ECE5463: Introduction to Robotics
 Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation

Prof. Wei Zhang
Department of Electrical and Computer Engineering Ohio State University
Columbus, Ohio, USA

Spring 2018

Outline

- Introduction
- Euler-Lagrange Equations
- Lagrangian Formulation of Open-Chain Dynamics

From Single Rigid Body to Open Chains

- Recall Newton-Euler Equation for a single rigid body:

$$
\mathcal{F}_{b}=\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-\left[\operatorname{ad}_{\mathcal{V}_{b}}\right]^{T}\left(\mathcal{G}_{b} \mathcal{V}_{b}\right)
$$

- Open chains consist of multiple rigid links connected through joints
- Dynamics of adjacent links are coupled.
- We are concerned with modeling multi-body dynamics subject to constraints.

Preview of Open-Chain Dynamics

- Equations of Motion are a set of 2 nd-order differential equations:

$$
\tau=M(\theta) \ddot{\theta}+h(\theta, \dot{\theta})
$$

- $\theta \in \mathbb{R}^{n}$: vector of joint variables; $\tau \in \mathbb{R}^{n}$: vector of joint forces/torques
- $M(\theta) \in \mathbb{R}^{n \times n}$: mass matrix
- $h(\theta, \dot{\theta}) \in \mathbb{R}^{n}$: forces that lump together centripetal, Coriolis, gravity, and friction terms that depend on θ and $\dot{\theta}$
- Forward dynamics: Determine acceleration $\ddot{\theta}$ given the state $(\theta, \dot{\theta})$ and the joint forces/torques:

$$
\ddot{\theta}=M^{-1}(\theta)(\tau-h(\theta, \dot{\theta}))
$$

- Inverse dynamics: Finding torques/forces given state $(\theta, \dot{\theta})$ and desired acceleration $\ddot{\theta}$

$$
\tau=M(\theta) \ddot{\theta}+h(\theta, \dot{\theta})
$$

Lagrangian vs. Newton-Euler Methods

- There are typically two ways to derive the equation of motion for an open-chain robot: Lagrangian method and Newton-Euler method

Lagrangian Formulation

- Energy-based method
- Dynamic equations in closed form
- Often used for study of dynamic properties and analysis of control methods

Newton-Euler Formulation

- Balance of forces/torques
- Dynamic equations in numeric/recursive form
- Often used for numerical solution of forward/inverse dynamics

Outline

- Introduction

- Euler-Lagrange Equations
- Lagrangian Formulation of Open-Chain Dynamics

Generalized Coordinates and Forces

- Consider k particles. Let f_{i} be the force acting on the i th particle, \bar{m}_{i} be its mass, p_{i} be its position. Newton's law: $f_{i}=\overline{\mathrm{m}}_{i} \ddot{p}_{i}, \quad i=1, \ldots k$
- Now consider the case in which some particles are rigidly connected, imposing constraints on their positions

$$
\alpha_{j}\left(p_{1}, \ldots, p_{k}\right)=0, \quad j=1, \ldots, n_{c}
$$

- k particles in \mathbb{R}^{3} under n_{c} constraints $\Rightarrow 3 k-n_{c}$ degree of freedom
- Dynamics of this constrained k-particle system can be represented by $n \triangleq 3 k-n_{c}$ independent variables q_{i} 's, called the generalized coordinates

$$
\left\{\begin{array} { l }
{ \alpha _ { j } (p _ { 1 } , \ldots , p _ { k }) = 0 } \\
{ j = 1 , \ldots , n _ { c } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
p_{i}=\gamma_{i}\left(q_{1}, \ldots, q_{n}\right) \\
i=1, \ldots, k
\end{array}\right.\right.
$$

Generalized Coordinates and Forces

- To describe equation of motion in terms of generalized coordinates, we also need to express external forces applied to the system in terms components along generalized coordinates. These "forces" are called generalized forces.
- Generalized force f_{i} and coordinate rate \dot{q}_{i} are dual to each other in the sense that $f^{T} \dot{q}$ corresponds to power
- The equation of motion of the k-particle system can thus be described in terms of $3 k-n_{c}$ independent variables instead of the $3 k$ position variables subject to n_{c} constraints.
- This idea of handling constraints can be extended to interconnected rigid bodies (open chains).

