ECE5463: Introduction to Robotics

Lecture Note 11: Dynamics of a Single Rigid Body

Prof. Wei Zhang
Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA

Spring 2018

Outline

- Kinetic Energy of a Rigid Body
- Rotational Inertia Matrix
- Newton Euler Equation
- Twist-Wrench Formulation of Rigid-Body Dynamics

Robot Dynamic Model Can be Complicated

- Dynamic model of PUMA 560 Arm:

$b_{24}=2 \cdot\left\{-I_{10} \cdot C 3 \cdot S 4 \cdot S 5+I_{20} \cdot S C 4 \cdot S S 5\right.$

$\approx-2.50 \times 10^{-1} \cdot S 5+2.48 \times 10^{-3} \cdot(C 3 \cdot C 4 \cdot C 5-S 3 \cdot S 5)$.
$b_{72}=0$
$=b_{23 s} . \quad b_{254}=b_{224}$.
$\begin{aligned} b_{245}= & =2 \cdot\left(-I_{14} \cdot 54 \cdot C 5-I_{4} \cdot 53 \cdot S 4 \cdot C 5\right\} \\ & -I_{17} \cdot S_{4}+h_{27} \cdot S_{4} \cdot(1-2 \cdot S 55)\end{aligned}$
$D_{746}=I_{25}, C 4 * S 5 ; \quad \approx 0$.
$\begin{aligned} b_{236} & =t_{23}, \\ b_{312} & =0 .\end{aligned}$
≈ 0.
$b_{312}=0$

3. C_{4}. 55

$b_{11}=2 \cdot\left(-I_{15} \cdot c_{23} \cdot 54 \cdot C_{5}+I_{22} \cdot 5_{23} \cdot 54 \cdot c_{5}\right)$

$\approx-2.50 \times 10^{-3} \cdot C_{23} \cdot 54 \cdot C_{5}-6.42 \times 10^{-1} \cdot C_{23} \cdot S_{4}$.
$b_{26}=-b_{1}$
544 $=2 \cdot\left(I_{20} \cdot S C_{4} \cdot S S 5+I_{21} \cdot S C 4-I_{n 2} \cdot S_{4} \cdot S 5\right)$;
$b_{235}=2 \cdot\left\{-I_{12}, S 5+I_{20} \cdot S S 4 \cdot S C 5+I_{2 n} \cdot C 4 \cdot C 5\right\} ;$
$\approx-2.50 \times 10^{-3} \cdot 55$.
$\begin{array}{ll}b_{326}=0 . & b_{329}=b_{321} . \\ b_{335}=b_{323} . & =0 .\end{array}$

$B_{1}=b_{n} \quad B_{1}=b_{n}$

$\mathrm{b}_{115}=-I_{20} \cdot(522 \cdot C 4 \cdot(1-2 \cdot S 55)+2 \cdot C 23 \cdot S C 5)$ $-t_{17}+S 23 \cdot C 4 ;$
$\approx=-42 \times 10^{-1}, S 23$.
$\approx-0.12 \times 10^{-1} \cdot 523 \cdot C 4$.

