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Hypothesis Testing: What We Know

◮ Bayesian decision rules: minimize the expected/weighted risk for a
particular prior distribution π.

◮ Minimax decision rules: minimize the worst-case risk exposure over all
possible prior distributions.

◮ Example: To approve a new flu test, the FDA requires the test to
have a false positive rate of no worse than 10%.

◮ Should we use the Bayes criterion?
◮ Should we use the minimax criterion?
◮ How do we assign a risk structure to this sort of problem?

◮ In many hypothesis testing problems, there is a fundamental

asymmetry between the consequences of “false positive” (decide H1

when the true state is x0) and “miss / false negative” (decide H0

when the true state is x1).
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The Neyman-Pearson Criterion and Terminology

For now, we will focus on simple binary hypothesis testing under the UCA.

R0(ρ) = Prob(decide H1|state is x0) = Pfp

= probability of “false positive” or probability of “false alarm”.

and

R1(ρ) = Prob(decide H0|state is x1) = Pfn

= probability of “false negative” or “missed detection”.

Definition

The Neyman-Pearson criterion decision rule is given as

ρNP = arg min
ρ

Pfn(ρ)

subject to Pfp(ρ) ≤ α

where α ∈ [0, 1] is called the “significance level” of the test.
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The N-P Criterion: 3 Coin Flips (q0 = 0.5, q1 = 0.8, α = 0.1)
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Neyman-Pearson Hypothesis Testing Example

Coin flipping problem with a probability of heads of either q0 = 0.5 or
q1 = 0.8. We observe three flips of the coin and count the number of
heads. We can form our conditional probability matrix

P =









0.125 0.008
0.375 0.096
0.375 0.384
0.125 0.512









where Pℓj = Prob(observe ℓ heads|state is xj).

Suppose we need a test with a significance level of α = 0.125.

◮ What is the N-P decision rule in this case?

◮ What is the probability of correct detection if we use this N-P
decision rule?

What happens if we relax the significance level to α = 0.5?
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Intuition: The Hiker

You are going on a hike and you have a budget of $5 to buy food for the
hike. The general store has the following food items for sale:

◮ One box of crackers: $1 and 60 calories

◮ One candy bar: $2 and 200 calories

◮ One bag of potato chips: $2 and 160 calories

◮ One bag of nuts: $3 and 270 calories

You would like to purchase the maximum calories subject to your $5
budget. What should you buy?

What if there were two candy bars available?

◮ The idea here is to rank the items by decreasing value (calories per
dollar) and then purchase items with the most value until all the
money is spent.

◮ The final purchase may only need to be a fraction of an item.
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N-P Hypothesis Testing With Discrete Observations

Basic idea:
◮ Sort the likelihood ratio Lℓ =

Pℓ,1

Pℓ,0
by observation index in descending

order. The order of L’s with the same value doesn’t matter.
◮ Now pick v to be the smallest value such that

Pfp =
∑

ℓ:Lℓ>v

Pℓ,0 ≤ α

◮ This defines a deterministic decision rule

δv(yℓ) =

{

1 Lℓ > v

0 otherwise

◮ If we can find a value of v such that Pfp =
∑

ℓ:Lℓ>v Pℓ,0 = α then we
are done. The probability of detection is then

PD =
∑

ℓ:Lℓ>v

Pℓ,1 = β.
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N-P Hypothesis Testing With Discrete Observations

◮ If we cannot find a value of v such that Pfp =
∑

ℓ:Lℓ>v Pℓ,0 = α then
it must be the case that, for any ǫ > 0,

Pfp(δ
v) =

∑

ℓ:Lℓ>v

Pℓ,0 < α and Pfp(δ
v−ǫ) =

∑

ℓ:Lℓ>v−ǫ

Pℓ,0 > α

Pfp

α

v

Pfp(δ
v)

Pfp(δ
v−ǫ)

◮ In this case, we must randomize between δv and δv−ǫ.
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N-P Randomization

We form the usual convex combination between δv and δv−ǫ as

ρ = (1 − γ)δv + γδv−ǫ

for γ ∈ [0, 1]. The false positive probability is then

Pfp = (1 − γ)Pfp(δ
v) + γPfp(δ

v−ǫ)

Setting this equal to α and solving for γ yields

γ =
α − Pfp(δ

v)

Pfp(δv−ǫ) − Pfp(δv)

=
α − ∑

ℓ:Lℓ>v Pℓ,0
∑

ℓ:Lℓ=v Pℓ,0
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N-P Decision Rule With Discrete Observations

The Neyman-Pearson decision rule for simple binary hypothesis testing
with discrete observations is then:

ρNP(y) =











1 if L(y) > v

γ if L(y) = v

0 if L(y) < v

where

L(y) :=
Prob(observe y | state is x1)

Prob(observe y | state is x0)
=

Pℓ,1

Pℓ,0

and v ≥ 0 is the minimum value such that

Pfp =
∑

ℓ:Lℓ>v

Pℓ,0 ≤ α.
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Example: 10 Coin Flips

Coin flipping problem with a probability of heads of either q0 = 0.5 or
q1 = 0.8. We observe ten flips of the coin and count the number of heads.