Euler-Lagrange Equation

- Now let $q \in \mathbb{R}^{n}$ be the generalized coordinates and $f \in \mathbb{R}^{n}$ be the generalized forces of some constrained dynamical system.
- Lagrangian function: $\mathcal{L}(q, \dot{q})=\mathcal{K}(q, \dot{q})-\mathcal{P}(q)$
- $\mathcal{K}(q, \dot{q})$: kinetic energy of system
- $\mathcal{P}(q)$: potential energy
- Euler-Lagrange Equations:

$$
\begin{equation*}
f=\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}}-\frac{\partial \mathcal{L}}{\partial q} \tag{1}
\end{equation*}
$$

Example: Spherical Pendulum

Example: Spherical Pendulum (Continued)

Outline

- Introduction

- Euler-Lagrange Equations
- Lagrangian Formulation of Open-Chain Dynamics

Lagrangian Formulation of Open Chains

- For open chains with n joints, it is convenient and always possible to choose the joint angles $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$ and the joint torques $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ as the generalized coordinates and generalized forces, respectively.
- If joint i is revolute: θ_{i} joint angle and τ_{i} is joint torque
- If joint i is prismatic: θ_{i} joint position and τ_{i} is joint force
- Lagrangian function: $\mathcal{L}(\theta, \dot{\theta})=\mathcal{K}(\theta, \dot{\theta})-\mathcal{P}(\theta, \dot{\theta})$
- Dynamic Equations:

$$
\tau_{i}=\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\theta}_{i}}-\frac{\partial \mathcal{L}}{\partial \theta_{i}}
$$

- To obtain the Lagrangian dynamics, we need to derive the kinetic and potential energies of the robot in terms of joint angles θ and torques τ.

Some Notations

For each link $i=1, \ldots, n$, Frame $\{i\}$ is attached to the center of mass of link i. All the following quantities are expressed in frame $\{i\}$

- \mathcal{V}_{i} : Twist of link $\{i\}$
- \bar{m}_{i} : mass; \mathcal{I}_{i} : rotational inertia matrix;
- $G_{i}=\left[\begin{array}{cc}\mathcal{I}_{i} & 0 \\ 0 & \overline{\mathrm{~m}}_{i} I\end{array}\right]$: Spatial inertia matrix
- Kinetic energy of link $i: \mathcal{K}_{i}=\frac{1}{2} \mathcal{V}_{i}^{T} \mathcal{G}_{i} \mathcal{V}_{i}$
- $J_{b}^{(i)} \in \mathbb{R}^{6 \times i}$: body Jacobian of link i

$$
J_{b}^{(i)}=\left[\begin{array}{lll}
J_{b, 1}^{(i)} & \ldots & J_{b, i}^{(i)}
\end{array}\right]
$$

Kinetic and Potential Energies of Open Chains

- $J_{i b}=\left[\begin{array}{ll}J_{b}^{(i)} & 0\end{array}\right] \in \mathbb{R}^{6 \times n}$
- Total Kinetic Energy:

$$
\mathcal{K}(\theta, \dot{\theta})=\frac{1}{2} \sum_{i=1}^{n} \mathcal{V}_{i}^{T} \mathcal{G}_{i} \mathcal{V}_{i}=\frac{1}{2} \dot{\theta}^{T}\left(\sum_{i=1}^{n}\left(J_{i b}^{T}(\theta) \mathcal{G}_{i} J_{i b}(\theta)\right)\right) \dot{\theta} \triangleq \frac{1}{2} \dot{\theta}^{T} M(\theta) \dot{\theta}
$$

- Potential Energy:

$$
\mathcal{P}(\theta)=\sum_{i=1}^{n} \overline{\mathrm{~m}}_{i} \mathrm{gh}_{i}(\theta)
$$