$b_{626}=-b_{276} . \quad b_{64}=0$.
$b_{955}=b_{623} . \quad b_{656}=-b_{266}$.
$b_{604}=-t_{50} \cdot 2 \cdot$ SC5;
$b_{140}=0 ;$
$b_{00}=-I_{21}$
${ }_{36}=-f_{22} \cdot S S_{5} ; \approx 0$.
$\begin{aligned} b_{112} & =-b_{12} . \\ b_{115} & =0 .\end{aligned} \quad b_{11}=-b_{11}$.
$b_{13}=0 . \quad b_{11}=-b_{15}$.
$b_{321}=-b_{633} . \quad b_{323}=0$.
$b_{3 s t}=b_{32} . \quad b_{3 s y}=0$.
$b_{525}=0 . \quad b_{\text {set }}=-b_{\text {sesc }}$.
$b_{012}=b_{127} \quad b_{112}=b_{120}$.
$\begin{array}{ll}b_{651}=b_{125} . & b_{615}=0 . \\ b_{651}=b_{216} . & b_{623}=b_{22} .\end{array}$
```
bsst = base
buss= bass
\(b_{b_{61}}=b_{\text {ce }}\) Acs \(=0\).
\(b_{c s t}=0\).
\(b_{0 s t}=0\).
Table Ae. The expressions for the terms of the ceatrifgal matrix.
(Tbe Abbreviated Expressios have units of ks-mit.)
(we A .
\(c_{41}=0\).
```



```
\(+I_{20}=54 *(C 23 \cdot C 4 *+C 5-S 23 \cdot S C 5)\)
\(\left.+I_{20}+(23) S 4 .+55\right)\)
\(\approx 6.90 \times 10^{-1} \cdot C 2+1.34 \times 10^{-1} \cdot 523-2.38 \times 10^{-2} \cdot 52\).
\(c_{t}=0.5 * b_{12}\).
```



```
\(c_{10}=0 . \quad c_{21}=-0.5 * b_{12}\).
\(c_{21}=0 . \quad c_{21}=0.5 \cdot b_{23}\).
\(r_{44}=-J_{15} \cdot C 4 \cdot S 5-I_{14} \cdot 53 \cdot C 4 \cdot S 5+I_{20} \cdot C 4 \cdot S C 5 ;\)
\(c_{2}=-I_{13} \cdot C 4 \cdot 55+I_{30} \cdot(C 3 \cdot C 5-53 \cdot C 4 \cdot s 5)\)
\(c_{85}=0 . \quad c_{4} \pm-0.5 * b_{113}\).
\(c_{32}=-c_{33} . \quad c_{33}=0\).
\(\begin{aligned} c_{24} & =-I_{15} \cdot C 4 \cdot S 5+I_{20} \cdot C 4 \cdot S C 5 \\ & \approx-1.25 \times 10^{-3} \times C+S 5\end{aligned}\)
\(\approx-1.25 \times 10^{-3} \times C 4 \cdot 55\).
\(C_{3}=-I_{3 S} \cdot C 4 \cdot S 5+I_{n} \cdot C_{5} ; \approx C_{94}\).
\(c_{6}=0\).
\(c_{96}=0 . \quad c_{41}=-0.5 * b_{114} . \quad c_{12}=-0.5 * b_{22}\).
\(c_{3}=0.5 * b_{623} . \quad c_{41}=0 . \quad c_{45}=0 . \quad\)
\(c_{66}=0 . \quad c_{31}=-0.5 \cdot b_{13}\).
\(c_{s s}=0.5 \cdot b_{523} . \quad c_{s 4}=-0.5 \cdot b_{44 s}\).
\(c_{36}=0 . \quad c_{41}=0\).
\(c_{s}=0\).
\(c_{0}=0\).
Table A 7 . Gravity Terms
(The Abbrevlated Exper
\(\mathrm{g}_{1}=0\).
```



```
\(\approx-37.2 \cdot C 2-8.4 \cdot 523+1.02 \cdot 52\).
\(\mathrm{g}_{3}=\mathrm{p}_{2} \cdot 523+p 4 \cdot \mathrm{C}_{23}+\mathrm{p} 5 \cdot(523 \cdot C 5+C 23 \cdot C 4 \cdot 55)\);
\(\approx-8.4 \cdot 523+0.25 \cdot C 23\).
\(\begin{aligned} \mathrm{g}_{1} & =-05 \times 523 \cdot 54 \cdot 55^{1} \\ & \approx 28 \times 10^{-2} \cdot 523 \cdot 54 \cdot 53\end{aligned}\)
\(=2.8 \times 10^{2} .525 .51\).
\(\begin{aligned} \mathrm{gs} & =05 \cdot(C 23 \times S 5+S 23 \cdot C 4 \cdot C 5) ; \\ & \approx-2.8 \times 10^{-7} *(C 23 * S 5+523 \cdot(C 4 \cdot C 5) .\end{aligned}\)
\(\mathrm{g}_{\mathrm{c}}=0\).
```

Thable A4. The expressions giving the elements of the kinetic
enerry matrix.
(Tbe Abbreviated Expressions have units of $\mathrm{k}-\mathrm{m}^{2}$.),

 $+l_{11} \cdot(S S 23 \cdot C 5+S C 23 \cdot C 4 \cdot 55)$
$+l_{15} \cdot C 2 \cdot(S 23 \cdot C 5+C 23 \cdot C 4 \cdot 55)$

作 $1.38 \cdot C C 2+0.30 \cdot S 523+7.4 \times 10^{-1} \cdot C_{2} \cdot S 23$

$\approx 6.30 \times 10^{-1} \cdot s 2-1.34 \times 10^{-1} \cdot c_{23}+2.38 \times 10^{-2} . c 2$.
$a_{10}=I_{4} \cdot C_{23}+I_{13} \cdot 523-I_{13} \cdot C_{23} \cdot S 4 \cdot 55+I_{15} * 523 \cdot 5 C_{4}$

$\approx+{ }^{+1.3 \times 10^{-1} \cdot\left(S 23+-3.97 \times 10^{--}+S 23\right.}$.

$+I_{12} * C_{23} \cdot S 4 \cdot 55-I_{20} \cdot(S 23 * C 4 \cdot S C 5+C 23 * S S 5)$
$+I_{n 2} \cdot C 23 \cdot C 4 \cdot S 5 ;$

≈ 0.
$\sigma_{14}=I_{22} \cdot\left(C 23 \cdot C 5-S 23 \cdot C 4 \cdot S_{5}\right) ; \quad \approx 0$

$\approx 6.79+7.44 \times 10^{-1} .53$.
 $\approx .333+3.72 \times 10^{-1} \cdot s 3-1.10 \times 10^{-2}, c 3$.
$a_{44}=-I_{13} \cdot 54 \cdot S 5-I_{16} \cdot 53 \cdot S 4 \cdot S 5+I_{20} \cdot S 4 \cdot S C 5 ;$
$a_{25}=I_{13} \cdot \cdot \cdot 4 \cdot C 5+I_{16} \cdot(C 3 \cdot S 5+S 3 \cdot C 4 \cdot C 5)$
$a_{24}=I_{23}, S_{4} \cdot S_{5} ; \quad \approx 0$.

