ECE5463: Introduction to Robotics

Lecture Note 7: Velocity Kinematics and Jacobian

Prof. Wei Zhang
Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA

Spring 2018

Outline

- Introduction
- Space and Body Jacobians
- Kinematic Singularity

Jacobian

- Given a multivariable function $x=f(\theta)$, where $x \in \mathbb{R}^{m}$ and $\theta \in \mathbb{R}^{n}$. Its Jacobian is defined as

$$
\begin{gathered}
J(\theta) \triangleq\left[\frac{\partial f}{\partial \theta}(\theta)\right] \triangleq\left[\frac{\partial f_{i}}{\partial \theta_{j}}\right]_{i \leq m, j \leq n} \in \mathbb{R}^{m \times n} \\
e_{1} . g: f(\theta)=\left[\begin{array}{lll}
\sin \left(\theta_{1}+\theta_{2}\right)+e^{\theta_{3}}<f_{1}(\theta) & J(\theta)=\left[\begin{array}{ccc}
\cos \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right) & e^{\theta_{3}} \\
2 \theta_{1}+\theta_{2}^{3} & \leftrightarrows f_{2}(\theta)
\end{array}\right. \\
f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} & 3 \theta_{2}^{2} & 0
\end{array}\right]
\end{gathered}
$$

- If x and θ are both a function of time, then their velocities are related by the Jacobian:

$$
x(t)=f(\theta(t))
$$

$$
\dot{x}=\left[\frac{\partial f}{\partial \theta}(\theta)\right] \frac{d \theta}{d t}=\frac{J(\theta) \dot{\theta}}{\epsilon m_{n} 火_{n}}=\left[J_{1}(\theta) J_{2}(\theta) \cdots J_{n}(\theta)\right)\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right]
$$

- Let $J_{i}(\theta)$ be the i th column of J, then $\dot{x}=J_{1}(\theta) \dot{\theta_{1}}+\cdots+J_{n}(\theta) \dot{\theta_{n}}$
- $J_{i}(\theta)$ is the velocity of x due to $\dot{\theta}_{i}$ (while $\dot{\theta}_{j}=0$ for all $j \neq i$)

Velocity Kinematics Problem

- In the previous lecture, we studied the forward kinematics problem, that obtains the mapping from joint angles to $\{b\}$ frame configuration:

$$
\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)^{T} \quad \mapsto \quad T_{s b}(\theta)
$$

- In this lecture, we study the velocity kinematics problem, namely, deriving the relation that maps velocities of joint variables $\dot{\theta}$ to the "velocity" of the end-effector frame
- Note: we are interested in relating $\dot{\theta}$ to the velocity of the entire body frame (not just a point on the body)
- One may intend to write $\dot{T}(\theta)=J(\theta) \dot{\theta}$. However, $T \in S E(4)$ and its derivative is not a good way to represent velocity of the body.
- Two approaches: (1) Analytical Jacobian: using a minimum set of coordinate $x \in \mathbb{R}^{6}$ of the frame configuration and then take derivative; (2) Geometric Jacobian: directly relate $\dot{\theta}$ to the spacial/body twist \mathcal{V}

Analytical vs. Geometric Jacobian

- A straightforward way to characterize the velocity kinematics is through the Analytical Jacobian
- Express the configuration of $\{b\}$ using a minimum set of coordinates x. For example:
- (x_{1}, x_{2}, x_{3}): Cartesian coordinates or spherical coordinate of the origin
- (x_{4}, x_{5}, x_{6}): Euler angles or exponential coordinate of the orientation
- Write down the forward kinematics using the minimum set of coordinate x : $x=f(\theta)$
- Analytical Jacobian can then be computed as $J_{a}(\theta)=\left[\frac{\partial f}{\partial \theta}(\theta)\right]$
- The analytical Jacobian J_{a} depends on the local coordinates system of $S E(3)$
- See Textbook 5.1.5 for more details

Analytical vs. Geometric Jacobian

- Geometric Jacobian directly finds relation between joint velocities and end-effector twist:

$$
\mathcal{V}=\left[\begin{array}{l}
\omega \\
v
\end{array}\right]=J(\theta) \dot{\theta}, \quad \text { where } J(\theta) \in \mathbb{R}^{6 \times n}
$$

- Note: $\mathcal{V}=(\omega, v)$ is NOT a derivative of any position variable, i.e. $\mathcal{V} \neq \frac{d x}{d t}$ (regardless what representation x is used) because the angular velocity is not the derivative of any time varying quantity.
- Analytical Jacobian J_{a} destroys the natural geometric structure of the rigid body motion;
- Geometric Jacobian can be used to derive analytical Jacobian.

