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Mathematical Background
@ Lecture 1: Linear regression: A basic data analytic tool
@ Lecture 2: Regularization: Constraining the solution

o Lecture 3: Kernel Method: Enabling nonlinearity

Lecture 2: Regularization
@ Ridge Regression

o Regularization
e Parameter

@ LASSO Regression
e Sparsity
o Algorithm
e Application
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Ridge Regression

@ Applies to both over and under determined systems.

@ The loss function of the ridge regression is defined as

def

J(0) = |46 — y | + Al6]?

|0||> Regularization function

A: Regularization parameter
@ The solution of the ridge regression is
VoJ(6) = Vo{ |46 — y|* + Al6]?}
=2AT (A0 —y) +2)0 =0,
which gives us 8 = (ATA+ AI)1ATy.

@ Probabilistic interpretation: See Appendix.
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Change in Eigen-values

Ridge regression improves the eigen-values:
o Eigen-decomposition of AT A:

ATA=USU™ -0,

where U = eigen-vector matrix, § = eigen-value matrix.
@ S is a diagonal matrix with non-negative entries:

L]
S=

See Tutorial on “Linear Algebra”.
o Therefore, § + Al is always positive for any A > 0, implying that

ATAL M =US+\HUT = 0.
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Regularization Parameter A

@ The solution of the ridge regression is
6=(ATA+\)1ATy
o If A — 0, then 8 = (ATA)1ATy:
J(6) = [ 40 — y|* + AoT%.
o If A = o0, then § = 0:
J(6) = | A=y + A|6]*.
@ There is a trade-off curve between the two terms by varying .

ly — A8|]®

o)
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Comparing Vanilla and Ridge

Suppose y = AB* + e for some ground truth 8* and noise vector e. Then,
the vanilla linear regression will give us

~

6=(ATA) ATy
= (ATA)1AT(A0* +e)
=0"+(ATA)!ATe

2

If e has zero mean and variance o“, we can show that

E[6] =
Cov[H] =0 ( a1t

Therefore, the regression coefficients are unbiased but have large variance.
We can further show that the mean-squared error (MSE) is

MSE(8) = o2Tr{(AT A)~'}.
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Comparing Vanilla and Ridge
On the other hand, if we use ridge regression, then
6(\) = (ATA+ \)LAT(A6" +e)
=(ATA+A)TTATAG" + (ATA+ ) tATe.
Again, if e is zero mean and has a variance 02, then (See Reading List)
E[6(\)] = (ATA+ AI)"1AT A6*
Cov[d(N)] = c>(ATA+ AN TATAATA+ AT
MSE[B(N\)] = 2 Tr{ W (AT A)* W]} + 6*T (W) — 1)T(W, — )6,

where W, %7 (ATA + A\)"1AT A. In particular, we can show that
Theorem (Theobald 1974)

~ A~

For A < 202||6*||72, it holds that MSE(0()\)) < MSE(6).
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Geometric Interpretation
The following three problems are equivalent

0; = argmin |40 — y|?+ \|0]°

0, = arg?nin | A6 — y|? subject to [|0]2 <«

0 = argZ‘nin 16]|? subject to ||A0 — y|?> <e
under an appropriately chosen tuple (A, o, €).

@ Larger A = Smaller «
@ 0*'s magnitude is tighter bounded

-
N
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Choosing A

Because the following three problems are equivalent
6; —argmin |46 — y[2 + A[0]
(4
0 =argmin [|A0 — y|? subject to [|0]2 <«
0

6 = argmin ||6]> subject to ||A0 — y|]? <€
0

@ We can seek \ that satisfies ||0]|?> < a

o You know how much ||@]|2 would be appropriate.
o We can seek \ that satisfies ||A0 — y||? < ¢

o You know how much ||A8 — y||?> would be tolerable.
@ Other approaches:

o Akaike's information criterion: Balance model fit with complexity
e Cross validation: Leave one out
o Generalized cross-validation: Cross-validation 4 weight
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Mathematical Background
@ Lecture 1: Linear regression: A basic data analytic tool
@ Lecture 2: Regularization: Constraining the solution

o Lecture 3: Kernel Method: Enabling nonlinearity

Lecture 2: Regularization
@ Ridge Regression

o Regularization
o Parameter

@ LASSO Regression
e Sparsity
o Algorithm
e Application
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LASSO Regression

@ An alternative to the Ridge Regression is Least Absolute Shrinkage
and Selection Operator (LASSO)

@ The loss function is
J(0) = [|A6 — y||> + A||0])1

@ Intuition behind LASSO: Many features are not active.

