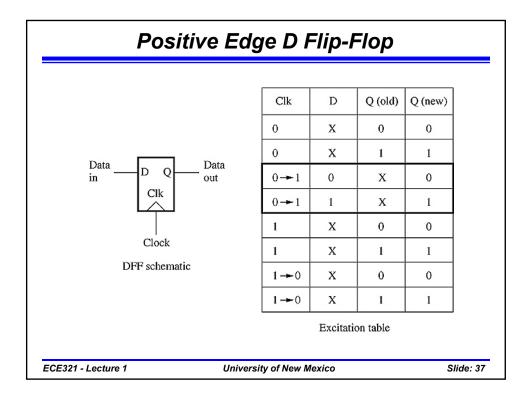
$$X + X = X$$

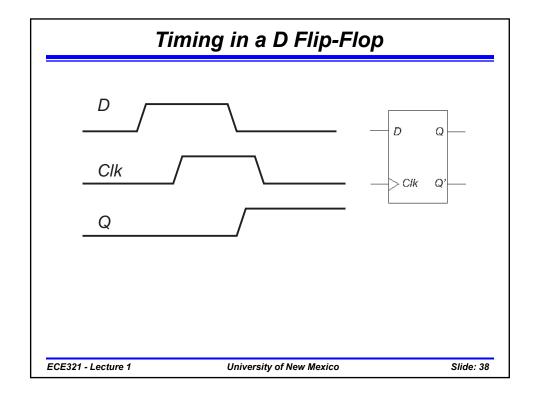
$$X = X$$

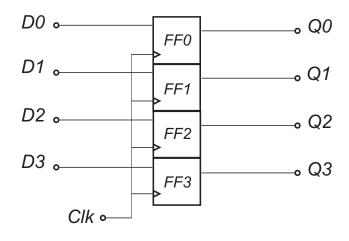

$$X + X = X$$

ECE321 - Lecture 1

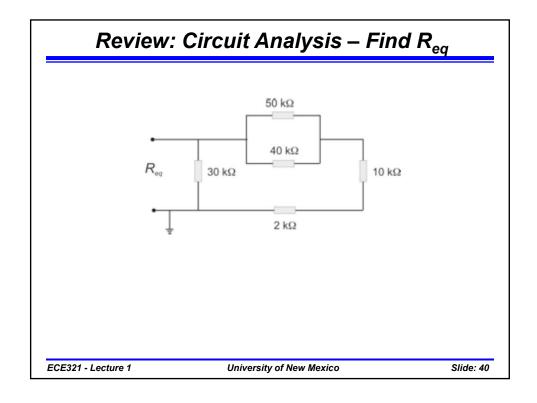
University of New Mexico

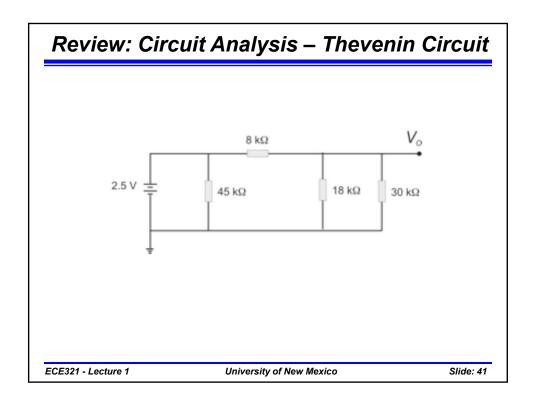

Slide: 35

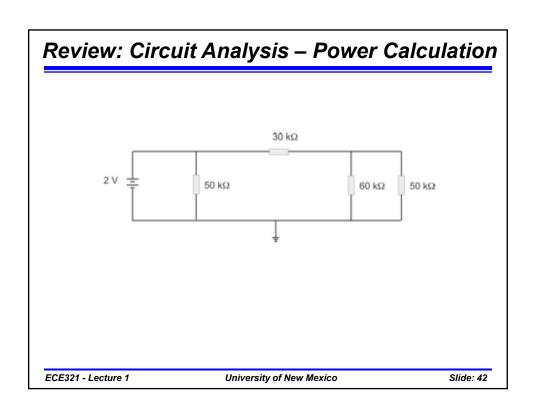

Example 2: Reduce to the Minimum Gates


ECE321 - Lecture 1

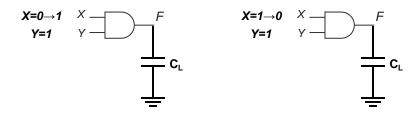
University of New Mexico




4-bit Register using D Flip-Flop



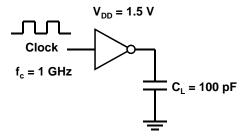
ECE321 - Lecture 1


University of New Mexico

Power Analysis for Logic Gates

How much energy or power we consume for each transition?

Which element consumes energy?

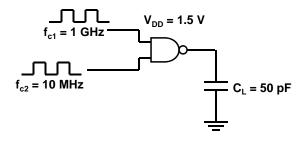

Which element gets hot?

ECE321 - Lecture 1

University of New Mexico

Slide: 43

Example 1: Power and Energy Consumption


In this circuit:

- 1) Compute the power consumption in the inverter.
- 2) Compute the power consumption in the load capacitor.
- 3) How much energy stored in the load capacitor in each transition?
- 4) How much energy consumed in the inverter in each transition?

ECE321 - Lecture 1

University of New Mexico

Example 2: Power Dissipation in Gated Clock

This circuit is typically used to "gate" the clock signal during sleep mode. Compute the average power dissipation in the above NAND gate.

ECE321 - Lecture 1

University of New Mexico