

		• IXuII				U)		
5 L	Jnbuffe	ered DIMM	Details					
		Table 8 — SD	RAM Module	Configuratio	ns (Refer	ence Des	igns)	
Raw Card Version	DIMM Capacity	DIMM Organization	SDRAM Density	SDRAM Organization	Number of SDRAMs	Number of Physical Ranks	Number of Banks in SDRAM	Number of Address Bits Row/Column
	512MB	64 Meg x 64	512 Megabit	64 Meg x 8	8	1	8	13/10
	1GB	128 Meg x 64	1 Gigabit	128 Meg x 8	8	1	8	14/10
А	2GB	256 Meg x 64	2 Gigabit	256 Meg x 8	8	1	8	15/10
	4GB	512 Meg x 64	4 Gigabit	512 Meg x 8	8	1	8	16/10
	8GB	1 Gig x 64	8 Gigabit	1 Gig x 8	8	1	8	16/11
	1GB	128 Meg x 64	512 Megabit	64 Meg x 8	16	2	8	13/10
	2GB	256 Meg x 64	1 Gigabit	128 Meg x 8	16	2	8	14/10
в	4GB	512 Meg x 64	2 Gigabit	256 Meg x 8	16	2	8	15/10
	8GB	1 Gig x 64	4 Gigabit	512 Meg x 8	16	2	8	16/10
	16GB	2 Gig x 64	8 Gigabit	1 Gig x 8	16	2	8	16/11
	256MB	32 Meg x 64	512 Megabit	32 Meg x 16	4	1	8	12/10
~1	512MB	64 Meg x 64	1 Gigabit	64 Meg x 16	4	1	8	13/10
C.	1GB	128 Meg x 64	2 Gigabit	128 Meg x 16	4	1	8	14/10
	2GB	256 Meg x 64	4 Gigabit	256 Meg x 16	4	1	8	15/10

			Row access	trobe (RAS)		
Production year	Chip size	DRAM Type	Slowest DRAM (ns)	Fastest DRAM (ns)	Column access strobe (CAS)/ data transfer time (ns)	Cycle time (n
1980	64K bit	DRAM	180	150	75	250
1983	256K bit	DRAM	150	120	50	220
1986	1M bit	DRAM	120	100	25	190
1989	4M bit	DRAM	100	80	20	165
1992	16M bit	DRAM	80	60	15	120
1996	64M bit	SDRAM	70	50	12	110
1998	128M bit	SDRAM	70	50	10	100
2000	256M bit	DDR1	65	45	7	90
2002	512M bit	DDR1	60	40	5	80
2004	1G bit	DDR2	55	35	5	70
2006	2G bit	DDR2	50	30	2.5	60
2010	4G bit	DDR3	36	28	1	37
2012	8G bit	DDR3	30	24	0.5	31

for blocks of data; we discuss this later in this section when we talk about SDRAM access time and power. The DDR4 designs are due for introduction in mid- to late 2012. We discuss these various forms of DRAMs in the next few pages.

Memory Organizations

Standard	Clock rate (MHz)	M transfers per second	DRAM name	MB/sec /DIMM	DIMM name
DDR	133	266	DDR266	2128	PC2100
DDR	150	300	DDR300	2400	PC2400
DDR	200	400	DDR400	3200	PC3200
DDR2	266	533	DDR2-533	4264	PC4300
DDR2	333	667	DDR2-667	5336	PC5300
DDR2	400	800	DDR2-800	6400	PC6400
DDR3	533	1066	DDR3-1066	8528	PC8500
DDR3	666	1333	DDR3-1333	10,664	PC10700
DDR3	800	1600	DDR3-1600	12,800	PC12800
DDR4	1066-1600	2133-3200	DDR4-3200	17,056-25,600	PC25600

Figure 2.14 Clock rates, bandwidth, and names of DDR DRAMS and DIMMs in 2010. Note the numerical relationship between the columns. The third column is twice the second, and the fourth uses the number from the third column in the name of the DRAM chip. The fifth column is eight times the third column, and a rounded version of this number is used in the name of the DIMM. Although not shown in this figure, DDRs also specify latency in clock cycles as four numbers, which are specified by the DDR standard. For example, DDR3-2000 CL 9 has latencies of 9-9-9-28. What does this mean? With a 1 ns clock (clock cycle is one-half the transfer rate), this indicate 9 ns for row to columns address (RAS time), 9 ns for column access to data (CAS time), and a minimum read time of 28 ns. Closing the row takes 9 ns for precharge but happens only when the reads from that row are finished. In burst mode, transfers occur on every clock on both edges, when the first RAS and CAS times have elapsed. Furthermore, the precharge in not needed until the entire row is read. DDR4 will be produced in 2012 and is expected to reach clock rates of 1600 MHz in 2014, when DDR5 is expected to take over. The exercises explore these details further.

- Keep the row open after an access
- Pro: Next access might need the same row \rightarrow row hit
- Con: Next access might need a different row ightarrow row conflict, wasted energy

Closed row

- Close the row after an access (if no other requests already in the request buffer need the same row)
- Pro: Next access might need a different row \rightarrow avoid a row conflict
- Con: Next access might need the same row ightarrow extra activate latency

Adaptive policies

Predict whether or not the next access to the bank will be to the same row

