ECE5463: Introduction to Robotics Lecture Note 4: General Rigid Body Motion

Prof. Wei Zhang

Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA

Spring 2018

Outline

- Representation of General Rigid Body Motion
- Homogeneous Transformation Matrix
- Twist and se(3)
- Twist Representation of Rigid Motion
- Screw Motion and Exponential Coordinate

General Rigid Body Configuration

- General rigid body configuration includes both the orientation $R \in SO(3)$ and the position $p \in \mathbb{R}^3$ of the rigid body.
- Rigid body configuration can be represented by the pair (R, p)
- Definition (Special Euclidean Group):

 $SE(3) = \{(R, p) : R \in SO(3), p \in \mathbb{R}^3\} = SO(3) \times \mathbb{R}^3$

Special Euclidean Group

• Let $(R, p) \in SE(3)$, where p is the coordinate of the origin of $\{b\}$ in frame $\{s\}$ and R is the orientation of $\{b\}$ relative to $\{s\}$. Let q_s, q_b be the coordinates of a point q relative to frames $\{s\}$ and $\{b\}$, respectively. Then

$$q_s = Rq_b + p$$

Outline

- Representation of General Rigid Body Motion
- Homogeneous Transformation Matrix
- Twist and se(3)
- Twist Representation of Rigid Motion
- Screw Motion and Exponential Coordinate

Homogeneous Representation

• For any point $x \in \mathbb{R}^3$, its homogeneous coordinate is $\tilde{x} = \left| \begin{array}{c} x \\ 1 \end{array} \right|$

• Similar, homogeneous coordinate for the origin is $\tilde{o} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

• Homogeneous coordinate for a vector v is:

• Some rules of syntax for homogeneous coordinates:

Homogeneous Transformation Matrix

• Associate each $(R,p) \in SE(3)$ with a 4×4 matrix:

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$$
 with $T^{-1} = \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix}$

- T defined above is called a homogeneous transformation matrix. Any rigid body configuration $(R, p) \in SE(3)$ corresponds to a homogeneous transformation matrix T.
- Equivalently, $SE(3)\ {\rm can}\ {\rm be}\ {\rm defined}\ {\rm as}\ {\rm the}\ {\rm set}\ {\rm of}\ {\rm all}\ {\rm homogeneous}\ {\rm transformation}\ {\rm matrices}.$
- Slight abuse of notation: $T = (R, p) \in SE(3)$ and Tx = Rx + p for $x \in \mathbb{R}^3$

Uses of Transformation Matrices

• Representation of rigid body configuration (orientation and position)

• Change of reference frame in which a vector or a frame is represented

Uses of Transformation Matrices

• Rigid body motion operator that displaces a vector

Uses of Transformation Matrices

• Rigid body motion operator that displaces a frame

Example of Homogeneous Transformation Matrix

In terms of the coordinates of a fixed space frame {s}, frame {a} has its \hat{x}_a -axis pointing in the direction (0,0,1) and its \hat{y}_a -axis pointing (-1,0,0), and frame {b} has its \hat{x}_b -axis pointing (1,0,0) and its \hat{y}_b -axis pointing (0,0,-1). The origin of {a} is at (3,0,0) in {s} and the origin of {b} is at (0,2,0) is {s}.

Example of Homogeneous Transformation Matrix

Fixed frame {a}; end effector frame {b}, the camera frame {c}, and the workpiece frame {d}. Suppose $\|p_c - p_b\| = 4$

Outline

- Representation of General Rigid Body Motion
- Homogeneous Transformation Matrix
- Twist and se(3)
- Twist Representation of Rigid Motion
- Screw Motion and Exponential Coordinate

Towards Exponential Coordinate

- Recall: rotation matrix $R \in SO(3)$ can be represented in exponential coordinate $\hat{\omega}\theta$
 - $q(\theta) = \operatorname{Rot}(\hat{\omega}, \theta)q_0$ viewed as a solution to $\dot{q}(t) = [\hat{\omega}]q(t)$ with $q(0) = q_0$ at $t = \theta$.
 - The above relation requires that the rotation axis passes through the origin.

• We can find exponential coordinate for $T \in SE(3)$ using a similar approach (i.e. via differential equation)

• We first need to introduce some important concepts.

Differential Equation for Rigid Body Motion

• Rotation about axis that may not pass through the origin

• Translation

Differential Equation for Rigid Body Motion

• Consider the following differential equation in homogeneous coordinates

$$\dot{p}(t) = \omega \times p(t) + v \quad \Rightarrow \quad \begin{bmatrix} \dot{p}(t) \\ 0 \end{bmatrix} = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p(t) \\ 1 \end{bmatrix}$$
(1)

The variable v contains all the constant terms (e.g. -ω × q in the rotation example); thus, it may NOT be equal to the linear velocity of the origin of the rigid body.