HHH )
A
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Interpreting the LASSO Solution

6 = argmin ||A6 — y|> + 6]
0

@ ||@||1 promotes sparsity of 6. It is the nearest convex approximation
to [|@]|o, which is the number of non-zeros.
@ The difference between ¢, and /; L.

Weight
sharing

inducing

L1 Noerm L2 Norm

!Figure source: http://www.ds100.org/ 13/28
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Why are Sparse Models Useful?

13.58% 1.21%

@ Images are sparse in transform domains, e.g., Fourier and wavelet.

@ Intuition: There are more low frequency components and less high
frequency components.

@ Examples above: A is the wavelet basis matrix. 8 are the wavelet
coefficients.

@ We can truncate the wavelet coefficients and retain a good image.

@ Many image compression schemes are based on this, e.g., JPEG,
JPEG2000.
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LASSO for Image Reconstruction

Image inpainting via KSVD dictionary-learning 2

@ y = image with missing pixels. A = a matrix storing a set of trained
feature vectors (called dictionary atoms). € = coefficients.

e minimize |ly — AB||? + \[|0] ;.

e KSVD = k-means + Singular Value Decomposition (SVD): A method
to train the feature vectors that demonstrate sparse representations.

2Figure is taken from Mairal, Elad, Sapiro, IEEE T-IP 2008
https://ieeexplore.ieee.org/document /4392496
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-
Shrinkage Operator

The LASSO problem can be solved using a shrinkage operator. Consider a
simplified problem (with A=1)

1
J(0) = Slly = 61" + Ao

S {tor oo

Since the loss is separable, the ,optimization is solved when each
individual term is minimized. The individual problem

6 = argmin {l(y —0)® + )\\9}
9 2
= max(|y| — A, 0)sign(y)

ES\0).

Proof: See Appendix.
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Shrinkage VS Hard Threshold

@ The shrinkage operator looks as follows.
@ Any number between [—\, A] is “shrink” to zero.

@ Try compare with the hard threshold operator Hy(y) =y - 1{|y| > A}

T‘SA(‘Q) ]\ H’?
x4

/x ~ 4 ~X

Ay
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Algorithms to Solve LASSO Regression

In general, the LASSO problem requires iterative algorithms:

@ ISTA Algorithm (Daubechies et al. 2004)
o For k=1,2,...
o vk =0 —27AT(A0" —y).
o 0"t = max(|vk| — X, 0)sign(vF).
o FISTA Algorithm (Beck-Teboulle 2008)
For k=1,2,...
vk = 0% — 27AT(A0% — y).
zK = max(|v¥| — A, 0)sign(v*).
0K = 0% + (1 — ay)z*.
o ADMM Algorithm (Eckstein-Bertsekas 1992, Boyd et al. 2011)
For k=1,2,...
0" = (ATA+ pl) YAy + pzk — u¥)
24 = max(10°1 & uk /ol — A/ p, 0)sign(6** + u¥/p)
o Ukt = uk 4 p(FF1 — k1)

@ And many others.
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Example: Crime Rate Data

city | funding hs not-hs <college college4 crime rate
1 40 74 11 31 20 478
2 32 72 11 43 18 494
3 57 70 18 16 16 643
4 31 71 11 25 19 341
5 67 72 9 29 24 773
50 66 67 26 18 16 940

https://web.stanford.edu/~hastie/StatLearnSparsity/data.html

Consider the following two optimizations

61(A) = argmin  J1(6) <40 - y|I? + A6,

0:(\) = argmin. J>(0) «11146 - y | + A6]%.
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https://web.stanford.edu/~hastie/StatLearnSparsity/data.html

Comparison between /-1 and /-2 norm

e Plot 61()\) and 62()) vs. A.

@ LASSO tells us which factor appears first.

@ If we are allowed to use only one feature, then % high is the one.
e Two features, then % high + funding.

