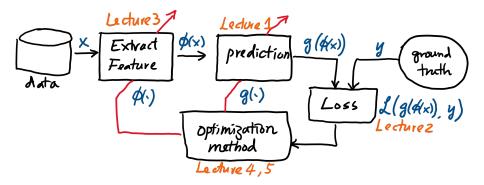
ECE595 / STAT598: Machine Learning I Lecture 02: Regularized Linear Regression

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline



Outline

Mathematical Background

- Lecture 1: Linear regression: A basic data analytic tool
- Lecture 2: Regularization: Constraining the solution
- Lecture 3: Kernel Method: Enabling nonlinearity

Lecture 2: Regularization

- Ridge Regression
 - Regularization
 - Parameter
- LASSO Regression
 - Sparsity
 - Algorithm
 - Application

Ridge Regression

- Applies to both over and under determined systems.
- The loss function of the ridge regression is defined as

$$J(\boldsymbol{\theta}) \stackrel{\mathsf{def}}{=} \|\boldsymbol{A}\boldsymbol{\theta} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{\theta}\|^2$$

- $\| \boldsymbol{\theta} \|^2$ Regularization function
- λ : Regularization parameter
- The solution of the ridge regression is

$$abla_{oldsymbol{ heta}} J(oldsymbol{ heta}) =
abla_{oldsymbol{ heta}} \Big\{ \|oldsymbol{A}oldsymbol{ heta} - oldsymbol{y}\|^2 + \lambda \|oldsymbol{ heta}\|^2 \Big\} \\ = 2oldsymbol{A}^T (oldsymbol{A}oldsymbol{ heta} - oldsymbol{y}) + 2\lambda oldsymbol{ heta} = oldsymbol{0},$$

which gives us $\widehat{\boldsymbol{\theta}} = (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I})^{-1} \boldsymbol{A}^T \boldsymbol{y}.$

• Probabilistic interpretation: See Appendix.

Change in Eigen-values

Ridge regression improves the eigen-values:

• Eigen-decomposition of $\mathbf{A}^T \mathbf{A}$:

$$\boldsymbol{A}^{T}\boldsymbol{A} = \boldsymbol{U}\boldsymbol{S}\boldsymbol{U}^{T} \succeq \boldsymbol{0},$$

where $\boldsymbol{U} = \text{eigen-vector matrix}$, $\boldsymbol{S} = \text{eigen-value matrix}$.

• S is a diagonal matrix with non-negative entries:

$$\boldsymbol{S} = \begin{bmatrix} \boldsymbol{*} & & & \\ & \boldsymbol{*} & & \\ & & \boldsymbol{*} & & \\ & & & 0 \end{bmatrix}$$

See Tutorial on "Linear Algebra".

• Therefore, $\boldsymbol{S} + \lambda \boldsymbol{I}$ is always positive for any $\lambda > 0$, implying that

$$\boldsymbol{A}^{T}\boldsymbol{A} + \lambda \boldsymbol{I} = \boldsymbol{U}(\boldsymbol{S} + \lambda \boldsymbol{I})\boldsymbol{U}^{T} \succ \boldsymbol{0}.$$

Regularization Parameter λ

• The solution of the ridge regression is

$$\widehat{\boldsymbol{\theta}} = (\boldsymbol{A}^{T}\boldsymbol{A} + \lambda\boldsymbol{I})^{-1}\boldsymbol{A}^{T}\boldsymbol{y}$$

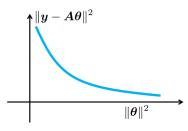
• If $\lambda \to 0$, then $\widehat{\boldsymbol{\theta}} = (\boldsymbol{A}^{T}\boldsymbol{A})^{-1}\boldsymbol{A}^{T}\boldsymbol{y}$:

$$J(\boldsymbol{\theta}) = \|\boldsymbol{A}\boldsymbol{\theta} - \boldsymbol{y}\|^{2} + \lambda \|\boldsymbol{\theta}\|^{2}.$$

• If $\lambda \to \infty$, then $\widehat{\boldsymbol{\theta}} = \mathbf{0}$:

$$J(\boldsymbol{\theta}) = \|\boldsymbol{A}\boldsymbol{\theta} - \boldsymbol{y}\|^{2} + \lambda \|\boldsymbol{\theta}\|^{2}.$$

• There is a trade-off curve between the two terms by varying λ .



