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Introductory experiments on response of control system components. Open-loop and closed-loop (feedback) response
of servo systems. Simulation of systems on analog computer. Design of compensator systems. Coreq., ECE4510.

Instructor: Roger Perkins Office: EN-219 Phone: 255-3350 email: rperkin3@uccs.edu
Course web-page: http://mocha-java.uccs.edu/

Office Hours: TBD

Summary: This course deals with practical aspects of control engineering. It is intended as a companion course to
ECE4510: Feedback Control Systems, and serves to augment and demonstrate concepts presented in the classroom.

Matlab/Simulink: You will use Matlab® and Simulink® extensively. Prior familiarity with Matlab is assumed, and
prior exposure to Simulink is helpful. You are not required to purchase these packages. Matlab and Simulink run on
the Control Systems Laboratory (EN129) computers and on the ECE Computation Laboratory (EN136) computers.

Grading: 10% of your course grade will depend on your prelab assignments and 90% of your course grade will
depend on your lab reports. No lab report will be given a grade better than “F” until you turn in an approved
prelab assignment for that lab. See further note regarding grading on the back of this page.

Lab Syllabus: The following topics will be covered during the fifteen lab meetings . . . . . . . . . . . . . . (Deliverables)

1. Introduction to the control-systems laboratory, Matlab, and Simulink.

2. The Real Time Workshop and QuaRC.

3. System identification: Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Lab report for Labs 1 and 2 due.)

4. System identification: Actuators.

5. Small-signal linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Lab report for Labs 3 and 4 due.)

6. “Black-box” frequency response system identification.

7. Basic PID control: Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Lab report for Labs 5 and 6 due.)

8. Basic PID control: Generalization.

9. Practical aspects of stability: Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Lab report for Labs 7 and 8 due.)

10. Practical aspects of stability: Implementation.

11. Root-locus analysis and informal design: Simulation . . . . . . . . . . . . . . . . . . (Lab report for Labs 9 and 10 due.)

12. Root-locus analysis and informal design: Implementation.

13. Feedback linearization, pole-placement design: Lower disk . . . . . . . . . . . (Lab report for Labs 11 and 12 due.)

14. Feedback linearization, pole-placement design: Upper disk.

15. Instructor demonstration of two-disk control . . . . . . . . . . . . . . . . . . . . . . . . . (Lab report for Labs 13 and 14 due.)



Work Load: This is an aggressive lab course requiring weekly assignments. Expect to spend 3 to 4.5 hours per week
outside of the lab preparing for the labs and completing lab writeups. This is in accord with UCCS policy relating credit hours
for a laboratory course to student workload. More or less time may be required on an individual basis.

Grading: Due to space and equipment limitations, the labs must be performed in groups of two or three students per group.
Your grade will be largely determined by the quality of your report. The reports will be graded based on organization, technical
accuracy, neatness, grammar and spelling. If a lab-group submits a single report, then each student will receive the same grade
for the lab report. If each student in a lab-group submits his or her own report, each student will receive an individual grade.

Lab Reports: The Department requires formal lab reports which must satisfy the following format rules:

1. Title page: This must include a title, group member names, course and section name and date.
2. Introduction: Explain the background and objective of the lab indicating requirements and desired results.
3. Discussion: Discuss the underlying applicable theory and concepts that support the measurements. Indicate and discuss

the measurement set-up and equipment used.
4. Measurement data and/or Results: Present measurement results in tabular, graphical or numeric form. Present results

from required lab exercises.
5. Discussion of Measurements: Discuss measured data in context of comparison to expectation, accuracy, difficulties, etc.
6. Summary and Conclusions: Discuss findings, explain errors and unexpected results; summarize and indicate conclusions.

Further requirements on the lab report are:

1. Correct spelling, grammar and punctuation is required.
2. Report must be typed; figures, drawings and equations may be handwritten.
3. Format of references must conform to IEEE (transactions) standards.

Prelab Assignments: Before you enter the laboratory each week, you are expected to thoroughly read and understand
the corresponding lab writeup in this lab reader. Each lab has a prelab assignment. This assignment must be completed and
turned in to the lab instructor before you will be permitted to start the lab. Each of your prelab assignments must contain:

• Answers to the specific questions given in the “Prelab Assignment” portion of the lab reader for that lab,

• A paragraph describing what you are supposed to do during the lab,

• A paragraph describing expected results.

A portion of your course grade will be assigned based on your prelab assignments. Furthermore, no grade better than an “F” is
possible for any lab report until an approved prelab assignment has been turned in for that lab.

Missed Labs: Attendance is your responsibility. Missed labs will count as ZERO without a phycian’s documentation of
an illness, or other appropriate documentation of an emergency beyond your control and requiring your absence.

Drop Date: This course complies with the UCCS campus rules for drop date.

Please Note: The instructor reserves the right to change the syllabus and to add or delete lab assignments depending on
circumstances. Changes will be announced ahead of time, and handouts will be given out at least one class ahead of the lab.

The Control-Systems Lab and the Lab Reader: This material is based upon work supported by the National
Science Foundation under Grant No. 9981009. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the views of the National Science Foundation. The lab was
upgraded in 2005 with the support of the EAS Instructional Fee.
The lab reader has been composed using the LYX document processing system and typeset with LATEX2ε. All original diagrams
have been created using either xfig or Matlab. Screen shots were made using IrfanView.
The lab reader has been prepared by Dr. Gregory Plett; however, much has been taken from the manual for the Model 730
Magnetic Levitation unit by Educational Control Products (ECP), http://www.ecpsystems.com, and the manual for the
WinCon by Quanser Consulting, http://www.quanser.com. Text and diagrams have been copied from these manuals.
Scanned photos from the ECP web site have also been included. All are used with permission of ECP.
Some material has been adapted from control labs developed by previous instructors at UCCS including: M.G. Larimore,
Dr. E.J. Bauman, Dr. J.A. Magerko Jr., Dr. Charles Fosha, Gary Mansouri and Clinton Eads.
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Introduction to the Control Systems
Laboratory, Matlab, and Simulink

1.1 INTRODUCTION

During this lab period, several items will be addressed:

• Administration: A quick overview of the syllabus and expectations for lab reports.

• The laboratory: An introduction to the equipment in the lab. Some instructions in how to use it.

• Review: A short review of complex numbers, and a Simulink introduction.

This review has been constructed based on students’ observed needs from past experience. Not all students will need
all the review, but we feel that most will benefit from it.

1.2 ADMINISTRATION

1.2.1 The Lab Reader

This lab reader1 contains fourteen labs. The first two labs are designed to familiarize you with the lab equipment,
and how to use it. The remaining labs are divided into groups of two to cover a number of topics that include system
identification, model verification, and several different control designs. Each laboratory exercise has a detailed
discussion in this “lab reader” document, and a consistent format is used throughout:

Introduction: A short introduction to the lab experiment.

This Lab Is. . . : A summary of the main points of the lab.

Background: Theory and practical information required to perform the lab.

Prelab assignment: An assignment that must be completed and turned in before you will be permitted to start the
lab.

Laboratory Experiment: The experiment to be performed during the lab period.

Assignment: Items that must be included in the formal lab writeup.

1The reader has been entered using the LYX document processing system and typeset with LATEX2ε on a Macintosh Core 2 Duo computer
running the OS X operating system. All original diagrams have been created using either xfig or Matlab. Screen shots were made using xv
and IrfanView.

The lab reader has been prepared by Dr. Gregory Plett; however, much has been taken from the manual for the Model 730 Magnetic
Levitation unit by Educational Control Products (ECP), http://www.ecpsystems.com, and the manual for the WinCon by Quanser
Consulting, http://www.quanser.com. Text and diagrams have been copied from these manuals. Scanned photos from the ECP web
site have also been included. All are used with permission of ECP.

Some material has also been adapted from control labs developed by previous instructors at UCCS. Not all of the authors are known, but
credit must be given to (chronologically) M.G. Larimore, Dr. E.J. Bauman, Dr. J.A. Magerko Jr., Dr. Charles Fosha, Ali (Gary) Mansouri and
Clinton Eads.
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1.2.2 Prelab Assignments

Before you enter the laboratory each week, you are expected to thoroughly read and understand the corresponding
lab writeup in this lab reader. Each lab has a prelab assignment. This assignment must be completed and turned in
to the lab instructor before you will be permitted to start the lab. Each of your prelab assignments must contain:

• Answers to the specific questions given in the “Prelab Assignment” portion of the lab reader for that lab,

• A paragraph describing what you are supposed to do during the lab,

• A paragraph describing expected results.

A portion of your course grade will be assigned based on your prelab assignments. Furthermore, no grade better
than an “F” is possible for any lab report until an approved prelab assignment has been turned in for that lab.

1.2.3 Lab Reports

A syllabus of lab topics is listed on the front page of this lab reader. You will see that the semester is divided into
seven pairs of labs. One report is required for each pair of labs (i.e., seven reports, total). Due dates for the lab
reports is also listed on the syllabus (corresponding to the week in the semester this lab meets).
The Department requires formal lab reports. The format for formal lab reports must comply to the following:

1. Title page: This must include a title, group member names, course and section name and date.

2. Introduction: Explain the background and objective of the lab indicating requirements and desired results.

3. Discussion: Discuss the underlying applicable theory and concepts that support the measurements. Indicate
and discuss the measurement set-up and equipment used.

4. Measurement data and/or Results: Present measurement results in tabular, graphical or numeric form. Present
results from required lab exercises.

5. Discussion of Measurements: Discuss the measurement data in context of comparison to expectation, accu-
racy, difficulties, etc.

6. Summary and Conclusions: Discuss findings, explain errors and unexpected results and summarize and indi-
cate conclusions.

Further requirements on the lab report are:

1. Correct spelling, grammar and punctuation is required.

2. Report must be typed; figures, drawings and equations may be handwritten.

3. Format of references must conform to IEEE (transactions) standards.

1.3 THE LABORATORY

The Control Systems Laboratory has been made possible by a grant from the National Science Foundation directorate
of undergraduate education in 2000. In 2005, the lab was updated with support from the EAS Instructional Fee. In
2008, the software in the lab was further updated with support from the ECE department. In 2015, the software
and computers in the lab were updated with support from the ECE department. The lab comprises four student
workstations, each having a computer and one or more devices to control.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs
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1.3.1 The Lab Computers

The lab computers are standard PCs with additional special hardware for data I/O. The computers run Windows 7.
You log in to the lab computers using your University (UFP account) user-name and password. You have access to
all your files from these computers.

1.3.2 The Devices to Control

The lab experiments will focus on one physical device to control—the the Magnetic Levitation (MagLev) device.
The lab also has Control Moment Gyroscope devices which are used in more advanced control courses. These two
devices are depicted in Fig. 1.1.

Figure 1.1 The two lab devices. The MagLev device is to the left; the Gyro device is to the right.

Some cautions are in order for the safety of the equipment:

1. Do not touch the glass rod on the MagLev system. Oils break down the lubricant in the magnet
bushings, increase friction and decrease the lifetime of the equipment.

2. Do not touch the white surface of the magnets. The surface must be clean for proper functioning of the
laser sensor.

3. Do not get magnetic (i.e., computer) media near the MagLev magnets. The magnets are extremely
strong and will erase computer media. You have been warned.

4. Do not attempt to move the Gyro axes manually. These devices have “brakes” which are activated
when the device is off and when switches on the control box are turned on. These brakes will quickly wear
out if forced.

1.4 REVIEW

1.4.1 Complex Numbers

A complex number has two parts: a “real” part, and an “imaginary” part. The real part is just a number, like 1.2 or
π. The imaginary part is also a number. The complex number is formed by combining the real part and imaginary
parts by multiplying the imaginary part by j =

√
−1 and adding the two parts. For example, 1.2 + 3.1j. (Often,

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs
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engineers use the notation that j =
√
−1 and mathematicians use the notation that i =

√
−1. Both mean the same,

and should not confuse you).
Complex numbers are very useful since they “carry around” two values at a time. We can plot the position of a
complex number on a x-y (Cartesian) plane by plotting the real part on the x-axis and plotting the imaginary part
on the y-axis. The distance from the point to the origin is the “magnitude” of the number, and the angle of the point
from the x-axis is the “angle” or “phase” of the number. So, an equivalent representation of a complex number is in
magnitude-phase (a.k.a., “polar”) form. It is easy to convert back and forth:

x+ jy =
√

x2 + y2∠
(
tan−1

(y
x

))
(be careful about the quadrant of the tan−1() fn!)

A∠θ = A cos(θ) + jA sin(θ).

Complex numbers are not used just because you can carry around two values with one number, but also because
they have many practical applications. Mathematical operations can be performed on complex numbers which often
have physical significance, such as the phase relationship between voltage and current.

Addition and Subtraction:

Two complex numbers are added by adding their real and imaginary parts separately.
(a+ jb) + (c+ jd) = (a+ c) + j(b+ d).

Subtraction is performed in the same way.

Multiplication:

Two complex numbers are multiplied using regular multiplication rules, and remembering that j · j = −1.

(a+ jb)(c + jd) = ac+ jbc+ jad+ j2bd
= (ac− bd) + j(bc+ ad).

Multiplication is easier if the numbers are in polar form:
(A∠θ)(B∠ψ) = AB∠(θ + ψ).

Division:

Division of one complex number by another is accomplished by multiplying numerator and denominator by the
“conjugate” of the denominator. The conjugate of x+ jy is x− jy; that is, the imaginary part is negated.

a+ jb

c+ jd
=

a+ jb

c+ jd
· c− jd

c− jd

=
(ac+ bd) + j(bc − ad)

c2 + d2

=
ac+ bd

c2 + d2
+ j

bc− ad

c2 + d2
.

Again, division of complex numbers is easier if they are in polar form:
A∠θ
B∠ψ =

A

B
∠(θ − ψ).
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ECE4530, Introduction to the Control Systems Laboratory, Matlab, and Simulink 1–5

The Complex Exponential

A special function which is seen all the time in linear systems and control systems is the complex exponential
function. Euler’s identity states

ejθ = cos(θ) + j sin(θ).

Therefore,
eφ+jθ = eφ(cos(θ) + j sin(θ)).

We can unwrap Euler’s identity and write the sin() and cos() functions in terms of the complex exponential.

cos(θ) =
ejθ + e−jθ

2
and sin(θ) =

ejθ − e−jθ

2j
.

1.4.2 Simulink

During the course of the semester you will perform a sequence of experiments treating the step-by-step design and
test procedures for typical classical controllers. Here we encounter a valuable tool: simulation. Simulation is a
means of predicting the quantitative and qualitative behavior of a physical system by using a mathematical model of
the system. Often it is impractical to design a controller for a specific piece of equipment without careful preliminary
testing. For example, an incorrectly designed process controller for a paper or chemical manufacturing plant could
result in a cost of millions in damage. A faulty auto-pilot for a commercial aircraft could likewise cost in money
as well as lives. Therefore, with the exception of simple isolated systems, we seldom design and test controllers on
systems directly. Rather, a mathematical model of a dynamic system is constructed, and then somehow simulated.
That is, the system’s time response is predicted for arbitrary inputs.
For many cases the simulation phase can be done by means of digital computers, particularly when high numerical
accuracy is required. You will be using Simulink: a simulation package that operates inside of Matlab. With
Simulink, you first define a model of the system in block-diagram form, and then analyze the model by injecting
signals and observing the outcome.

Starting Simulink

To start Simulink, you start Matlab, and then enter “simulink” at the Matlab “>>” prompt.

>> simulink

The Simulink block browser window appears, as shown in Fig. 1.2 on page 1–6 appears. (Note: the screen shots
were taken for Simulink from Matlab 20014a, running on a Windows 7 workstation. Other versions of Simulink
running on different platforms may not have identical appearance, but the methods for using the program should be
the same).
From the Simulink File menu, you can either create a new model (i.e., a new block-diagram to simulink) or load an
existing model. To create a new model, you will need to access the Simulink block library. By double-clicking on
any of the icons in the Simulink window in Fig. 1.2 on page 1–6, the appropriate block-library is opened. Note that
the blocks used in existing block diagram files may be copied by dragging and dropping into a new or existing file.
Four block libraries, shown in Fig. 1.3 on page 1–7, are of particular interest. The “source” blocks are signal sources
of various types; the “sink” blocks are signal sinks, which include plotting devices; the math blocks include gains
and sums; and the continuous elements include integrators, differentiators and transfer-functions.
Existing block diagrams are saved as mdl-files. An example simulink block-diagram is shown in Fig. 1.4. This
block diagram is saved as “test.mdl”. The system may be opened by typing “test” at the Matlab prompt, and
may be simulated by sim(’test’). The block-diagram is generated by “dragging” blocks from the source, sink
(etc) pallets, and by dragging wires between them. The parameters of a specific block (for example, the numerator
and denominator polynomials for the transfer function block) can be modified by double-clicking on the block, and
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Figure 1.2 Simulink main window.

changing parameters in the dialog that appears. The simulation is started by selecting Start from the Simulation
menu. (Note: different versions of Simulink may have shortcuts). In this block-diagram, the output is sent to a
“scope” block, which may be viewed by double-clicking on the scope icon.

