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General Rigid Body Configuration
68 3.2. Rotations and Angular Velocities
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Figure 3.6: Mathematical description of position and orientation.

representation of rotations is provided by the exponential coordinates, which
define an axis of rotation and the angle rotated about that axis. We leave
other popular representations of orientations (the three-parameter Euler an-
gles and the roll–pitch–yaw angles, the Cayley–Rodrigues parameters,
and the unit quaternions, which use four variables subject to one constraint)
to Appendix B.

We then examine the six-parameter exponential coordinates for the config-
uration of a rigid body that arise from integrating a six-dimensional twist con-
sisting of the body’s angular and linear velocities. This representation follows
from the Chasles–Mozzi theorem which states that every rigid-body displace-
ment can be obtained by a finite rotation and translation about a fixed screw
axis.

We conclude with a discussion of forces and moments. Rather than treat
these as separate three-dimensional quantities, we merge the moment and force
vectors into a six-dimensional wrench. The twist and wrench, and rules for
manipulating them, form the basis for the kinematic and dynamic analyses in
subsequent chapters.

3.2 Rotations and Angular Velocities

3.2.1 Rotation Matrices

We argued earlier that, of the nine entries in the rotation matrix R, only three
can be chosen independently. We begin by expressing a set of six explicit con-
straints on the entries of R. Recall that the three columns of R correspond to

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

• General rigid body configuration includes both the orientation R ∈ SO(3)
and the position p ∈ R3 of the rigid body.

• Rigid body configuration can be represented by the pair (R, p)

• Definition (Special Euclidean Group):

SE(3) = {(R, p) : R ∈ SO(3), p ∈ R3} = SO(3)× R3
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Special Euclidean Group
68 3.2. Rotations and Angular Velocities
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representation of rotations is provided by the exponential coordinates, which
define an axis of rotation and the angle rotated about that axis. We leave
other popular representations of orientations (the three-parameter Euler an-
gles and the roll–pitch–yaw angles, the Cayley–Rodrigues parameters,
and the unit quaternions, which use four variables subject to one constraint)
to Appendix B.

We then examine the six-parameter exponential coordinates for the config-
uration of a rigid body that arise from integrating a six-dimensional twist con-
sisting of the body’s angular and linear velocities. This representation follows
from the Chasles–Mozzi theorem which states that every rigid-body displace-
ment can be obtained by a finite rotation and translation about a fixed screw
axis.

We conclude with a discussion of forces and moments. Rather than treat
these as separate three-dimensional quantities, we merge the moment and force
vectors into a six-dimensional wrench. The twist and wrench, and rules for
manipulating them, form the basis for the kinematic and dynamic analyses in
subsequent chapters.

3.2 Rotations and Angular Velocities

3.2.1 Rotation Matrices

We argued earlier that, of the nine entries in the rotation matrix R, only three
can be chosen independently. We begin by expressing a set of six explicit con-
straints on the entries of R. Recall that the three columns of R correspond to
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• Let (R, p) ∈ SE(3), where p is the coordinate of the origin of {b} in frame
{s} and R is the orientation of {b} relative to {s}. Let qs, qb be the
coordinates of a point q relative to frames {s} and {b}, respectively. Then

qs = Rqb + p
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Homogeneous Representation

• For any point x ∈ R3, its homogeneous coordinate is x̃ =

[
x
1

]

• Similar, homogeneous coordinate for the origin is õ =


0
0
0
1


• Homogeneous coordinate for a vector v is:

• Some rules of syntax for homogeneous coordinates:
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Homogeneous Transformation Matrix

• Associate each (R, p) ∈ SE(3) with a 4× 4 matrix:

T =

[
R p
0 1

]
with T−1 =

[
RT −RT p
0 1

]

• T defined above is called a homogeneous transformation matrix. Any rigid
body configuration (R, p) ∈ SE(3) corresponds to a homogeneous
transformation matrix T .

• Equivalently, SE(3) can be defined as the set of all homogeneous
transformation matrices.