$a_{44}=-I_{13} \cdot S 4 \cdot S 5+I_{20} \cdot S 4 \cdot S C 5$;
$\approx=1.25 \times 10^{-9}+54+S 5$.
$\begin{aligned} a_{33} & =I_{13} \cdot C_{1} \cdot C 5+I_{12} \cdot C_{4}+I_{22}, 55 ; \\ & =1.25 \times 10^{-3} \cdot C 4+C 5 .\end{aligned}$
$a_{n}=I_{2}, s_{4} \cdot S_{5} ; I_{n}=0$
$a_{41}=I_{m 4}+I_{14}-I_{20} \leqslant$ Ss ; $\quad \approx 0.20$
$a_{43}=0$
$a_{44}=t_{23} \cdot C 5 ; \quad \approx 0$.
$a_{s s}=I_{n s}+I_{t 7} ; \quad \approx 0.18$.
$a_{4 c}=I_{m s}+I_{z 3} ; \quad \approx 0.19$.

$+I_{6} \cdot(C 223 \cdot C 5-S 223 \cdot C 4 \cdot S 5)+I_{21} \cdot S C 23 \cdot C C 4$
$\left.+I_{p} *(1+C C 4) \cdot S C 23 \cdot S S 5-(1-2 \cdot S S 23) \cdot C 4 * S C 5\right)$

${ }^{-2} \cdot(1-2 . S S 23)$.

$\quad I_{22} \cdot C C 23 \cdot S 4 \cdot S 5-I_{2} \cdot S S 23 \cdot S(4) ;$
$=-250 \times 10^{-3} \cdot S C 23 \cdot S 4+S 5+8.60 \times 10^{-1} \cdot 04 \cdot S 5$

$\approx-2.20 \times 10^{-1} \cdot($ SS23 $5: S 5-S C 23 \cdot C 4 \cdot C 5)$
$=-2.20 \times 11^{-1} *(S 523 \cdot(52-S(23 \cdot(4) \cdot C 5)$
$s_{14 t}=0$.
$b_{12}=2 \cdot\left\{-I_{1} \cdot s 23+I_{1}, \cdot C 23+I_{4} \cdot S 23 \cdot S_{4} \cdot S_{5}\right.$

$b_{124}=-I_{22} \cdot(523 \cdot C 5+C 23 \cdot C 4 \cdot S 5) ; \quad \approx 0$.
$\Delta_{143}=2 \cdot\left(l_{1,}, S_{23} \cdot C_{4} \cdot b_{5}+I_{14}, C_{2} \cdot C_{1} \cdot C_{5}\right.$

$b_{144}=I_{23} \cdot s_{23} \cdot 5_{4} \cdot 5_{5}$;
$\delta_{130}=-l_{23} \cdot(C 23 \cdot 55+523 \cdot C 4 \cdot C 5) ; \quad \approx 0$,
$b_{212}=0 . \quad b_{112}=0$.

$=-2.50 \times 10^{-1}+C 23 \cdot 54 \cdot C 5+2.4 \times \times 10^{-3} \cdot 52 \cdot 54 \cdot C 5$
$b_{214}=-\delta_{23}$.
$b_{2 n}=2 \cdot\left\{-I_{12} \cdot S_{3}+I_{3} \cdot C 3+I_{16} \cdot(C 3 \cdot C 5-53 \cdot C 4 \cdot 55)\right\}$

Kinetic Energy

- Consider a point mass $\overline{\mathrm{m}}$ with $\{\mathrm{s}\}$-frame coordinate $p(t)$, its kinetic energy is given by

$$
\mathcal{K}=\frac{1}{2} \overline{\mathrm{~m}}\|\dot{p}\|^{2}
$$

- Note: m denotes moment (vector) and $\overline{\mathrm{m}}$ denotes mass (scalar).
- Question: given a moving rigid body with configuration $T(t)=(R(t), p(t))$, how to compute its kinetic energy?
- Rigid body consists of infinitely many "particles" with different $\{s\}$-frame velocities

$$
\mathcal{K} \approx \frac{1}{2} \sum_{i} \overline{\mathrm{~m}}_{i}\left\|\dot{p}_{i}\right\|^{2}
$$

- Velocities of particles \dot{p}_{i} are caused by the rigid body velocity (twist)
- The overall kinetic energy should depend on the rigid body velocity as well as the geometry and mass distribution of the body

Recall: Rigid Body Velocity

Given rigid body $T(t)=(R(t), p(t))$:

- Spatial twist: $V_{s}=\left(w_{s}, v_{s}\right),\left[w_{s}\right]=\dot{R} R^{\top}, v_{s}=\dot{p}-w_{s} \times p$
- Body twist: $V_{b}=\left(w_{b}, v_{b}\right), \quad\left[w_{b}\right]=R^{\top} \dot{R}, \quad v_{b}=R^{\top} \dot{p}$

$$
w_{b}=R^{\top} w_{s}
$$

Recall: Rigid Body Velocity

- Consider a particle i on the body with $\{\mathrm{b}\}$-frame coordinate r_{i} and $\{\mathrm{s}\}$-frame coordinate p_{i}

$$
r_{i}=R r_{i}+\rho
$$

- Velocity of particle i :

$$
\begin{aligned}
& v_{s, i}=\dot{\rho}_{i} \\
& v_{b i i}=R^{\top} v_{s, i}=R^{\top} \dot{p}_{i}
\end{aligned}
$$

- Acceleration of particle i :

$$
\begin{aligned}
& a_{s, i}=\ddot{p}_{i} \\
& a_{b, i}=R^{\top} a_{s, i}=R^{\top} \ddot{p}_{i}
\end{aligned}
$$

- Velocity of the origin of $\{b\}$:
\{s\}-frame: $\quad \dot{p} \neq v_{s}$
Let $\gamma_{i}=0 \quad \Rightarrow \quad p_{i}=p$

$$
\begin{aligned}
& v_{s, i}=\dot{p}_{i}=\dot{p} \\
& v_{b, i}=R^{+} \dot{p}=v_{b}
\end{aligned}
$$

Rigid Body Kinetic Energy

- Kinetic Energy: Given a rigid body $T(t)=(R(t), p(t))$ with body twist $\mathcal{V}_{b}=\left(\omega_{b}, v_{b}\right)$. Suppose the $\{b\}$-frame origin coincides with the center of mass of the body. Then its kinetic energy is given by:

$$
\mathcal{K}=\frac{1}{2} \overline{\mathrm{~m}}\left\|v_{b}\right\|^{2}+\frac{1}{2} \omega_{b}^{T} \mathcal{I}_{b} \omega_{b}, \quad \text { with } \mathcal{I}_{b}=\int_{\mathcal{B}} \rho(r)[r]^{T}[r] d V \in \mathbb{R}^{3 \times 3}
$$

where \mathcal{I}_{b} is the rotational inertia matrix in body frame
Derivation: Divide the body into small point masses, where point i has mass $\overline{\mathrm{m}}_{i}$, $\{\mathrm{b}\}$-frame coordinate r_{i}, and $\{\mathrm{s}\}$-frame coordinate p_{i}

$$
\begin{aligned}
& \text { origin of }\{b\rangle=\operatorname{Com} \Leftrightarrow \sum \bar{m}_{i} r_{i}=0 \\
& P_{i}=R r_{i}+\rho \\
& K=\frac{1}{2} \sum_{i} \bar{m}_{i}\left\|\dot{p}_{i}\right\|^{2}=\frac{1}{2} \sum \bar{m}_{i}\left\|\dot{p}+\dot{R} r_{i}\right\|^{2}=\frac{1}{2} \sum \bar{m}_{i}\left(\|\dot{p}\|^{2}+\left\|R\left[w_{b}\right] r_{i}\right\|^{2}\right. \\
& X=\frac{1}{2} v_{b}^{\top} \underline{\underline{m}} v_{b}+\frac{1}{2} w_{b}^{\top} \underline{I}_{b} w_{b} \\
& \dot{R}=R\left[W_{b}\right] \\
& \operatorname{term} 2:\left\|R\left[w_{b}\right] r_{i}\right\|^{2} \\
& =\left\|R\left(-r_{i}\right) \times w_{b}\right\|^{2}=\left\|R\left[r_{i}\right] w_{b}\right\|^{2}
\end{aligned}
$$

Derivation of Kinetic Energy (Continued)

- $X=\operatorname{term} I+\operatorname{term} 2+\operatorname{term} 3$
term $3=\frac{1}{2} \sum_{i} \tilde{m}_{i} 2 \dot{p}^{\top}\left(\dot{R} r_{i}\right)=\frac{1}{2} \cdot 2 \cdot \dot{j}^{\top} \dot{R} \sum \overline{m_{i}} \cdot \hat{r}_{i}=0$
$\operatorname{term} 2=\frac{1}{2} \sum \bar{m}_{i}\left(w_{b}^{\top}\left[r_{i}\right]^{\top} R^{\top} \cdot R\left[r_{i}\right] w_{b}\right)=\frac{1}{2} w_{b}^{\top}(\underbrace{\sum_{i} \bar{m}_{i}\left[r_{i}\right]^{\top}\left[r_{i}\right]}_{I_{b}}) w_{b}$
$\operatorname{term} 1=\Delta \frac{1}{2} \sum \bar{m}_{i}\|\dot{p}\|^{2}=\frac{1}{2}(\underbrace{\sum m_{i}}\left\|v_{b} R v_{b}\right\|^{2}=\frac{1}{2} \hat{M})\left\|v_{b}\right\|^{2}$
\Rightarrow desired result follows provided we have $\Psi_{b} \approx \sum_{i} \overline{m_{i}}\left[r_{i}\right]^{\top}\left[r_{i}\right]$

$$
\begin{aligned}
& =\int_{B} \rho(r)[r]^{\top}[r] d v \\
& =-\int_{B} \rho(r)[r]^{2} d v
\end{aligned}
$$