1.5 LABORATORY EXPERIMENT

1. In a number of labs, you will need to plot data similar to that shown in Table 1.1. Using Matlab on the
lab computers, plot Fm12 (on the vertical axis) versus y12 (on the horizontal axis). Include figure title, x-
and y-labels, and a legend. You will need to know Matlab commands: plot xlabel ylabel title
legend. If you are unsure as to how these work, type help and the command you wish to know more
about (e.g., help legend). Matlab also has a more detailed documentation system, accessed via the doc
command (e.g., doc legend).

Table 1.1 MAGNET-TO-MAGNET FORCE INTERACTION DATA.

Weight at Magnet #2 (Fm12 , N ) Magnet #2 Position Relative
to Magnet #1 at Equilibrium
(y12, cm)

0.402 11.73
0.612 10.30
0.735 9.57
0.998 8.80
1.190 8.09
2.171 6.72
3.152 5.90
4.133 4.78
6.095 4.25
11.00 2.74

2. Print your results to a file. (You may need to consult help print. The “png” format works well for
inclusion of figures in Microsoft Word documents, and makes for professional looking lab reports.) Copy this
file to your UFP account, and include it in your lab report writeup.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs
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3. In Simulink, create a model with a sinusoidal source, a “scope” block as sink, and with the transfer function

H(s) =
s+ 10

s+ 100
.

Use the “transfer function” block from the “continuous” blockset library to implement the transfer function.
Enter the numerator polynomial as the coefficients of decreasing powers of s in the numerator of H(s). For
this example as [1 10]. Enter the denominator polynomial in the same way. Initial conditions should be
zero. Use an input sinusoid of amplitude 1. The block diagram will look like the one in Fig. 1.4.

Simulate your system for the following frequencies: 1, 2, 4, 7, 10, 20, 40, 70, 100, 200, 400, 700 (all in radians
per second). At steady-state, record the amplitude of the output sinusoid. Zoom in on the peaks for accurate
results. You may want to either print your results and/or save to disk.

Figure 1.3 Some Simulink block libraries of interest: Sources, Sinks, Math, and Continuous.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs
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Figure 1.4 Example block diagram.

1.6 ASSIGNMENT

1. Include the results from the Laboratory Exercise.

2. Complex number exercises. Please work out by hand. You may check your answers with Matlab. Let x1 =
0.1 + 0.1j; x2 = 0.1− 0.1j; x3 = −0.1 + 0.1j; x4 = −0.1− 0.1j.

• What are the magnitude and phases of x1, x2, x3 and x4?

• What is x1 + x2 + x3 + x4?

• What is x1 − x2?

• What is x3 · x4? (Give your answer both in rectangular and polar coordinates).

• What is x4/x1? (Give your answer both in rectangular and polar coordinates).

• What is ex1?

3. For the transfer function in the Simulink exercise, H(s) = (s+ 10)/(s + 100), compute |H(jω)|. (One way
is to compute

√
H(jω)H(−jω)). Then, plot 20 log10(|H(jω)|) versus ω on a semilog plot (Matlab: log10

and semilogx). Overlay this plot with the data you recorded in part 3 of the Laboratory Experiment. Are
the results what you expect? Why or why not?

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs
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The Real Time Workshop, QuaRC

2.1 INTRODUCTION

This lab is an exercise to familiarize you with the Real Time Workshop and the QuaRC real-time target on the lab
computers. You will be using these programs regularly during the semester.

2.2 THIS LAB IS. . .

• An introduction to the Real Time Workshop (RTW) to run hardware-in-the-loop (HIL) experiments.

• An HIL experiment using RTW and QuaRC to compare against last lab’s software experiment.

2.3 BACKGROUND

2.3.1 The Real Time Workshop

Last lab period, we introduced how to use Simulink to simulate a dynamic system. The Real Time Workshop (RTW)
is a part of Matlab that interfaces Simulink with the “real world.” Simulink by itself allows simulation of dynamic
systems. With the Real Time Workshop, however, you can include physical devices inside the “simulation.” Signals
from your Simulink block diagram may be output through digital to analog (D2A) converters, and external signals
may be read into your Simulink block diagram through analog to digital (A2D) and optical encoder inputs.
The Real Time Workshop can operate with many different input-output (I/O) platforms, some having their own
DSP on board to run the resulting code. The setup in the lab uses the Quanser Consulting Q4 and Q8 I/O boards,
which include four/eight A2Ds, four/eight D2As, and four/eight quadrature optical encoder inputs, respectively (and
a variety of digital I/O and other features we will not use). Many of these features are connected to the breakout box
next to the computer so that you can simply wire up experiments using banana plugs. Three of the workstations use
the Q4 board and the final workstation uses the Q8 board. The discussion in this lab reader will give instructions for
using the Q4 board, but the Q8 board may be used in analogous ways.
For many control scenarios, the system will be configured as shown in Fig. 2.1 on page 2–2. A controller is connected
to the MagLev through a power amplifier. The amplifier has input voltage range −10 to 10 volts, and produces output
current in the appropriate range to drive the electromagnetic coils. The amplifier also buffers the sensor signal from
the plant. When a computer is used as controller, it is connected to the amplifier box via a “breakout box” which
provides the appropriate input and output signals via banana plugs. The Q4/Q8 board inside the PC is directly
connected to the breakout box.
The Q4 I/O board does not have its own DSP, so the real-time software must run on the lab computer’s own CPU. The
Real Time Workshop, in conjunction with a piece of software called QuaRC (by Quanser Consulting), automatically
generates C code to implement your Simulink diagram, compiles the C code into executable code, and runs the code
on the CPU in your desktop computer.
The beauty of this arrangement, used frequently in industry to test and prototype control systems, is that you can
test controllers in a “hardware in the loop” configuration without ever coding an interrupt service routine or writing
a single line of C or assembler code! (Much less, debugging same.) Designs may be prototyped rapidly resulting in
great economies of time and money. You will see that there is a learning curve the first time you use this particular
scheme, but afterward it becomes completely natural.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs



ECE4530, The Real Time Workshop, QuaRC 2–2

Plant

14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Magnetic Levitation
ecp Model 730

Breakout box

Power amplifier/ sensor conditionerComputer controller

ADC2

ADC1

ADC3

ADC4

PWR

Device Gyroscope Device
Control−Moment
ecp Model 750

ADC/

ADC/

ADC/

ADC/

DAC/

DAC/DAC2

DAC1

DAC/

Model 730ecp
Educational Control Products

ADC4 ADC/

ADC3 ADC/

ADC2 ADC/

ADC1 ADC/

DAC1 DAC/

DAC2 DAC/

DAC1 DAC/

DAC2

Figure 2.1 System setup for control.

2.3.2 Using the Real Time Workshop

In order to use the Real Time Workshop, you must know how to construct a Simulink block diagram containing
RTW elements, be able to set all parameters for these elements and for Simulink/RTW, and be able to properly
compile/build the code and run it. These topics are discussed in the following sections

Creating the Real Time Model

The HIL Initialize Block:
In order to start using the Real Time Workshop, Simulink will need to know that your model must be executed on
external hardware, not via internal simulation. To configure the hardware inside your Simulink model, you will need
to add a block “HIL Initialize”. You can find this block under the Simulink Library Browser via the path QuaRC
Targets ◃Data Acquisition ◃Generic ◃Configuration (cf. Fig. 2.2). Drag this block into your model (it doesn’t matter
where you put it in your model).

Figure 2.2 The hardware configuration block.

Double-click on this block in your model and set the hardware to correspond with the data acquisition board in your
workstation. Note that workstations 1–3 use the Quanser Q4 board, and workstation 4 uses the Quanser Q8
board.
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The A2D and D2A Converter Blocks:
Your block diagram will also need analog inputs and outputs (A2D and D2A blocks). You can find these blocks
under the Simulink Library Browser via the path QuaRC Targets ◃Data Acquisition ◃Generic ◃ Immediate I/O
(cf. Fig. 2.3). Drag the appropriate block(s) into your model, and connect them in the appropriate places. Note
that the A2D operation that we will use is performed by the “HIL Read Analog” block, and the D2A operation that
we will use is performed by the “HIL Write Analog” block.

Figure 2.3 The hardware configuration block.

When you double-click on an HIL Read Analog block or an HIL Write Analog block, you can set the A2D or
D2A channel that is accessed by that particular block, so that multiple A2D and D2A channels may be used in any
particular block diagram. These channels correspond with the A2D and D2A banana plugs on the breakout box.

• The top set of banana plugs on the breakout box is A2D1 (channel 0) and so forth through to the bottom set
which is A2D4 (channel 3). A2D1 is generally used as the input from the sensor on the bottom coil; A2D2 is
generally used as the input from the sensor on the top coil. The other two inputs are the temperature readings
of the two coils, and may be used to provide more accurate sensor calibration when the sensor heats up.

• D2A1 (channel 0) and D2A2 (channel 1) correspond to the MagLev drive coils (bottom and top, respectively).
D2A3 (channel 2) and D2A4 (channel 3) correspond to the Gyro D2A1 and D2A2 on the breakout box, and
are used to drive Axis 1 and Axis 2 of the Gyro.

For convenience, the associations between channel number and breakout-box labeling are repeated here:

Channel Breakout Box Typical Use
A2D Channel 0 MagLev A2D1 Bottom Coil Sensor
A2D Channel 1 MagLev A2D2 Top Coil Sensor
A2D Channel 2 MagLev A2D3 Bottom Temp Sensor
A2D Channel 3 MagLev A2D4 Top Temp Sensor
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Channel Breakout Box Typical Use
D2A Channel 0 MagLev D2A1 Bottom Coil Drive
D2A Channel 1 MagLev D2A2 Top Coil Drive
D2A Channel 2 Gyro D2A1 Axis 1 Motor Drive
D2A Channel 3 Gyro D2A2 Axis 2 Motor Drive

Setting the Real-Time Options

There are a number of options that must be set before you can properly build and run your code. Most of these
options will be automatically set properly for you. However, your model will not build if you have “discrete states”
enabled. If you get an error message about your model having continuous states, navigate to the “solver” window
via: Simulation◃Parameters and clicking on the solver tab. The simulation should be set to Fixed Step
Size and an “ode1 (Euler)” method. A sample period of 0.002 s should work well for all labs in this course.

Building and Executing the Real-Time Model

Building the Model: From the prior discussion, you should be able to construct a Simulink block diagram
including physical I/O and be able to set all necessary parameters. It remains to see how to run the resulting
simulation and view the output.
Follow this procedure:

1. Be sure to enter your parameters in each block of your Simulink model. In particular you will need to set the
required settings:

(a) Model execution, set from default “normal” to “external” (located in the upper right corner of your model
window.

(b) Set the run time to the desired duration (default is inf = infinity, it will run forever).
(c) Go to Simulation->Model Configuration Parameters, a new window will open. Select Solver in this

window and set the solver options to:

• Type: Fixed-step

• Solver: ode1 (Euler)

• Fixed-step size (fundamental sample time): 0.002

2. Build the model by selecting the “Build” icon (looks like a keypad) or use keys Ctrl+B.

3. Before running the simulation, ensure that you have connected the breakout panel correctly, for the particular
HIL operation you are performing. For example in the Lab 2 experiment you are simply connecting the
corresponding analog channel out to the analog channel in: D2A1 -> A2D1.

The build process can take some time. The Matlab control GUI will display busy while the build is in progress.
If there are any errors in the Simulink model or a QuaRC setting, a dialog box will appear with warnings and errors.
If there are no errors, then the code is built, and you are ready to execute the real-time target. Note that every time
you change your model you will need to re-build its code. (If you just change a parameter value of a block, this
may not be necessary. It is always safest to do so, however).

Executing the Model: When your code is successfully downloaded to the QuaRC client software, your diagram
is ready to execute. From the QuaRC menu, select Start. To stop execution, select Stop from the QuaRC menu. Or,
select the “connect” icon, then the “run” arrow to start. To stop before completion, select the “stop” icon. The
simulation will normally terminate after the real time entered as part of step 1(b), above.
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2.4 PRELAB ASSIGNMENT

This lab, for practice using Simulink, you will implement the following differential equation:
ẏ(t) + by(t) = ẋ(t) + ax(t),

where x(t) is the input signal to a system, and y(t) is the output signal. The Laplace transform (with zero initial
conditions) of this differential equation is:

sY (s) + bY (s) = sX(s) + aX(s)

or

H(s) =
Y (s)

X(s)
=

s+ a

s+ b
.

This transfer function is known as either a “lead” network or a “lag” network, depending on the relation of parameters
a and b. (If a < b the system is lead; if a > b the system is lag). In ECE4510 you will discover that this transfer
function is a fundamental building block when designing control systems.
The amplitude response of a system measures the scaling factor relating the output to the input at different frequen-
cies. If ω is a frequency (in radians/second) then |H(s)|s=jω = |H(jω)| is the amplitude response of the system.

1. For a = 10 and b = 100, find the amplitude response of the lead network for the following frequencies (fill in
the table). If this doesn’t look remarkably similar to your results from Lab 1, something went wrong.

ω, rads/sec Amplitude resp. |H(jω)|
1
2
4
7

10
20
40
70
100
200
400
700

2. Using the values in your table, plot 20 log10(|H(jω)|) versus logarithmic ω (a Bode magnitude plot).

2.5 LABORATORY EXPERIMENT

1. For the laboratory exercise, you will repeat last week’s test, but will force the simulation to include “real
world” I/O. Construct a block diagram as shown below:
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You need to wire the breakout box so that D2A Channel 0 is connected to A2D Channel 0. The appropriate
wiring diagram is shown below:

ecp Model 730 ecp Model 750
Control−Moment
Gyroscope DeviceDevice

Magnetic Levitation

DAC/ADC4 ADC/

ADC3 ADC/

ADC2 ADC/

ADC1 ADC/

DAC1 DAC/

DAC2

DAC/

DAC2 DAC/

DAC1

Simulate and log results as done in Lab 1. Your results should be substantially the same, but there will be
some differences. Note that it may be wise to increase the amplitude of the generated sinusoid for frequencies
which are highly attenuated so that noise is not a dominating effect in your results. Be sure to divide the output
magnitude by the input magnitude in order to arrive at the appropriate amplitude response.

2. Connect a (real!) oscilloscope to the D2A output to monitor the output. Is it what you expect?

2.6 ASSIGNMENT

1. Replot the prelab Bode magnitude plot. That is, plot 20 log10(|H(jω)|) versus logarithmic ω. Superimpose
the results from Lab 1 and Step 1 above. Comment on similarities and/ or differences.

2. State some intelligent observations from Step 2 above. Is the (real) scope output the same as the (Simulink)
scope output? How are they the same? How are they different?
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System Identification: Sensors

3.1 INTRODUCTION

In the laboratory this semester, you will devote your effort to understanding and controlling the magnetic levitation
system. In this particular lab you will perform a task called “system identification.” You will make a mathematical
model of the dynamics of the device, including the nonlinearities of the actuator and sensor. So-called “white-box”
system identification assumes that you have full knowledge of how the system operates and can use Newton’s laws,
and so forth, in order to make the model. “Black-box” identification, the subject of a future lab, assumes no specific
knowledge and uses generic techniques in order to make a system model.

3.2 THIS LAB IS. . .

• An introduction to the Magnetic Levitation device.

• An example of system identification—finding a mathematical model for the dynamics of a particular system.

• A brief introduction to Matlab for nonlinear optimization and function fitting.

The results from this lab are used throughout the rest of the semester, so it is in your best interest to be as
accurate as you can!