Outline

- Introduction
- Space and Body Jacobians
- Kinematic Singularity

Geometric Jacobian in Space Form

- Given the forward kinematics: $T_{s b}\left(\theta_{1}, \ldots, \theta_{n}\right)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M$
- Let $\mathscr{V}_{s}=\left(\omega_{s}, v_{s}\right)$ be the spacial twist, we aim to find $J_{s}(\theta)$ such that

$$
\begin{aligned}
& \left.\mathcal{V}_{s}=\begin{array}{llll}
J_{s}(\theta) \\
{\left[\begin{array}{lll}
J_{s 1} & J_{s 2} & \\
J_{s 1} & & J_{s n}(\theta)
\end{array} \dot{\theta}_{1}+\cdots+J_{s n}(\theta) \dot{\theta}_{n}\right.} \\
\vdots \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right]
\end{aligned}
$$

- The i th column $J_{s i}$ is the velocity (twist) of the body frame due to only the i th joint motion $\dot{\theta}_{i}$
- In other words, $J_{s i}(\theta)$ is the spatial twist when the robot is rotating about \mathcal{S}_{i} at unit speed $\dot{\theta}_{i}=1$ while all other joints do not move (i.e. $\dot{\theta}_{j}=0$ for $j \neq i$).

Derivation of Space Jacobian

$$
\left(e^{a t}\right)^{\prime}=a e^{a t}
$$

- Given any screw axis \mathcal{S}, we have $\frac{d}{d \theta_{i}}\left(\mathcal{S P} \theta_{i}=[S] e^{\left[S \mid \theta_{i}\right.} \frac{d\left(d e^{A t}\right)=A e^{A t}}{d t}\right.$
- For simplicity, denote $T_{s, i-}=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{i-1}\right] \theta_{i-1}}, i=2, \ldots, n$. Let $T=T_{s b}(\theta)$
- We have $\left[\mathcal{V}_{s}\right]=\dot{T} T^{-1}=\left(\frac{\partial T}{\partial \theta_{1}} \dot{\theta}_{1}+\cdots+\frac{\partial T}{\partial \theta_{i}} \dot{\theta}_{i}+\cdots+\frac{\partial T}{\partial \theta_{n}} \dot{\theta}_{n}\right) T^{-1}$
- Let $\dot{\theta}_{i}=1$ and $\dot{\theta}_{j}=0$ for $j \neq i \Rightarrow\left[\underline{\left.J_{s i}(\theta)\right]=\frac{\partial T}{\partial \theta_{i}}} T^{-1}=\left[\operatorname{Ad}_{T_{s, i-}}\right] \mathcal{S}_{i}\right.$

$$
=\left(T_{s, i-}\right)\left[s_{i}\right]\left(T_{s, i-}\right)^{-1} \Rightarrow J_{s_{i}}(\theta)=\left(A d_{T_{s, i-}}\right) S_{i}
$$

When $i=1 \Rightarrow\left[J_{s_{1}}(\theta)\right]=\left(\frac{\partial T}{\partial \theta_{1}}\right) T^{-1}=\left[s_{1}\right] T T^{-1}=\left[s_{1}\right]$

$$
J_{s_{1}}(\theta)=s_{1}
$$

Summary of Space Jacobian

- Given the forward kinematics: $T(\theta)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M$
- Space Jacobian: $J_{s}(\theta) \in \mathbb{R}^{6 \times n}$ relates joint rate vector $\dot{\theta} \in \mathbb{R}^{n}$ to the spatial twist \mathcal{V}_{s} via $\mathcal{V}_{s}=J_{s}(\theta) \dot{\theta}$. For $i \geq 2$, the i th column of J_{s} is

$$
J_{s i}(\theta)=\left[A d_{T_{s, i-}}\right] \mathcal{S}_{i}, \text { where } T_{s, i-}=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{i-1}\right] \theta_{i-1}}
$$

and the first column is $J_{s 1}=\mathcal{S}_{1}$.

