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Ridge Regression

Applies to both over and under determined systems.

The loss function of the ridge regression is defined as

J(θ)
def
= ‖Aθ − y‖2 + λ‖θ‖2

‖θ‖2 Regularization function

λ: Regularization parameter

The solution of the ridge regression is

∇θJ(θ) = ∇θ

{
‖Aθ − y‖2 + λ‖θ‖2

}
= 2AT (Aθ − y) + 2λθ = 0,

which gives us θ̂ = (ATA + λI )−1ATy .

Probabilistic interpretation: See Appendix.
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Change in Eigen-values

Ridge regression improves the eigen-values:

Eigen-decomposition of ATA:

ATA = USUT � 0,

where U = eigen-vector matrix, S = eigen-value matrix.

S is a diagonal matrix with non-negative entries:

S =


♣
♣
♣

0


See Tutorial on “Linear Algebra”.

Therefore, S + λI is always positive for any λ > 0, implying that

ATA + λI = U(S + λI )UT � 0.
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Regularization Parameter λ

The solution of the ridge regression is

θ̂ = (ATA + λI )−1ATy

If λ→ 0, then θ̂ = (ATA)−1ATy :

J(θ) = ‖Aθ − y‖2 +�
���

λ‖θ‖2.
If λ→∞, then θ̂ = 0:

J(θ) = ������‖Aθ − y‖2 + λ‖θ‖2.
There is a trade-off curve between the two terms by varying λ.
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Comparing Vanilla and Ridge

Suppose y = Aθ∗ + e for some ground truth θ∗ and noise vector e. Then,
the vanilla linear regression will give us

θ̂ = (ATA)−1ATy

= (ATA)−1AT (Aθ∗ + e)

= θ∗ + (ATA)−1ATe

If e has zero mean and variance σ2, we can show that

E[θ̂] = θ∗,

Cov[θ̂] = σ2(ATA)−1.

Therefore, the regression coefficients are unbiased but have large variance.
We can further show that the mean-squared error (MSE) is

MSE(θ̂) = σ2Tr
{

(ATA)−1
}
.
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Comparing Vanilla and Ridge

On the other hand, if we use ridge regression, then

θ̂(λ) = (ATA + λI )−1AT (Aθ∗ + e)

= (ATA + λI )−1ATAθ∗ + (ATA + λI )−1ATe.

Again, if e is zero mean and has a variance σ2, then (See Reading List)

E[θ̂(λ)] = (ATA + λI )−1ATAθ∗

Cov[θ̂(λ)] = σ2(ATA + λI )−1ATA(ATA + λI )−T

MSE[θ̂(λ)] = σ2Tr
{
W λ(ATA)−1W T

λ

}
+ θ∗T (W λ − I )T (W λ − I )θ∗,

where W λ
def
= (ATA + λI )−1ATA. In particular, we can show that

Theorem (Theobald 1974)

For λ < 2σ2‖θ∗‖−2, it holds that MSE(θ̂(λ)) < MSE(θ̂).
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Geometric Interpretation

The following three problems are equivalent

θ∗λ = argmin
θ

‖Aθ − y‖2 + λ‖θ‖2

θ∗α = argmin
θ

‖Aθ − y‖2 subject to ‖θ‖2 ≤ α

θ∗ε = argmin
θ

‖θ‖2 subject to ‖Aθ − y‖2 ≤ ε

under an appropriately chosen tuple (λ, α, ε).

Larger λ = Smaller α
θ∗’s magnitude is tighter bounded
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Choosing λ

Because the following three problems are equivalent

θ∗λ = argmin
θ

‖Aθ − y‖2 + λ‖θ‖2

θ∗α = argmin
θ

‖Aθ − y‖2 subject to ‖θ‖2 ≤ α

θ∗ε = argmin
θ

‖θ‖2 subject to ‖Aθ − y‖2 ≤ ε

We can seek λ that satisfies ‖θ‖2 ≤ α:

You know how much ‖θ‖2 would be appropriate.

We can seek λ that satisfies ‖Aθ − y‖2 ≤ ε
You know how much ‖Aθ − y‖2 would be tolerable.