• Solution to (1) is
$$\begin{bmatrix} p(t) \\ 1 \end{bmatrix} = \exp\left(\begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} t\right) \begin{bmatrix} p(0) \\ 1 \end{bmatrix}$$

- Motion of this form is characterized by (ω,v) which is called spatial velocity or Twist.

Twist

• Angular velocity and "linear" velocity can be combined to form the *Spatial Velocity* or *Twist*

$$\mathcal{V} = \left[\begin{array}{c} \omega \\ v \end{array} \right] \in \mathbb{R}^6$$

- Each twist \mathcal{V} corresponds to a motion equation (1).
- For each twist $\mathcal{V}=(\omega,v),$ let $[\mathcal{V}]$ be its matrix representation

$$\left[\mathcal{V}\right] = \left[\begin{array}{cc} \left[\omega\right] & v\\ 0 & 0\end{array}\right]$$

• With these notations, solution to (1) is given by

$$\left[\begin{array}{c} p(t) \\ 1 \end{array}\right] = e^{[\mathcal{V}]t} \left[\begin{array}{c} p_0 \\ 1 \end{array}\right]$$

se(3)

• Similar to so(3), we can define se(3):

$$se(3) = \{([\omega], v) : [\omega] \in so(3), v \in \mathbb{R}^3\}$$

- se(3) contains all matrix representation of twists or equivalently all twists.
- In some references, $[\mathcal{V}]$ is called a twist. We follow the textbook notation to call the spatial velocity $\mathcal{V}=(\omega,v)$ a twist.
- Sometimes, we may abuse notation by writing $\mathcal{V} \in se(3)$.

Example of Twist

•
$$\mathcal{V} = \left(\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right)$$

can have multiple different physical interpretations

Outline

- Representation of General Rigid Body Motion
- Homogeneous Transformation Matrix
- Twist and se(3)
- Twist Representation of Rigid Motion
- Screw Motion and Exponential Coordinate

Exponential Map of se(3): From Twist to Rigid Motion

Theorem 1.

For any $\mathcal{V} = (\omega, v)$ and $\theta \in \mathbb{R}$, we have $e^{[\mathcal{V}]\theta} \in SE(3)$

• Case 1 (
$$\omega = 0$$
): $e^{[\mathcal{V}]\theta} = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix}$

• Case 2 ($\omega \neq 0$): without loss of generality assume $\|\omega\| = 1$. Then

$$e^{[\mathcal{V}]\theta} = \begin{bmatrix} e^{[\omega]\theta} & G(\theta)v\\ 0 & 1 \end{bmatrix}, \text{ with } G(\theta) = I\theta + (1 - \cos(\theta))[\omega] + (\theta - \sin(\theta))[\omega]^2 \quad (2)$$

Log of SE(3): from Rigid-Body Motion to Twist

Theorem 2.

Given any $T = (R, p) \in SE(3)$, one can always find twist $\mathcal{V} = (\omega, v)$ and a scalar θ such that

$$e^{[\mathcal{V}]\theta} = T = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right]$$

Matrix Logarithm Algorithm:

- If R=I, then set $\omega=0,~v=p/\|p\|,$ and $\theta=\|p\|.$
- Otherwise, use matrix logarithm on SO(3) to determine ω and θ from R. Then v is calculated as $v = G^{-1}(\theta)p$, where

$$G^{-1}(\theta) = \frac{1}{\theta}I - \frac{1}{2}[\omega] + \left(\frac{1}{\theta} - \frac{1}{2}\cos\frac{\theta}{2}\right)[\omega]^2$$

Example of Exponential/Log

Quick Summary

- Angular and linear velocity can be combined to form a spatial velocity or twist $\mathcal{V}=(\omega,v)$
- Each twist $\mathcal{V} = (\omega, v)$ defines a motion such that any point p on the rigid body follows a trajectory generated by the following ODE:

$$\dot{p}(t) = \omega \times p(t) + v$$

- Solution to this ODE (in homogeneous coordinate): $\tilde{p}(t) = e^{[\mathcal{V}]t}\tilde{p}(0)$.
- For any twist $\mathcal{V} = (\omega, v)$ and $\theta \in \mathbb{R}$, its matrix exponential $e^{[\mathcal{V}]\theta} \in SE(3)$, i.e., it corresponds to a rigid body transformation. We have an analytical formula to compute the exponential (Theorem 1)
- For any $T \in SE(3)$, we also have analytical formula (Theorem 2) to find $\mathcal{V} = (\omega, v)$ and $\theta \in \mathbb{R}$ such at $e^{[\mathcal{V}]\theta} = T$.