3.3 BACKGROUND

3.3.1 The Magnetic Levitation System

Two views of the magnetic levitation system are depicted in Fig. 3.1 on page 3–2. The plant consists of upper
and lower drive coils that produce a magnetic field in response to a dc current. One or two magnets travel along a
precision ground Pyrex glass guide rod. By energizing the lower coil, a single magnet is levitated by a repulsive
magnetic force. As current in the coil increases, the field strength increases and the levitated magnet height is
increased. For the upper coil, the levitating force is attractive. Two magnets may be controlled simultaneously by
stacking them on the glass rod. The magnets are of an ultra-high field strength rare earth (NeBFe) type and are
designed to provide large levitated displacements to clearly demonstrate principles of levitation and motion control.
Two laser-based sensors measure the magnet positions. The lower sensor is typically used to measure a given
magnet’s position in proximity (≈ 8 cm range) to the lower coil, and the upper one for proximity to the upper coil.
The sensor design utilizes light amplitude measurement and includes special circuitry to desensitize the signal to
stray ambient light and thermal fluctuations.
For many control scenarios, the system will be configured as shown in Fig. 3.2 on page 3–2. A controller is connected
to the MagLev through a power amplifier. The amplifier has input voltage range −10 to 10 volts, and produces an
output current in the appropriate range to drive the electromagnetic coils. The amplifier also buffers the sensor
signal from the plant. When a computer is used as controller, it is connected to the amplifier box via a “breakout
box” which provides the appropriate input and output signals via banana plugs.
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Figure 3.1 Two views of the magnetic levitation system.
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Figure 3.4 Functional diagram of laser sensor.

One or more magnetic disks may be placed on the Pyrex rod and levitated. Fig. 3.3 on page 3–2 shows a diagram
of the disk. A dry-lubricated guide bushing at the center of the disk slides up and down the rod. A white reflective
surface covers most of the disk. A “N” or “S” label identifies the polarity of a particular side of the disk.
The sensor makes use of the reflective properties of the disk surface. The laser sensor is depicted functionally in
Fig. 3.4. The monochromatic, coherent laser beam is spread via a single hemicylindrical optical element into a
fan shape. This beam is projected on the diffuse white surface of the magnet. A photodetector views the beam
and generates a voltage proportional to the amount of beam power incident on it. The white surface properties and
laser/detector view factors and geometries are designed to maximize the sensor gain slope (change in output versus
change in position) through the sensor operational range of about 8 cm.
Because of the fan beam shape and the fact that the reflected light is a combination of specular and diffuse, the power
on the detector diminishes with the inverse and inverse square of the magnet distance. Additionally, the geometry
of the laser, detector, and magnet and the resulting cutoff of the detector’s view of the beam as a function of magnet
height give rise to a linear dependency at small magnet distance. These relationships are used to motivate the general
form of the sensor linearization function as discussed later.
Electronic circuitry makes the design immune to stray light noise, such as turning room lights on and off, and rejects
most induced electronic disturbances. Thus a relatively low noise signal is output from the amplifier box.1

3.3.2 Making a Mathematical Model

We wish to determine a mathematical model of the MagLev system. To do so, free-body diagrams for the MagLev
apparatus in two configurations are shown in Fig. 3.5 on page 3–4. We will first consider the double-magnet config-
uration, and then specialize to the single-magnet configuration. Each magnet is acted on by forces from both drive
coils, from the other magnet, from gravity, and from friction (modeled as viscous). In the diagram, y1 is the position
of the lower magnet, y2 is the position of the upper magnet, yc is the maximum magnet separation, i1 is the current
into the lower coil and i2 is the current into the upper coil. All other labels refer to forces operating on the magnets.
From the figure, we have an equation of motion for the first magnet

mÿ1 =
∑

Forces on disk 1

mÿ1 = Fu11 + Fu21 − Fm12 − c1ẏ1 −mg.

Similarly for the second magnet

mÿ2 =
∑

Forces on disk 2

mÿ2 = Fm12 − Fu22 − Fu12 − c2ẏ2 −mg.

1A laser temperature signal is also output. This may be used to compensate for the laser’s inherent reduction in emitted power as a function
of temperature (approx. 15% maximum for operational temperatures of the MagLev device).
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Figure 3.5 Force diagrams for the MagLev device in two configurations.

The magnetic force terms are modeled as having the following forms (see Appendix A for details)

Fu11 =
i1

a(y1 + b)N
Fu12 =

i1
a(yc + y2 + b)N

Fm12 =
c

(y12 + d)N

Fu22 =
i2

a(−y2 + b)N
Fu21 =

i2
a(yc − y1 + b)N

where the actual magnet separation y12 is
y12 = yc + y2 − y1, yc ≈ 13.0 cm

and a, b, c, d, and N are constants which may be determined by numerical modeling of the magnetic configuration
or by empirical methods. Typically 3 < N < 4.5. The maximum magnet separation may be found by measurement
to be yc ≈ 13.0 cm .

3.3.3 Equations of Motion for the Double-magnet Configuration

For the MagLev apparatus, the coefficients of friction affecting both disks are the same, and may be written as
c1 = c2 = mβ. In addition, a value of N = 4 has been shown empirically to yield a close approximation of
the force/distance relationships. Finally, since current in a coil is proportional to the voltage applied to the power
amplifier for that coil, we find that the following equations are useful for design purposes:

mÿ1 = Fu11 + Fu21 − Fm12 −mβẏ1 −mg (3.1)
mÿ2 = Fm12 − Fu22 − Fu12 −mβẏ2 −mg (3.2)

Fu11 =
u1

a(y1 + b)4
(3.3)

Fu12 =
u1

a(13 + y2 + b)4
(3.4)

Fu22 =
u2

a(−y2 + b)4
(3.5)

Fu21 =
u2

a(13− y1 + b)4
(3.6)

Fm12 =
c

(y12 + d)4
. (3.7)
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3.3.4 Equation of Motion for the Single-magnet Configuration (Magnet in Lower Position)

This semester, you will be using the MagLev only in a single-disk configuration. Sometimes, the magnet will be
controlled by the lower coil and sometimes the magnet will be controlled by the upper coil. When controlled by
the lower coil, the above equations may be modified to describe the single-magnet configuration by deletion of the
appropriate terms:

mÿ1 = Fu11 −mβẏ1 −mg. (3.8)

3.3.5 Equation of Motion for the Single-magnet Configuration (Magnet in Upper Position)

When a single magnet is controlled only by the upper coil, the equations are modified as follows:

mÿ2 = −Fu22 −mβẏ2 −mg. (3.9)

Note that sometimes we will use −Fu22 in this equation, and sometimes we will use +Fu22 , depending on whether
the “N” or “S” face of the magnet is pointing upward.

3.3.6 Nonlinear Function Optimization in Matlab

In this and the next lab you perform, you will make measurements and will need to fit a nonlinear curve to these
measurements. You will be given the form of the curve that needs to be fit to the data. In each case, the form will
have two or more unknown constant parameters which must be chosen in order to make the fit.
For example, we denote the true magnet position of magnet k by yk(t) [cm] and the sensor voltage for this position as
ykraw(t) [V ]. (For clarity, we often drop the dependence on time t.) We can make measurements of the relationship
between yk and ykraw and plot them (as in the dots in the leftmost figure below). These discrete measurements are
not as useful as a mathematical equation (curve fit) that describes the measurements with a low degree of error. We
are trying to find this curve fit in this section. (The rightmost figure below shows the same idea for fitting an actuator
curve, which you will do in the next lab.)
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The curve fit for the sensor data “calibrates” the measurements. It takes a measurement in volts and converts it to an
estimate of magnet height in centimeters. A relationship that works quite well for this lab is

ykcal =
ek

ykraw
+

fk√
ykraw

+ gk + hk · ykraw ,

where ek, fk, gk, and hk are parameters which are chosen to make ykcal as “close” to yk as possible. We make
the calibrated curve fit the measurements by minimizing the distance between the measurements and the curve.
Specifically, you will chose these parameters to minimize the sum-squared difference between yk and ykcal for your
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measured data. This is the same as minimizing J in the summation

J =
∑

data

(yk − ykcal )
2 .

In Matlab, we can easily find a set of {ek, fk, gk, hk} which are good parameters to fit such a function using the
fminsearch nonlinear optimization routine from the optimization toolbox. This routine calls a user-written func-
tion which must return the sum-squared error J . For example, the following code segment computes the error
squared for a specific set of {ek, fk, gk, hk} where ek = efgh(1); fk = efgh(2); gk = efgh(3); and
hk = efgh(4). The variables yk and ykraw are the measured data values. We type in the following code
segment and save it to disk as fitfun.m.

function J = fitfun(efgh)

yk = [0 0.5 1 2 3 4 5 6]; % actual magnet height, [cm]

ykraw = [10.4 8.7 6.9 4.6 3.5 2.3 1.6 1.1]; % measured sensor voltage, [V]

ykcal = efgh(1)./ykraw+efgh(2)./sqrt(ykraw)+efgh(3)+efgh(4).*ykraw;

curve_fit_error = yk - ykcal;

J = norm(curve_fit_error);

end

In order to find the set of {ek, fk, gk, hk} which is optimum (which minimizes J), we call fminsearch:

efgh=fminsearch(’fitfun’,[e0 f0 g0 h0])

where e0, f0, g0, and h0 are (user-specified) initial guesses for {ek, fk, gk, hk}. The fminsearch routine exe-
cutes your fitfun.m function using your initial guesses, and through repeated calls to fitfun.m it intelligently
modifies the {ek, fk, gk, hk} parameters based on the J value the function returns in order to minimize J . The solu-
tion that Matlab finds will in general be different for different initial guesses. Some solutions are better than others,
but you should find that any solution Matlab returns will be “good enough.”
In this lab, you will need to make fitting functions for two sets of sensor measurements. In the next lab you will
need to make one fitting function for a set of actuator measurements. Use the edit command in Matlab to start the
editor. The menus of the editor will allow you to save the file to disk and to exit.

3.4 PRELAB ASSIGNMENT

Construct tables similar to Table 3.1 on page 3–7 to record data. Carefully read and understand the procedure
outlined below. Bring a small plastic ruler or other straightedge to the lab to assist in making accurate measurements.

3.5 LABORATORY EXPERIMENT

This section gives a procedure for identifying the plant parameters and nonlinear characteristics. The approach will
be to measure the specific input/output characteristics of the laser sensor as they vary with relative position. The laser
position nonlinearity results from the nature of the change of light intensity on the detector with magnet position and
is associated with the particular sensor used.

3.5.1 Sensor Characteristic Procedure

1. When you arrive at the lab, the mechanism should already be set up with a single magnet on the Pyrex rod,
resting on the lower drive coil. Make certain that your hands are clean at all times when touching the magnet—
avoid touching the white surface. Power to the Control Box should be off.
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Figure 3.6 Configuration for measuring sensor characteristic.

2. Connect the digital multimeter (DMM) to ADC1 and ADC/ (ground) on the Control Box as shown in Fig. 3.6.
Turn on the DMM, configured to measure dc voltage.

3. Turn on power to the Control Box. You should see the laser light beam on the upper and lower magnet
surfaces. Move the magnet manually up and down to verify that the sensor output voltage is changing.

4. Sight along the top of the magnet and adjust the “magnet height ruler” (see Fig. 3.1 on page 3–2) so that the
0 cm position precisely matches the plane of the top of the magnet. Loosen the thumbscrews, move the ruler
up or down as necessary, and re-tighten the thumbscrews.

5. Record the sensor output voltage at the 0 cm position. Refer to the notes below regarding moving the magnet
to the desired calibration positions and reading the sensor voltage. Manually move the magnet to the 0.50 cm
position and read and record the raw sensor output. Continue moving and recording the sensor data for the
magnet positions in Table 3.1.

6. Repeat Steps 1 through 5 for the upper sensor. You will need to change the leads connected to the Model
730 Control Box from ADC1 and ADC/ to ADC2 and the corresponding ADC/. Here you will need to sight
off the bottom surface of the magnet. Again, adjust the “magnet height ruler” to do so. In this case “Magnet
Position” is the distance below its uppermost travel. Note that by convention, the displacements of the upper
magnet are negative-going as the magnet moves downward.

Notes on taking sensor calibration data:

1. Hold the magnet only by the edges and do not block the laser light.

2. Apply light finger pressure radially inward so that the magnet bushing is snug against one side of the glass
rod. This will assure that the magnet is not tilted relative to the rod and is approximately horizontal. It should
also assure that the magnet does not move during the measurement. Any movement can lead to inaccurate
results.

Table 3.1 SAMPLE TABLE FOR EXPERIMENTAL RESULTS OF SENSOR DATA.

Magnet Position for Sensor 1 y1raw (V ) for Sensor 1 Magnet Position for Sensor 2 y2raw (V ) for Sensor 2
0.0 0.0
0.5 −0.5
1.0 −1.0
2.0 −2.0
3.0 −3.0
4.0 −4.0
5.0 −5.0
6.0 −6.0

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs



ECE4530, System Identification: Sensors 3–8

3. When the magnet is at the close end of travel relative to the sensor (at the bottom for sensor #1, at the top for
sensor #2) you should rotate it and find the “clocking” position where the sensor output is approximately the
average of the highest and lowest values. There may be as much as ±0.3V difference between the highest
and lowest values. This amounts to an equivalent position measurement error of less than 1mm and becomes
much less for positions farther away from the coil. You should try to maintain this approximate clocking for
the remainder of the magnet positions at which you take sensor data in Step 5 (i.e., keep the magnet polarity
“N” label pointed in the same direction). There may be some noise in the sensor reading; you should “visually
average” the values displayed. You need only read the DMM voltage to three significant digits.

3.6 ASSIGNMENT

1. Plot the sensor #1 output y1raw as a function of magnet height. Use curve fitting techniques to find a set of
coefficients {e1, f1, g1, h1} in

y1 ≈ y1cal =
e1

y1raw
+

f1√
y1raw

+ g1 + h1 · y1raw ,

that yields values of y1cal that closely match your data y1 (within 1mm for all points) at the locations measured
in Table 3.1. Using these coefficients, plot y1 and y1cal versus y1raw on the same plot as the test data to show the
closeness of the match. Repeat this procedure for the Sensor #2 output to find a different set {e2, f2, g2, h2}
to fit

y2 ≈ y2cal =
e2

y2raw
+

f2√
y2raw

+ g2 + h2 · y2raw .

Determine the units of ek, fk, gk, and hk.
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System Identification: Actuators

4.1 INTRODUCTION

This laboratory exercise is a continuation of the last lab. We now focus on making a curve-fit (a mathematical
model) of the actuator characteristics of the MagLev device. When you are finished with this, you will have a
complete nonlinear model for how the MagLev works.

4.2 THIS LAB IS. . .

• A continuing exploration into system identification—finding a mathematical model for the dynamics of a
particular system.

• A more challenging task of using Matlab for nonlinear optimization and function fitting.

The results from this lab are used throughout the rest of the semester, so it is in your best interest to be as
accurate as you can!

4.3 BACKGROUND

The background information is the same as for the prior lab. Please review that material before starting this lab.
We will not be constructing a model suitable for two-disk control, so we will not need to estimate the c and d terms
for the Fm12 term. (However, for those curious about how to do this, the necessary data is listed in Table 1.1, to
which Eq. (3.7) is fit to find the c and d parameters.)
The final salient properties of the magnet in the MagLev apparatus and its dynamic environment are its inertia (or
mass) and the associated force (weight) due to the earth’s gravitational field. You are not required to measure the
mass of the magnet. It is approximately 120± 4 g. The weight of the magnet is therefore approximately 1.18N .

4.4 PRELAB ASSIGNMENT

1. Construct a table similar to Table 4.1 on page 4–2 to record data.
2. Create a Matlab function, similar to the fitfun function in the prior lab, to be used with fminsearch to

optimize the actuator data that you will measure. This function should have as input the a and b values to try,
and should compute as output

J =
∑

data

(ym − y1)
2,

where ym comprises measured magnet heights and y1 is the predicted magnet height variable in the equation

Fw =
u1

a(y1 + b)4
.

(Hint: In order to levitate a magnet to a certain height using control effort u1 [V ], it is necessary to exactly
cancel the force on that magnet due to gravity.)

3. Carefully read and understand the procedure outlined below. Bring a small plastic ruler or other straightedge
to the lab to assist in making accurate measurements.
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Table 4.1 ACTUATOR CALIBRATION/ LINEARIZATION DATA.

Magnet Position [cm] Control effort u1raw [V ]
0.0+

0.50
0.75
1.00
1.50
2.00
2.50
3.00
4.00

4.5 LABORATORY EXPERIMENT

This section gives a procedure for identifying the plant parameters and nonlinear characteristics. The approach will
be to measure the specific input/output characteristics of the magnet/coil actuators as they vary with relative position.
These strong magnetic field nonlinearities are inherent in this class of magnetic systems.

