ECE595 / STAT598: Machine Learning I Lecture 24 Probably Approximately Correct

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline

- Lecture 22 Is Learning Feasible?
- Lecture 23 Probability Inequality
- Lecture 24 Probably Approximate Correct

Today's Lecture:

- Two ingredients of generalization
 - Training and testing error
 - Hoeffding inequality
 - Interpreting the bound
- PAC Framework
 - PAC learnable
 - Confidence and accuracy
 - Example

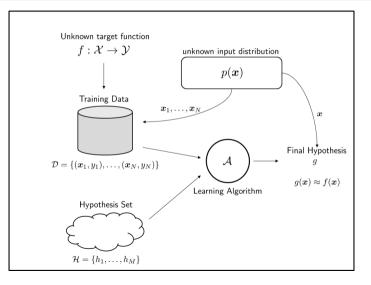
Is Learning Feasible?

- Learning can be **infeasible**.
- Recall the example below.
- Given the training samples, there is no way you can learn and predict.
- You know what you know, and you don't know what you don't know.

x _n			y _n	g	f_1	f_2	f_3	f_4
0	0	0	0	0	0	0	0	0
0	0	1	•	•	•	•	•	•
0	1	0	•	•	•	•	•	٠
0	1	1	0	0	0	0	0	0
1	0	0	•	•	•	•	•	•
1	0	1	0	0	0	0	0	0
1	1	0		∘/∙	0	•	0	•
1	1	1		∘/∙	0	0	٠	•

C Stanley Chan 2020. All Rights Reserved

The Power of Probability



CStanley Chan 2020. All Rights Reserved

In-Sample Error

- Let x_n be a *training* sample
- *h*: Your hypothesis
- f: The unknown target function
- If $h(\mathbf{x}_n) = f(\mathbf{x}_n)$, then say training sample \mathbf{x}_n is correctly classified.
- This will give you the in-sample error

Definition (In-sample Error / Training Error)

Consider a training set $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and a target function f. The **in-sample error** (or the training error) of a hypothesis function $h \in \mathcal{H}$ is the empirical average of $\{h(\mathbf{x}_n) \neq f(\mathbf{x}_n)\}$:

$$E_{\rm in}(h) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} \llbracket h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n) \rrbracket, \tag{1}$$

where $\llbracket \cdot \rrbracket = 1$ if the statement inside the bracket is true, and = 0 if the statement is false.

Out-Sample Error

- Let \mathbf{x} be a *testing* sample drawn from $p(\mathbf{x})$
- *h*: Your hypothesis
- f: The unknown target function
- If $h(\mathbf{x}) = f(\mathbf{x})$, then say testing sample \mathbf{x} is correctly classified.
- Since x ~ p(x), you need to compute the probability of error, called the out-sample error

Definition (Out-sample Error / Testing Error)

Consider an input space \mathcal{X} containing elements \mathbf{x} drawn from a distribution $p_{\mathbf{X}}(\mathbf{x})$, and a target function f. The **out-sample error** (or the testing error) of a hypothesis function $h \in \mathcal{H}$ is

$$E_{\text{out}}(h) \stackrel{\text{def}}{=} \mathbb{P}[h(\mathbf{x}) \neq f(\mathbf{x})], \qquad (2)$$

where $\mathbb{P}[\cdot]$ measures the probability of the statement based on the distribution $p_{\mathbf{X}}(\mathbf{x})$.

Understanding the Errors

Let us take a closer look at these two error:

$$egin{aligned} & E_{ ext{in}}(h) \stackrel{ ext{def}}{=} rac{1}{N} \sum_{n=1}^N \llbracket h(oldsymbol{x}_n)
ot
ot f(oldsymbol{x}_n)
rbrace \ & E_{ ext{out}}(h) \stackrel{ ext{def}}{=} \mathbb{P}[h(oldsymbol{x})
ot
ot f(oldsymbol{x})], \end{aligned}$$

- Both error are functions of the hypothesis h
- h is determined by the learning algorithm $\mathcal A$
- For every $h \in \mathcal{H}$, there is a different $E_{\mathrm{in}}(h)$ and $E_{\mathrm{out}}(h)$
- The training samples x_n are drawn from p(x)
- The testing samples x are also drawn from p(x)
- Therefore, $\mathbb{P}[\cdot]$ in $E_{\mathrm{out}}(h)$ is evaluated over $\pmb{x} \sim p(\pmb{x})$

In-sample VS Out-sample

In-Sample Error

$$E_{\mathrm{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} \llbracket h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n) \rrbracket$$