Outline

- Kinetic Energy of a Rigid Body
- Rotational Inertia Matrix
- Newton Euler Equation
- Twist-Wrench Formulation of Rigid-Body Dynamics

Rotational Inertia Matrix in Body Frame

$$
\mathcal{I}_{b} \triangleq \int_{\mathcal{B}} \rho(r)[r]^{T}[r] d V \quad \text { positive semidefinite matrix }
$$

- Individual entries of \mathcal{I}_{b} :

$$
r=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

$$
\mathcal{I}_{b}=\left[\begin{array}{ccc}
\mathcal{I}_{x x} & \mathcal{I}_{x y} & \mathcal{I}_{x z} \\
\mathcal{I}_{y x} & \mathcal{I}_{y y} & \mathcal{I}_{y z} \\
\mathcal{I}_{z x} & \mathcal{I}_{z y} & \mathcal{I}_{z z}
\end{array}\right]
$$

where

$$
\begin{array}{cl}
\mathcal{I}_{x x}=\int_{\mathcal{B}}\left(y^{2}+z^{2}\right) \rho(x, y, z) d V, & \mathcal{I}_{y y}=\int_{\mathcal{B}}\left(x^{2}+z^{2}\right) \rho(x, y, z) d V \\
\mathcal{I}_{z z}=\int_{\mathcal{B}}\left(x^{2}+y^{2}\right) \rho(x, y, z) d V, & \mathcal{I}_{x y}=\mathcal{I}_{y x}=-\int_{\mathcal{B}} x y \rho(x, y, z) d V \\
\mathcal{I}_{x z}=\mathcal{I}_{z x}=-\int_{\mathcal{B}} x z \rho(x, y, z) d V & \mathcal{I}_{y z}=\mathcal{I}_{z y}=-\int_{\mathcal{B}} y z \rho(x, y, z) d V \\
&
\end{array}
$$

- If the body has a uniform density, then \mathcal{I}_{b} is determined exclusively by the shape of the rigid body

Principal Axes of Inertia

Let v_{1}, v_{2}, v_{3} and $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be the eigenvectors and eigenvalues of \mathcal{I}_{b}, respectively. They are called the principal axes of inertia

- The principal axes of inertia are in the directions of v_{1}, v_{2}, v_{3}
- The principal moments of inertia about these axes are $\lambda_{1}, \lambda_{2}, \lambda_{3}$
- All the eigenvalues are nonnegative. The largest one maximizes the moment of inertia among all the axes passing through the center of mass of the body.
- If the principal axes of inertia are aligned with the axes of $\{b\}$, the off-diagonal terms of \mathcal{I}_{b} are all zero.

$$
\stackrel{\rho(t)=1}{\Rightarrow} I_{x y}=-\int_{B} x y d v
$$

Examples of Inertia Matrix

rectangular parallelepiped:

$$
\begin{aligned}
& \text { volume }=a b c \\
& \mathcal{I}_{x x}=\mathfrak{m}\left(w^{2}+h^{2}\right) / 12 \\
& \mathcal{I}_{y y}=\mathfrak{m}\left(\ell^{2}+h^{2}\right) / 12 \\
& \mathcal{I}_{z z}=\mathfrak{m}\left(\ell^{2}+w^{2}\right) / 12
\end{aligned}
$$

circular cylinder:

$$
\text { volume }=\pi r^{2} h
$$

$$
\mathcal{I}_{x x}=\mathfrak{m}\left(3 r^{2}+h^{2}\right) / 12
$$

$$
\mathcal{I}_{y y}=\mathfrak{m}\left(3 r^{2}+h^{2}\right) / 12
$$

$$
\mathcal{I}_{z z}=\mathfrak{m} r^{2} / 2
$$

ellipsoid:
volume $=4 \pi a b c / 3$, $\mathcal{I}_{x x}=\mathfrak{m}\left(b^{2}+c^{2}\right) / 5$,
$\mathcal{I}_{y y}=\mathfrak{m}\left(a^{2}+c^{2}\right) / 5$,
$\mathcal{I}_{z z}=\mathfrak{m}\left(a^{2}+b^{2}\right) / 5$

The principal axes and the inertia about the principal axes for uniform-density bodies

Inertia Matrix in a Different Frame

- Consider another frame $\{\mathrm{c}\}$ with relative orientation $R_{b c}$
- The origin of both frames is located at the CoM of the body. The rotational inertia matrix in $\{c\}$ frame is defined as $\mathcal{I}_{c}=\int_{\mathcal{B}} \rho\left(r_{c}\right)\left[r_{c}\right]^{T}\left[r_{c}\right] d V$
- Kinetic energy is independent of reference frames $\Rightarrow \mathcal{I}_{c}=R_{b c}^{T} \mathcal{I}_{b} R_{b c}$

$$
\begin{aligned}
& k=\frac{1}{2} w_{c}^{\top} I_{c} w_{c}=\frac{1}{2} w_{b}^{\top} I_{b} w_{b}=\frac{1}{2}\left(R_{b c} w_{c}\right)^{\top} I_{b}\left(R_{b c} w_{c}\right) \\
&=\frac{1}{2} w_{c}^{\top} R_{b c}^{\top} I_{b} R_{b c} w_{c} \\
& \Rightarrow \quad I_{c c}=R_{b c}^{\top} I_{b} R_{b c}=R_{c b} I_{b} R_{c b}^{\top}
\end{aligned}
$$

