ECE5463: Introduction to Robotics

Lecture Note 4: General Rigid Body Motion

Prof. Wei Zhang

Department of Electrical and Computer Engineering
Ohio State University
Columbus, Ohio, USA

Spring 2018

Outline

- Representation of General Rigid Body Motion
- Homogeneous Transformation Matrix
- Twist and se(3)
- Twist Representation of Rigid Motion
- Screw Motion and Exponential Coordinate

General Rigid Body Configuration

- General rigid body configuration includes both the orientation $R \in S O(3)$ and the position $p \in \mathbb{R}^{3}$ of the rigid body.
- Rigid body configuration can be represented by the pair (R, p)
- Definition (Special Euclidean Group):

$$
S E(3)=\left\{(R, p): R \in S O(3), p \in \mathbb{R}^{3}\right\}=S O(3) \times \mathbb{R}^{3}
$$

Special Euclidean Group

- Let $(R, p) \in S E(3)$, where p is the coordinate of the origin of $\{\mathrm{b}\}$ in frame $\{\mathrm{s}\}$ and R is the orientation of $\{\mathrm{b}\}$ relative to $\{\mathrm{s}\}$. Let q_{s}, q_{b} be the coordinates of a point q relative to frames $\{s\}$ and $\{b\}$, respectively. Then

$$
q_{s}=R q_{b}+p
$$

Outline

- Representation of General Rigid Body Motion
- Homogeneous Transformation Matrix
- Twist and se(3)
- Twist Representation of Rigid Motion
- Screw Motion and Exponential Coordinate

Homogeneous Representation

- For any point $x \in \mathbb{R}^{3}$, its homogeneous coordinate is $\tilde{x}=\left[\begin{array}{l}x \\ 1\end{array}\right]$
- Similar, homogeneous coordinate for the origin is $\tilde{o}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$
- Homogeneous coordinate for a vector v is:
- Some rules of syntax for homogeneous coordinates:

Homogeneous Transformation Matrix

- Associate each $(R, p) \in S E(3)$ with a 4×4 matrix:

$$
T=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right] \text { with } T^{-1}=\left[\begin{array}{cc}
R^{T} & -R^{T} p \\
0 & 1
\end{array}\right]
$$

- T defined above is called a homogeneous transformation matrix. Any rigid body configuration $(R, p) \in S E(3)$ corresponds to a homogeneous transformation matrix T.
- Equivalently, $S E(3)$ can be defined as the set of all homogeneous transformation matrices.
- Slight abuse of notation: $T=(R, p) \in S E(3)$ and $T x=R x+p$ for $x \in \mathbb{R}^{3}$

Uses of Transformation Matrices

- Representation of rigid body configuration (orientation and position)
- Change of reference frame in which a vector or a frame is represented

Uses of Transformation Matrices

- Rigid body motion operator that displaces a vector

Uses of Transformation Matrices

- Rigid body motion operator that displaces a frame

Example of Homogeneous Transformation Matrix

In terms of the coordinates of a fixed space frame $\{s\}$, frame $\{a\}$ has its $\hat{\mathrm{x}}_{\mathrm{a}}$-axis pointing in the direction $(0,0,1)$ and its \hat{y}_{a}-axis pointing $(-1,0,0)$, and frame $\{\mathrm{b}\}$ has its $\hat{\mathrm{x}}_{\mathrm{b}}$-axis pointing $(1,0,0)$ and its $\hat{\mathrm{y}}_{\mathrm{b}}$-axis pointing $(0,0,-1)$. The origin of $\{a\}$ is at $(3,0,0)$ in $\{s\}$ and the origin of $\{b\}$ is at $(0,2,0)$ is $\{s\}$.

Example of Homogeneous Transformation Matrix

Fixed frame $\{a\}$; end effector frame $\{b\}$, the camera frame $\{c\}$, and the workpiece frame $\{d\}$. Suppose $\left\|p_{c}-p_{b}\right\|=4$

Outline

- Representation of General Rigid Body Motion
- Homogeneous Transformation Matrix
- Twist and se(3)
- Twist Representation of Rigid Motion
- Screw Motion and Exponential Coordinate

Towards Exponential Coordinate

- Recall: rotation matrix $R \in S O(3)$ can be represented in exponential coordinate $\hat{\omega} \theta$
- $q(\theta)=\operatorname{Rot}(\hat{\omega}, \theta) q_{0}$ viewed as a solution to $\dot{q}(t)=[\hat{\omega}] q(t)$ with $q(0)=q_{0}$ at $t=\theta$.
- The above relation requires that the rotation axis passes through the origin.
- We can find exponential coordinate for $T \in S E(3)$ using a similar approach (i.e. via differential equation)
- We first need to introduce some important concepts.