- Procedure: Suppose the current joint position is $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$:
- $i=1$: find the screw axis $\mathcal{S}_{1}=\left(\omega_{s 1}, v_{s 1}\right)$ when robot is at home position $\Rightarrow J_{s 1}=\mathcal{S}_{1}$
- $i=2$: find the screw axis $\mathcal{S}_{2}(\theta)=\left(\omega_{s 2}, v_{s 2}\right)$ after moving joint 1 from zero position to $\theta_{1} . \Rightarrow J_{s 2}(\theta)=\mathcal{S}_{2}(\theta)=\left[A d e^{\left(S_{1}\right) \theta_{1}}\right] S_{2}$
- $i=3$: find the screw axis $\mathcal{S}_{3}(\theta)=\left(\omega_{s 3}, v_{s 3}\right)$ after moving the first 2 joints from zero position to the θ_{1} and $\theta_{2} . \Rightarrow J_{s 3}(\theta)=\mathcal{S}_{3}(\theta)=\left[\mathrm{Ad} e^{\left(S_{1}\right) \theta_{1}} e^{\left[s_{i}\right] \theta_{2}}\right] S_{3}$

Space Jacobian Example
$-i=3$: joint angles for axes 1 and $2: \theta_{1}$ and θ_{2}

$$
w_{S_{3}}=(0,0,1), \quad q_{3}=e^{\left[S_{1}\right] \theta_{1}} e^{\left[S_{2}\right] \theta_{2}}\left[\begin{array}{c}
L_{1}+L_{2} \\
0 \\
0
\end{array}\right]=\text { some nivector. }
$$

we can also compute q_{3} by geometry.

$-v=4: S_{54} \leqslant S_{4}=\left(w_{54}, v_{54}\right)$, pure translation $w_{54}=(0,0,0), v_{54}=(0,0,1)$

$$
J_{s 4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \quad \begin{aligned}
& \text { Ry geometry: } \\
& \left.\begin{array}{l}
s_{12}=\sin \left(\theta_{1}+\theta_{2}\right) \\
c_{12}=\cos \left(\theta_{1}+\theta_{2}\right)
\end{array} \quad \Rightarrow \begin{array}{l}
L_{1} C_{1}+L_{2} C_{12}
\end{array}, L_{1} s_{1}+L s_{12}, 0\right) \\
& v_{1} v_{s_{3}}=-w_{s_{3}} \times q_{3}
\end{aligned}
$$

Space Jacobian Example (Continued)

Jacobian.

$$
J_{s}(\theta)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1 \\
0 & L_{1} S_{1} & L_{1} C_{1}+L_{2} C_{2} \\
0 & \sim L_{1} C_{1} & L_{1} S_{1}+L_{2} S_{12} \\
0 & 0 & 0
\end{array}\right.
$$

$$
\left.\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Body Jacobian

- Recall that \mathcal{V}_{b} is the rigid body velocity expressed in body frame.
- By change of frame for twist, we know

$$
\begin{aligned}
& \mathcal{V}_{b}=\left[A d_{T_{b s}}\right] \mathcal{V}_{s} \text { or equivalently }\left[\mathcal{V}_{b}\right]=T_{b s}\left[\mathcal{V}_{s}\right] T_{b s}^{-1}=T_{s b}^{-1} \dot{T}_{s b} \\
& \left(\delta^{\prime}=\left[A d_{T}\right] S\right)
\end{aligned}
$$

- Body Jacobian J_{b} relates joint rates $\dot{\theta}$ to \mathcal{V}_{b}

$$
\mathcal{V}_{b}=J_{b}(\theta) \dot{\theta}=\left[\begin{array}{lll}
J_{b 1}(\theta) & \cdots & J_{b n}(\theta)
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right]
$$