4.5.1 Actuator Characteristic

The mechanism should be in the same configuration as in the last section. Assure that the north pole of the magnet is
facing upward. The “magnet height ruler” should again be adjusted to measure off the upper surface of the magnet
when it is resting in its lowermost position.

1. Connect the dc power supply and the DMM to DAC1 and DAC/ (ground) on the Control Box as in Fig. 4.1 on
page 4–3. Power to the Control Box should be off. Turn on power to the dc power supply and to the DMM.
Adjust the dc power supply from 0V to 10V and ensure (using the DMM) that the correct polarity and voltage
is being supplied to the Control Box. Adjust the dc power supply back to 0V . Only then, turn on the power
to the Control Box.

2. Record the height of the magnet corresponding to 4V in a table similar to Table 4.1. You should gently spin
the magnet (again touching only its edge) for all measurements to reduce the effects of friction so that the true
equilibrium height is observed.

3. Record the height of the magnet corresponding to 3V . You should notice the magnet height become lower.

4. Repeat step 3 to find the control effort value at which the magnet is lifted only a very slight amount above the
support pads (i.e., the 0+ position).

5. Repeat step 3 for the remaining control effort values of Table 4.1. Turn voltage of the dc power supply down
immediately after measuring magnet height to minimize heat build-up in the coil and servo amplifiers during
exposure to the higher control effort values (those greater than 2V ). Do not exceed 5V of control effort.

4.6 ASSIGNMENT

1. The experiments in Section 4.5.1 found the equilibrium height of the magnet for a given control effort (in
Volts or, proportionally, current in the coil). Equivalently, the same information establishes the control effort
u1, required to produce a constant force on the magnet Fw (equal to the magnet’s weight) as a function of
magnet height. Plot your data from Table 4.1 showing this required control effort u1 as a function of magnet
height. Solve for coefficients {a, b} to fit this data with a function
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Figure 4.1 Configuration for measuring actuator characteristic.

Fw =
u1

a(y1 + b)4
(4.1)

within a tolerance of 0.1V at a given height. From the closeness of the fit to your data, does this curve fit
capture the nonlinearity of the actuator well? (As a point of reference, typical servo amplifier nonlinearities
are on the order of 2–10%) Determine the units of a and b.
The attractive magnetic characteristic (force versus distance) of the upper coil/magnet is essentially the same
as the repulsive one of the lower coil/magnet. Assuming that the upper actuator is configured so that a positive
control effort imparts an attractive force on the magnet, what are {a, b} for the upper actuator?

Record your values of a, b, and both sets of e, f , g, and h (including units) somewhere where you can easily refer
to them in future labs. Also record and report which MagLev device (1–4) you used. Use this same device for all
future experiments unless instructed otherwise.
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Small-Signal Linearization

5.1 INTRODUCTION

In Labs 3 and 4, you performed system identification of the magnetic levitation device. That is, you learned its
dynamic equations of motion and you determined the unknown parameters to these equations by measurement and
optimization. You discovered that its dynamics are very nonlinear. This might seem unfortunate as all the tools
for control-system analysis and design you will learn this semester apply only to linear systems. However, we can
linearize many nonlinear systems around a certain operating point. That is, we make an approximate linear model
of the system in the region of operation space we plan to use.
You will make linearized models of the MagLev system using two different methods. In order to test your linear
models, you will simulate their response to various inputs using Simulink. You will also drive the real system with
the same inputs and compare the output of the real system with the output of your linear models. You will then make
conclusions regarding the suitability of using your linear models to design and analyze control systems.

5.2 THIS LAB IS. . .

• An introduction to small-signal linearization. This topic will not be covered in much detail in ECE4510, so
read the background section carefully. If you have questions, feel free to ask Dr. Plett or the lab instructor
substantially before the lab period.

5.3 BACKGROUND

A “standard” feedback control system is configured as shown in Fig. 5.1 where D(s) is the transfer function of the
controller, and G(s) is the transfer function of the plant. Note that both D(s) and G(s) are linear systems. Our
desire is that y(t) match r(t) as closely as possible, and this is achieved by designing an appropriate D(s).

r(t) y(t)D(s) G(s)

Figure 5.1 Standard feedback control system.

The problem that we have when trying to fit the MagLev device into this framework is that its dynamics are not
linear. In Labs 3 and 4, the equations of motion for the MagLev system were found to be:

mÿ1 = Fu11 + Fu21 − Fm12 −mβẏ1 −mg (5.1)
mÿ2 = Fm12 − Fu22 − Fu12 −mβẏ2 −mg (5.2)

Fu11 =
u1

a(y1 + b)4
(5.3)

Fu12 =
u1

a(13 + y2 + b)4
(5.4)

Fu22 =
u2

a(−y2 + b)4
(5.5)
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Fu21 =
u2

a(13− y1 + b)4
(5.6)

Fm12 =
c

(y12 + d)4
. (5.7)

Furthermore, the sensor output voltage ykraw for sensor k is related to the true magnet position yk through the
nonlinear relationship

yk ≈ ek
ykraw

+
fk√
ykraw

+ gk + hk · ykraw . (5.8)

For the purpose of the present discussion we will consider the case where there is one magnet on the device. The
equation of motion for that magnet is then

mÿ1 =
u1

a(y1 + b)4
−mβẏ1 −mg. (5.9)

These dynamics are represented schematically as in Fig. 5.2. In the diagram, y1 is the true position of the magnet
and y1raw is the measured voltage corresponding to that position. G(s) = 1/(ms2 +mβs).

u1

u2 = 0 G(s) sensoractuator y1raw
y1

mg

Figure 5.2 Block diagram of MagLev dynamics, single-magnet configuration (lower position).

Even in Eq. (5.9) with one magnet on the device we see that the dynamics are nonlinear. (It is not a linear constant
coefficient ordinary differential equation). There are three sources of nonlinearity: the actuator contributes a nonlin-
earity via Eq. (5.3), the sensor contributes another nonlinearity via (the inverse of) Eq. (5.8), and gravity contributes
a nonlinearity via the constant added force mg (LCCODEs do not have constant terms).
In the following sections you will learn a method to make a linearized model useful for designing a controller for
the MagLev system.

5.3.1 Small-Signal Linearization Using Calibrated Sensor Data
➠ Model predicts height of magnet yk.

The concept we will use is shown in Fig. 5.3 on page 5–3. The constant force due to gravity is canceled by applying
a constant steady-state voltage u1o to the controller output.1 This alone has the effect of levitating the magnet to
a constant height, in the absence of disturbance. This removes the nonlinear gravity term from the equations by
canceling it.
The voltage y1raw corresponding to the magnet’s height is measured. We compute a calibrated estimate y1cal of the
actual magnet position y1 using the measured sensor voltage y1raw via the relation

y1cal =
e1

y1raw
+

f1√
y1raw

+ g1 + h1 · y1raw . (5.10)

1This value is a function of the desired steady-state output y1o.
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In the diagram, this operation is performed by the “sensor inverse” block. It effectively inverts or cancels the sensor
nonlinearity. We have y1cal ≈ y1 and have therefore removed the sensor nonlinearity term from the equations by
canceling it.
The actuator nonlinearity is not explicitly canceled. Rather, the nonlinear portion of the block diagram inside the
thick gray rectangle is “linearized” using methods described below. A linear approximation of the nonlinear function
inside the gray box is used as the plant model.

r1
e u1

G(s)
D(s)

yraw (y)Fu1(y)
sensor
inverse

y1raw y1caly1

Sensor
nonlinearity

Magnetic field
nonlinearity
(actuator)

mg
u1o

The plant is contained
inside the dashed box

This part will
be linearized

Figure 5.3 Method 1 for compensating nonlinearities. The linear model predicts the actual magnet height. Your controller must specifically
invert the sensor nonlinearity.

Taylor-Series Function Expansion

Nonlinear equations may be linearized using Taylor-series expansion. You should recall from your calculus courses
that a function may be expanded via a Taylor-series expansion to be represented as a polynomial. For example, the
sin(x) function may be expanded around x = 0 and represented as

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
· · ·

The expansion is valid for all x. (x in radians).
For small values of x, the sinusoidal function may be approximated as linear. We can say

sin(x) ≈ x

for |x| ≪ 1. In general, linearization of a function is done by keeping the zeroth- and first-order terms of the Taylor-
series expansion. For some functions, linearization gives a good approximation to its form in a small operating
region. Other times, linearization does not work well at all. We are fortunate with the MagLev device to discover
that linearization works well.

Linearization

Using the method to be presented, a nonlinear system is linearized around an “operating point”. For example,
suppose we apply a constant control effort u1o to the bottom coil to keep the bottom magnet levitated to a height of
2.5 cm in the absence of disturbances. Then, small changes in the control effort u1 around the constant value of u1o
will lead to linear behavior in the magnet height, plus the constant offset of 2.5 cm . In this example, the operating
“point” consists of the constant u1o and the constant y1o = 2.5 cm .
The linearized equations of motion are found by solving for the zeroth- and first-order terms of the Taylor-series
expansion of the respective equations about the operating point. For example, the full set of equations of motion for
the MagLev system are listed in Eqs. (5.1) to (5.7).
We customarily re-arrange the equations of motion so that one side of the equation contains the linear terms, and
the other side of the equation contains the nonlinear terms. So, Eqs. (5.1) and (5.2) become (when considered in
single-disk configurations only):

mÿ1 +mβẏ1 = Fu11 −mg
mÿ2 +mβẏ2 = −Fu22 −mg.
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Calling right-hand-side of the first equation α(y1, u1, t), and calling the right-hand-side of the second equation
β(y2, u2, t), we have

α(y1, u1, t) ≈ α(y1o, u1o, t) +
∂α

∂y1

∣∣∣∣
y1o,y2o,u1o,u2o

· (y1 − y1o) +
∂α

∂u1

∣∣∣∣
y1o,y2o,u1o,u2o

· (u1 − u1o), (5.11)

where y1o and u1o are the respective magnet positions and control efforts that define the operating point. For the
purposes of control design we choose the operating point to be at an equilibrium (the system is at rest and not
accelerating) so that

α(y1o, u1o, t) = (Fu11 +−mg)|y1o,u1o
= 0; (5.12)

also, β(y2o, u2o, t) = (−Fu22 −mg)|y2o,u2o
= 0. (5.13)

Evaluating Eq. (5.11) and using Eq. (5.12) we have

mÿ1 +mβẏ1 +
4u1o

a(y1o + b)5
(y1 − y1o) =

1

a(y1o + b)4
(u1 − u1o),

which may be rewritten as (where y∗1 = y1 − y1o, u∗1 = u1 − u1o and so forth; note also that ÿ1 = ÿ∗1 and ẏ1 = ẏ∗1)
mÿ∗1 +mβẏ∗1 + k11y

∗
1 = ku11u

∗
1. (5.14)

Similarly for the second differential equation
mÿ∗2 +mβẏ∗2 + k22y

∗
2 = ku22u

∗
2, (5.15)

where

k11=
4u1o

a(y1o + b)5
, ku11=

1

a(y1o + b)4
, k22=

4u2o
a(−y2o + b)5

, ku22=
−1

a(−y2o + b)4
,

When the gravity and sensor nonlinearities are canceled, and the remaining system in the gray box is linearized, we
achieve the block diagram in Fig. 5.4, suitable for designing a controller.

r∗1
u∗
1

G1(s) =
ku11

ms2+mβs+k11
D(s)

y∗1

Figure 5.4 First linearized system for design: single-magnet, lower actuator only.

5.4 PRELAB ASSIGNMENT

• Consider passing a positive signal x(t) through the operation y(t) =
√

x(t). Next, compute z(t) = [y(t)]2.
What is the relationship between x(t) and z(t)? This is the same idea behind “inverting the sensor.” The
MagLev computes its sensor output ykraw to be a function of yk. You will compute ykcal to be a function of
ykraw to recover yk.

• In this lab the MagLev will be configured with a single magnet. The operating point for the magnet will be
2.5 cm . Determine the steady-state control effort u1o to operate at this level. Hint: Consider Eq. (5.1) with the
magnet at rest.

• Determine G1(s); that is, fill in the numbers. Be very careful to use compatible units! Note that 1N =
1 kg m/sec2 and that the units of the Laplace operator “s” are 1/sec . For now, assume β = 0. Note that your
transfer function G1(s) should have units [cm/V ] (since the input is in V and the output is in cm).
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• Make a Simulink subsystem to cancel the sensor nonlinearity. That is, implement Eq. (5.8). Save this subsys-
tem on your UFP account for easy access when you enter the lab.

5.5 LABORATORY EXPERIMENT

Figure 5.5 shows a sample Simulink diagram to test your plant model G1(s) using small-signal linearization. The
actual MagLev output is compared to the output predicted by your models. The steady-state operating point will be
at y1o = 2.5 cm . The “Fix Bottom Sensor MagLev n” block represents the Simulink subsystem you created in the
fourth prelab exercise to cancel the sensor nonlinearity.

Figure 5.5 Experimental setup.

1. Configure the lab equipment as shown in Fig. 5.6. The computer output to the MagLev is on D2A channel 0
and the computer input from the MagLev sensor is on A2D channel 0.

Plant
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DAC/
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Educational Control Products

ADC4 ADC/

ADC3 ADC/

ADC2 ADC/

ADC1 ADC/

DAC1 DAC/

DAC2 DAC/

DAC1 DAC/

DAC2

Figure 5.6 Setup of the lab equipment.

2. Create a Simulink block diagram to execute Fig. 5.5. The signal source will be a sine wave with magnitude
0.5. You will use frequencies 5, 10, and 15 radians per second to judge the accuracy of your model at different
frequencies. For now, assume that β = 0.
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3. Run your simulation for this block diagram. Be prepared to stop the simulation immediately upon observing
unstable behavior! If you do observe unstable behavior, something is wrong with your simulation because
it should work! The idea here is that the output of the “G1(s)” block should match the “y1*cal” signal very
closely. The purpose of this lab is to compare the linear model to the actual nonlinear system and see how
close the results actually are.

4. Your linear model assumes negligible friction. You may find that this assumption is not valid. Experiment
with a (viscous) friction term mβs in the denominator of your transfer function to find a good value for β. It
will probably be in the range [0, 10).

If you have time, experiment with different sources. Try to determine experimentally the range of frequencies and
amplitudes that the two models approximate well. Print all results.

5.6 ASSIGNMENT

In the lab writeup, include printouts of your Simulink block diagrams and printouts of all experimental results. In-
clude approximate friction coefficients β. Comment on valid operation ranges for the two small-signal linearization
models.

5.7 APPENDIX: SUMMARY OF NOTATION USED

Symbol Meaning (Lower magnet is magnet 1; Upper magnet is magnet 2)
yk, [cm] The actual position of magnet k. Positive for magnet 1; negative for magnet 2.
ykraw , [V ] The sensor output corresponding to magnet k. Always positive.
ykcal , [cm ] You compute ykcal using measured ykraw to predict yk.
yko, [cm] The equilibrium magnet position of magnet k.
ykraw,o , [V ] The equilibrium sensor output corresponding to the equilibrium position for magnet k.
y∗k, [cm] y∗k = yk − yko. The difference between yk and its equilibrium position.
y∗kraw , [V ] y∗kraw = ykraw − ykraw,o . The difference between ykraw and its equilibrium value.
uk, [V ] The control effort applied to coil k.
uko, [V ] The equilibrium control effort applied to coil k.
u∗k, [V ] u∗k = uk − uko. The difference between uk and its equilibrium value.
rk, [cm] The reference input signal for magnet k. The desired magnet position.
rkraw , [V ] The desired output sensor reading for magnet k.
r∗k, [cm] r∗k = rk − rko = rk − yko. The difference between desired magnet height and equilibrium height.
r∗kraw , [V ] r∗kraw = rkraw − ykraw,o . The difference between desired sensor reading and equilibrium value.
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“Black-Box” Frequency-Response
System Identification

6.1 INTRODUCTION

If the input to a linear time-invariant system is a sinusoid, then the output (in steady state) is a sinusoid of the
same frequency, but with different amplitude and phase. The system may then be characterized by observing how
it responds to different input frequencies. The magnitude response relates how the system amplifies or attenuates
certain frequencies. The phase response relates how the system delays certain frequencies.
In Lab 5, you determined a transfer-function model of the MagLev, linearized around a certain operating point.
From the transfer function you found, G(s), you may determine the magnitude response as |G(jω)| and the phase
response as ∠G(jω). Similarly, if you were to find magnitude and phase responses of the system in some other
way, you may predict a transfer function of the system. This is one form of system identification. In this lab, you
will make frequency-response measurements to develop a second transfer-function model of the MagLev. These
measurements and the model you develop will be used in later labs to aid control-system design.