- $\mathrm{h}_{i}(\theta)$: height of CoM of link i

Lagrangian Dynamic Equations of Open Chains

- Lagrangian: $\mathcal{L}(\theta, \dot{\theta})=\mathcal{K}(\theta, \dot{\theta})-\mathcal{P}(\theta)$
- $\tau_{i}=\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\theta}_{i}}-\frac{\partial \mathcal{L}}{\partial \theta_{i}} \Rightarrow$

$$
\tau_{i}=\sum_{i=j}^{n} M_{i j}(\theta) \ddot{\theta}_{j}+\sum_{j=1}^{n} \sum_{k=1}^{n} \Gamma_{i j k}(\theta) \dot{\theta}_{j} \dot{\theta}_{k}+\frac{\partial \mathcal{P}}{\partial \theta_{i}}, \quad i=1, \ldots, n
$$

- $\Gamma_{i j k}(\theta)$ is called the Christoffel symbols of the first kind

$$
\Gamma_{i j k}(\theta)=\frac{1}{2}\left(\frac{\partial M_{i j}}{\partial \theta_{k}}+\frac{\partial M_{i k}}{\partial \theta_{j}}-\frac{\partial M_{j k}}{\partial \theta_{i}}\right)
$$

Lagrangian Dynamic Equations of Open Chains

- Dynamic equation in vector form:

$$
\tau=M(\theta) \ddot{\theta}+C(\theta, \dot{\theta}) \dot{\theta}+g(\theta)
$$

- $C_{i j}(\theta, \dot{\theta}) \triangleq \sum_{k=1}^{n} \Gamma_{i j k} \dot{\theta}_{k}$ is called the Coriolis matrix

$$
\begin{aligned}
M_{11}= & I_{y 2} s_{2}^{2}+I_{y 3} s_{23}^{2}+I_{z 1}+I_{z 2} c_{2}^{2}+I_{z 3} c_{23}^{2} \\
& \quad+m_{2} r_{1}^{2} c_{2}^{2}+m_{3}\left(l_{1} c_{2}+r_{2} c_{23}\right)^{2} \\
M_{12}= & 0 \\
M_{13}= & 0 \\
M_{21}= & 0 \\
M_{22}= & I_{x 2}+I_{x 3}+m_{3} l_{1}^{2}+m_{2} r_{1}^{2}+m_{3} r_{2}^{2}+2 m_{3} l_{1} r_{2} c_{3} \\
M_{23}= & I_{x 3}+m_{3} r_{2}^{2}+m_{3} l_{1} r_{2} c_{3} \\
M_{31}= & 0 \\
M_{32}= & I_{x 3}+m_{3} r_{2}^{2}+m_{3} l_{1} r_{2} c_{3} \\
M_{33}= & I_{x 3}+m_{3} r_{2}^{2} .
\end{aligned}
$$

$\Gamma_{112}=\left(I_{y 2}-I_{z 2}-m_{2} r_{1}^{2}\right) c_{2} s_{2}+\left(I_{y 3}-I_{z 3}\right) c_{23} s_{23}$ $-m_{3}\left(l_{1} c_{2}+r_{2} c_{23}\right)\left(l_{1} s_{2}+r_{2} s_{23}\right)$
$\Gamma_{113}=\left(I_{y 3}-I_{z 3}\right) c_{23} s_{23}-m_{3} r_{2} s_{23}\left(l_{1} c_{2}+r_{2} c_{23}\right)$
$\Gamma_{121}=\left(I_{y 2}-I_{z 2}-m_{2} r_{1}^{2}\right) c_{2} s_{2}+\left(I_{y 3}-I_{z 3}\right) c_{23} s_{23}$ $-m_{3}\left(l_{1} c_{2}+r_{2} c_{23}\right)\left(l_{1} s_{2}+r_{2} s_{23}\right)$
$\Gamma_{131}=\left(I_{y 3}-I_{z 3}\right) c_{23} s_{23}-m_{3} r_{2} s_{23}\left(l_{1} c_{2}+r_{2} c_{23}\right)$
$\Gamma_{211}=\left(I_{z 2}-I_{y 2}+m_{2} r_{1}^{2}\right) c_{2} s_{2}+\left(I_{z 3}-I_{y 3}\right) c_{23} s_{23}$ $+m_{3}\left(l_{1} c_{2}+r_{2} c_{23}\right)\left(l_{1} s_{2}+r_{2} s_{23}\right)$
$\Gamma_{223}=-l_{1} m_{3} r_{2} s_{3}$
$\Gamma_{232}=-l_{1} m_{3} r_{2} s_{3}$
$\Gamma_{233}=-l_{1} m_{3} r_{2} s_{3}$
$\Gamma_{311}=\left(I_{z 3}-I_{y 3}\right) c_{23} s_{23}+m_{3} r_{2} s_{23}\left(l_{1} c_{2}+r_{2} c_{23}\right)$
$\Gamma_{322}=l_{1} m_{3} r_{2} s_{3}$