• Slight abuse of notation: T = (R, p) ∈ SE(3) and Tx = Rx+ p for x ∈ R3
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Uses of Transformation Matrices

• Representation of rigid body configuration (orientation and position)

• Change of reference frame in which a vector or a frame is represented
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Uses of Transformation Matrices

• Rigid body motion operator that displaces a vector
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Uses of Transformation Matrices

• Rigid body motion operator that displaces a frame
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Example of Homogeneous Transformation Matrix
In terms of the coordinates of a fixed space frame {s}, frame {a} has its x̂a-axis pointing in the direction
(0, 0, 1) and its ŷa-axis pointing (−1, 0, 0), and frame {b} has its x̂b-axis pointing (1, 0, 0) and its ŷb-axis
pointing (0, 0,−1). The origin of {a} is at (3, 0, 0) in {s} and the origin of {b} is at (0, 2, 0) is {s}.
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Example of Homogeneous Transformation Matrix
Fixed frame {a}; end effector frame {b}, the camera
frame {c}, and the workpiece frame {d}. Suppose
‖pc − pb‖ = 4

122 3.8. Exercises

(j) Calculate the matrix exponential corresponding to the exponential coordi-
nates of rigid-body motion Sθ = (0, 1, 2, 3, 0, 0). Draw the corresponding
frame relative to {s}, as well as the screw axis S.
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Figure 3.23: Four reference frames defined in a robot’s workspace.

Exercise 3.17 Four reference frames are shown in the robot workspace of
Figure 3.23: the fixed frame {a}, the end-effector frame effector {b}, the camera
frame {c}, and the workpiece frame {d}.

(a) Find Tad and Tcd in terms of the dimensions given in the figure.
(b) Find Tab given that

Tbc =




1 0 0 4
0 1 0 0
0 0 1 0
0 0 0 1


 .
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Towards Exponential Coordinate

• Recall: rotation matrix R ∈ SO(3) can be represented in exponential
coordinate ω̂θ

- q(θ) = Rot(ω̂, θ)q0 viewed as a solution to q̇(t) = [ω̂]q(t) with q(0) = q0 at
t = θ.

- The above relation requires that the rotation axis passes through the origin.

• We can find exponential coordinate for T ∈ SE(3) using a similar approach
(i.e. via differential equation)

• We first need to introduce some important concepts.
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Differential Equation for Rigid Body Motion

• Rotation about axis that may not
pass through the origin

(b)

ω

p(t)

pq

v

p(t)

p

(a)

Figure 2.5: (a) A revolute joint and (b) a prismatic joint.

The solution of the differential equation is given by

p̄(t) = e
bξtp̄(0),

where e
bξt is the matrix exponential of the 4 × 4 matrix ξ̂t, defined (as

usual) by

e
bξt = I + ξ̂t+

(ξ̂t)2

2!
+

(ξ̂t)3

3!
+ · · ·

The scalar t is the total amount of rotation (since we are rotating with

unit velocity). exp(ξ̂t) is a mapping from the initial location of a point
to its location after rotating t radians.

In a similar manner, we can represent the transformation due to trans-
lational motion as the exponential of a 4 × 4 matrix. The velocity of a
point attached to a prismatic joint moving with unit velocity (see Fig-
ure 2.5b) is

ṗ(t) = v. (2.27)

Again, the solution of equation (2.27) can be written as exp(ξ̂t)p̄(0),
where t is the total amount of translation and

ξ̂ =

[
0 v
0 0

]
. (2.28)

The 4 × 4 matrix ξ̂ given in equations (2.26) and (2.28) is the gen-
eralization of the skew-symmetric matrix ω̂ ∈ so(3). Analogous to the
definition of so(3), we define

se(3) := {(v, ω̂) : v ∈ R3, ω̂ ∈ so(3)}. (2.29)

In homogeneous coordinates, we write an element ξ̂ ∈ se(3) as

ξ̂ =

[
ω̂ v
0 0

]
∈ R4×4.