Other approaches:

Akaike’s information criterion: Balance model fit with complexity
Cross validation: Leave one out
Generalized cross-validation: Cross-validation + weight
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LASSO Regression

An alternative to the Ridge Regression is Least Absolute Shrinkage
and Selection Operator (LASSO)

The loss function is

J(θ) = ‖Aθ − y‖2 + λ‖θ‖1

Intuition behind LASSO: Many features are not active.
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Interpreting the LASSO Solution

θ̂ = argmin
θ

‖Aθ − y‖2 + λ‖θ‖1

‖θ‖1 promotes sparsity of θ. It is the nearest convex approximation
to ‖θ‖0, which is the number of non-zeros.
The difference between `2 and `1

1:

1Figure source: http://www.ds100.org/ 13 / 28
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Why are Sparse Models Useful?

# non-zeros = 33.51% 13.58% 1.21%

Images are sparse in transform domains, e.g., Fourier and wavelet.
Intuition: There are more low frequency components and less high
frequency components.
Examples above: A is the wavelet basis matrix. θ are the wavelet
coefficients.
We can truncate the wavelet coefficients and retain a good image.
Many image compression schemes are based on this, e.g., JPEG,
JPEG2000.
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LASSO for Image Reconstruction

Image inpainting via KSVD dictionary-learning 2

y = image with missing pixels. A = a matrix storing a set of trained
feature vectors (called dictionary atoms). θ = coefficients.

minimize ‖y − Aθ‖2 + λ‖θ‖1.

KSVD = k-means + Singular Value Decomposition (SVD): A method
to train the feature vectors that demonstrate sparse representations.

2Figure is taken from Mairal, Elad, Sapiro, IEEE T-IP 2008
https://ieeexplore.ieee.org/document/4392496
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Shrinkage Operator

The LASSO problem can be solved using a shrinkage operator. Consider a
simplified problem (with A = I )

J(θ) =
1

2
‖y − θ‖2 + λ‖θ‖1

=
d∑

j=1

{
1

2
(yj − θj)2 + λ|θj |1

}
Since the loss is separable, the ,optimization is solved when each
individual term is minimized. The individual problem

θ̂ = argmin
θ

{
1

2
(y − θ)2 + λ|θ|

}
= max(|y | − λ, 0)sign(y)

def
= Sλ(y).

Proof: See Appendix.
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Shrinkage VS Hard Threshold

The shrinkage operator looks as follows.

Any number between [−λ, λ] is “shrink” to zero.

Try compare with the hard threshold operator Hλ(y) = y · 1{|y | ≥ λ}
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Algorithms to Solve LASSO Regression

In general, the LASSO problem requires iterative algorithms:

ISTA Algorithm (Daubechies et al. 2004)

For k = 1, 2, . . .
v k = θk − 2γAT (Aθk − y).
θk+1 = max(|v k | − λ, 0)sign(v k).

FISTA Algorithm (Beck-Teboulle 2008)

For k = 1, 2, . . .
v k = θk − 2γAT (Aθk − y).
zk = max(|v k | − λ, 0)sign(v k).
θk+1 = αkθ

k + (1− αk)zk .

ADMM Algorithm (Eckstein-Bertsekas 1992, Boyd et al. 2011)

For k = 1, 2, . . .
θk+1 = (ATA + ρI )−1(ATy + ρzk − uk)
zk+1 = max(|θk+1 + uk/ρ| − λ/ρ, 0)sign(θk+1 + uk/ρ)
uk+1 = uk + ρ(θk+1 − zk+1)

And many others.
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Example: Crime Rate Data

https://web.stanford.edu/~hastie/StatLearnSparsity/data.html

Consider the following two optimizations

θ̂1(λ) = argmin
θ

J1(θ)
def
= ‖Aθ − y‖2 + λ‖θ‖1,

θ̂2(λ) = argmin
θ

J2(θ)
def
= ‖Aθ − y‖2 + λ‖θ‖2.
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Comparison between `-1 and `-2 norm

Plot θ̂1(λ) and θ̂2(λ) vs. λ.

LASSO tells us which factor appears first.

If we are allowed to use only one feature, then % high is the one.

Two features, then % high + funding.
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Pros and Cons

Ridge Regression

(+) Analytic solution, because the loss function is differentiable.

(+) As such, a lot of well-established theoretical guarantees.

(+) Algorithm is simple, just one equation.