Comparing Vanilla and Ridge

Suppose $y = A\theta^* + e$ for some ground truth θ^* and noise vector e. Then, the **vanilla linear regression** will give us

$$\widehat{\theta} = (\boldsymbol{A}^{T}\boldsymbol{A})^{-1}\boldsymbol{A}^{T}\boldsymbol{y}$$
$$= (\boldsymbol{A}^{T}\boldsymbol{A})^{-1}\boldsymbol{A}^{T}(\boldsymbol{A}\boldsymbol{\theta}^{*} + \boldsymbol{e})$$
$$= \boldsymbol{\theta}^{*} + (\boldsymbol{A}^{T}\boldsymbol{A})^{-1}\boldsymbol{A}^{T}\boldsymbol{e}$$

If ${\pmb e}$ has zero mean and variance $\sigma^2,$ we can show that

$$\mathbb{E}[\widehat{\boldsymbol{\theta}}] = \boldsymbol{\theta}^*,$$
$$\operatorname{Cov}[\widehat{\boldsymbol{\theta}}] = \sigma^2 (\boldsymbol{A}^T \boldsymbol{A})^{-1}.$$

Therefore, the regression coefficients are unbiased but have large variance. We can further show that the mean-squared error (MSE) is

$$\mathsf{MSE}(\widehat{\theta}) = \sigma^2 \mathsf{Tr}\{(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\}.$$

Comparing Vanilla and Ridge

On the other hand, if we use ridge regression, then

$$\widehat{\theta}(\lambda) = (\mathbf{A}^{\mathsf{T}}\mathbf{A} + \lambda \mathbf{I})^{-1}\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{\theta}^* + \mathbf{e}) = (\mathbf{A}^{\mathsf{T}}\mathbf{A} + \lambda \mathbf{I})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{\theta}^* + (\mathbf{A}^{\mathsf{T}}\mathbf{A} + \lambda \mathbf{I})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{e}.$$

Again, if e is zero mean and has a variance σ^2 , then (See Reading List)

$$\mathbb{E}[\widehat{\theta}(\lambda)] = (\mathbf{A}^{T}\mathbf{A} + \lambda \mathbf{I})^{-1}\mathbf{A}^{T}\mathbf{A}\theta^{*}$$

$$\operatorname{Cov}[\widehat{\theta}(\lambda)] = \sigma^{2}(\mathbf{A}^{T}\mathbf{A} + \lambda \mathbf{I})^{-1}\mathbf{A}^{T}\mathbf{A}(\mathbf{A}^{T}\mathbf{A} + \lambda \mathbf{I})^{-T}$$

$$\operatorname{MSE}[\widehat{\theta}(\lambda)] = \sigma^{2}\operatorname{Tr}\{\mathbf{W}_{\lambda}(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{W}_{\lambda}^{T}\} + \theta^{*T}(\mathbf{W}_{\lambda} - \mathbf{I})^{T}(\mathbf{W}_{\lambda} - \mathbf{I})\theta^{*},$$

where $\boldsymbol{W}_{\lambda} \stackrel{\text{def}}{=} (\boldsymbol{A}^{T} \boldsymbol{A} + \lambda \boldsymbol{I})^{-1} \boldsymbol{A}^{T} \boldsymbol{A}$. In particular, we can show that

Theorem (Theobald 1974)

For $\lambda < 2\sigma^2 \| \theta^* \|^{-2}$, it holds that $MSE(\widehat{\theta}(\lambda)) < MSE(\widehat{\theta})$.

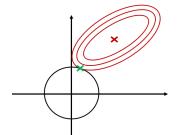
Geometric Interpretation

The following three problems are equivalent

$$\begin{array}{lll} \boldsymbol{\theta}_{\lambda}^{*} &= \mathop{\mathrm{argmin}}_{\boldsymbol{\theta}} & \|\boldsymbol{A}\boldsymbol{\theta} - \boldsymbol{y}\|^{2} + \lambda \|\boldsymbol{\theta}\|^{2} \\ \boldsymbol{\theta}_{\alpha}^{*} &= \mathop{\mathrm{argmin}}_{\boldsymbol{\theta}} & \|\boldsymbol{A}\boldsymbol{\theta} - \boldsymbol{y}\|^{2} & \text{subject to } \|\boldsymbol{\theta}\|^{2} \leq \alpha \\ \boldsymbol{\theta}_{\epsilon}^{*} &= \mathop{\mathrm{argmin}}_{\boldsymbol{\theta}} & \|\boldsymbol{\theta}\|^{2} & \text{subject to } \|\boldsymbol{A}\boldsymbol{\theta} - \boldsymbol{y}\|^{2} \leq \epsilon \end{array}$$

under an appropriately chosen tuple $(\lambda, \alpha, \epsilon)$.