P =







































0.0010 0.0000
0.0098 0.0000
0.0439 0.0001
0.1172 0.0008
0.2051 0.0055
0.2461 0.0264
0.2051 0.0881
0.1172 0.2013
0.0439 0.3020
0.0098 0.2684
0.0010 0.1074







































and L =







































0.0001
0.0004
0.0017
0.0067
0.0268
0.1074
0.4295
1.7180
6.8719
27.4878
109.9512







































◮ What is v, ρNP(y), and β when α = 0.001, α = 0.01, α = 0.1?
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Example: Randomized vs. Deterministic Decision Rules
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Example: Same Results Except Linear Scale
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Remarks: 1 of 3

The blue line on the previous slide is called the Receiver Operating

Characteristic (ROC). An ROC plot shows the probability of detection
PD = 1 − R1 as a function of α = R0. The ROC plot is directly related to
our conditional risk vector plot.
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Remarks: 2 of 3
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The N-P criterion seeks a
decision rule that maximizes

the probability of detection

subject to the constraint that
the probability of false alarm
must be no greater than α.

ρNP = arg max
ρ

PD(ρ)

s.t. Pfp(ρ) ≤ α

◮ The term power is often used instead of “probability of detection”.
The N-P decision rule is sometimes called the “most powerful test of
significance level α”.

◮ Intuitively, we can expect that the power of a test will increase with
the significance level of the test.
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Remarks: 3 of 3

◮ Like Bayes and minimax, the N-P decision rule for simple binary
hypothesis testing problems is just a likelihood ratio comparison
(possibly with randomization).

◮ Can same intuition that you developed for the discrete observation
case be applied in the continuous observation case?

◮ Form L(y) = p1(y)
p0(y) .

◮ Find the smallest v such that the decision rule

ρNP(y) =











1 if L(y) > v

γ if L(y) = v

0 if L(y) < v

has Pfp ≤ α.

◮ The answer is “yes”, but we need to formalize this claim by
understanding the fundamental Neyman-Pearson lemma...
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The Neyman-Pearson Lemma: Part 1 of 3: Optimality

Recall pj(y) for j ∈ {0, 1} and y ∈ Y is the conditional pmf or pdf of the
observation y given that the state is xj .

Lemma

Let ρ be any decision rule satisfying Pfp(ρ) ≤ α and let ρ′ be any decision
rule of the form

ρ′(y) =











1 if p1(y) > vp0(y)

γ(y) if p1(y) = vp0(y)

0 if p1(y) < vp0(y)

where v ≥ 0 and 0 ≤ γ(y) ≤ 1 are such that Pfp(ρ
′) = α. Then

PD(ρ′) ≥ PD(ρ).
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The Neyman-Pearson Lemma: Part 1 of 3: Optimality

Proof.

By the definitions of ρ and ρ′, we always have [ρ′(y)− ρ(y)][p1(y)− vp0(y)] ≥ 0. Hence

Z

Y

[ρ′(y) − ρ(y)][p1(y) − vp0(y)] dy ≥ 0

Rearranging terms, we can write

Z

Y

ρ
′(y)p1(y) dy −

Z

Y

ρ(y)p1(y) dy ≥ v

»Z

Y

ρ
′(y)p0(y) dy −

Z

Y

ρ(y)p0(y) dy

–

PD(ρ′) − PD(ρ) ≥ v
ˆ

Pfp(ρ
′) − Pfp(ρ)

˜

PD(ρ′) − PD(ρ) ≥ v [α − Pfp(ρ)]

But v ≥ 0 and Pfp(ρ) ≤ α implies that the RHS is non-negative. Hence

PD(ρ′) ≥ PD(ρ).
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The Neyman-Pearson Lemma: Part 2 of 3: Existence

Lemma

For every α ∈ [0, 1] there exists a decision rule ρNP of the form

ρNP(y) =











1 if p1(y) > vp0(y)

γ(y) if p1(y) = vp0(y)

0 if p1(y) < vp0(y)

where v ≥ 0 and γ(y) = γ ∈ [0, 1] (a constant) such that Pfp(ρ
NP) = α.
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The Neyman-Pearson Lemma: Part 2 of 3: Existence

Proof by construction.

Let ν ≥ 0, Yν = {y ∈ Y : p1(y) > νp0(y)} and Zν = {y ∈ Y : p1(y) = νp0(y)}. For

ν2 ≥ ν1, Yν2
⊆ Yν1

and
R

Yν2

p0(y) dy ≤
R

Yν1

p0(y) dy.