- Steiner's Theorem: The inertia matrix I_{q} about a frame aligned with $\{\mathrm{b}\}$, but at a point $q=\left(q_{x}, q_{y}, q_{z}\right)$ in $\{\mathrm{b}\}$, is related to \mathcal{I}_{b} by $\mathbb{R}_{q 6}=I$

$$
\mathcal{I}_{q}=\mathcal{I}_{b}+\overline{\mathrm{m}}(\underbrace{q^{T} q\left(\|^{3 \times 3}\right.}_{\text {scalar }=\|q\|^{2}}-\underbrace{q q^{T}}) \rightarrow \text { matrix } \in \mathbb{R}^{3 \times 3}
$$

Outline

- Kinetic Energy of a Rigid Body
- Rotational Inertia Matrix
- Newton Euler Equation
- Twist-Wrench Formulation of Rigid-Body Dynamics

Newton Euler Equation

- Recall that for a point mass $\overline{\mathrm{m}}$ with a fixed-frame coordinate $p(t)$, Newton's second law of motion: $f=\overline{\mathrm{m}} \ddot{p}(t)$
- A rigid body consists of infinitely many point masses. The collective motion of these particles depend on the linear and rotational velocities of the body, and on the total force and moment acting on the body.
- Euler-Newton Equation of Motion: Given rigid body $T(t)=(R(t), p(t))$ with rotational inertia matrix \mathcal{I}_{b} and body twist $\mathcal{V}_{b}=\left(\omega_{b}, v_{b}\right)$:

$$
\left\{\begin{array}{l}
m_{b}=\mathcal{I}_{b} \dot{\omega}_{b}+\omega_{b} \times \mathcal{I}_{b} \omega_{b} \tag{1}\\
f_{b}=\overline{\mathrm{m}} \dot{v}_{b}+\omega_{b} \times \overline{\mathrm{m}} v_{b}
\end{array}\right.
$$

- $\overline{\mathrm{m}}$: mass of the body; assume origin of $\{\mathrm{b}\}=\mathrm{CoM}$
- f_{b}, m_{b} : total force and moment (expressed in $\{\mathrm{b}\}$) acting on the body
- $\overline{\mathrm{m}} v_{b}$: is the linear momentum of the body
- $\mathcal{I}_{b} \omega_{b}$: is the angular momentum of the body

Derivation of Newton Euler Equation

Whale body: $\quad \bar{m}=\sum \bar{m}_{i}, \quad c o M=\sum \gamma_{i} \bar{m}_{i}=0 \mid$ total force: $f_{b}=\sum f_{b, i}$

$$
m_{b}=\sum m_{b, i}
$$

Derivation of Newton Euler Equation (Continued...)
we know Newton's Law: $f_{s, i}=\bar{m}_{i} \dddot{p}_{i}=\bar{m}_{i}\left[\left(R\left(w_{5}\right)\right)^{\prime} r_{i}+\left(R v_{b}\right)^{\prime}\right]$

$$
\begin{aligned}
& \quad=\bar{m}_{i} \dot{R}\left[w_{b}\right] r_{i}+\bar{m}_{i} R\left[\dot{w}_{b}\right] r_{i}+\overline{m_{i}} \dot{R} v_{b} \\
& f_{b, i}=R^{\top} f_{s, i}=\bar{m}_{i}\{\frac{\left.R^{\top} \dot{R}\left[w_{b}\right] v_{i}+R^{\top} R\right)\left[\dot{w}_{b}\right] r_{i}+\underbrace{R^{\top} \dot{R} v_{b}}_{\left[w_{b}\right]}+\bar{m}_{i} R \dot{R}_{b}^{\top} R \dot{v}_{b}]}{} \quad \begin{array}{l}
f_{b, i}=\bar{m}_{i}\left(\left[w_{b}\right]^{2} r_{i}+\left[\dot{w}_{b}\right] r_{i}+\left[w_{b}\right] v_{b}+\dot{v}_{b}\right)
\end{array}
\end{aligned}
$$

same Newton's law in body frame

$$
\begin{aligned}
\Rightarrow \bar{f}_{b}=\sum f_{b, i}= & \sum \underbrace{\sum \bar{m}_{i}\left[w_{b}\right]^{2} r_{i}}+\sum \bar{m}_{i}\left[\dot{w}_{b}\right] r_{i}+\sum \bar{m}_{i} v_{i} \bar{m}_{b}] \sum \bar{m}_{i} \bar{m}_{i}\left[w_{b}\right] v_{b}+\sum \bar{m}_{i} \dot{v}_{b} \\
& =0 \\
& =\bar{m}\left[w_{b}\right] v_{b}+\bar{m} \dot{v}_{b}=\bar{m} \dot{v}_{b}+w_{b} \times\left(\bar{m} v_{b}\right)
\end{aligned}
$$