- Larger $\lambda =$ Smaller α
- θ^* 's magnitude is tighter bounded



Choosing λ

Because the following three problems are equivalent

$$\begin{array}{lll} \boldsymbol{\theta}_{\lambda}^{*} &= \operatorname*{argmin}_{\boldsymbol{\theta}} & \|\boldsymbol{A}\boldsymbol{\theta} - \boldsymbol{y}\|^{2} + \lambda \|\boldsymbol{\theta}\|^{2} \\ \boldsymbol{\theta}_{\alpha}^{*} &= \operatorname*{argmin}_{\boldsymbol{\theta}} & \|\boldsymbol{A}\boldsymbol{\theta} - \boldsymbol{y}\|^{2} & \text{subject to} & \|\boldsymbol{\theta}\|^{2} \leq \alpha \\ \boldsymbol{\theta}_{\epsilon}^{*} &= \operatorname*{argmin}_{\boldsymbol{\theta}} & \|\boldsymbol{\theta}\|^{2} & \text{subject to} & \|\boldsymbol{A}\boldsymbol{\theta} - \boldsymbol{y}\|^{2} \leq \epsilon \end{array}$$

- We can seek λ that satisfies $\|\boldsymbol{\theta}\|^2 \leq \alpha$:
 - You know how much $\|\boldsymbol{\theta}\|^2$ would be appropriate.
- We can seek λ that satisfies $\| {\pmb A} {\pmb \theta} {\pmb y} \|^2 \leq \epsilon$
 - You know how much $\|\boldsymbol{A}\boldsymbol{\theta}-\boldsymbol{y}\|^2$ would be tolerable.
- Other approaches:
 - Akaike's information criterion: Balance model fit with complexity
 - Cross validation: Leave one out
 - $\bullet\,$ Generalized cross-validation: Cross-validation + weight

Outline

Mathematical Background

- Lecture 1: Linear regression: A basic data analytic tool
- Lecture 2: Regularization: Constraining the solution
- Lecture 3: Kernel Method: Enabling nonlinearity

Lecture 2: Regularization

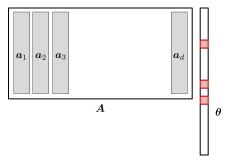
- Ridge Regression
 - Regularization
 - Parameter
- LASSO Regression
 - Sparsity
 - Algorithm
 - Application

LASSO Regression

- An alternative to the Ridge Regression is Least Absolute Shrinkage and Selection Operator (LASSO)
- The loss function is

$$J(\boldsymbol{ heta}) = \|\boldsymbol{A}\boldsymbol{ heta} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{ heta}\|_1$$

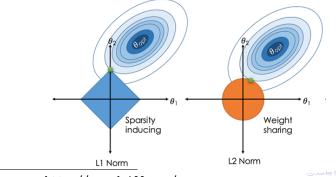
Intuition behind LASSO: Many features are not active.



Interpreting the LASSO Solution

$$\widehat{oldsymbol{ heta}} = \mathop{\mathrm{argmin}}\limits_{oldsymbol{ heta}} \|oldsymbol{A}oldsymbol{ heta} - oldsymbol{y}\|^2 + \lambda \|oldsymbol{ heta}\|_1$$

- ||θ||₁ promotes sparsity of θ. It is the nearest convex approximation to ||θ||₀, which is the number of non-zeros.
- The difference between ℓ_2 and ℓ_1 ¹:



¹Figure source: http://www.ds100.org/

Why are Sparse Models Useful?

non-zeros = 33.51%

13.58%

- Images are sparse in transform domains, e.g., Fourier and wavelet.
- Intuition: There are more low frequency components and less high frequency components.
- Examples above: **A** is the wavelet basis matrix. θ are the wavelet coefficients.
- We can truncate the wavelet coefficients and retain a good image.
- Many image compression schemes are based on this, e.g., JPEG, JPEG2000.