40

• Translation
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Differential Equation for Rigid Body Motion

• Consider the following differential equation in homogeneous coordinates

ṗ(t) = ω × p(t) + v ⇒
[
ṗ(t)
0

]
=

[
[ω] v
0 0

] [
p(t)
1

]
(1)

• The variable v contains all the constant terms (e.g. −ω × q in the rotation
example); thus, it may NOT be equal to the linear velocity of the origin of
the rigid body.

• Solution to (1) is

[
p(t)
1

]
= exp

([
[ω] v
0 0

]
t

)[
p(0)
1

]

• Motion of this form is characterized by (ω, v) which is called spatial velocity
or Twist.
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Twist

• Angular velocity and “linear” velocity can be combined to form the Spatial
Velocity or Twist

V =

[
ω
v

]
∈ R6

• Each twist V corresponds to a motion equation (1).

• For each twist V = (ω, v), let [V] be its matrix representation

[V] =
[

[ω] v
0 0

]

• With these notations, solution to (1) is given by

[
p(t)
1

]
= e[V]t

[
p0
1

]
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se(3)

• Similar to so(3), we can define se(3):

se(3) = {([ω], v) : [ω] ∈ so(3), v ∈ R3}

• se(3) contains all matrix representation of twists or equivalently all twists.

• In some references, [V] is called a twist. We follow the textbook notation to
call the spatial velocity V = (ω, v) a twist.

• Sometimes, we may abuse notation by writing V ∈ se(3).

Twist & se(3) Lecture 4 (ECE5463 Sp18) Wei Zhang(OSU) 18 / 36



Example of Twist

• V =

 1
0
0

 ,
 0

1
0

 can have multiple different physical interpretations
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Exponential Map of se(3): From Twist to Rigid Motion

Theorem 1.

For any V = (ω, v) and θ ∈ R, we have e[V]θ ∈ SE(3)

• Case 1 (ω = 0): e[V]θ =

[
I vθ
0 1

]
• Case 2 (ω 6= 0): without loss of generality assume ‖ω‖ = 1. Then

e[V]θ =

[
e[ω]θ G(θ)v
0 1

]
, with G(θ) = Iθ + (1− cos(θ))[ω] + (θ − sin(θ))[ω]2 (2)
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Log of SE(3): from Rigid-Body Motion to Twist

Theorem 2.

Given any T = (R, p) ∈ SE(3), one can always find twist V = (ω, v) and a scalar θ such
that

e[V]θ = T =

[
R p
0 1

]
Matrix Logarithm Algorithm:
• If R = I, then set ω = 0, v = p/‖p‖, and θ = ‖p‖.
• Otherwise, use matrix logarithm on SO(3) to determine ω and θ from R. Then v is

calculated as v = G−1(θ)p, where

G−1(θ) =
1

θ
I −

1

2
[ω] +

(
1

θ
−

1

2
cos

θ

2

)
[ω]2
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Example of Exponential/Log
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Quick Summary

• Angular and linear velocity can be combined to form a spatial velocity or
twist V = (ω, v)

• Each twist V = (ω, v) defines a motion such that any point p on the rigid
body follows a trajectory generated by the following ODE:

ṗ(t) = ω × p(t) + v

• Solution to this ODE (in homogeneous coordinate): p̃(t) = e[V]tp̃(0).

• For any twist V = (ω, v) and θ ∈ R, its matrix exponential e[V]θ ∈ SE(3),
i.e., it corresponds to a rigid body transformation. We have an analytical
formula to compute the exponential (Theorem 1)

• For any T ∈ SE(3), we also have analytical formula (Theorem 2) to find
V = (ω, v) and θ ∈ R such at e[V]θ = T .
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Screw Interpretation of Twist

• Given a twist V = (ω, v), the associated motion (1) may have different
interpretations (different rotation axes, linear velocities).

• We want to impose some nominal interpretable structure on the motion.