Derivation of Body Jacobian

- Use Body form PoE kinematics formula: $T(\theta)=M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \ldots e^{\left[\mathcal{B}_{n}\right] \theta_{n}}$
- For simplicity, denote $T_{b, i+}=e^{\left[\mathcal{B}_{i+1}\right] \theta_{i+1}} \cdots e^{\left[\mathcal{B}_{n}\right] \theta_{n}}$, for $i=1, \ldots, n-1$
- $\left[\mathcal{V}_{b}\right]=T^{-1} \dot{T}=T^{-1}\left(\frac{\partial T}{\partial \theta_{1}} \dot{\theta}_{1} \cdots+\frac{\partial T}{\partial \theta_{n}} \dot{\theta}_{n}\right)$
- Let $\dot{\theta}_{i}=1$ and $\dot{\theta}_{j}=0$ for $j \neq i$,

$$
\begin{aligned}
& {\left[J_{b, i}\right]=T^{-1} \frac{\partial T}{\partial \theta_{i}}} \\
& =\left(e^{-\left[\mathcal{B}_{n}\right] \theta_{n}} \cdots e^{-\left[\mathcal{B}_{1}\right] \theta_{1}}\right)\left(e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{i-1}\right] \theta_{i-1}}\left[\mathcal{B}_{i}\right] e^{\left[\mathcal{B}_{i}\right] \theta_{i}} \cdots e^{\left[\mathcal{B}_{n}\right] \theta_{n}}\right) \\
& =\left(T_{i+}^{b}\right)^{-1}\left[\mathcal{B}_{i}\right] T_{i+}^{b}
\end{aligned}
$$

- Therefore,

$$
J_{b, i}=\left[A d_{T_{b, i+}^{-1}}\right] \mathcal{B}_{i}
$$

Summary of Body Jacobian

- Given the forward kinematics: $T(\theta)=M y e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{n}\right] \theta_{n}}$
- Body Jacobian: $J_{b}(\theta) \in \mathbb{R}^{6 \times n}$ relates joint rate vector $\dot{\theta} \in \mathbb{R}^{n}$ to the body twist \mathcal{V}_{b} via $\mathcal{V}_{b}=J_{b}(\theta) \dot{\theta}$. For $i=n-1, \ldots, 1$, the i th column of J_{b} is

$$
J_{b i}(\theta)=\left[A d_{T_{b, i+}^{-1}}\right]^{\mathcal{B}_{i}} \mathcal{S}_{i}, \text { where } T_{b, i+}=e^{\left[\mathcal{S}_{i+1}\right] \theta_{i+1}} \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}}
$$

and the last column is $J_{b n}=\mathcal{B}_{n}$.

Relation Between Spatial and Body Jacobian

- Recall that: $\mathcal{V}_{b}=\left[\operatorname{Ad}_{T_{b s}}\right] \mathcal{V}_{s}$ and $\mathcal{V}_{s}=\left[\operatorname{Ad}_{T_{s b}}\right] \mathcal{V}_{b}$
- Body and spacial twists represent the velocity of the end-effector frame in fixed and body frame
- The velocity may be caused by one or multiple joint motions. We know the i th column $J_{s i}$ (or $J_{b i}$) is the spacial twist (or body twist) when $\dot{\theta}_{i}=1$ and $\dot{\theta}_{j}=0, j \neq i$
- Therefore, we have $J_{s i}=\left[\operatorname{Ad}_{T_{s b}}\right] J_{b i}$ and $J_{b i}=\left[\operatorname{Ad}_{T_{b s}}\right] J_{s i}$. Putting all the columns together leads to

$$
\begin{aligned}
J_{s}(\theta) & =[\underbrace{\left[\operatorname{Ad}_{T_{s b}}\right] J_{b}(\theta), \text { and } J_{b}(\theta)=\left[\operatorname{Ad}_{T_{b s}}\right] J_{s}(\theta)} \\
{[6 \times n] } & =[6 \times 6][6 \times n]
\end{aligned}
$$

- Detailed derivation can be found in the textbook.