LASSO for Image Reconstruction

Image inpainting via KSVD dictionary-learning ²

- y = image with missing pixels. A = a matrix storing a set of trained feature vectors (called dictionary atoms). $\theta =$ coefficients.
- minimize $\|\boldsymbol{y} \boldsymbol{A}\boldsymbol{\theta}\|^2 + \lambda \|\boldsymbol{\theta}\|_1$.
- KSVD = k-means + Singular Value Decomposition (SVD): A method to train the feature vectors that demonstrate sparse representations.

²Figure is taken from Mairal, Elad, Sapiro, IEEE T-IP 2008 https://ieeexplore.ieee.org/document/4392496

Shrinkage Operator

-

The LASSO problem can be solved using a shrinkage operator. Consider a simplified problem (with A = I)

$$egin{split} \mathcal{U}(oldsymbol{ heta}) &= rac{1}{2} \|oldsymbol{y} - oldsymbol{ heta}\|^2 + \lambda \|oldsymbol{ heta}\|_1 \ &= \sum_{j=1}^d \left\{ rac{1}{2} (y_j - heta_j)^2 + \lambda | heta_j|_1
ight\}. \end{split}$$

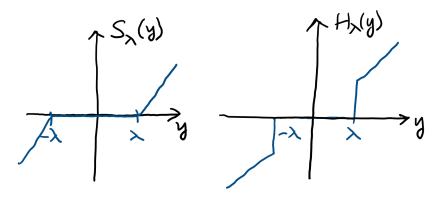
Since the loss is **separable**, the ,optimization is solved when each individual term is minimized. The individual problem

$$egin{aligned} \widehat{ heta} &= \operatorname*{argmin}_{ heta} \left\{ \dfrac{1}{2}(y- heta)^2 + \lambda | heta|
ight\} \ &= \max(|y|-\lambda,0) \mathrm{sign}(y) \ &\stackrel{\mathrm{def}}{=} \mathcal{S}_\lambda(y). \end{aligned}$$

Proof: See Appendix.

Shrinkage VS Hard Threshold

- The shrinkage operator looks as follows.
- Any number between $[-\lambda, \lambda]$ is "shrink" to zero.
- Try compare with the hard threshold operator $\mathcal{H}_{\lambda}(y) = y \cdot \mathbf{1}\{|y| \ge \lambda\}$



Algorithms to Solve LASSO Regression

In general, the LASSO problem requires iterative algorithms:

• ISTA Algorithm (Daubechies et al. 2004)

• For
$$k = 1, 2, ...$$

• $\mathbf{v}^k = \mathbf{\theta}^k - 2\gamma \mathbf{A}^T (\mathbf{A} \mathbf{\theta}^k - \mathbf{y}).$
• $\mathbf{\theta}^{k+1} = \max(|\mathbf{v}^k| - \lambda, 0) \operatorname{sign}(\mathbf{v}^k).$

• FISTA Algorithm (Beck-Teboulle 2008)

• For
$$k = 1, 2, ...$$

• $\mathbf{v}^k = \boldsymbol{\theta}^k - 2\gamma \mathbf{A}^T (\mathbf{A} \boldsymbol{\theta}^k - \mathbf{y}).$
• $\mathbf{z}^k = \max(|\mathbf{v}^k| - \lambda, 0) \operatorname{sign}(\mathbf{v}^k).$
• $\boldsymbol{\theta}^{k+1} = \alpha_k \boldsymbol{\theta}^k + (1 - \alpha_k) \mathbf{z}^k.$

• ADMM Algorithm (Eckstein-Bertsekas 1992, Boyd et al. 2011)

• For
$$k = 1, 2, ...$$

• $\theta^{k+1} = (\mathbf{A}^T \mathbf{A} + \rho \mathbf{I})^{-1} (\mathbf{A}^T \mathbf{y} + \rho \mathbf{z}^k - \mathbf{u}^k)$
• $\mathbf{z}^{k+1} = \max(|\theta^{k+1} + \mathbf{u}^k/\rho| - \lambda/\rho, 0) \operatorname{sign}(\theta^{k+1} + \mathbf{u}^k/\rho)$
• $\mathbf{u}^{k+1} = \mathbf{u}^k + \rho(\theta^{k+1} - \mathbf{z}^{k+1})$

• And many others.