6.2 THIS LAB IS. . .

• A deeper look at frequency-response measurement;

• A preview of Bode plots and Nyquist plots;

• Some musings on frequency response of a nonlinear system;

• A second method to perform system identification.

6.3 BACKGROUND

Frequency-response design methods will be discussed in ECE4510 later on this semester. They are perhaps the most
important methods available since they allow very similar design procedures for continuous-time and discrete-time
(digital) systems, and may be extended to consider the currently-popular field of “robust” control. These methods
rely on an accurate frequency-response model of the plant to be controlled.
This model may be derived by first finding the equations of motion for the system (Labs 3 and 4) and then linearizing
the equations to find a linear model around a certain operating point (Lab 5). The transfer function thus found, G(s),
may be used to predict the magnitude response |G(jω)| and the phase response ∠G(jω).
A second method to find the frequency response of the system is much more direct. Input a sinusoidal signal of
a certain frequency (plus a dc offset to achieve the desired equilibrium solution). The output will be a sinusoidal
signal (plus a dc offset). By measuring the ratio of magnitudes relating the input to the output, and by measuring the
phase difference of the input and output sinusoids, we may determine the frequency response of the system at the
frequency of the input sinusoid. Repeat for all frequencies of interest.
In this lab, you will implement the Simulink block diagram in Fig. 6.1 on page 6–2. A sinusoidal signal is sent
to DAC1 (channel 0) after u1o is added to it to achieve a steady-state magnet height of 2.5 cm . DAC1 is wired to
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Figure 6.1 Setup for measuring frequency response of the MagLev.

the MagLev, and the sensor output is wired to ADC1. The “FixSensor” block converts the raw voltage y1raw into a
height y1cal . The equilibrium height is subtracted from this signal. This is the test signal. The test signal is input to
a magnitude and phase detection block, described below.1

6.3.1 Measuring Frequency Response

If the input to a linear time-invariant system is u(t) = α cos(ωt), then the output is
y(t) = α |G(jω)| cos (ωt+ argG(jω)) + v(t) + transient,

where v(t) is noise, and G(jω) is the frequency response. This result leads to a simple procedure for finding the
frequency response, known as frequency analysis:

• Excite the system with a sinusoidal input at frequency ω0; wait for transient to die out; collect N time samples.

• Measure (graphically) the amplification factor and phase shift at that frequency, yielding ĜN (jω).

• Repeat for all frequencies of interest.

ISSUE: The frequency function is continuous in the frequency domain. This means that for a complete identification
of the function, all frequencies from 0 to ∞ must be tested. However, in a practical implementation we would
need to select only a few frequencies and be willing to interpolate between the measured data.

ISSUE: With the presence of noise, v(t), it may be difficult to accurately determine amplification and phase-shift
factors. We can use correlations to average out the noise. Define (using discrete-time signals now)

Ic(N) =
1

N

N∑

k=1

y[k] cos(ωk) and Is(N) =
1

N

N∑

k=1

y[k] sin(ωk).

We insert the formula for y[k], ignoring the transient term (can wait until it dies out before collecting data),

1Note that this procedure will measure the frequency response of the MagLev combined with the DAC/ADC pair that drive the MagLev.
To be more accurate, we would repeat this procedure to find the magnitude and phase response of the DAC/ADC pair by themselves, and
subtract this from the overall frequency response.
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Ic(N) =
1

N

N∑

k=1

(
α
∣∣G(ejω)

∣∣ cos
(
ωk + argG(ejω)

)
+ v[k]

)
cos(ωk)

=
1

N

N∑

k=1

(
α
∣∣G(ejω)

∣∣ cos
(
ωk + argG(ejω)

))
cos(ωk)

+
1

N

N∑

k=1

v[k] cos(ωk)

=
α

2

∣∣G(ejω)
∣∣ cos

(
argG(ejω)

)

+
α

2N

∣∣G(ejω)
∣∣

N∑

k=1

cos
(
2ωk + argG(ejω)

)

+
1

N

N∑

k=1

v[k] cos(ωk),

noting that cos(a) cos(b) = 1
2 (cos(a+ b) + cos(a− b)).

The second term tends to zero as N → ∞. The third term also tends to zero unless v[k] has a pure periodic frequency
component at frequency ω. Similarly, we can find that

Is(N) = −α
2

∣∣G(ejω)
∣∣ sin

(
argG(ejω)

)

+
α

2N

∣∣G(ejω)
∣∣

N∑

k=1

sin
(
2ωk + argG(ejω)

)

+
1

N

N∑

k=1

v[k] sin(ωk),

noting that cos(a) sin(b) = 1
2 (sin(a+ b)− sin(a− b)). By combining Ic(N) and Is(N), we can come up with a

frequency-response estimate
∣∣∣ĜN (ejω)

∣∣∣ =

√
I2c (N) + I2s (N)

α/2

arg ĜN (ejω) = −atan (Is(N)/Ic(N)) .

This is known as the frequency analysis by correlation method. A block diagram of the magnitude and phase detector
is shown in Fig. 6.2 on page 6–4.

6.3.2 Nonlinear System Effects

The MagLev is not a linear device. Sinusoidal inputs do not produce purely sinusoidal outputs. Harmonics and
sub-harmonics of the input frequency will be present. You should realize from your knowledge of Fourier Series
that the output will still be periodic, but that the shape of the output waveform will appear as a distorted sinusoid.
We wish to measure the magnitude- and phase-response of the nonlinear MagLev system at the input frequency, and
ignore the magnitude- and phase-response at harmonics and sub-harmonics of the input frequency.
The output waveform is distorted in such a way that it is not symmetric. The upper travel of the magnet is compressed
by gravity forcing the magnet downward. The downward travel of the magnet is extended by gravity. This effect
can be minimized by using a low-magnitude input sinusoid so that the magnitude of the output sinusoid will also be
small.
The distorted shape of the output can confuse the magnitude and (especially) the phase detectors. Canceling the
apparent dc value of the test signal is not identical to subtracting the equilibrium value since the output wave is
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Figure 6.2 Magnitude detector circuit in Simulink.

not symmetric. Phases around 0◦ are especially sensitive to this effect, and the output of the phase detector may
bounce between 0◦ and −360◦ (the “same” phase, but very different on the plot!). You may need to run several
data-collection simulations at frequencies with low phase in order to get an acceptable value.
Perhaps a more important question is that if the output of the MagLev is not a sinusoid when the input is a sinusoid,
does measuring the frequency response (of the fundamental frequency) make sense? There is some literature on this
subject: Technically, you are not measuring a frequency response but a “describing function” of the nonlinear system.
The correct way to do this is to keep the input signal magnitude constant, and to sweep it across the frequencies of
interest (the describing functions are a function of both frequency and input signal magnitude). We cannot do this on
the MagLev system. Small input magnitudes must be used near the resonant frequency since the sinusoid is amplified
and the system output must remain limited to avoid damage. Larger input magnitudes are needed at higher and lower
frequencies to overcome “stiction” (nonlinear friction). Suggested input-signal magnitudes for each frequency are
given in the Laboratory Experiment section.

6.4 PRELAB ASSIGNMENT

Second-order transfer functions have the generic form

Kω2
n

s2 + 2ζωns+ ω2
n
,

where ωn is the natural frequency, ζ is the damping ratio, and K is the dc gain. The magnitude response (normalized
to its dc value) and phase response of generic second-order systems are plotted in Fig. 6.3 on page 6–5 for different
values of ζ .
You have already determined that the transfer function of the MagLev is second order, and have a linearized model
of the system around the 2.5 cm point.

1. Plot the magnitude and phase response of your linearized transfer function of the MagLev, determined in
Lab 5. Note that it is critical to include your estimate of friction term mβs in the denominator to get a
meaningful plot. Also, record the magnitude and phase response in the following table for the specified
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Figure 6.3 Magnitude- and phase-response of second order systems (stable).

frequencies. Hint: sys = tf(ku11,[m m*beta k11]); [m,p] = bode(sys,omega). You will
need to squeeze(m) and squeeze(p) to get results.

ω [rads/sec] |G(jω)| ∠G(jω)

1
2
4
7

10
15
18
19
20
22
25
30
40
70
100

2. Show that at ωn

|H(jωn)| =
K

2ζ
.

This provides a means of estimating the damping factor:

ζ =
1

2

|H(0)|
|H(jωn)|

.

The peak frequency is approximately ωn.

6.5 LABORATORY EXPERIMENT

1. For the frequencies in the following table, use input signal
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Ai sin(ωit).

Use this in block diagram in Fig. 6.1 on page 6–2. Record the magnitude and phase response measured from
the MagLev. Run each simulation for 120 sec to ensure that the magnitude- and phase-detectors have settled to
(nearly) final values. Note that you do not have to create the magnitude and phase detectors in Simulink
yourself! You can find the detectors in the utility library. That is, at the Matlab prompt, type “utility” and
press enter. You will be able to use the blocks from the Simulink library that appears on your display.

ω [rads/sec] A |G(jω)| ∠G(jω)

1 1.5
2 1.5
4 1
7 1

10 1
15 0.75
18 0.5
19 0.4
20 0.4
22 0.4
25 0.75
30 0.75
40 0.75
70 0.75
100 0.75

Your data may contain “observation errors” because of nonlinear effects, and will probably not fall along nice
straight asymptotes. You must use your judgment in disregarding outlying points. It is very helpful to bring
some graph paper with you to make a rough plot of the data as you make measurements. This will help you
determine if you have bad measurements, and need to re-measure data points.

6.6 ASSIGNMENT

1. Plot, on the same pair of axes, the Bode plot of your linearized transfer function of the system from Lab 5, and
the Bode magnitude and phase points of your measured data from this lab. Note that a Bode magnitude plot
is 20 log10 |G(jω)| plotted versus log10(ω) and that the Bode phase plot is ∠G(jω) in degrees plotted versus
log10(ω).

2. Estimate the transfer function of the MagLev from your frequency-response data. Match the dc gain, the peak
frequency, the peak height and phase response as best you can. Plot the Bode magnitude and phase plots of
your new transfer function on the same pair of axes.

3. The frequency response may be plotted as a polar plot. Each frequency-response data pair is interpreted as the
magnitude and phase of a complex number on the complex plane. Plot your results in this form. That is, plot
as points in the complex plane |G(jω)| cos(∠G(jω)) on the x-axis (Real axis) and ±|G(jω)| sin(∠G(jω))
on the y-axis (Imaginary axis). For the new system transfer function you estimated in the previous step,
superimpose the nyquist() plot of the system. Compare the two plots. (Don’t forget that Matlab’s sin
and cos functions require inputs in radians, not degrees.)

4. In your writeup be sure to discuss any unexpected effects and outlying data points. Comment on the similarity
and differences between the frequency response of the system from Lab 5, and the frequency response of the
system found in this lab. Can you account for any differences? Which is more accurate? Why?
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5. We cannot directly measure the frequency response of the MagLev set up in an unstable configuration. Why?
Suggest a simple way to measure the frequency response of the upper coil/ magnet position.
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Basic PID Control: Design

7.1 INTRODUCTION

Feedback (closed-loop) controllers have great advantages over open-loop controllers. By actually measuring system
response (and using it as an input to the controller) the controller is able to reject disturbances, eliminate steady-state
errors and have low sensitivity to modeling errors.
In this lab you will use the Ziegler-Nichols “Method II” to design P, PI and PID controllers. You will compare the
response of the system in open-loop and closed-loop control scenarios.

7.2 THIS LAB IS. . .

• Your first implemented control design, and

• A demonstration of the advantages of feedback.

7.3 BACKGROUND

It has been estimated that up to 90% of all commercial control system applications use PID-type controllers. Recall
that a PID controller has transfer function of the form:

D(s) = K

(
1 +

1

TIs
+ TDs.

)

7.3.1 PID Parameter Tuning

Ziegler and Nichols proposed “rules of thumb” for selecting K, TI , and TD for a PID controller. You have seen
these two methods in ECE4510. Neither method is optimal in any sense—they just provide good performance for a
wide variety of plants. In this lab, you will use “Method II” to design a feedback controller for the MagLev system.

METHOD II: To use Ziegler and Nichols’ second tuning method, configure system as

Kur(t) y(t)Plant

Turn up the gain Ku until system produces oscillations (on stability boundary). The value of gain Ku which produces
marginal stability is termed the “ultimate gain.” The PID controller may then be tuned using this value of Ku and
the period of oscillations, Pu (as shown below).

Period, Pu
1 RESULTING TUNING RULES:

P PI PID
K = 0.5Ku

TI = ∞
TD = 0

K = 0.45Ku

TI = 1
1.2Pu

TD = 0

K = 0.6Ku

TI = 0.5Pu

TD = Pu
8
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7.3.2 Practical Considerations

The PID controller just investigated has the form of Fig. 7.1(a) when inserted in a control system. A practical
difficulty when using this form is that the reference input signal r(t) is differentiated by the KTDs term. If we
have a rapidly-changing reference input, such as a step input, this will lead to excessive control effort. A practical
work-around is to use the circuit of Fig. 7.1(b) instead.

r(t) y(t)G(s)

PID Controller

K
TIs

KTDs

K r(t) y(t)G(s)

K
TIs

KTDs

K

(a) (b)

Figure 7.1 PID control; (a) Standard scenario, (b) Modified scenario.

The closed-loop transfer function of this system is slightly different from before, but it has the same poles, and
the reference-input is no longer differentiated. The (more-slowly moving) plant output is the only signal being
differentiated.

7.4 PRELAB ASSIGNMENT

1. Consider the claim made that the transfer functions of Figs. 7.1(a) and (b) are different, but have the same
poles (i.e., the denominators of the two transfer functions are the same). Prove this for a general plant G(s).

2. Recall from Lab 5 (or calculate anew) the value u1o that levitated the magnet to a height of 2.5 cm and record
it for use in this lab. Also compute the value u3.5cm for a constant height of 3.5 cm .

7.5 LABORATORY EXPERIMENT

In the lab you will compare open-loop versus closed-loop control using P, PI and PID controllers. You will use four
metrics for comparison: Steady-state error, disturbance rejection, sensitivity and transient response. In all cases you
will have the system track a reference-input which will be a unit-step at time 5 sec. That is, the output of the magnet
is desired to be at height 2.5 cm from 0 sec until 5 sec and then jump to 3.5 cm until the simulation ends.

1. Configure the system as in Fig. 7.2 on page 7–3. Make a Simulink model file as in Fig. 7.3. Use the appropriate
“FixSensor” routine from the utility.mdl library file to convert y1raw to y1cal .

2. Execute this model file for a simulation time of 20 sec, (starting with a gain of Ku ≈ 0.25). Use the desired
equillibrium height of 2.5 cm. Increase Ku in small increments until critical stability is reached. Record this
value of Ku and the period of oscillations Pu. Always be prepared to abort the simulation or to turn off power
to the MagLev to avoid damaging the equipment if the system is badly unstable.

3. Open-loop control: Create a Simulink block diagram to output u1o for 5 sec and then u3.5cm for the remaining
simulation time. This is the open-loop controller. One possible Simulink implementation is shown in Fig. 7.4
on page 7–4.
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Figure 7.2 System setup for control.

Figure 7.3 Simulink diagram to determine Ku.

4. PID control: Create Simulink block diagrams for the P, PI and PID controllers. The feedback will be y1cal .
One possible Simulink implementation is shown in Fig. 7.5. You will need to change the K, K/TI and KTD

settings to achieve P, PI, or PID control For the feedback control system, r(t) will be a unit step starting at
5 sec. Record system response for a total of 20 sec.

5. Simulate and record the response of the MagLev device using the four (open-loop, P, PI, and PID) controllers.

6. Place a small but non-negligible mass on top of the magnet (e.g., six pennies). This will act as a “disturbance
force”. Repeat step 5.

7. You will likely find that the P/PI/PID controllers tuned using Ziegler-Nichols Method II will give stable per-
formance, but will otherwise be pretty poor on the MagLev device. For each controller type (P/PI/PID), hand
optimize the parameters K, TI , and TD, starting from the Ziegler-Nichols values, to achieve the “best” per-
formance you can find. This will be a somewhat subjective exercise, but by best we mean the fastest rise
time with the lowest steady-state error and the lowest peak overshoot. In your report be sure to compare your
hand-optimized output to the no-brainer Ziegler-Nichols output.
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Figure 7.4 Simulink diagram for open-loop control.