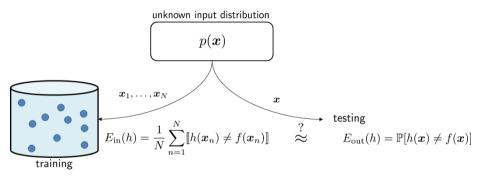
Out-Sample Error

$$E_{\text{out}}(h) = \mathbb{P}[h(\mathbf{x}) \neq f(\mathbf{x})]$$

= $\underbrace{\llbracket h(\mathbf{x}_n) \neq f(\mathbf{x}_n) \rrbracket}_{=1} \mathbb{P}\left\{h(\mathbf{x}_n) \neq f(\mathbf{x}_n)\right\}$
+ $\underbrace{\llbracket h(\mathbf{x}_n) = f(\mathbf{x}_n) \rrbracket}_{=0} \left(1 - \mathbb{P}\left\{h(\mathbf{x}_n) \neq f(\mathbf{x}_n)\right\}\right)$
= $\mathbb{E}\left\{\llbracket h(\mathbf{x}_n) \neq f(\mathbf{x}_n) \rrbracket\right\}$

© Stanley Chan 2020. All Rights Reserved

The Role of p(x)



- Learning is feasible if $\boldsymbol{x} \sim p(\boldsymbol{x})$
- p(x) says: Training and testing are related
- If training and testing are unrelated, then hopeless the deterministic example shown previously
- If you draw training and testing samples with different bias, then you will suffer

A Mathematical Tool

Beside in-sample and out-sample error, we also need a mathematical tool.

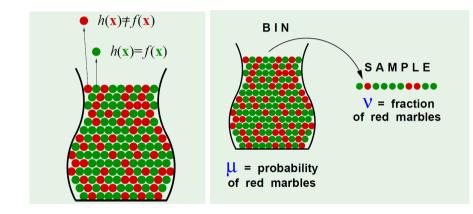
Theorem (Hoeffding Inequality)

Let X_1, \ldots, X_N be random variables with $0 \le X_n \le 1$, then

 $\mathbb{P}\left[|\nu-\mu| > \epsilon\right] \le 2e^{-2\epsilon^2 N}$

- We will use Hoeffding inequality to analyze the generalization error
- There are many other inequalities that can serve the same purpose
- Hoeffding requires $0 \le X_n \le 1$
- $\nu = \frac{1}{N} \sum_{n=1}^{N} X_n$ is the empirical average
- \bullet Probability of how close ν compared to μ
- $\epsilon =$ tolerance level
- *N* = number of samples

Applying Hoeffinding Inequality to Our Problem



X_n = [[h(x_n) ≠ f(x_n)]] = one sample training error = either 0 or 1
 ν = E_{out} = ¹/_N Σ^N_{n=1} X_n = training error
 μ = E_{in} = testing error

Applying Hoeffinding Inequality to Our Problem

• Therefore, the inequality can be stated as

$$\mathbb{P}\left[|\mathcal{E}_{\mathrm{in}}(h) - \mathcal{E}_{\mathrm{out}}(h)| > \epsilon
ight] \leq 2e^{-2\epsilon^2 N}.$$

- *N* = number of training samples
- $\epsilon = \text{tolerance level}$
- Hoeffding is applicable because $\llbracket h(\mathbf{x}) \neq f(\mathbf{x}) \rrbracket$ is either 1 or 0.
- If you want to be more explicit, then

$$\mathbb{P}_{\boldsymbol{x}_n \sim \mathcal{D}}\left[\left|\frac{1}{N}\sum_{n=1}^{N} \llbracket h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n) \rrbracket - E_{\mathrm{out}}(h)\right| > \epsilon\right] \leq 2e^{-2\epsilon^2 N}.$$

• The probability is evaluated with respect to \boldsymbol{x}_n drawn from the dataset \mathcal{D}

Interpreting the Bound

• Let us look at the bound again:

$$\mathbb{P}\left[|E_{\mathrm{in}}(h) - E_{\mathrm{out}}(h)| > \epsilon\right] \le 2e^{-2\epsilon^2 N}.$$

- Message 1: You can bound $E_{out}(h)$ using $E_{in}(h)$.
- $E_{in}(h)$: You know. $E_{out}(h)$: You don't know, but you want to know.
- They are close if N is large.
- Message 2: The right hand side is independent of h and p(x)
- So it is a universal upper bound
- Works for any \mathcal{A} , any \mathcal{H} , any f, and any $p(\mathbf{x})$