(-) Limited interpretability, since the solution is usually a dense vector.

(-) Does not reflect the nature of certain problems, e.g., sparsity.

LASSO

(+) Proven applications in many domains, e.g., images and speeches.

(+) Echoes particularly well in modern deep learning where parameter
space is huge.

(+) Increasing number of theoretical guarantees for special matrices.

(+) Algorithms are available.

(-) No closed-form solution. Algorithms are iterative.
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Reading List

Ridge Regression

Stanford CS 229 Note on Linear Algebra
http://cs229.stanford.edu/section/cs229-linalg.pdf

Lecture Note on Ridge Regression
https://arxiv.org/pdf/1509.09169.pdf

Theobald, C. M. (1974). Generalizations of mean square error applied
to ridge regression. Journal of the Royal Statistical Society. Series B
(Methodological), 36(1), 103-106.

LASSO Regression

ECE/STAT 695 (Lecture 1)
https://engineering.purdue.edu/ChanGroup/ECE695.html

Statistical Learning with Sparsity (Chapter 2)
https://web.stanford.edu/~hastie/StatLearnSparsity/

Elements of Statistical Learning (Chapter 3.4)
https://web.stanford.edu/~hastie/ElemStatLearn/
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Appendix
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Treating Linear Regression as Maximum-Likelihood

Minimizing J(θ) is the same as solving a maximum-likelihood:

θ∗ = argmin
θ

‖Aθ − y‖2

= argmin
θ

N∑
n=1

(θTxn − yn)2

= argmax
θ

exp

{
−

N∑
n=1

(θTxn − yn)2

}

= argmax
θ

N∏
n=1

{
1√

2πσ2
exp

{
−(θTxn − yn)2

2σ2

}}

Assume noise is i.i.d. Gaussian with variance σ2.

See Tutorial on Probability
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Likelihood Function

Likelihood:

pX |Θ(x |θ) = probability density of x given θ

Prior:
pΘ(θ) = probability density of θ

Posterior:

pΘ|X (θ|x) = probability density of θ given x

Bayes Theorem

pΘ|X (θ|x) =
pX |Θ(x |θ)pΘ(θ)

pX (x)

=
pX |Θ(x |θ)pΘ(θ)∫
pX |Θ(x |θ)pΘ(θ)dθ
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Treating Linear Regression as Maximum-a-Posteriori

We can modify the MLE by adding a prior

pΘ(θ) = exp

{
− ρ(θ)

β

}
.

Then, we have a MAP problem:

θ∗ = argmax
θ

N∏
n=1

{
1√

2πσ2
exp

{
−(θTxn − yn)2

2σ2

}}
exp

{
− ρ(θ)

β

}

= argmin
θ

1

2σ2

N∑
n=1

(θTxn − yn)2 +
1

β
ρ(θ)

= argmin
θ

‖Aθ − y‖2 + λρ(θ), where λ = 2σ2/β.

ρ(·) is called regularization function.
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Ridge Regression interpreted via a Gaussian prior

One option: Choose a Gaussian prior

exp

{
− ρ(θ)

β

}
= exp

{
− ‖θ‖

2

2σ20

}
Then, the MAP becomes

θ∗ = argmax
θ

N∏
n=1

{
1√

2πσ2
exp

{
−(θTxn − yn)2

2σ2

}}
exp

{
− ‖θ‖

2

2σ20

}

= argmin
θ

N∑
n=1

(θTxn − yn)2 +
σ2

σ20︸︷︷︸
=λ

‖θ‖2

= argmin
θ

‖Aθ − y‖2 + λ‖θ‖2

This is exactly the ridge regression.
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Proof of the Shrinkage Operator

Let J(θ) = 1
2(θ − y)2 + λ|θ|.

0 =
d

dθ
J(θ) = (θ − y) + λsign(θ).

If θ > 0, then θ = y − λ. But since θ > 0, it holds that y > λ > 0.

If θ < 0, then θ = y + λ. But since θ < 0, it holds that y < −λ < 0.

If θ = 0, then θ = y . But since θ = 0, it holds that y = 0.

So the solution is

θ̂ =


y − λ, if y > 0,

0 if y = 0,

y + λ, if y < 0.

This is the same as

θ̂ = max(|y | − λ, 0)sign(y).

28 / 28