Now consider the rotational dynamics:

$$
\begin{aligned}
& m_{b}=\sum m_{b, i}=\sum\left(r_{i} \times f_{b, i}\right)=\sum\left[r_{i}\right] \overline{m_{i}}\left(\left[w_{b}\right]^{2} r_{i}+\left[\dot{w}_{b}\right] r_{i}+\left[w_{b}\right] v_{b}+\dot{v}_{b}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Noble: } a \times b=-b \times a \\
& {[a] b=-[b] a} \\
& {[a]^{\top}(b]^{\top}=[a][b)} \\
& \Downarrow \\
& ([b][a])^{\top} \\
& \text { if } \sum \bar{m}_{i} r_{i}=0 \\
& \Rightarrow \sum \bar{m}_{i}\left[r_{i}\right]=0 \\
& {[\alpha a+\beta b]=\alpha[a]+\beta[b]} \\
& \text { scalars }
\end{aligned}
$$

Outline

$$
\begin{aligned}
& v y \\
& =\left(\left[r_{i} \times w_{b}\right]+\left[w_{b}\right]\left[r_{i}\right]\right) \cdot\left[r_{i}\right] w_{b} \\
& =\left[r_{i} \times w_{b}\right] \cdot(\underbrace{r_{i} \times w_{b}}_{\in \in \mathbb{R}^{3}})+\left[w_{b}\right]\left[r_{i}\right]^{2} w_{b} \\
& =-\left[w_{b}\right]\left[r_{i}\right]^{\top}\left[r_{i}\right] w_{b}
\end{aligned}
$$

- Kinetic Energy of a Rigid Body $0 \underbrace{}_{\in \mathbb{R}{ }^{3}}$
- Rotational Inertia Matrix
- Newton Euler Equation
- Twist-Wrench Formulation of Rigid-Body Dynamics

Lie Bracket

- Lie Bracket: Given two twists $\mathcal{V}_{1}=\left(\omega_{1}, v_{1}\right)$ and $\mathcal{V}_{2}=\left(\omega_{2}, v_{2}\right)$, the Lie bracket of \mathcal{V}_{1} and \mathcal{V}_{2}, written as $\left[\operatorname{ad} \mathcal{V}_{1}\right] \mathcal{V}_{2}$, is defined as follows:

$$
\left[\operatorname{add}_{\mathcal{V}_{1}}\right] \mathcal{V}_{2}=\left[\begin{array}{cc}
{\left[\omega_{1}\right]} & 0 \\
{\left[v_{1}\right]} & {\left[\omega_{1}\right]}
\end{array}\right]\left[\begin{array}{l}
\omega_{2} \\
v_{2}
\end{array}\right] \in \mathbb{R}^{6}
$$

where $[\operatorname{ad} \mathcal{V}] \triangleq\left[\begin{array}{cc}{[\omega]} & 0 \\ {[v]} & {[\omega]}\end{array}\right]$ for any $\mathcal{V}=(\omega, v) \in \operatorname{se}(3)$

- Lie Bracket can be viewed as a generalization of the cross-product operation of two vectors to two twists

$$
\begin{aligned}
& \text { to two twists } \\
& w_{1} \times w_{2}=\left[w_{1}\right] w_{2} \in \mathbb{R}^{3}, \stackrel{\text { generalize }}{\Rightarrow} " \nu_{1} \times v_{2} "=\left[a d v_{1}\right] v_{2} \in \mathbb{R}^{6}
\end{aligned}
$$

- Given a twist $\mathcal{V}=(\omega, v)$ and a wrench $\mathcal{F}=(m, f)$, we define the mapping:

$$
[\operatorname{ad} \mathcal{V}]^{T} \mathcal{F}=\left[\begin{array}{cc}
{[\omega]} & 0 \\
{[v]} & {[\omega]}
\end{array}\right]^{T}\left[\begin{array}{c}
m \\
f
\end{array}\right]
$$

Twist-Wrench Formulation

- Rigid body with body twist $\mathcal{V}_{b}=\left(\omega_{b}, v_{b}\right)$ and body wrench $\mathcal{F}_{b}=\left(m_{b}, f_{b}\right)$

$$
\in \mathbb{R}^{3 \times 3}
$$

- Spatial inertia matrix $\mathcal{G}_{b} \in \mathbb{R}^{6 \times 6}: \mathcal{G}_{b}=\left[\begin{array}{cc}\begin{array}{|c}\mathcal{I}_{b}\end{array} & 0 \\ 0 & \overline{\mathrm{~m}} \mathrm{I}\end{array}\right]$
3×3 identity matrix
- Spatial momentum $\mathcal{P}_{b} \in \mathbb{R}^{6}: \quad \mathcal{P}_{b}=\mathcal{G}_{b} \mathcal{V}_{b}$
momentum: $\mathcal{V}_{b}=\left[\begin{array}{l}\Psi_{b} w_{b} \\ \bar{m} v_{b}\end{array}\right]$
- Kinetic energy: $\mathcal{K}=\frac{1}{2} \mathcal{V}_{b}^{T} \mathcal{G}_{b} \mathcal{V}_{b}$