Outline

- Lecture 22 Is Learning Feasible?
- Lecture 23 Probability Inequality
- Lecture 24 Probably Approximate Correct

Today's Lecture:

- Two ingredients of generalization
 - Training and testing error
 - Hoeffding inequality
 - Interpreting the bound

• PAC Framework

- PAC learnable
- Confidence and accuracy
- Example

Accuracy and Confidence

Recall the equation

$$\mathbb{P}ig[\left|\mathcal{E}_{ ext{in}}(h)-\mathcal{E}_{ ext{out}}(h)
ight|>\epsilonig]\leq 2e^{-2\epsilon^2N}$$

•
$$\delta = 2e^{-2\epsilon^2 N}$$
. confidence: $1 - \delta$.
• $\epsilon = \sqrt{\frac{1}{2N} \log \frac{2}{\delta}}$. accuracy: $1 - \epsilon$.

• Then the equation becomes

$$\mathbb{P}\big[\left|\mathcal{E}_{ ext{in}}(h) - \mathcal{E}_{ ext{out}}(h)
ight| > \epsilonig] \leq \delta$$

• which is equivalent to

$$\mathbb{P}ig[\left| \mathcal{E}_{ ext{in}}(h) - \mathcal{E}_{ ext{out}}(h)
ight| \leq \epsilon ig] > 1 - \delta$$

Probably Approximately Correct

• **Probably**: Quantify error using probability:

$$\mathbb{P}\big[\left|\mathcal{E}_{ ext{in}}(h) - \mathcal{E}_{ ext{out}}(h)
ight| \leq \epsilonig] \geq 1 - \delta$$

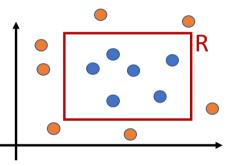
• Approximately Correct: In-sample error is an approximation of the out-sample error:

$$\mathbb{P}\left[|\mathcal{E}_{ ext{in}}(h) - \mathcal{E}_{ ext{out}}(h)| \leq \epsilon
ight] \geq 1 - \delta$$

- If you can find an algorithm A such that for any ϵ and δ , there exists an N which can make the above inequality holds, then we say that the target function is **PAC-learnable**.
- The following example is taken from Mohri et al. Foundation of Machine Learning, Example 2.4.

Example: Rectangle Classifier

Consider a set of 2D data points.



- The target function is a rectangle ${\cal R}$
- Inside R: blue. Outside R: orange. Data is intrinsically separable.
- Goal: Pick a hypothesis rectangle R' using the available data point
- Question: Is this problem PAC learnable?

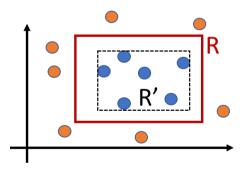
- This question is very general.
- It asks about the nature of the problem.
- We want to show that this problem is indeed PAC learnable.
- To do so, we need to propose an **algorithm** A which takes the training data and returns an R', such that for any $\epsilon > 0$ and $\delta > 0$, there exists an N (which is a function of ϵ and δ) with

$$\mathbb{P}[|E_{\rm in}(R') - E_{\rm out}(R')| > \epsilon] \le \delta.$$

• If we find such algorithm, then the problem is PAC learnable.

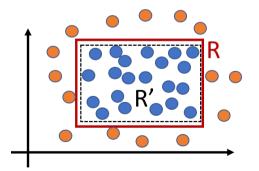
Proposed Algorithm

• A: Give me the data point points, find the tightest rectangle that covers the blue circles.



Intuition

- As N grows, we can find a R' which is getting closer and closer to R.
- So for any ε > 0 and δ > 0, it seems possible that as long as N is large enough we will be able to make training error close to testing error.
- See Appendix for proof.



- Not all problems are learnable.
- Those that are learnable require training and testing samples are correlated.
- Then Hoeffding inequality applies

$$\mathbb{P}[|E_{\text{out}}(R') - E_{\text{in}}(R')| > \epsilon] \le \delta.$$

- For any accuracy ϵ and any confidence δ , if you can find an algorithm \mathcal{A} such that as long as N is large enough the above inequality can be proved, then the target function is PAC learnable.
- Next time: Look at the hypothesis set \mathcal{H} .