Outline

- Introduction
- Space and Body Jacobians
- Kinematic Singularity

Kinematic Singularity

- Roughly speaking, kinematic singularity (or simply singularity) refers to a posture at which the robot's end-effector loses the ability to move instantaneously in one or more directions.
- Mathematically, a singular posture is one in which the Jacobian $\left(J_{s}(\theta)\right.$ or $\left.J_{b}(\theta)\right)$ fails to be of maximal rank

$$
\begin{aligned}
& V_{b}=J_{b}(\theta)=\left[\begin{array}{llll}
J_{b_{1}}(\theta) & J_{b_{2}}(\theta) & \cdots & J_{b_{n}}(\theta)
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\vdots \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right]
\end{aligned}
$$

$$
\operatorname{rank}\left(J_{b}(\theta)\right)<\min \{6, n\}
$$

Singularity means some columns are dependent of each other $\dot{\theta}_{n}$
eff. $J_{b_{3}}(\theta)=2 J_{b_{2}}(\theta)$ or $J_{b_{3}}(\theta) \mp J_{b_{1}}(\theta)+3 J_{b_{2}}(\theta)$

- Singularity is independent of the choice of space or body Jacobian

$$
\operatorname{rank} J_{s}(\theta)=\operatorname{rank} J_{b}(\theta) \text { nopsingular } \quad v
$$

this is because $\underbrace{J_{s}(\theta)}_{6 \times n}=[\underbrace{A d_{T_{s b}}}_{6 \times 6}] \underbrace{J_{b}(\theta)}_{6 \times n}$

Singularity Example: read bosk chap 5 for more examples - two collinear zorevolute joints:
(1) $w_{i}= \pm w_{i+1} ;$ (2) $w_{i} \times\left(q_{i}-q_{i+1}\right)=w_{i+1} \times\left(q_{i}-q_{i+1}\right)=0$ assume $w_{i}=w_{i+1}=\hat{w}$

$$
-J_{s}=\left[\begin{array}{lllllll}
J_{s 1} & J_{s_{2}} & \cdots & J_{s i} & J_{s i+1} & \cdots & J_{s n}
\end{array}\right]
$$

Shew axis of joint i (at hame): $s_{i}=\left(w_{i}, v_{i}\right)$
i+1 (at home): $S_{i+1}=\left(w_{i+1}, v_{i+1}\right)$
Two collinear revolute joint
i (at configuration θ): is $J_{s i}=\left[\begin{array}{l}w_{s i} \\ v_{s i}\end{array}\right]$
$i+1\left(\begin{array}{lll}\text { at } & \ldots & \theta): J_{s i+1}\end{array}=\left[\begin{array}{c}w_{s i+1} \\ v_{s, i+1}\end{array}\right]\right.$

- we can see: $S_{i}=\left[\begin{array}{c}w_{i} \\ -w_{i} \times q_{i}\end{array}\right]=\left[\begin{array}{c}\hat{w} \\ -\hat{w} \times q_{i}\end{array}\right]$,

$$
\begin{aligned}
& s_{i+1}=\left[\begin{array}{l}
\hat{w} \\
-\hat{\omega} \times q_{i+1}
\end{array}\right] \Rightarrow s_{i}-s_{i+1}=\left[\begin{array}{c}
0 \\
-\hat{\omega} \times\left(q_{i}-q_{i+1}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right) \\
& \Rightarrow \text { at } \theta=" 0 \text { " home } \Rightarrow J_{s_{i}}=s_{i}=J_{s_{i+1}}=s_{i+1}
\end{aligned}
$$

More Discussions

- pick arbitrary $\theta: \quad J_{s i}=\left[A d_{T_{s, i-}}\right] S_{i}, \quad J_{s_{i+1}}=\left[A d\left(T_{s, i-} \cdot e^{\left[s i \theta_{i}\right)}\right] S_{i+1}\right.$

$$
=[\underbrace{A d_{T_{\text {si- }}}}]\left[\mathrm{Ad}_{e^{\left[S i \theta_{i}\right.}}\right] S_{i+1}
$$

$$
\text { " } e^{\left[S_{i}\right] \theta_{i}} q_{i+1}=q_{i+1} \text { we can see }\left[\operatorname{Ad} e^{\left.\left[S_{i}\right] \theta_{i}\right]} S_{i+1}=S_{i+1}\right.
$$

$$
\Rightarrow J_{\text {sin }}=[\underbrace{A d_{T_{s, i-}}}] S_{S_{i+1}}
$$

since $s_{i}=s_{i+1} \Rightarrow J_{s_{i}}=J_{s_{i+1}}$