14 14
funding funding
——— % high ——— % high
1211 % no high 1211 % no high
% college % college
10} = % graduate 10}| = % graduate

feature attribute
o

feature attribute
o

—‘20,2 1 ‘o° 162 1;)‘ u‘)" 10° _12 0 1 5" 1;)2 1 2)‘ 12)5 10°
lambda lambda
Ridge LASSO
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Pros and Cons

Ridge Regression

(+) Analytic solution, because the loss function is differentiable.
+) As such, a lot of well-established theoretical guarantees.
+) Algorithm is simple, just one equation.

Limited interpretability, since the solution is usually a dense vector.

(
(
(
(

~— ~—

Does not reflect the nature of certain problems, e.g., sparsity.

LASSO
@ (+) Proven applications in many domains, e.g., images and speeches.

@ (+) Echoes particularly well in modern deep learning where parameter
space is huge.

(4) Increasing number of theoretical guarantees for special matrices.

(4) Algorithms are available.

(-) No closed-form solution. Algorithms are iterative.
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Reading List

Ridge Regression
@ Stanford CS 229 Note on Linear Algebra
http://cs229.stanford.edu/section/cs229-1linalg.pdf
@ Lecture Note on Ridge Regression
https://arxiv.org/pdf/1509.09169.pdf
@ Theobald, C. M. (1974). Generalizations of mean square error applied
to ridge regression. Journal of the Royal Statistical Society. Series B
(Methodological), 36(1), 103-106.
LASSO Regression
e ECE/STAT 695 (Lecture 1)
https://engineering.purdue.edu/ChanGroup/ECE695.html
@ Statistical Learning with Sparsity (Chapter 2)
https://web.stanford.edu/~hastie/StatLearnSparsity/
o Elements of Statistical Learning (Chapter 3.4)

https://web.stanford.edu/~hastie/ElemStatLearn/
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Appendix
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Treating Linear Regression as Maximum-Likelihood

@ Minimizing J(0) is the same as solving a maximum-likelihood:

6* = argmin |48 —y|?
0

N
= argmin (07 x" — y")?

N
= argmax exp {— Z(OTX” - y")2}
o n=1
N T 2
1 (@' x"—y™
= argmax expy ————5——
o e -5}

@ Assume noise is i.i.d. Gaussian with variance o2.

@ See Tutorial on Probability
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Likelihood Function

o Likelihood:
px|e(x|6) = probability density of x given 6

@ Prior:
pe(6) = probability density of 6

o Posterior:
pe|x(0]x) = probability density of 6 given x
@ Bayes Theorem

pe|x(0]x) = px|eiji'(9)2f)’9(9)

__ Pxje(x|8)pe(6)
| pxje(x|0)pa(6)d0
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Treating Linear Regression as Maximum-a-Posteriori

@ We can modify the MLE by adding a prior

pe(8) = eXP{ — p(ﬁe)}

@ Then, we have a MAP problem:

" N 1 07' n__ .,n\2 0
0 :arg;}nax H{Wexp{_(xzozy)}}exp{_p(ﬂ)}

n=1
1 < 1
— . - eT n__ . m2 (0
argmin 5 ;( x" =y + 50(0)
= argmin ||A8 — y||> + \p(8), where  \ = 25°/3.
0

@ p(-) is called regularization function.
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Ridge Regression interpreted via a Gaussian prior

@ One option: Choose a Gaussian prior

@ Then, the MAP becomes

N T.,n n\2 2
11 1 (@' x"—y") { Hm\}
0* = argmax ex —_———— ex —
ge n=1 { Y 2mo? ’ { 20 }} ’ 20(2)

N
= argmin (OTx" — y")2 H0H2
\/
=\

= argmin A9 — y|* + A[6]?
[

@ This is exactly the ridge regression.
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Proof of the Shrinkage Operator
Let J(0) = 2(0 — y)? + A|0)].

0= %J(G) — (8- y) + Asign(6).

e If 8 >0, then 6 = y — \. But since 6 > 0, it holds that y > A > 0.
e If # <0, then 8 =y + \. But since 8 <0, it holds that y < —A < 0.
e If =0, then 8 = y. But since # = 0, it holds that y = 0.
@ So the solution is
Yy — A if y>0,
=20 if y=0,
y+A if y<O0.

This is the same as

6 = max(ly| — A, 0)sign(y).
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