Example: Crime Rate Data

city	funding	hs	not-hs	college	college4	crime rate
1	40	74	11	31	20	478
2	32	72	11	43	18	494
3	57	70	18	16	16	643
4	31	71	11	25	19	341
5	67	72	9	29	24	773
÷	:	÷	•	•		
50	66	67	26	18	16	940

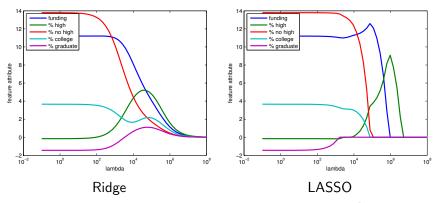
https://web.stanford.edu/~hastie/StatLearnSparsity/data.html

Consider the following two optimizations

$$\widehat{\boldsymbol{\theta}}_1(\lambda) = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \quad J_1(\boldsymbol{\theta}) \stackrel{\text{def}}{=} \|\boldsymbol{A}\boldsymbol{\theta} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{\theta}\|_1,$$
$$\widehat{\boldsymbol{\theta}}_2(\lambda) = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \quad J_2(\boldsymbol{\theta}) \stackrel{\text{def}}{=} \|\boldsymbol{A}\boldsymbol{\theta} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{\theta}\|^2.$$

Comparison between l-1 and l-2 norm

- Plot $\widehat{\theta}_1(\lambda)$ and $\widehat{\theta}_2(\lambda)$ vs. λ .
- LASSO tells us which factor appears first.
- If we are allowed to use only one feature, then % high is the one.
- Two features, then % high + funding.



Pros and Cons

Ridge Regression

- (+) Analytic solution, because the loss function is differentiable.
- (+) As such, a lot of well-established theoretical guarantees.
- (+) Algorithm is simple, just one equation.
- (-) Limited interpretability, since the solution is usually a dense vector.
- (-) Does not reflect the nature of certain problems, e.g., sparsity.

LASSO

- \bullet (+) Proven applications in many domains, e.g., images and speeches.
- (+) Echoes particularly well in modern deep learning where parameter space is huge.
- (+) Increasing number of theoretical guarantees for special matrices.
- (+) Algorithms are available.
- (-) No closed-form solution. Algorithms are iterative.

Reading List

Ridge Regression

- Stanford CS 229 Note on Linear Algebra http://cs229.stanford.edu/section/cs229-linalg.pdf
- Lecture Note on Ridge Regression https://arxiv.org/pdf/1509.09169.pdf
- Theobald, C. M. (1974). Generalizations of mean square error applied to ridge regression. Journal of the Royal Statistical Society. Series B (Methodological), 36(1), 103-106.

LASSO Regression

• ECE/STAT 695 (Lecture 1)

https://engineering.purdue.edu/ChanGroup/ECE695.html

- Statistical Learning with Sparsity (Chapter 2) https://web.stanford.edu/~hastie/StatLearnSparsity/
- Elements of Statistical Learning (Chapter 3.4) https://web.stanford.edu/~hastie/ElemStatLearn/

Appendix

Treating Linear Regression as Maximum-Likelihood

• Minimizing $J(\theta)$ is the same as solving a maximum-likelihood:

$$\begin{aligned} \boldsymbol{\theta}^* &= \operatorname*{argmin}_{\boldsymbol{\theta}} \quad \|\boldsymbol{A}\boldsymbol{\theta} - \boldsymbol{y}\|^2 \\ &= \operatorname*{argmin}_{\boldsymbol{\theta}} \quad \sum_{n=1}^{N} (\boldsymbol{\theta}^T \boldsymbol{x}^n - \boldsymbol{y}^n)^2 \\ &= \operatorname*{argmax}_{\boldsymbol{\theta}} \quad \exp\left\{-\sum_{n=1}^{N} (\boldsymbol{\theta}^T \boldsymbol{x}^n - \boldsymbol{y}^n)^2\right\} \\ &= \operatorname*{argmax}_{\boldsymbol{\theta}} \quad \prod_{n=1}^{N} \left\{\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(\boldsymbol{\theta}^T \boldsymbol{x}^n - \boldsymbol{y}^n)^2}{2\sigma^2}\right\}\right\} \end{aligned}$$