Outline

- Representation of General Rigid Body Motion
- Homogeneous Transformation Matrix
- Twist and se(3)
- Twist Representation of Rigid Motion
- Screw Motion and Exponential Coordinate

Screw Interpretation of Twist

• Given a twist $\mathcal{V} = (\omega, v)$, the associated motion (1) may have different interpretations (different rotation axes, linear velocities).

• We want to impose some nominal interpretable structure on the motion.

• Recall: an angular velocity vector ω can be viewed as $\hat{\omega}\dot{\theta}$, where $\hat{\omega}$ is the unit rotation axis and $\dot{\theta}$ is the rate of rotation about that axis

• Similarly, a twist (spatial velocity) \mathcal{V} can be interpreted in terms of a screw axis S and a velocity $\dot{\theta}$ about the screw axis

Screw Motion: Definition

• Rotating about an axis while also translating along the axis

- Represented by screw axis $\{q, \hat{s}, h\}$ and rotation speed $\dot{ heta}$
 - \hat{s} : unit vector in the direction of the rotation axis
 - q: any point on the rotation axis
 - *h*: **screw pitch** which defines the ratio of the linear velocity along the screw axis to the angular velocity about the screw axis

Screw Motion as Solution to ODE

• Consider a point p on a rigid body under a screw motion with (rotation) speed $\dot{\theta}$. Let p(t) be its coordinate at time t. The overall velocity is

$$\dot{p}(t) = \hat{s}\dot{\theta} \times (p(t) - q) + h\hat{s}\dot{\theta}$$
(3)

• Thus, any screw axis $\{q, \hat{s}, h\}$ with rotation speed $\dot{\theta}$ can be represented by a particular twist (ω, v) with $\omega = \hat{s}\dot{\theta}$ and $v = -\hat{s}\dot{\theta} \times q + h\hat{s}\dot{\theta}$.

From Twist to Screw Axis

- The converse is true as well: given any twist $\mathcal{V} = (\omega, v)$ one can always find $\{q, \hat{s}, h\}$ and $\dot{\theta}$ such that the corresponding screw motion (eq. (3)) coincides with the motion generated by the twist (eq. (1)).
 - If $\omega=0$, then it is a pure translation $(h=\infty)$

- If $\omega \neq 0$:

Examples Screw Axis and Twist

• What is the twist that corresponds to rotating about $\hat{z}_{\rm b}?$

• What is the screw axis for twist $\mathcal{V} = (0, 2, 2, 4, 0, 0)$?

Implicit Definition of Screw Axis for a Given a Twist

- For any twist $\mathcal{V} = (\omega, v)$, we can always view it as a "screw velocity" that consists an screw axis \mathcal{S} and the velocity $\dot{\theta}$ about the screw axis.
- Instead of using $\{q, \hat{s}, h\}$ to represent $\mathcal{S},$ we adopt a more convenient representation defined below:
- Screw axis (corresponding to a twist): Given any twist $\mathcal{V} = (\omega, v)$, its screw axis is defined as
 - If $\omega \neq 0$, then $\mathcal{S} := \mathcal{V}/\|\omega\| = (\omega/\|\omega\|, v/\|\omega\|).$

- If
$$\omega = 0$$
, then $\mathcal{S} := \mathcal{V}/\|v\| = (0, v/\|v\|)$

Unit Screw Axis

• (unit) screw axis $\mathcal S$ can be represented by

$$\mathcal{S} = \left[egin{array}{c} \omega \\ v \end{array}
ight] \in \mathbb{R}^6$$

where either (i) $\|\omega\|=1$ or (ii) $\omega=0$ and $\|v\|=1$

- We have used (ω, v) to represent both screw axis (where $||\omega||$ or ||v|| = 1 must be unity) and a twist (where there are no constraints on ω and v)
- S = (w, v) is called a screw axis, but we typically do not bother to explicitly find the corresponding $\{q, \hat{s}, h\}$. We can find them whenever needed.

Exponential Coordinates of Rigid Transformation

- Screw axis $\mathcal{S}=(\omega,v)$ is just a normalized twist; its matrix representation is

$$[\mathcal{S}] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} \in se(3)$$

- Therefore, a point started at p(0) at time zero, travel along screw axis S at unit speed for time t will end up at $p(t) = e^{[S]t}p(0)$
- Given S we can use Theorem 1 to compute $e^{[S]t} \in SE(3)$;
- Given $T \in SE(3)$, we can use Theorem 2 to find $S = (\omega, v)$ and θ such that $e^{[S]\theta} = T$. We call $S\theta$ the **Exponential Coordinate** of the homogeneous transformation $T \in SE(3)$

Example of Exponential Coordinates

More Discussions

More Discussions