• Recall: an angular velocity vector ω can be viewed as ω̂θ̇, where ω̂ is the unit
rotation axis and θ̇ is the rate of rotation about that axis

• Similarly, a twist (spatial velocity) V can be interpreted in terms of a screw
axis S and a velocity θ̇ about the screw axis
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Screw Motion: Definition

• Rotating about an axis while also translating along the axis
Chapter 3. Rigid-Body Motions 103

−ŝθ̇ × q

hŝθ̇

x̂ ŷ

ẑ

q

ŝ

θ̇

h = pitch =
linear speed/angular speed

Figure 3.19: A screw axis S represented by a point q, a unit direction ŝ, and a pitch
h.

A screw axis represents the familiar motion of a screw: rotating about the
axis while also translating along the axis. One representation of a screw axis
S is the collection {q, ŝ, h}, where q ∈ R3 is any point on the axis, ŝ is a unit
vector in the direction of the axis, and h is the screw pitch, which defines the
ratio of the linear velocity along the screw axis to the angular velocity θ̇ about
the screw axis (Figure 3.19).

Using Figure 3.19 and geometry, we can write the twist V = (ω, v) corre-
sponding to an angular velocity θ̇ about S (represented by {q, ŝ, h}) as

V =

[
ω
v

]
=

[
ŝθ̇

−ŝθ̇ × q + hŝθ̇

]
.

Note that the linear velocity v is the sum of two terms: one due to translation
along the screw axis, hŝθ̇, and the other due to the linear motion at the origin
induced by rotation about the axis, −ŝθ̇ × q. The first term is in the direction
of ŝ, while the second term is in the plane orthogonal to ŝ. It is not hard to
show that, for any V = (ω, v) where ω 6= 0, there exists an equivalent screw axis
{q, ŝ, h} and velocity θ̇, where ŝ = ω/‖ω‖, θ̇ = ‖ω‖, h = ω̂Tv/θ̇, and q is chosen
so that the term −ŝθ̇× q provides the portion of v orthogonal to the screw axis.

If ω = 0, then the pitch h of the screw is infinite. In this case ŝ is chosen as
v/‖v‖, and θ̇ is interpreted as the linear velocity ‖v‖ along ŝ.

Instead of representing the screw axis S using the cumbersome collection
{q, ŝ, h}, with the possibility that h may be infinite and with the nonuniqueness
of q (any q along the screw axis may be used), we instead define the screw axis
S using a normalized version of any twist V = (ω, v) corresponding to motion
along the screw:

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

• Represented by screw axis {q, ŝ, h} and rotation speed θ̇

- ŝ: unit vector in the direction of the rotation axis

- q: any point on the rotation axis

- h: screw pitch which defines the ratio of the linear velocity along the screw axis
to the angular velocity about the screw axis
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Screw Motion as Solution to ODE

• Consider a point p on a rigid body under a screw motion with (rotation)
speed θ̇. Let p(t) be its coordinate at time t. The overall velocity is

ṗ(t) = ŝθ̇ × (p(t)− q) + hŝθ̇ (3)

• Thus, any screw axis {q, ŝ, h} with rotation speed θ̇ can be represented by a
particular twist (ω, v) with ω = ŝθ̇ and v = −ŝθ̇ × q + hŝθ̇.
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From Twist to Screw Axis

• The converse is true as well: given any twist V = (ω, v) one can always find

{q, ŝ, h} and θ̇ such that the corresponding screw motion (eq. (3)) coincides
with the motion generated by the twist (eq. (1)).

- If ω = 0, then it is a pure translation (h =∞)

- If ω 6= 0:
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Examples Screw Axis and Twist

• What is the twist that corresponds to
rotating about ẑb?

z

x

l1

A
y

θ

ω

q
B

Figure 2.9: Rigid body motion generated by rotation about a fixed axis.

q = (0, l1, 0). The corresponding twist is

ξ =

[
−ω × q
ω

]
=



l1
0
0
0
0
1


 .

The exponential of this twist is given by

e
bξθ =

[
ebωθ (I − ebωθ)(ω × v)
0 1

]
=




cos θ − sin θ 0 l1 sin θ
sin θ cos θ 0 l1(1− cos θ)

0 0 1 0
0 0 0 1


 .