Let v be the smallest value of ν such that
Z

Yv

p0(y) dy ≤ α

Choose

γ =

8

<

:

α−
R

Yv

p0(y) dy
R

Zv

p0(y) dy
if

R

Yv

p0(y) dy < α

any arbitrary number in [0, 1] otherwise

Then

Pfp(ρ
NP) =

Z

Yv

p0(y) dy + γ

Z

Zv

p0(y) dy = α
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The Neyman-Pearson Lemma: Part 3 of 3: Uniqueness

Lemma

Suppose that ρ′′(y) is any N-P decision rule for H0 versus H1 with
significance level α. Then ρ′′(y) must be of the same form a ρNP(y)
except possibly on a subset of Y having zero probability under H0 and H1.
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The Neyman-Pearson Lemma: Part 3 of 3: Uniqueness

Proof.

If ρ′′ is a N-P decision rule with significance level α, then it must be true that

PD(ρ′′) = PD(ρNP). From part 1 of the Lemma, we know that

PD(ρNP) − PD(ρ′′) ≥ v
ˆ

α − Pfp(ρ
′′)

˜

which implies that Pfp(ρ
′′) = α since the LHS of the inequality is zero. So

PD(ρ′′) = PD(ρNP) and Pfp(ρ
′′) = Pfp(ρ

NP). We can work the proof of part 1 of the

Lemma back to write
Z

Y

[ρNP(y) − ρ
′′(y)][p1(y) − vp0(y)]dy = 0

Note that the integrand here is non-negative. This implies that ρNP(y) and ρ′′(y) can

differ only on the set Zv = {y ∈ Y : p1(y) = vp0(y)}. This then implies that ρNP(y)
and ρ′′(y) must have the same form and can differ only in the choice of γ.

From part 2 of the lemma, we know that γ is arbitrary when
R

Zv

p0(y) dy = 0.

Otherwise, if
R

Zv

p0(y) dy > 0, ρNP(y) and ρ′′(y) must share the same value of γ.
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Example: Coherent Detection of BPSK

Suppose a transmitter sends one of two scalar signals a0 or a1 and the
signals arrive at a receiver corrupted by zero-mean additive white Gaussian
noise (AWGN) with variance σ2.
We want to use N-P hypothesis maximize

PD = Prob(decide H1 | a1 was sent)

subject to the constraint

Pfp = Prob(decide H1 | a0 was sent) ≤ α.

Signal model conditioned on state xj:

Y = aj + η

where aj is the scalar signal and η ∼ N (0, σ2). Hence

pj(y) =
1√
2πσ

exp

(−(y − aj)
2

2σ2

)
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Example: Coherent Detection of BPSK

How should we approach this problem? We know from the N-P Lemma
that the optimum decision rule will be of the form

ρNP(y) =











1 if p1(y) > vp0(y)

γ(y) if p1(y) = vp0(y)

0 if p1(y) < vp0(y)

where v ≥ 0 and 0 ≤ γ(y) ≤ 1 are such that Pfp(ρ
NP) = α. How should

we choose our threshold v?
We need to find the smallest v such that

∫

Yv

p0(y) dy ≤ α

where Yv = {y ∈ Y : p1(y) > vp0(y)}.
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Example: Likelihood Ratio for a0 = 0, a1 = 1, σ
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Example: Coherent Detection of BPSK

Note that, since a1 > a0, the likelihood ratio L(y) = p1(y)
p0(y) is

monotonically increasing. This means that finding v is equivalent to
finding a threshold τ so that

∫ ∞

τ

p0(y) dy ≤ α ⇔ Q

(

τ − a0

σ

)

≤ α

p0(y) p1(y)

a0 a1

How are τ and v related? Once we find τ , we can determine v by
computing

v = L(τ) =
p1(τ)

p0(τ)
.
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Example: Coherent Detection of BPSK: Finding τ

Unfortunately, no “closed form” solution exists to exactly solve the inverse

of a Q function. We can use the fact that Q(x) = 1
2erfc

(

x√
2

)

to write

Q

(

τ − a0

σ

)

=
1

2
erfc

(

τ − a0√
2σ

)

≤ α.

This can be rewritten as

τ ≥
√

2σerfc−1(2α) + a0

and we can use Matlab’s handy erfcinv function to compute the lower
bound on τ . It turns out that we are going to always be able to find a
value of τ such that

Q

(

τ − a0

σ

)

= α

so we won’t have to worry about randomization here.
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Example: Coherent Detection of BPSK
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Example: Coherent Detection of BPSK
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Final Comments on Neyman-Pearson Hypothesis Testing

1. N-P decision rules are useful in asymmetric risk scenarios or in
scenarios where one has to guarantee a certain probability of false
detection.

2. N-P decision rules are simply likelihood ratio comparisons, just like
Bayes and minimax. The comparison threshold in this case is chosen
to satisfy the significance level constraint.

3. Like minimax, randomization is often necessary for N-P decision rules.
Without randomization, the power of the test may not be maximized
for the significance level constraint.

4. The original N-P paper: “On the Problem of the Most Efficient Tests
of Statistical Hypotheses,” J. Neyman and E.S. Pearson,
Philosophical Transactions of the Royal Society of London, Series A,
Containing Papers of a Mathematical or Physical Character, Vol. 231
(1933), pp. 289-337. Available on jstor.org.
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