Figure 7.5 Simulink diagram for PID control.

7.6 ASSIGNMENT

In your write-up describe the results you obtained and be sure to compare and contrast the performance of the four
different controllers with regards to steady-state errors, disturbance rejection, sensitivity to modeling errors and
transient response.
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Basic PID Control: Generalization

8.1 INTRODUCTION

Most times you design a controller, your intention is to use it on more than a single device. For example, you might
want to make a single control design that works well on all four MagLevs in the lab. (Or, you might want to make
a flight controller that works well on all Boeing 777s, and so forth.) There are specific challenges associated with
making controllers that work for more than a single device. This is the topic of a field of study called “robust control
design.” The basic issue is that you may create the best controller in the world for MagLev 1, but that controller may
not work very well for MagLev 2. If you “de-tune” the performance of your controller a little bit on MagLev 1, you
may find that it works well on all MagLevs in the lab.
In this laboratory exercise, you will test your control design from the last lab period on a different MagLev.

8.2 THIS LAB IS. . .

• A quick look at the generalization performance of your PID control design from Lab 7.

8.3 BACKGROUND

The background information is the same as for Lab 7. Please review this material if necessary.

8.4 PRELAB ASSIGNMENT

1. Record the K , TI , and TD values that were computed in Lab 7 for the P/PI/PID controllers using the Ziegler-
Nichols method. Also, record the hand-optimized values. You will need them again for this lab.

8.5 LABORATORY EXPERIMENT

In this lab, you will work on a different MagLev from your typical one. If you started with MagLev 1, use MagLev 2
for this lab; if you started with MagLev 2, use MagLev 3; if you started with MagLev 3, use MagLev 4; and if you
started with MagLev 4, use MagLev 1. Recall that MagLevs 1–3 use the Q4 I/O board while MagLev 4 uses the Q8
I/O board. Therefore, if you will use a different I/O board in this lab from the one you used in Lab 7, you will need
to change the corresponding parameter in the “HIL Initialize” block.
The objectives of this lab are essentially the same as for Lab 7. You will compare open-loop versus closed-loop
control using P, PI and PID controllers. You will use four metrics for comparison: Steady-state error, disturbance
rejection, sensitivity and transient response. In all cases you will have the system track a reference-input which will
be a unit-step at time 5 sec. That is, the output of the magnet is desired to be at height 2.5 cm from 0 sec until 5 sec
and then jump to 3.5 cm until the simulation ends.
Note that the sensors and actuators of the new MagLev system (the “native” system) are different from the sensors
and actuators of the MagLev system that you used to design your controller last week (the “design” system). Your
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Figure 8.1 Simulink diagram for PID control on a second MagLev.

feedback controller needs to still use the “Fix Sensor” blocks from the design system of Lab 7, but in order to
evaluate the controller’s performance, you will need to know the real magnet height on the “native” system. Is this
real magnet height what we want? One possible implementation is shown in Fig. 8.1. The feedback path should be
y1cal using the “FixSensor” block for the MagLev of your original design. This is labeled “FixSensor Design” in
the figure. However, you should plot y1 ≈ ycal using the “FixSensor” block for the MagLev you are using. This is
labeled “FixSensor Native” in the figure.
The following steps are basically the same as last week, except implemented on a different MagLev, with the two
“FixSensor” blocks as indicated above.

1. Open-loop control: Create a Simulink block diagram to output u1o for 5 sec and then u3.5cm for the remaining
simulation time. This is the open-loop controller.

2. PID control: Create Simulink block diagrams for the P, PI and PID controllers. The feedback will be y1cal .
You will need to change the K, K/TI and KTD settings to achieve P, PI, or PID control For the feedback
control system, r(t) will be a unit step starting at 5 sec. Record system response for a total of 20 sec.

3. Simulate and record the response of the MagLev device using the four (open-loop, P, PI, and PID) controllers,
using the default K, TI , and TD values produced by Ziegler-Nichols.

4. Place a small but non-negligible mass on top of the magnet (e.g., six pennies). This will act as a “disturbance
force”. Repeat step 3.

5. Repeat steps 3–4 using the values of parameters K, TI , and TD that you hand-optimized last lab.

8.6 ASSIGNMENT

In your write-up describe the results you obtained and be sure to compare and contrast the performance of the four
different controllers with regards to steady-state errors, disturbance rejection, sensitivity to modeling errors and
transient response. Compare the performance of your controllers on the “design” system to the performance on the
“generalization” system.
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Practical Aspects of Stability: Simulation

9.1 INTRODUCTION

A very important aspect of control-system design is to ensure that the resulting system is stable. There is a very
precise mathematical description of stability that states that a system is (BIBO) stable if and only if every bounded
input produces a bounded output. (By “bounded” we mean that there is a finite limit to the maximum value of the
signal.) This definition is useful because it leads to mathematical tests for stability such as the Routh test you are
familiar with. However, there are limitations.
For example, consider the MagLev system. Every input (bounded or not) will produce a bounded output since
the magnet is constrained to move on the Pyrex rod and has a limited range of motion. Is the system stable?
Not necessarily. Consider trying to levitate a magnet by powering the upper electro-magnetic coil and using an
attractive magnetic force. If the magnet falls below a certain distance away from the coil, it will not be possible to
generate a large enough magnetic field to attract it again, and the system ceases to operate normally. We say that this
configuration is unstable.
What the issue boils down to is that nonlinear system stability is different than linear system stability. The MagLev
is a nonlinear system. Fortunately, BIBO stability methods applied to a linearized model of the MagLev gives us a
fairly good indication of the actual stability from a practical point of view.

9.2 THIS LAB IS. . .

• An investigation of stability using the MagLev device.

• Practice designing a feedback stabilizer circuit using the Routh test.

• An introduction to design validation via simulation.

9.3 BACKGROUND

For this lab, the MagLev will be set up with a single magnet on the Pyrex rod, and you will levitate it a constant
distance from the upper magnetic coil. This is an unstable configuration. If you apply exactly the correct voltage to
attract the magnet to the upper coil such that it is levitated at the desired height, everything will work correctly until
an external disturbance influences the magnet . . . and it plummets to the bottom of the rod! We would like to protect
the system for posterity, and so use a plastic clip to limit the distance the magnet can fall. See Fig. 9.1 on page 9–2.

9.3.1 System Model

In order to investigate the stability of the MagLev in this configuration, and to find a stabilizing controller, we must
make a mathematical model of the system. In this lab, you will control a single disk in the upper position using the
top actuator. From Lab 5 we know that the equation of motion for this configuration is

mÿ∗2 +mβẏ∗2 − k22y
∗
2 = −ku22u

∗
2,
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Figure 9.1 MagLev unit showing plastic clip used to protect the device.

where the minus signs differ from what we saw before because the “N” side of the magnet will be facing upward in
this lab as opposed to the “S” side that is assumed in the equation in Lab 5. When we take the Laplace transform,
we get the transfer function

G(s) =
Y2(s)

U2(s)
=

−ku22
ms2 +mβs− k22

,

where

ku22 =
−1

a(−y2o + b)4
and k22 =

4u2o
a(−y2o + b)5

.

We can determine the dc value u2o to be u2o = mga(−y2o + b)4. Note that by the Routh test, “case 0,” we
immediately see that G(s) is unstable.

9.3.2 “Desktop Validation” of Controller Design

Next week, you will implement your controller on the unstable MagLev configuration and demonstrate that it is
able to stabilize the disk in the upper configuration. However, it is always wise when trying a new control design
to first see how it works on a simulated version of the plant, rather than the real plant. That way, if you are wrong,
no damage is done, and changing your design is generally faster as well. This is especially true when attempting to
control an unstable system.
We would like the simulation of the controller combined with the plant to be as accurate as possible. We could put
our controller D(s) in a feedback loop with our linear plant model G(s), and that is a good thing to try. However,
back in Labs 3 and 4, we made a very good nonlinear model of the plant. While this nonlinear model is not very
helpful for control design, it is very helpful for controller validation. It is the best we can do without using the real
plant, since it is the best model that we have of the true plant. Note that since this design validation approach can be
done “on the desktop” via simulation, it is often called a “desktop validation” approach.
The nonlinear model that was developed in Labs 3 and 4 can be converted into Simulink diagrams. Figure 9.2 on
page 9–3 shows an example diagram that models the single disk MagLev 1, with the disk in the lower position.
Figure 9.3 on page 9–3 shows an example diagram that models the single disk MagLev 1, with the disk in the upper
position. Both diagrams have similarities. The control voltage input is on the left. This voltage is limited to be in the
range of ±10V by a saturation block. The actuator dynamics are modeled next—either Fu11 or Fu22 , depending on
whether we are modeling the top or bottom disk. Note that the actuator dynamics are a function of control voltage
as well as disk position, so the MagLev dynamics have internal feedback. Per the linear part of the relationships,
we then compute ÿ1(t) or ÿ2(t) as a combination of the applied force, gravity, and a friction feedback term. These
accelerations are then integrated twice to get position. The position is limited to be between 0 and 13 cm for the
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lower disk and between −13 and 0 cm for the upper disk. The actual height of the magnet is one of the outputs of
the model. The second output, the sensor voltage reading, is computed by table lookup using the values measured in
Lab 3.

Figure 9.2 Simulink nonlinear model of single disk in lower configuration.

Figure 9.3 Simulink nonlinear model of single disk in upper configuration.

To perform design verification using these models, first select which model applies: lower disk or upper disk. Then,
the D2A and A2D blocks in any diagram are replaced by this Simulink model.

9.4 PRELAB ASSIGNMENT

1. Determine G(s) for an operating point of y2o = −2.5 cm ; fill in all numeric values. As always, be careful
with units. Determine u2o for the same operating point.

2. Verify, using the Routh test, that G(s) is open-loop unstable.

3. Assume that we will configure the MagLev in a feedback loop with a lead controller D(s) = k s+a
s+b where

0 < a < b. See Fig. 9.4. Determine the closed-loop transfer function of the system.

4. For k = 10 and b = 100, what range of a results in a stable system (Use the Routh test)?

5. For a = 10 and b = 100, what range of k results in a stable system (Use the Routh test)?

r∗
u∗
2

G(s) = −ku22
ms2+mβs−k22

D(s)
y∗

Figure 9.4 Configuration for analyzing system performance.
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9.5 LABORATORY EXPERIMENT

This experiment uses the lab computer and Simulink to implement a lead controller to stabilize the MagLev in
simulation. Next week, the same steps will be performed with the actual MagLev hardware. The setup (for the
hardware case) is drawn in Fig. 9.5.

Figure 9.5 Configuration for implementing control.

1. In Simulink, create a feedback control system which uses a lead controller with transfer function D(s) =
15 s+10

s+100 . See Fig. 9.5, but replace the D2A and A2D blocks with an appropriate nonlinear Simulink MagLev
model, which will be made available to you.

2. You will start the magnet at the y2(0) = −2 cm position. This is accomplished in Simulink by double-clicking
on the rightmost integrator in the nonlinear model and setting its initial output to −2.

3. Start the program operating. What happens to the output? Is it stable?

4. Experiment with the “a” term in the lead controller. Use different values for different program runs. That is,
implement D(s) = 10 s+a

s+100 . Record the range of this variable that seems to give stable response.

5. Experiment with the “k” term in the lead controller. That is, implement D(s) = k s+15
s+100 . Record the range of

this variable that seems to give stable response.

6. Use D(s) = 15 s+10
s+100 and execute a repeating bidirectional step move. See Fig. 9.6 on page 9–5. The bidirec-

tional step may be created using the “Repeating Sequence” source block with time vector [0 2 2.002 4]
and output vector [0.1 0.1 -0.1 -0.1]. Run the output of the sequence through an amplifier so that
you can vary the amplitude of the square wave easily. For amplitudes {0, 0.1, 0.2, 0.3, 0.4} plot y∗cal . Does the
magnitude of the reference command r(t) affect the stability of the output? Should it? Explain the shape of
the output curves.

9.6 ASSIGNMENT

Include all derived stability results in your report. Compare theoretical versus observed results regarding stability.
Comment on system response to the bidirectional step moves for various amplitude inputs.
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2 4 6

t

A

−A

Figure 9.6 Bidirectional step move of amplitude A (repeats periodically).
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Practical Aspects of
Stability: Implementation

10.1 INTRODUCTION

This lab is an extension of last week’s lab. We continue to investigate the ability to stabilize an unstable MagLev
configuration. Having already verified our design in software, we move to “hardware-in-the-loop” (HIL) validation.

10.2 THIS LAB IS. . .

• A continuing investigation of stability using the MagLev device.

• An introduction to design validation via hardware-in-the-loop (HIL) testing.

10.3 BACKGROUND

The background for this lab is the same as for Lab 9. Please refer to the writeup there with any questions. As a
reminder, for this lab, the MagLev will be set up with a single magnet on the Pyrex rod, and you will levitate it
a constant distance from the upper magnetic coil. We would like to protect the system for posterity, and so use a
plastic clip to limit the distance the magnet can fall. See Fig. 10.1.
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using an unstable 
configuration.

Clip position
for storage.

Figure 10.1 MagLev unit showing plastic clip used to protect the device.

10.4 PRELAB ASSIGNMENT

1. What differences do you expect to see between the desktop validation performed last week and the hardware-
in-the-loop validation you will perform this week?
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10.5 LABORATORY EXPERIMENT

This experiment uses the lab computer and Simulink to implement a lead controller to stabilize the MagLev. The
setup is drawn in Fig. 10.2.

Figure 10.2 Configuration for implementing control.

1. In Simulink, create a feedback control system which uses a lead controller with transfer function D(s) =
15 s+10

s+100 . See Fig. 10.2.

2. Set the plastic clip on the glass rod so that the magnet cannot fall below 5 cm from the upper mechanical stop.
While holding the magnet at the approximate y = −2 cm position, start the program operating. Gently move
the magnet up and down by touching only the edges of the magnet. Can you feel the opposing force supplied
by your controller?

3. Experiment with the “a” term in the lead controller. Use different values for different program runs. That is,
implement D(s) = 10 s+a

s+100 . Record the range of this variable that seems to give stable response. Spin the
magnet gently to release friction.

4. Experiment with the “k” term in the lead controller. That is, implement D(s) = k s+15
s+100 . Record the range of

this variable that seems to give stable response. Spin the magnet gently to release friction.

5. Use D(s) = 15 s+10
s+100 and execute a repeating bidirectional step move. See Fig. 10.3. The bidirectional

step may be created using the “Repeating Sequence” source block with time vector [0 2 2.002 4] and
output vector [1 1 -1 -1]. Run the output of the sequence through an amplifier so that you can vary the
amplitude of the square wave easily. For amplitudes {0, 0.1, 0.2, 0.3, 0.4} plot y∗cal . Does the magnitude of the
reference command r(t) affect the stability of the output? Should it? Explain the shape of the output curves.

2 4 6

t

A

−A

Figure 10.3 Bidirectional step move of amplitude A (repeats periodically).
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10.6 ASSIGNMENT

Include all derived stability results in your report. Compare theoretical versus observed results regarding stabil-
ity. Comment on system response to the bidirectional step moves for various amplitude inputs. Comment on the
similarities and differences between your desktop validation results and hardware-in-the-loop validation results.
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Root-Locus Analysis and
Informal Design: Simulation

11.1 INTRODUCTION

By now, you have created a number of models of the MagLev system. These models are used to analyze system
behavior and to design control systems which use feedback. One powerful tool we can use is the root locus method,
which tells us all possible closed-loop pole locations given a certain D(s) and G(s) and a variable gain K (see
Fig. 11.1).

11.2 THIS LAB IS. . .

• An informal design approach using root-locus methods

11.3 BACKGROUND

Control systems are often configured as shown in Fig. 11.1. The plant is G(s), the dynamics of the controller are
D(s) and the controller gain is K. The control design objective is to choose D(s) and K in order that the closed-loop
system has a certain desired response.

r(t) y(t)K D(s) G(s)

Figure 11.1 Generic feedback system.

If D(s) and G(s) are fixed, the root locus method can be used to determine all possible closed-loop pole locations
of the system if K is varied 0 ≤ K < ∞.

11.4 PRELAB ASSIGNMENT

1. First, consider your model of the lower coil of the MagLev with y1cal output, in an open-loop stable configu-
ration.

(a) Investigate Matlab’s rlocus() command. rlocus() uses the open-loop transfer function of the
system to plot the locus of the roots if the loop is closed and the gain K is varied, 0 ≤ K < ∞. Plot the
root locus of the system for D(s) = 1. Comment on the stability of the closed-loop system.