When applied to the homogeneous representation of a point, this matrix
maps the coordinates of a point on the rigid body, specified relative to the
frame A with θ = 0, to the coordinates of the same point after rotating
by θ radians about the axis.

The rigid transformation which maps points in B coordinates to A
coordinates—and hence describes the configuration of the rigid body—is
given by gab(θ) = exp(ξ̂θ)gab(0) where

gab(0) =

[
I
[

0
l1
0

]

0 1

]
.

Taking the exponential and performing the matrix multiplication yields

gab =




cos θ − sin θ 0 0
sin θ cos θ 0 l1

0 0 1 0
0 0 0 1


 ,

which can be verified by inspection.

50

• What is the screw axis for twist V = (0, 2, 2, 4, 0, 0)?
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Implicit Definition of Screw Axis for a Given a Twist

• For any twist V = (ω, v), we can always view it as a ”screw velocity” that
consists an screw axis S and the velocity θ̇ about the screw axis.

• Instead of using {q, ŝ, h} to represent S, we adopt a more convenient
representation defined below:

• Screw axis (corresponding to a twist): Given any twist V = (ω, v), its
screw axis is defined as

- If ω 6= 0, then S := V/‖ω‖ = (ω/‖ω‖, v/‖ω‖).

- If ω = 0, then S := V/‖v‖ = (0, v/‖v‖)
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Unit Screw Axis

• (unit) screw axis S can be represented by

S =

[
ω
v

]
∈ R6

where either (i)‖ω‖ = 1 or (ii) ω = 0 and ‖v‖ = 1

• We have used (ω, v) to represent both screw axis (where ‖ω‖ or ‖v‖ = 1
must be unity) and a twist (where there are no constrains on ω and v)

• S = (w, v) is called a screw axis, but we typically do not bother to explicitly
find the corresponding {q, ŝ, h}. We can find them whenever needed.
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Exponential Coordinates of Rigid Transformation

• Screw axis S = (ω, v) is just a normalized twist; its matrix representation is

[S] =
[

[ω] v
0 0

]
∈ se(3)

• Therefore, a point started at p(0) at time zero, travel along screw axis S at
unit speed for time t will end up at p(t) = e[S]tp(0)

• Given S we can use Theorem 1 to compute e[S]t ∈ SE(3);

• Given T ∈ SE(3), we can use Theorem 2 to find S = (ω, v) and θ such that
e[S]θ = T . We call Sθ the Exponential Coordinate of the homogeneous
transformation T ∈ SE(3)
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Example of Exponential Coordinates

130 3.8. Exercises

for a moving body with frame {b} at

R =




0 −1 0
0 0 −1
1 0 0




relative to the space frame {s}. Calculate the body’s angular velocity ωb in {b}.

Exercise 3.29 Two frames {a} and {b} are attached to a moving rigid body.
Show that the twist of {a} in space-frame coordinates is the same as the twist
of {b} in space-frame coordinates.

{0} {1}

{2}

x̂0

ŷ0

ẑ0

x̂1

ŷ1

ẑ1

x̂2

ŷ2

ẑ2

1

1

(a) A first screw motion.

{0} {1}

{2}

x̂0

ŷ0

ẑ0

x̂1

ŷ1

ẑ1

x̂2
ŷ2

ẑ2

1

1

(b) A second screw motion.

Figure 3.32: A cube undergoing two different screw motions.

Exercise 3.30 A cube undergoes two different screw motions from frame {1}
to frame {2} as shown in Figure 3.32. In both cases, (a) and (b), the initial
configuration of the cube is

T01 =




1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


 .

(a) For each case, (a) and (b), find the exponential coordinates Sθ = (ω, v)θ
such that T02 = e[S]θT01, where no constraints are placed on ω or v.

(b) Repeat (a), this time with the constraint that ‖ωθ‖ ∈ [−π, π].

Exercise 3.31 In Example 3.19 and Figure 3.16, the block that the robot must
pick up weighs 1 kg, which means that the robot must provide approximately

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org
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More Discussions
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More Discussions
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