$$
\begin{aligned}
K & =\frac{1}{2} \bar{m}\left\|v_{b}\right\|^{2}+\frac{1}{2} w_{b}^{\top} I_{b} w_{b} \\
& =\frac{1}{2} v_{b}^{\top} \tilde{m} I v_{b}+\frac{1}{2} w_{b}^{\top} \Psi_{b} w_{b}=\frac{1}{2}\left[\begin{array}{c}
w_{b} \\
v_{b}
\end{array}\right]^{\top}\left[\begin{array}{ll}
I_{b} & \\
& \bar{m} I
\end{array}\right]\left[\begin{array}{l}
w_{b} \\
v_{b}
\end{array}\right]
\end{aligned}
$$

Twist-Wrench Formulation

- Newton-Euler Equation (1) can be written in twist-wrench form:

$$
\mathcal{F}_{b}=\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-\left[\operatorname{ad}_{\mathcal{V}_{b}}\right]^{T} \mathcal{P}_{b}=\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-\left[\operatorname{ad}_{\mathcal{V}_{b}}\right]^{T} \mathcal{G}_{b} \mathcal{V}_{b}
$$

rotational dymamics: $m_{b}=I_{b} \dot{w}_{b}+w_{b} \times I_{b} w_{b}$

$$
=I_{b} \dot{w}_{b}-\left[w_{b}\right]^{\top} I_{b} w_{b}
$$

$$
\left\{\begin{array}{l}
\left.m_{b}=I_{b} \dot{w}_{b}+w_{b} \times I_{b} w_{b}=\tilde{I}_{b} \dot{w}_{b}+\left[w_{b}\right] I_{b} w_{b}+v_{b}\right] \bar{m} I v_{b} \\
f_{b}=\bar{m} \dot{v}_{b}+w_{b} \times \bar{m} v_{b}=\bar{m} \dot{v}_{b}+\left[w_{b}\right] \bar{m} v_{b}
\end{array}=\bar{m}\left[v_{b}\right] v_{b}=0\right.
$$

$$
\left.\begin{array}{rl}
\Rightarrow \tilde{\tau}_{b}=\left[\begin{array}{l}
m_{b} \\
f_{b}
\end{array}\right] & =\left[\begin{array}{cc}
I_{b} & 0 \\
0 & \bar{m} I
\end{array}\right]\left[\begin{array}{l}
\dot{w}_{b} \\
\dot{v}_{b}
\end{array}\right]+\left[\begin{array}{cc}
{\left[w_{b}\right]} & {\left[v_{b}\right]} \\
0 & {\left[w_{b}\right]}
\end{array}\right]\left[\begin{array}{cc}
I_{b} & 0 \\
0 & \bar{m} I
\end{array}\right]\left[\begin{array}{l}
w_{b} \\
v_{b}
\end{array}\right] \\
& =G_{b} \dot{\nu}_{b}-\left[\begin{array}{cc}
{\left[w_{b}\right]} & 0 \\
{\left[v_{b}\right]} & {\left[\omega_{b}\right]}
\end{array}\right]^{\top} \epsilon_{b} V_{b} \\
& =[a d
\end{array}\right] \text { ditterent tr }
$$

Dynamics in Other Frames

- Our derivation of dynamics relies on using CoM $\{b\}$ frame. We can also write dynamics in another frame, say $\{a\}$, with relative configuration $T_{b a}$
- Kinetic energy is independent of reference frame: $\frac{1}{2} \mathcal{V}_{b}^{T} \mathcal{G}_{b} \mathcal{V}_{b}=\frac{1}{2} \mathcal{V}_{a}^{T} \mathcal{G}_{a} \mathcal{V}_{a}$
- This implies that the spatial inertia matrix \mathcal{G}_{a} is related to \mathcal{G}_{b} by

$$
\begin{aligned}
& \quad \mathcal{G}_{a}=\left[\operatorname{Ad}_{T_{b a}}\right]^{T} \mathcal{G}_{b}\left[\operatorname{Ad}_{\left.T_{b a}\right]} \quad \text { we } \nu_{b}=\left[A_{T_{b a}}\right] V_{a}\right. \\
& =\frac{1}{2} V_{a}^{\top} \underbrace{\left[A d_{T_{b a}}\right]^{\top} \mathcal{C}_{b b}\left[A d_{T_{b a}}\right] V_{a}} \\
& =G_{a}
\end{aligned}
$$

- One can show the Newton-Euler equation (1) can be written equivalently in frame $\{\mathrm{a}\}$ as:

$$
\mathcal{F}_{a}=\mathcal{G}_{a} \dot{\mathcal{V}}_{a}-\left[\operatorname{ad}_{\mathcal{V}_{a}}\right]^{T} \mathcal{G}_{a} \mathcal{V}_{a}
$$

the form of the dynamic equation does not change

More Discussions

More Discussions