Reading List

- Yasar Abu-Mustafa, Learning from Data, Chapter 1.3, 2.1.
- Mehryar Mohri, Foundations of Machine Learning, Chapter 2.1.
- Martin Wainwright, High Dimensional Statistics, Cambridge University Press 2019. (Chapter 2)
- CMU Note https:

//www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture28-pac.pdf

- Iowa State Note http://web.cs.iastate.edu/~honavar/pac.pdf
- Princeton Note https://www.cs.princeton.edu/courses/archive/spring08/ cos511/scribe_notes/0211.pdf
- Stanford Note http://cs229.stanford.edu/notes/cs229-notes4.pdf

Appendix

How to Prove PAC for the Example?

- First, realize that by the construction of the algorithm, $E_{in}(R') = 0$.
- \bullet No training error, because ${\cal A}$ ensures that all blue circles are inside.
- So the probability inequality is simplified from

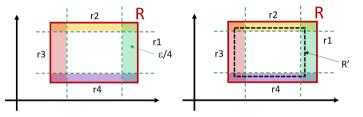
$$\mathbb{P}[|\underline{E}_{in}(\mathcal{R}') - \underline{E}_{out}(\mathcal{R}')| > \epsilon] \leq \delta.$$

to (using a different δ):

 $\mathbb{P}[E_{\mathsf{out}}(R') > \epsilon] \leq \delta.$

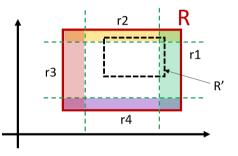
• So just need to evaluate $\mathbb{P}[E_{out}(R') > \epsilon]$.

Geometric Arguments



- Suppose you give me $\epsilon > 0$. Let us create 4 segments r_1 , r_2 , r_3 , r_4 .
- area $(r_i) > \frac{\epsilon}{4}$.
- If R' overlaps with all the four segments, then there exists a ring such that the hypothesis R' will fail to predict.
- Since sum of areas $> \epsilon$, it then follows that $E_{out}(R') < \epsilon$. (For $E_{out}(R') > \epsilon$, the hypothesis R' cannot overlap with all four segments.)
- So to analyze E_{out}(R') > ε, we should consider the case where not all segments are overlapped.

Geometric Arguments



- P[E_{out}(R') > ε] = Probability that at least one segment does not intersect with R'
 This could mean r₁ or r₂ or r₃ or r₄.
- So

$$\mathbb{P}[E_{\text{out}}(R') > \epsilon] = \mathbb{P}\left[\bigcup_{i=1}^{4} \{R' \cap r_i = \emptyset\}\right]$$

© Stanley Chan 2020. All Rights Reserved

Bounding Out-sample Error

We can evaluate the probability as follows.

$$\mathbb{P}[E_{\text{out}}(R') > \epsilon] \leq \mathbb{P}\left[\bigcup_{i=1}^{4} \{R' \cap r_i = \emptyset\}\right]$$

$$\leq \sum_{i=1}^{4} \mathbb{P}\left[\{R' \cap r_i = \emptyset\}\right] \quad \text{union bound}$$

$$= \sum_{i=1}^{4} \mathbb{P}\left[\text{all } \mathbf{x}_n \text{ are outside } r_i\right] \quad \text{because } x_n \text{ are covered by } R'$$

$$= \sum_{i=1}^{4} (1 - \frac{\epsilon}{4})^N$$

$$= 4(1 - \frac{\epsilon}{4})^N \leq 4e^{-\frac{N\epsilon}{4}}. \quad \text{because} 1 - x < e^{-x}.$$

C Stanley Chan 2020. All Rights Reserved

PAC Learnable!

• Therefore,

$$\mathbb{P}[E_{\mathsf{out}}(\mathsf{R}') > \epsilon] \leq 4e^{-rac{N\epsilon}{4}}$$

•
$$4e^{-rac{N\epsilon}{4}} \leq \delta$$
 if and only if $N \geq rac{4}{\epsilon} \log rac{4}{\delta}$.

- So we have found an algorithm $\mathcal{A}!$
- This A ensures that for any $\epsilon > 0$ and $\delta > 0$, as long as N is larger than $\frac{4}{\epsilon} \log \frac{4}{\delta}$, then we can guarantee

$$\mathbb{P}[E_{\mathsf{out}}(R') > \epsilon] \leq \delta$$

• If you want the two sided bound, we can show that

$$\mathbb{P}[|\mathsf{E}_{\mathsf{out}}(\mathsf{R}') - \mathsf{E}_{\mathsf{in}}(\mathsf{R}')| > \epsilon] \leq 2\delta.$$

• Therefore, the problem is PAC learnable.