- Assume noise is i.i.d. Gaussian with variance σ^2 .
- See Tutorial on Probability

Likelihood Function

Likelihood:

 $p_{\boldsymbol{X}|\boldsymbol{\Theta}}(\boldsymbol{x}|\boldsymbol{ heta}) =$ probability density of \boldsymbol{x} given $\boldsymbol{ heta}$

• Prior:

$$p_{\Theta}(heta) =$$
 probability density of $heta$

Posterior:

 $p_{\Theta|X}(heta|x) = ext{probability density of } heta ext{ given } x$

Bayes Theorem

$$p_{\Theta|X}(\theta|x) = \frac{p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)}{p_{X}(x)}$$
$$= \frac{p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)}{\int p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)d\theta}$$

Treating Linear Regression as Maximum-a-Posteriori

• We can modify the MLE by adding a prior

$$p_{\Theta}(\theta) = \exp\left\{-rac{
ho(heta)}{eta}
ight\}.$$

• Then, we have a MAP problem:

$$\begin{aligned} \boldsymbol{\theta}^* &= \operatorname*{argmax}_{\boldsymbol{\theta}} \quad \prod_{n=1}^{N} \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{(\boldsymbol{\theta}^T \boldsymbol{x}^n - \boldsymbol{y}^n)^2}{2\sigma^2} \right\} \right\} \exp\left\{ -\frac{\rho(\boldsymbol{\theta})}{\beta} \right\} \\ &= \operatorname*{argmin}_{\boldsymbol{\theta}} \quad \frac{1}{2\sigma^2} \sum_{n=1}^{N} (\boldsymbol{\theta}^T \boldsymbol{x}^n - \boldsymbol{y}^n)^2 + \frac{1}{\beta} \rho(\boldsymbol{\theta}) \\ &= \operatorname*{argmin}_{\boldsymbol{\theta}} \quad \|\boldsymbol{A}\boldsymbol{\theta} - \boldsymbol{y}\|^2 + \lambda \rho(\boldsymbol{\theta}), \quad \text{where} \quad \lambda = 2\sigma^2/\beta. \end{aligned}$$

• $\rho(\cdot)$ is called **regularization function**.

Ridge Regression interpreted via a Gaussian prior

• One option: Choose a Gaussian prior

$$\exp\left\{-\frac{\rho(\boldsymbol{\theta})}{\beta}\right\} = \exp\left\{-\frac{\|\boldsymbol{\theta}\|^2}{2\sigma_0^2}\right\}$$

• Then, the MAP becomes

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \prod_{n=1}^{N} \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{(\theta^T \mathbf{x}^n - y^n)^2}{2\sigma^2} \right\} \right\} \exp\left\{ -\frac{\|\theta\|^2}{2\sigma_0^2} \right\}$$
$$= \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} (\theta^T \mathbf{x}^n - y^n)^2 + \underbrace{\frac{\sigma^2}{\sigma_0^2}}_{=\lambda} \|\theta\|^2$$
$$= \underset{\theta}{\operatorname{argmin}} \|\mathbf{A}\theta - \mathbf{y}\|^2 + \lambda \|\theta\|^2$$

• This is exactly the ridge regression.

Proof of the Shrinkage Operator

Let
$$J(\theta) = \frac{1}{2}(\theta - y)^2 + \lambda |\theta|$$
.

$$0 = \frac{d}{d\theta}J(\theta) = (\theta - y) + \lambda \text{sign}(\theta).$$

• If $\theta > 0$, then $\theta = y - \lambda$. But since $\theta > 0$, it holds that $y > \lambda > 0$.

• If $\theta < 0$, then $\theta = y + \lambda$. But since $\theta < 0$, it holds that $y < -\lambda < 0$.

• If $\theta = 0$, then $\theta = y$. But since $\theta = 0$, it holds that y = 0.

• So the solution is

$$\widehat{ heta} = egin{cases} y-\lambda, & ext{ if } y>0, \ 0 & ext{ if } y=0, \ y+\lambda, & ext{ if } y<0. \end{cases}$$

This is the same as

$$\widehat{\theta} = \max(|y| - \lambda, 0) \operatorname{sign}(y).$$