$$
\left[\begin{array}{c}
0 \\
\left.-\left(m_{2} g r_{1}+m_{3} g l_{1}\right) \cos \theta_{2}-m_{3} r_{2} \cos \left(\theta_{2}+\theta_{3}\right)\right) \\
\left.-m_{3} g r_{2} \cos \left(\theta_{2}+\theta_{3}\right)\right)
\end{array}\right]
$$

Lagrangian Dynamic Equations of Open Chains

- Dynamic model of PUMA 560 Arm:


```
    *)
    \
    *)
```



```
        *)
    46.00\times1\mp@subsup{0}{}{-1}+S2-134\times1\mp@subsup{0}{}{-1}\cdotC23 + 235\times1\mp@subsup{0}{}{-2}*C2.
```



```
    M,
    C-1.44\times1\mp@subsup{0}{}{-1}\cdotc23+-3.97\times1\mp@subsup{0}{}{--},
```



```
    = 4.50+7,4\times10-10.8s.
```



```
a
a,
    a,
    *-1.23\times10-30}+54.s
```



```
    an= = In, S4.fs, & 0.
en}=\mp@subsup{I}{m4}{*}+\mp@subsup{I}{n}{\prime*}-\mp@subsup{I}{n}{\prime},\mathrm{ sss,
*es=0
*)
```



```
Sco = 0.
aca= fan+ lam; m010
```



```
~0.03.
0.18 .
\(=T_{\text {ana }}+T_{\text {m }} ; \quad \Rightarrow 019\).
```


luct $=0$.
$b_{22}=2 \cdot 1-I_{2} * 525+l_{12}, c_{25}+t_{4} \cdot 523+54+55$

Q $257 \times 10^{-1} \times 523-7.53 \times 10^{-1} \cdot c 23$

$\infty 0$
$\delta_{154}=-h_{n},(1523 \cdot C 5+02 * \cdot C 4 * 55) ; 20$.

क 0 .
but $=I_{3}, 533.54+55 ; \quad=0$
$\mathrm{t}_{454}=-J_{25}+(023 \cdot S 5+s 23 \cdot(04 \cdot C 5)$;
$t_{m 1}-0 . \quad \mathrm{f}_{31}=0$.
$t_{214}-J_{2}=52 \times+t_{1}+523 \times(1-(2+554)$

$b_{214}=-b_{\text {IRe }}$.
$t_{212}=2 \cdot\left(-I_{12}+53+t_{5} \cdot C 5+I_{16}=[05 \cdot C 5-53,04+551) ;\right.$

 $+t_{12}+:(1-2+S S 23)$
$+T_{10}+(1-2 * S S 23) ;$
$=74+10^{-1}+C 2+C 232+0.00 \cdot 5 C 23$

$\mathrm{b}_{\mathrm{tat}}=0$.

40 .

$\mathrm{t}_{71}-0$. $\quad b_{21}=0$.

$\Rightarrow 2,20 \times 10^{-2}, 53+7.4 \times 10^{-1}, C 3$.

 $=2.45 \times 10^{-3} \cdot l_{23} \cdot 54 \cdot 55$.
 $a-2.50 \times 10^{-3}+55+2.45 \times 10^{-3} *(C 5+C 1+C 5-5 s * 55)$. $t_{10}=0$. $\begin{aligned} & b_{24}=b_{22} \\ & b_{26}=0 .\end{aligned}$
$\mathrm{t}_{23}=\mathrm{b}$ m .

$\left(-f_{1}+54+l_{20} \cdot 54 *(1-2 * 553):\right.$

$S_{02}=0$.
$\mathrm{h}_{31}=0$
0.