(b) Recall that as the feedback gain K is increased, K → ∞, the closed-loop poles of the 180◦ root locus
migrate toward the open-loop zeros. Use this knowledge to design a controller D(s) = s+a to make the
system stable and to achieve a damping ratio between 0.7 and 0.8. State the controller D(s) you made,
and the feedback gain K used. Plot the root locus and step-response of your compensated system. (See
the Matlab rlocfind, cloop, feedback, and step commands).
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(c) A physically realizable (and reasonable) controller has at least as many poles as it has zeros. Redesign
your controller to be realizable and meet the specs of part (b). Again, plot the root locus, state the value
of gain K used, show the compensator you use, and plot the closed-loop step response. You should be
able to meet specs with D(s) a lead controller.

2. Secondly, consider your model of the upper coil of the MagLev with y2cal output, in an open-loop unstable
configuration (model from Lab 9). Repeat steps (a) and (c), above.

3. Add an integrator to the feedback path to eliminate steady-state errors. Can you still achieve the desired
specifications with a lead controller? Come up with a D(s) that stabilizes both single-disk systems (i.e., upper
and lower configurations) that also has an integrator in the feedback loop.

11.5 LABORATORY EXPERIMENT

For this lab, you will again test your control designs first in simulation: a desktop validation approach. Next lab, you
will implement your designs in hardware.

1. Control of single disk, lower position using lower actuator (open-loop stable system): Record the step response
of your controlled system. Did you meet spec? If not, redesign and repeat.

2. Control of single disk, upper position using the upper actuator (open-loop unstable system): Record the step
response of your controlled system. Did you meet spec? If not, redesign and repeat.

11.6 ASSIGNMENT

In your writeup, be sure to include all results and reasoning from the Prelab section. Also include the step responses
of the MagLev as recorded from desktop validation. Do the experimental and predicted step responses agree?
Comment on any disagreement.
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Root-Locus Analysis and
Informal Design: Implementation

12.1 INTRODUCTION

This is a continuation of your design from the prior lab: you will now implement your controllers on the MagLev
hardware and test them.

12.2 THIS LAB IS. . .

• Hardware validation of your root-locus inspired designs

12.3 BACKGROUND

The background for this lab is the same as for Lab 11. Please refer back to that lab with any questions.

12.4 PRELAB ASSIGNMENT

1. How do you think your control designs might behave differently on the real hardware from your desktop
validation results? What steps might you need to take to change your controllers to work on the hardware?

12.5 LABORATORY EXPERIMENT

This week, you implement your designs in hardware.

1. Control of single disk, lower position using lower actuator (open-loop stable system): Record the step response
of your controlled system. Did you meet spec? If not, redesign and repeat.

2. Control of single disk, upper position using the upper actuator (open-loop unstable system): Record the step
response of your controlled system. Did you meet spec? If not, redesign and repeat. Use the plastic clip under
the magnet to keep it from falling below a height of approximately −4 cm .

12.6 ASSIGNMENT

In your writeup, be sure to include all results and reasoning from the Prelab section. Also include the step responses
of the MagLev as recorded experimentally. Do the experimental and predicted step responses agree? Comment on
any disagreement. Compare desktop validation systems with hardware performance.
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Feedback Linearization and
Pole-Placement Design: Lower Disk

13.1 INTRODUCTION

In Labs 9 through 12 you designed and implemented controllers for the MagLev system using calibrated sensor out-
put and linearized system models found by Taylor-series expansion in Lab 5. These models were only approximate
representations of the true nonlinear dynamics of the MagLev. This sometimes gives us unrealistic expectations as
to how these controllers might work in practice, as you have experienced by now. In this lab you will explore a
second linearization method which does not make approximate models of nonlinear dynamics, but explicitly cancels
all nonlinear dynamics. Root-locus pole-placement design will be used to control the system.

13.2 THIS LAB IS. . .

• An introduction to feedback linearization.

• Practice with pole placement using root-locus methods.

13.3 BACKGROUND

13.3.1 Feedback linearization

The small-signal linearization method encountered in Lab 5 (and used subsequently) creates approximate linear
models of a nonlinear system operating around a specific equilibrium point. Another approach is called feedback
linearization and is valid for any operating point. The method is shown in Fig. 13.1. The gravity, sensor and actuator
nonlinearities are exactly canceled, leaving only the linear part of the system. This is the most accurate linearization
method but also the most computationally demanding in a real-time application.

r(t) u1

G(s)

D(s)

yraw (y)Fu1(y)
actuator
inverse sensor

inverse

Plant

fu1
y1raw y1cal

y1

Sensor
nonlinearity

Magnetic field
nonlinearity
(actuator)

mg

mg

Figure 13.1 Another method for compensating nonlinearities.

The sensor nonlinearity is canceled as before (i.e., as in method 1). An estimate ykcal of the true magnet position yk
is made using measurements ykraw and the relationship

yk ≈ ykcal =
ek

ykraw
+

fk√
ykraw

+ gk + hk · ykraw , k = 1, 2.
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This computation may be done as a subsystem in Simulink, as you have already seen. It is represented in Fig. 13.1
on page 13–1 as the “sensor inverse” block.
The gravity nonlinearity may also be canceled. We assume that the output of the controller D(s) is an upward force
fu1 (in Newtons), to which we must add the constant force mg to cancel the downward gravity force on the magnet.
Note that mg is not a function of magnet height, as u1o was in previous methods.
Finally, the actuator nonlinearity is canceled. For example, we know that the upward force provided by the bottom
actuator is

Fu11 =
u1

a(y1 + b)4
.

In order to compute u1 to produce a desired force f1des we re-arrange the equation (and assume that y1cal ≈ y1) to
get

u1 = f1desa(y1cal + b)4. (13.1)

This equation may be implemented as a Simulink block. It is represented in Fig. 13.1 on page 13–1 as the “actuator
inverse” block. Notice that in order to compute u1 we need knowledge of y1cal . This forms a feedback loop—hence
the name “feedback linearization.” The equivalent equation for the top disk is u2 = f2desa(−y2cal + b)4.

Considering for now the dynamics of a single-disk, lower position, lower actuator system, we achieve the equations
of motion:

mÿ1 +mβẏ1 − Fu11 +mg = 0

mÿ1 +mβẏ1 −
u1

a(y1 + b)4
+mg = 0.

Let the output of the controller be fu1, and let u1 be calculated using Eq. (13.1) where f1des = fu1 +mg. Then,

mÿ1 +mβẏ1 − (fu1 +mg)
a(y1cal + b)4

a(y1 + b)4
+mg = 0.

Assuming that y1 ≈ y1cal we get
mÿ1 +mβẏ1 = fu1

or
Y1(s)

Fu1(s)
=

1

ms2 +mβs
.

When the gravity, sensor and actuator nonlinearities are canceled we achieve the equivalent block diagram in
Fig. 13.2, suitable for designing a controller.

r(t)
fu1

G(s) = 1
ms2+mβsD(s)

y1

Figure 13.2 Third linearized system for design.

13.4 PRELAB ASSIGNMENT

Consider the MagLev configured as a single-disk system (lower position). You will use feedback linearization
around the MagLev to determine the equivalent plant.

• Determine G1(s) = 1
ms2+mβs ; that is, fill in the numbers. Be careful to use compatible units! Does G1(s)

vary from one MagLev to another?

• Make a Simulink subsystem to cancel the lower actuator nonlinearity; that is, to implement Eq. (13.1).
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• If D1(s) = 1 consider the open-loop transfer function KG1(s). What can we say about the closed-loop
system’s steady-state response, assuming that the system is stable and nonlinearities are perfectly canceled?

• Select desired pole locations s0 and s∗0 such that the step response of the closed-loop system has settling time
faster than 1 second, overshoot of less than 25% and rise time of less than 0.2 seconds. Design a lead controller

D1(s) =
a1s+ a0
b1s+ 1

using root-locus methods to place the poles of the feedback-linearized MagLev system at these locations. Start
with an arbitrary guess for a0.

• Plot the root locus of D1(s)G1(s) to ensure that your compensator has placed all poles in the left-half s-plane
(stable). If your system is unstable, try reducing a0 and re-design your lead compensator.

13.5 LABORATORY EXPERIMENT

1. Implement your feedback control system for the lower disk in Simulink. See Fig. 13.3. You will create the
“Subsystem to fix Actuator” block to implement Eq. (13.1). Despite your earlier prediction, steady-state error
will be a problem since nonlinearities will not be perfectly canceled. Therefore, you will need a lag network
of the form

D3(s) =
s+ 2

s+ 0.001

and the entire controller will be D(s) = D1(s)D3(s). (Does the presence of the lag network change the root
locus much?)

Figure 13.3 Block diagram to implement feedback-linearized control on the lower disk.

2. Control the lower disk. For a reference input equal to 0.5 plus a unit step at time 5 sec, record your system
output. Is the system stable? If not, redesign your controller.

(a) Implement your control design using the desktop validation approach first;
(b) Secondly, implement your design on the actual hardware.

3. Repeat for reference input signals equal to 0.5 plus step signals of magnitude 1.5, 2.0, 2.5 and 3.0. Does the
amplitude of the step affect response?
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13.6 ASSIGNMENT

Report your controller designs, and all Prelab information. Discuss the transient and steady-state response of your
closed-loop systems. Did you meet specifications? Discuss all observations made.
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Feedback Linearization and
Pole Placement Design: Upper Disk

14.1 INTRODUCTION

This final lab is a continuation of Lab 13, where you now use feedback linearization to control a single disk in the
upper (unstable) configuration.

14.2 THIS LAB IS. . .

• A continuing look at feedback linearization.

• More practice with pole placement using root-locus methods, specifically for an unstable plant.

14.3 BACKGROUND

The background information for this lab is the same as for Lab 13. Please refer back to that discussion as necessary.

14.4 PRELAB ASSIGNMENT

Consider the MagLev configured as a single-disk system, upper position, upper actuator. Again, you will use feed-
back linearization around the MagLev to determine the equivalent plant.

• Determine G2(s) = Y2(s)/U2(s).

• Make a Simulink subsystem to cancel the upper actuator nonlinearity. Make a Simulink subsystem to cancel
the upper sensor nonlinearity.

• Select desired pole locations s0 and s∗0 such that the step response of the closed-loop system has settling time
faster than 1 second, overshoot of less than 25% and rise time of less than 0.2 seconds. Design a lead controller

D2(s) =
a1s+ a0
b1s+ 1

using root-locus methods to place the poles of the feedback-linearized MagLev system at these locations. The
a1, a0 and b1 coefficients will be different from those in D1(s). Start with an arbitrary guess for a0 (You might
need to consider negative values!).

• Plot the root locus of D2(s)G2(s) to ensure that your compensator has placed all poles in the left-half s-plane
(stable). If your system is unstable, try reducing the magnitude of a0 and re-design your lead compensator.
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14.5 LABORATORY EXPERIMENT

1. Move the plastic clip to about the −4 cm position. Allow the upper magnet to drop to this height. Implement
your feedback control system for the upper disk in Simulink. Again, steady-state error will be a problem.
Therefore, you will need a lag network and the entire controller will be D(s) = D2(s)D3(s).

2. For a reference input of −0.5 minus a unit step at time 5 sec, record your system output. Is the system stable?
If not, redesign your controller.

(a) Implement your control design using the desktop validation approach first;
(b) Secondly, implement your design on the actual hardware.

3. Repeat for reference input signals of −0.5 minus step signals of magnitude 1.5, 2.0, 2.5, and 3.0. Does the
amplitude of the step affect response?

14.6 ASSIGNMENT

Report your two controller designs, and all Prelab information. Discuss the transient and steady-state response of
your closed-loop systems. Did you meet specifications? Discuss all observations made. Be sure to compare the
performance of the lower-disk controller versus the upper-disk controller, and compare performance of the desktop
validation system to the actual implementation.
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App. A: Magnetic Levitation Principles

This appendix gives a brief overview of key concepts in magnetism in general and magnetic levitation in particular.
It includes equations and illustrations that show how magnetic fields and forces are generated within the Model 730
apparatus and concludes with a reference section. For a more rigorous treatment of these topics, the reader is referred
to the literature listed at the end of the appendix.

A.1 Introduction

Magnetic fields are used to describe forces at a distance from electric currents. These currents are of two types:

1. Free, or Amperian, currents as drawn from a battery pack, power supply, or an electrical outlet, and

2. Bound currents as in permanent magnet materials.

The forces come in three variations:

1. An electrical current feels a force from another current,

2. A current feels a force from a permanent magnet, and

3. A permanent magnet feels a force from another permanent magnet.

This action at a distance is described by saying a magnetic field exists created by one of the bodies at the location of
the other body. The magnetic field is the medium by which the force is transferred.
In this section, a brief discussion concerning the magnetic fields caused by magnetized materials (i.e., permanent
magnets) is presented. By demonstrating that magnetic materials can be reduced to effective current distributions,
this discussion forms the basis for calculating the forces on permanent magnets. The magnetic fields due to free
current distributions are calculated next. These fields are used to calculate the forces felt by current-carrying con-
ductors. Time-varying currents cause time-varying magnetic fields. These changing magnetic fields induce electric
currents that, in turn, experience a force.
Maglev systems utilize the fundamental physics of electric currents experiencing forces-at-a-distance. These systems
are most often described in terms of the interaction of electrical current with magnetic fields. Because the masses of
the vehicles are large, large forces are required for magnetic suspension. These large forces are provided by the high
magnetic fields of either large superconducting currents or small air gaps in normal ferromagnetic circuits.
A dictionary of common terms is provided at the end of the section and a reference list is included featuring books,
Maglev studies and Maglev URLs.

A.2 Magnetic Fields & Forces

A.2.1 Magnetic Fields Caused by Magnetized Materials

Electron spin is a quantum mechanical phenomenon. Its significance here is the fact that there is associated with the
electron spin a magnetic moment of fixed magnitude. To determine the forces on magnetic materials, we use the fact
that the magnetic moment of the electron spin acts as if it is a current loop.
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A volume of magnetized material contains a very large number of aligned electron spins. This is illustrated schemat-
ically in the figure below. A grid pattern was superposed onto the material to indicate small volumes of materials
which can be analyzed discretely.

dz

M

The figure below isolates two small volumes. The one on the left generates a magnetic field due to its magnetic
moment, m. The one on the right generates a magnetic field by virtue of the current wrapping the volume (this is
commonly referred to as a “current sheet.”), and otherwise ignores the presence of the magnetic material. The two
magnetic fields are entirely equivalent (external to the material). The material property M describes the strength of
the magnetic material and the amount of current required per unit distance of height. The parameter K describes the
current per unit height within the current sheet. For modern high performance neodymium-iron-boron permanent
magnets, K ≈ 900, 000 amps/meter.

dz

m
I I = M dz, K = I/dz = M

Equivalent as sources
of magnetic field

Assembling many small volumes in juxtaposition, one can see in the figure below the result of substituting the
current loop for the magnetic material; the internal currents cancel while the surface currents do not cancel. Hence,
no matter the shape of the material, the external magnetic field can be exactly reproduced by a current stripe along
the material perimeter. (This is true if the magnetization is uniform. If the magnetization is uniform then the currents
are equal and cancel. If the magnetization is not uniform, then the equivalent current distribution can be calculated
by J = ∇×M , where J is the volume current density.)

I

I

I

I

In summary, the magnetic field of a uniformly magnetized permanent magnet can be exactly reproduced by a current
sheet along the perimeter. This equality is indicated graphically in the figure below. The magnitude of the current is
proportional to the material thickness with the constant of proportionality dependent upon the material itself. This
equivalence of magnetic fields is commonly exploited to calculate the forces on permanent magnet materials.

dz

M

I

=

A.2.2 Calculating Magnetic Fields

The Biot-Savart Law is the fundamental relationship between current and magnetic field:
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dB⃗ =
µ

4π

I d⃗l × r⃗

r⃗ 3
, (A.1)

where,

dB⃗ =differential magnetic field, tesla,

µ =permeability, Henry/m,

I =current, amps,

d⃗l =differential length of current-carrying element, m,

r⃗ =vector distance from current element to field point, m.

Two simple geometries for calculating the magnetic field are an infinitely long, straight conductor and a circular loop
of conductor.