Differential Equation for Rigid Body Motion

- Rotation about axis that may not pass through the origin

- Translation

Differential Equation for Rigid Body Motion

- Consider the following differential equation in homogeneous coordinates

$$
\dot{p}(t)=\omega \times p(t)+v \Rightarrow\left[\begin{array}{c}
\dot{p}(t) \tag{1}\\
0
\end{array}\right]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
p(t) \\
1
\end{array}\right]
$$

- The variable v contains all the constant terms (e.g. $-\omega \times q$ in the rotation example); thus, it may NOT be equal to the linear velocity of the origin of the rigid body.
- Solution to (1) is $\left[\begin{array}{c}p(t) \\ 1\end{array}\right]=\exp \left(\left[\begin{array}{cc}{[\omega]} & v \\ 0 & 0\end{array}\right] t\right)\left[\begin{array}{c}p(0) \\ 1\end{array}\right]$
- Motion of this form is characterized by (ω, v) which is called spatial velocity or Twist.

Twist

- Angular velocity and "linear" velocity can be combined to form the Spatial Velocity or Twist

$$
\mathcal{V}=\left[\begin{array}{l}
\omega \\
v
\end{array}\right] \in \mathbb{R}^{6}
$$

- Each twist \mathcal{V} corresponds to a motion equation (1).
- For each twist $\mathcal{V}=(\omega, v)$, let $[\mathcal{V}]$ be its matrix representation

$$
[\mathcal{V}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right]
$$

- With these notations, solution to (1) is given by

$$
\left[\begin{array}{c}
p(t) \\
1
\end{array}\right]=e^{[\mathcal{V}] t}\left[\begin{array}{c}
p_{0} \\
1
\end{array}\right]
$$

$s e(3)$

- Similar to so(3), we can define $s e(3)$:

$$
s e(3)=\left\{([\omega], v):[\omega] \in \operatorname{so}(3), v \in \mathbb{R}^{3}\right\}
$$

- $s e(3)$ contains all matrix representation of twists or equivalently all twists.
- In some references, $[\mathcal{V}]$ is called a twist. We follow the textbook notation to call the spatial velocity $\mathcal{V}=(\omega, v)$ a twist.
- Sometimes, we may abuse notation by writing $\mathcal{V} \in \operatorname{se}(3)$.

Example of Twist

- $\mathcal{V}=\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)$ can have multiple different physical interpretations

Outline

- Representation of General Rigid Body Motion
- Homogeneous Transformation Matrix
- Twist and se(3)
- Twist Representation of Rigid Motion
- Screw Motion and Exponential Coordinate

Exponential Map of $s e(3)$: From Twist to Rigid Motion

Theorem 1.

For any $\mathcal{V}=(\omega, v)$ and $\theta \in \mathbb{R}$, we have $e^{[\mathcal{V}] \theta} \in S E(3)$

- Case $1(\omega=0): e^{[\mathcal{V}] \theta}=\left[\begin{array}{cc}I & v \theta \\ 0 & 1\end{array}\right]$
- Case $2(\omega \neq 0)$: without loss of generality assume $\|\omega\|=1$. Then

$$
e^{[\mathcal{V}] \theta}=\left[\begin{array}{cc}
e^{[\omega] \theta} & G(\theta) v \tag{2}\\
0 & 1
\end{array}\right], \text { with } G(\theta)=I \theta+(1-\cos (\theta))[\omega]+(\theta-\sin (\theta))[\omega]^{2}
$$

Log of $S E(3)$: from Rigid-Body Motion to Twist

Theorem 2.

Given any $T=(R, p) \in S E(3)$, one can always find twist $\mathcal{V}=(\omega, v)$ and a scalar θ such that

$$
e^{[\mathcal{V}] \theta}=T=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right]
$$

Matrix Logarithm Algorithm:

- If $R=I$, then set $\omega=0, v=p /\|p\|$, and $\theta=\|p\|$.
- Otherwise, use matrix logarithm on $S O(3)$ to determine ω and θ from R. Then v is calculated as $v=G^{-1}(\theta) p$, where

$$
G^{-1}(\theta)=\frac{1}{\theta} I-\frac{1}{2}[\omega]+\left(\frac{1}{\theta}-\frac{1}{2} \cos \frac{\theta}{2}\right)[\omega]^{2}
$$

Example of Exponential/Log

Quick Summary

- Angular and linear velocity can be combined to form a spatial velocity or twist $\mathcal{V}=(\omega, v)$
- Each twist $\mathcal{V}=(\omega, v)$ defines a motion such that any point p on the rigid body follows a trajectory generated by the following ODE:

$$
\dot{p}(t)=\omega \times p(t)+v
$$

- Solution to this ODE (in homogeneous coordinate): $\tilde{p}(t)=e^{[\mathcal{V}] t} \tilde{p}(0)$.
- For any twist $\mathcal{V}=(\omega, v)$ and $\theta \in \mathbb{R}$, its matrix exponential $e^{[\mathcal{V}] \theta} \in S E(3)$, i.e., it corresponds to a rigid body transformation. We have an analytical formula to compute the exponential (Theorem 1)
- For any $T \in S E(3)$, we also have analytical formula (Theorem 2) to find $\mathcal{V}=(\omega, v)$ and $\theta \in \mathbb{R}$ such at $e^{[\mathcal{V}] \theta}=T$.

Outline

- Representation of General Rigid Body Motion
- Homogeneous Transformation Matrix
- Twist and se(3)
- Twist Representation of Rigid Motion
- Screw Motion and Exponential Coordinate

Screw Interpretation of Twist

- Given a twist $\mathcal{V}=(\omega, v)$, the associated motion (1) may have different interpretations (different rotation axes, linear velocities).
- We want to impose some nominal interpretable structure on the motion.
- Recall: an angular velocity vector ω can be viewed as $\hat{\omega} \dot{\theta}$, where $\hat{\omega}$ is the unit rotation axis and $\dot{\theta}$ is the rate of rotation about that axis
- Similarly, a twist (spatial velocity) \mathcal{V} can be interpreted in terms of a screw axis \mathcal{S} and a velocity $\dot{\theta}$ about the screw axis

Screw Motion: Definition

- Rotating about an axis while also translating along the axis

- Represented by screw axis $\{q, \hat{s}, h\}$ and rotation speed $\dot{\theta}$
- \hat{s} : unit vector in the direction of the rotation axis
- q : any point on the rotation axis
- h : screw pitch which defines the ratio of the linear velocity along the screw axis to the angular velocity about the screw axis

Screw Motion as Solution to ODE

- Consider a point p on a rigid body under a screw motion with (rotation) speed $\dot{\theta}$. Let $p(t)$ be its coordinate at time t. The overall velocity is

$$
\begin{equation*}
\dot{p}(t)=\hat{s} \dot{\theta} \times(p(t)-q)+h \hat{s} \dot{\theta} \tag{3}
\end{equation*}
$$

- Thus, any screw axis $\{q, \hat{s}, h\}$ with rotation speed $\dot{\theta}$ can be represented by a particular twist (ω, v) with $\omega=\hat{s} \dot{\theta}$ and $v=-\hat{s} \dot{\theta} \times q+h \hat{s} \dot{\theta}$.

From Twist to Screw Axis

- The converse is true as well: given any twist $\mathcal{V}=(\omega, v)$ one can always find $\{q, \hat{s}, h\}$ and $\dot{\theta}$ such that the corresponding screw motion (eq. (3)) coincides with the motion generated by the twist (eq. (1)).
- If $\omega=0$, then it is a pure translation $(h=\infty)$
- If $\omega \neq 0$:

Examples Screw Axis and Twist

- What is the twist that corresponds to rotating about $\hat{\mathrm{z}}_{\mathrm{b}}$?

- What is the screw axis for twist $\mathcal{V}=(0,2,2,4,0,0)$?

Implicit Definition of Screw Axis for a Given a Twist

- For any twist $\mathcal{V}=(\omega, v)$, we can always view it as a "screw velocity" that consists an screw axis \mathcal{S} and the velocity $\dot{\theta}$ about the screw axis.
- Instead of using $\{q, \hat{s}, h\}$ to represent \mathcal{S}, we adopt a more convenient representation defined below:
- Screw axis (corresponding to a twist): Given any twist $\mathcal{V}=(\omega, v)$, its screw axis is defined as
- If $\omega \neq 0$, then $\mathcal{S}:=\mathcal{V} /\|\omega\|=(\omega /\|\omega\|, v /\|\omega\|)$.
- If $\omega=0$, then $\mathcal{S}:=\mathcal{V} /\|v\|=(0, v /\|v\|)$

Unit Screw Axis

- (unit) screw axis \mathcal{S} can be represented by

$$
\mathcal{S}=\left[\begin{array}{c}
\omega \\
v
\end{array}\right] \in \mathbb{R}^{6}
$$

where either (i) $\|\omega\|=1$ or (ii) $\omega=0$ and $\|v\|=1$

- We have used (ω, v) to represent both screw axis (where $\|\omega\|$ or $\|v\|=1$ must be unity) and a twist (where there are no constrains on ω and v)
- $\mathcal{S}=(w, v)$ is called a screw axis, but we typically do not bother to explicitly find the corresponding $\{q, \hat{s}, h\}$. We can find them whenever needed.

Exponential Coordinates of Rigid Transformation

- Screw axis $\mathcal{S}=(\omega, v)$ is just a normalized twist; its matrix representation is

$$
[\mathcal{S}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \in \operatorname{se}(3)
$$

- Therefore, a point started at $p(0)$ at time zero, travel along screw axis \mathcal{S} at unit speed for time t will end up at $p(t)=e^{[\mathcal{S}] t} p(0)$
- Given \mathcal{S} we can use Theorem 1 to compute $e^{[\mathcal{S}] t} \in S E(3)$;
- Given $T \in S E(3)$, we can use Theorem 2 to find $\mathcal{S}=(\omega, v)$ and θ such that $e^{[\mathcal{S}] \theta}=T$. We call $\mathcal{S} \theta$ the Exponential Coordinate of the homogeneous transformation $T \in S E(3)$

Example of Exponential Coordinates

More Discussions

More Discussions