$t_{41}=2 \cdot\left(-f_{1} \cdot C 23 \cdot 54 \cdot 02+l_{2 n} \cdot 523 \cdot 54 \cdot 05\right)$

$$
b_{\text {Sus }}=-b_{15} . \quad \quad_{\text {mo }}=0 .
$$

$A_{\text {ess }}-2 *\left\{-f_{5} \cdot 55+I_{50}+554 * 5 C 5+I_{2} \cdot C_{4} \cdot C 5\right\}$
$\alpha-2.50 \times 10^{-3}+55$.

$x_{45}=-2_{12} \times 2 \cdot 54 * C 5-J_{17}+54+I_{n} \times S 4 \times(1-2 \times S S 5)_{1}$

$b_{16}=-b_{46} . \quad b_{021}=-b_{230}$.

$b_{221}=b_{125} . \quad s_{\text {est }}-b_{t 26}$.
$6_{412}=-f_{50}+2+\operatorname{ses}_{1}=46$. $\mathrm{B}_{\text {Het }}=0$;
 $b_{121}=-l_{22} \cdot 55^{2} ;$
$b_{12}=-t_{212}$. $h_{12}=-l_{12}$
$b_{121}=0$. $b_{121}=0$.
$h_{34}=-b_{613}$. $b_{2 s_{3}}=b_{35}$.

men
$=h_{15}$
h_{15}
.
$b_{\text {as }}=b_{\text {ne }}$.
heat $=b_{\text {sen }}$.
${ }_{8 s \mathrm{~L}}$.
$s_{515}=-b_{13}$,
$\Delta_{515}=-b_{156}$.
$h_{32}=0$.
$t_{s y s}=0$.

$\mathrm{b}_{\mathrm{css}}=\mathrm{S}_{2 \mathrm{~m}}$.
$b_{31}=-b_{013}$,
$b_{35}=-b_{21}$,

$b_{5 s s}=-b_{3 s}$
$b_{s 5 s}=-h_{9 s}$
$b_{s N}=0$.
$\mathrm{A}_{14}=\mathrm{b}_{\text {ILe }}$.
best - kast $\mathrm{A}_{\mathrm{cos}}=\mathrm{Bucs}$. $\mathrm{b}_{\text {act }}=0$.
$\mathrm{B}_{\mathrm{acc}}=0$.

$\mathrm{C}_{1}=0$.

${ }^{2} 6.90 \times 10^{-1} \cdot C 2+1.34 \times 10^{-1}, 523-2.38 \times 10^{-9}, 52$.
$c_{31}=0.5 * b_{123}$.

ts $=-t_{2}, S_{23}+S_{4} \cdot S_{5}-I_{4}+C_{2}+S_{4}+S_{5}$

$r_{4}=0 . \quad e_{2}=-0.5 \cdot h_{n 2}$
$c_{n}=0 . \quad c_{s s}=0.5 \cdot t_{n 3}$
${ }^{24}=-I_{45} \times 04 \times S 5-I_{16} \times S 3 \times C 4 \times S 5 \div J_{50}, C 4 * S C 5$

$c_{n}=0 . \quad o_{1} \geq-0.5 \cdot b_{10 n}$.
$c_{s}=-h_{12}, C 4 \cdot S 5+J_{50}, 04, S C 5 ;$
$\mathrm{c}_{3}=-1.22 \times 10^{-3}+\mathrm{C4}+55$.

$c_{26}=0 . \quad \quad c_{11}=-0.5 \cdot b_{14} . \quad c_{0}=-0.5 * b_{93}$.

$\begin{array}{lll}c_{21}=0.6 * b_{32} & c_{42}=-0.5+b_{43} . & c_{3 s}=0 . \\ c_{31}=0 . & c_{41}=0 . & c_{2}=0 .\end{array}$
$\begin{array}{lll}c_{s t}=0 . & a_{4}=0 . & a_{2}=0 . \\ c_{5}=0 . & a_{4}=0 . & a_{s}=0 .\end{array}$
$4_{0}=0$.

$\mathrm{gat}_{1}=0$.

- $12.525+0.25+C 23$.

54. $=-25 * 525 * 54 \cdot 55 ;$

More Discussions

More Discussions