Straight Conductor

For the straight conductor carrying current upwards along the y-direction, the magnetic field can be calculated at any
point due to a differential current element as:

dB⃗ =
µ

4π

I d⃗l sin θ

r2
, (A.2)

y

R

r =
√
y2 +R2

dB⃗
(into page)θ

d⃗l

I

By integrating along y from −∞ to ∞, the result is:

B =
µI

2πR
,

where the direction of the magnetic field is determined by the right hand rule (point the thumb of the right hand
along the direction of current and the fingers curl in the direction of the magnetic field).

Circular Loop at Center

The magnetic field at the center of a circular loop of wire can also be calculated from the Biot-Savart Law. In this
case, the angle between the current element and field point is a constant (90◦) so the vector cross product always
yields unity. Then the magnetic field is:

dB⃗ =
µ

4π

I 2πR

R2
=

µI

2R
. (A.3)

R
dB⃗

d⃗l
I
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Circular Loop Anywhere Along Axis

The magnetic field along the axis of a circular loop of wire can also be calculated from the Biot-Savart Law. In this
case, the angle between the current element and field point is still a constant (90◦) so the vector cross product always
yields unity. The net magnetic field from any current element has vertical and horizontal components. However,
as the current element follows the conductor path, the horizontal components of the field cancel while the vertical
components add. Then the axial magnetic field is:

Bz =
µ

4π

I 2πR

z2 +R2
cosα =

µIR

2(z2 +R2)

R√
z2 +R2

=
µIR2

2(z2 +R2)3/2
. (A.4)

R

B⃗z B⃗

d⃗l

I

α

α

Due to the common occurrence of circular coils, this relationship is very important. Along the axis the magnetic
field is purely vertical. For values of height, z, above the plane of the coil, which are small compared to the radius,
R, (z ≪ R) the vertical magnetic field is insensitive to z. This is due to the finite radius of the coil. For heights z
much larger than R (z ≫ R) the axial field decreases as the reciprocal third power of height. Off-axis, the radial
magnetic field decreases as the reciprocal fourth power of height.

Calculating Magnetic Forces

The force between current carrying conductors is given by the Lorentz Law:

dF⃗ = I d⃗l × B⃗, (A.5)

where, dF⃗ =differential force, in Newtons.
One simple geometry for calculating the magnetic force per unit length is two infinitely long, straight conductors
parallel to each other.

F

l
= −µI1I2

2πR
.

The negative sign means the two parallel currents attract one another. If the direction of one of the currents were
to be reversed (anti-parallel currents), the force would also reverse, and the currents would repel. Reversing both
currents, of course, once again produces an attractive force.

R

dB⃗
(into page)

I1 I2

To evaluate the magnetic field at off-axis points, the same formula (A.1) can be used. The mathematics quickly
becomes intractable and the solution is usually implemented numerically. Alternatively, specialized computer aided
design software can be used to calculate the magnetic field at arbitrary points in space. The two methods approach
the calculation differently (the former is the idealized magnetic field numerically approximated while the other is
the high fidelity numerical model of the detailed system). Either method will, of course, yield the same result.
The force due to a current-field interaction off-axis can be calculated according to (A.5). Thus, in the case of a
Neodymium Iron Boron permanent magnet positioned above a coil, the magnet can be modeled as a current sheet
of thickness equal to that of the magnet. This “current” creates a magnet field at the location of the coil conductors.
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ECE4530, App. A: Magnetic Levitation Principles A–5

The force on the coil and, by Newtons third law, the force on the magnet is simply the product of the magnetic field,
current and conductor path length.
Since the equivalent current of the permanent magnet is in the theta direction (circumferential around the magnet),
the vector cross product in the force equation suggests that to get an axial force, Fz we must have a radial magnetic
field, Br (−ẑ = θ̂ × r̂). In developing the control system, it is convenient to express the radial magnetic field
equation in the following form:

Br =
c1

(z + c2)N
,

where c1 and c2 are constants depending upon the geometry of the permanent magnets and N is a parameter de-
scribing the decrease in magnetic field with increasing axial distance. For the case of the axial magnetic field, we
saw above c1 is the surface current density multiplied by the magnet thickness, c2 is related to the square of the mag-
net radius, and N is three or less, depending upon the relative axial distance. The radial magnetic field decreases
more rapidly with distance than the axial magnetic field by approximately one more power of the denominator:
3 < N < 4.1

In order to suit the control law, the following form of the force equation for a magnet-coil interaction is sought:

F =
K

(z +D)N
· I

Imax
.

The various magnet-coil interactions have been analyzed and the appropriate constants have been determined. Be-
cause of the inherent non-linearity of magnetic fields, these constants can vary when the excursion from the calcu-
lated system is large; that is, the equations have been approximated by constant parameters in the region of interest.
That is, at very large axial heights or very low heights the constants will differ from those calculated.
The form of the force is the same for interactions between permanent magnets due to the equivalent current concept
discussed above. In this case, however, the current is not a free parameter for control but is determined by the
geometry.

Calculating Induced Currents

A time-varying magnetic field induces voltages in a closed loop according to Faraday’s Law:

V = −Nt
∂φ

∂t
,

where,

V is the induced voltage around a closed loop,

Nt is the number of turns of conductor around the loop, and,

∂φ/∂t is the flux rate of change through that loop.

The negative sign in Faraday’s Law is the manifestation of Lenz’s Law. Lenz’s Law states that when currents are
induced in bodies due to a changing magnetic field, the currents are in such a direction as to cancel the change
in magnetic field experienced by the body. For instance, if no field is present and suddenly a field is applied, the
induced currents tend to circulate to cancel the magnetic field. If, however, the magnetic field has previously existed,
removal of the magnetic field causes currents to flow in an attempt to maintain the field.
Consider a single current-carrying conductor moving relative to a conductive sheet. It can be shown [Magneto-Solid
Mechanics, pg. 339 ff] that there is a characteristic velocity of the motion, w:

w =
2ρ

µ0t
,

1In evaluating specific geometries and using numerical curve fitting, exponents of value N > 4.0 can result. For the Model 730 Apparatus,
N ≤ 4.3.
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where, ρ is the sheet material resistivity, t is the thickness of the sheet and µ0 is the permeability of free space. At
standstill, the magnetic field of the current will fully permeate the sheet conductor. The magnetic field lines will be
perfect circles about the current center. At very low speeds, (v ≪ w) the field still permeates the sheet and the field
lines will still be very nearly circular. This situation in shown in the figure below, the induced current in the sheet is
K amps/meter.

Current I
(into page) B

v v ≪ w
t

K

K , amps/mρ

As the conductor speed is increased to approximately the characteristic velocity (v ≈ w), the movement of the
magnetic field through the sheet causes induced currents to flow. According to Lenz’s Law, these currents flow in
such a manner so as to cancel the effect of the approaching field. Nevertheless, due to finite resistance, the magnetic
field will still penetrate the conductive sheet to an extent and as the conductor leaves the region of magnetic field
additional currents are induced to maintain the presence of the field. This situation is shown in the figure below.
Notice the shear effect of the motion on the magnetic field.

Current I
(into page) B

v v ≈ w
t

K

K , amps/mρ

When the speed is increased to substantially above the characteristics velocity, the conductivity of the sheet prevents
the magnetic field from any significant penetration. The conductor is moving sufficiently fast that significant resistive
dissipation does not occur. Each section of sheet generates the exact required current to perfectly shield the interior
of the conductive sheet from the magnetic field. This situation is shown in the figure below. Notice that the magnetic
field lines do not enter the sheet.

Current I
(into page) B

v v ≫ w
t

K

K , amps/mρ

For application to the demonstration unit, the current element is the equivalent current of the permanent magnet
edge. The permanent magnet flying above a rotating conductive sheet introduces several details different from that
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described above. The physical principle remains the same; that is, the currents are induced in the sheet in response to
the apparent change in magnetic field, and these currents tend to cancel the change in magnetic field. The interaction
of the (magnetic field from) the induced currents and the original permanent magnetic field produce a repulsion force
which levitates the magnet. These fundamentals are the basis of several different configurations of Maglev systems.

A.3 Maglev Applications

The figure below shows six arrangements used in magnetic levitation of moving vehicles. Five of the arrangements
rely on repulsive forces. The lower elements are fixed (say, with respect to the earth) and the upper elements levitate.
The first arrangement (permanent magnet like poles) is the common one for demonstrating like magnetic poles
repel. The second and fourth arrangements (permanent magnet and/or superconducting magnet flying over a normal
copper lower coil) is similar to that used for the Japanese superconducting Maglev system. The third and fifth
systems are similar to the Magneplane system where permanent magnets or superconducting coils fly over normal
sheet conductor. Notably, this has been variously proposed as an inexpensive method to attain levitation.
The sixth arrangement (electromagnet under a ferromagnet) is quite different and is the basis for the German Tran-
srapid Maglev system. The fixed element is the upper ferromagnetic material and the lower electromagnet is actively
controlled. If the current in the electromagnet is too large, the electromagnet feels a net upward force until it contacts
the ferromagnetic material. If the current is too small, then insufficient force is available and the electromagnet falls.
Hence, the current in the electromagnet must be continuously adjusted to enable levitation without contact.

N S

V

N S N S

N S

1

6
54

32

N

S

Conductor
Conductor

Image
magnet

Image coil

Ferromagnet

︸ ︷︷ ︸
Attraction

︸ ︷︷ ︸
Repulsion

For applications involving moving vehicles, all maglev designs share a common trait: while generating magnetic lift
(in the direction perpendicular to travel) there is also generated magnetic drag (opposing the direction of travel). The
details of the lift and drag forces, of course, depend upon the configuration.

A.4 Reference

News Item: 14 April 1999 Japanese Maglev vehicle demonstrates top speed of 552 km/hr (345 mph).

A.4.1 Current Status of Maglev in the United States and Internationally

Superconducting Maglev technology was initiated in the late 1960s and early 1970s in the United States in 1969
when Drs. James Powell and Gordan Danby of New Yorks Brookhaven National Laboratory invented the concept
of a repulsive magnetic suspension using superconducting magnets. In the mid-1970s the US stopped Maglev
development due to funding problems. Other countries, however, continued to develop Maglev and today have
viable systems. In the early 1990s Maglev research was rekindled at a Federal government level. At various times,
the Department of Transportations Federal Railroad Administration and Federal Transit Administration, NASA,
Department of the Air Force, and Department of the Navy have joined resources for the purpose of developing
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Maglev and Linear Motor technology. Although each agency had its own specific application in mind, a loose
consortium seemed to provide the best bang for the buck. The situation has progressed where today there are several
high speed (≈ 300 mph) and low speed (≈ 100 mph) regions in this country where Maglev is thought to be a viable
alternative means of rapid public transportation—yet it is still unproven in the United States.
Germany’s Transrapid vehicle has been extensively tested and has been proposed for use on several projects in this
country. The Germans are presently constructing a Transrapid route from Hamburg to Berlin.
Japan is developing a system that uses superconducting magnets and is currently constructing a major test route that
will ultimately be incorporated into a revenue-producing route. Approximately 80% of this system will be in tunnels
cut into mountains. This has greatly increased the construction cost but has decreased the cost of land acquisition
for the Maglev right-of-way.

A.4.2 Glossary

Eddy Currents: Induced currents in conductors by changing magnetic fields. Since the currents flow in closed
paths within the materials, they are similar to eddies in rivers. In accordance with Lenz’s Law, these currents
flow in such a manner as to oppose the change in magnetic field inducing them. Frequently, eddy currents are
undesirable, but they can be desired in cases of induction and microwave heating for industrial and consumer
purposes.

EDS: Electrodynamic System

Electrodynamic System: Magnetic forces based upon repulsion from induced currents. Inherently stable can be
lightly damped or even negatively damped at sufficiently high frequencies.

Electromagnetic System: Magnetic forces based upon attraction from applied currents. Inherently unstable and
currents must be controlled.

EMS: Electromagnetic System

HSST: High Speed Surface Transportation (not as high speed as the name sounds). Japanese EMS Maglev.

Inductance, L: L = Ntφ/I , Total flux linked per unit current. Units are Henries, H.

Maglev: Generic term for magnetic suspension. Sometimes refers to both levitation (vertical forces) and guidance
(side-to-side forces).

Magnetic Drag: Magnetic force opposing propulsion, due to resistive dissipation. Units are Newtons.

Magnetic Field, H: Three-dimensional vector used to calculate the enclosed current as used in Ampere’s Law
∇×H = µ0Jfree . This parameter is independent of the material properties. Units are Amperes/meter, A/m.

Magnetic Flux Density, B: Three-dimensional vector used to calculate the force on conductors and magnetic ma-
terials. Units are Wb/m2 or Tesla, T. ∇×B = µ0(Jfree + Jbound ). Recall also F = I dl ×B.

Magnetic Flux, φ: φ =
∫∫

B⃗ · dA⃗, the integral of the vector dot product of the flux density and area. Units are
Webers, Wb.

Magnetic Lift: Magnetic force opposing gravity.

Permeability: µ = B/H, Ratio of flux density to magnetic field. Units are Henries/meter, H/m.

Reluctance: Ratio of total magnetomotive force to total flux through a circuit. Units are inverse Henries, H−1.

RTRI: Railway Technical Research Institute. Japanese research arm to develop EDS Maglev.
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Superconductivity: The material property of the complete lack of electric resistance, obtained for special materials
only under conditions of refrigeration. Two classes of materials are low critical temperature superconductors
(T ≤ 10K)and high critical temperature superconductors (HTSC) (T ≤ 77K).

Transrapid: German EMS Maglev, Hamburg to Berlin route under construction.

Magnetomotive force, mmf: MMF =
∮
H⃗ · d⃗l = NtI . Intermediate quantity used for magnetic circuits. Concep-

tually similar to the electromotive force or voltage of an electric circuit. Units of mmf are Ampere-turns.

Lenz’s Law: A law stating that induced currents resulting from a change in magnetic field are in such a direction
as to oppose the change in magnetic field. Hence, if a magnetic field is increased, current is induced to cancel
it. If the magnetic field is decreased, current is induced to preserve it.

A.4.3 Reference Literature:

Books

1. Superconducting Levitation: Applications to Bearings and Magnetic Transportation, Francis Moon, Wiley &
Sons, New York, 1994.

2. Case Studies in Superconducting Magnets: Design and Operational Issues, Yukikazu Iwasa, Plenum Press,
New York, 1994.

3. Magneto-Solid Mechanics, Francis Moon, Wiley & Sons, New York, 1984.

4. Electromagnetic Levitation and Suspension Techniques, B.V. Jayawant, Edward Arnold Publishers, London,
1981.

5. Electromagnetics, J.D. Kraus, McGraw Hill Companies, New York, 1992, p. 288.

6. Electricity & Magnetism, E. Purcell, McGraw-Hill Book Companies, New York, 1965.

Maglev Studies

1. “Study of Japanese Electrodynamic Suspension Maglev Systems,” J.L. He, D.M. Rote, H.T. Coffey, Argonne
National Lab, Argonne, IL, 60439, April 1994.

2. “New York State Technical and Economic Maglev Evaluation,” Michael Proise, Grumman Space and Elec-
tronics Division, New York, June 1991.

3. “Electrodynamic Suspension and Linear Synchronous Motor Propulsion for High Speed Guided Ground
Transportation,” David Atherton, Canadian Maglev Group, CIGGT Report No. 77–13, September 1977.

4. “Conceptual Design and Analysis of The Tracked Magnetically Levitated Vehicle Technology Program Re-
pulsion Scheme, Volume I—Technical Studies, Ford Motor Co., US DOT/FRA, Report PB247931, Feb. 1975.

Maglev Web Sites

1. http://bmes.ece.utexas.edu/~jcamp/physics/index.htmlDescriptive link of Maglev tech-
nologies and basic physics.

2. http://eb-p5.eb.uah.edu/maglev/maglev.htmlUniv. of Alabama Huntsville College of Engi-
neering WWW Archive and Information service for High Speed and Automated Transportation Technologies.
(This site is relatively new and has unfinished links.)

3. http://www.rtri.or.jp/RTRI Home page. Japanese EDS Maglev.

4. http://www.mvp.de/english.htmTransrapid Official Homepage. German EMS Maglev.
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5. http://weber.u.washington.edu/~jbs/itrans/hsst.htmHSST unofficial descriptive page.

6. http://www.meitetsu.co.jp/chsst/mecha.htmlMechanism of HSST. Japanese EMS.

7. http://popularmechanics.com/popmech/sci/9805STTRP.html “Track to the Future” arti-
cle. Descriptive article of one recent Maglev approach.

8. http://www.llnl.gov/str/Post.html“A New Approach to Levitating Trains—and Rockets.” Elab-
oration of the previous link for a Maglev approach.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs


