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What is Learning?

General Definition of Learning:

Any change in the behavior or performance brought about by the
experience or contact with the environment.

Learning in humans is an inferred process, i.e. we cannot see it
happening directly but observe the resultant changes in behavior.
Learning in ANN is a more direct process and we can capture each
learning step in a cause-effect relationship.

Designing a machine learning algorithm is based upon learning
(supervised) a relationship that transforms inputs to outputs from a set
of input-output examples drawn from Experience E.

Given a training set consisting of pairs of inputs-outputs {x(k), d(k)}Kk=1

from E.
x(k) : kth training sample (pattern) vector of dimension N × 1.
d(k) : desired output (response) for input pattern x(k) of dimension
M × 1 where typically M ≤ N .
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The problem is viewed as a task T of approximating a continuous
multi-variate mapping function d(k) = f(x(k)) by a function h(w, x(k))
as closely as possible (measured by some performance metric ρ(.) wrt E)
with w being the parameter vector.

     f(.)x(k) d(k) : Desired

ANN 
h(.)

-

o(k) : Actual

If we define a performance measure ρ(h(w, x(k)), f(x(k))), then for the
optimal parameter vector w∗,
ρ(h(w∗, x(k)), f(x(k)))) ≤ ρ(h(w, x(k)), f(x(k)))), ∀k ∈ [1,K]
where w is any other vector.
Note: Such learning rules are referred to as Performance Learning.
Examples of ρ(.) are MSE, classification error, mutual information, etc.
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1. Supervised Learning

Requires an ”external teacher”.
Teacher provides training sample pairs i.e. x(k) and d(k).
Training is based upon error learning.
Training is typically iterative.
More accurate than unsupervised ones.
Used for detection/classification, prediction/regression, and function
approximation.

x(k)
ANN 
h(.)

o(k)

(.)
Adjustment 
Mechanism

d(k)

Teacher

Environment

Issues
1 Suffer from speed-accuracy tradeoff, i.e. high speed of convergence ⇒ less

accuracy in parameter estimation.
2 Incremental learning requires old data.
3 Overtraining leads to performance degradation.
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2. Unsupervised Learning

Uses unlabeled data i.e training samples have no desired outcomes.

No external teacher i.e. based upon self-organization.

Form clusters to discover interesting features from data.

Clusters are formed based upon underlying statistical properties of the data
(unconditional density estimator vs conditional for supervised).

Simpler algorithms than those of supervised.

Used for data clustering, compression, and dimensionality reduction.

x(k) ANN 
h(.)

o(k)

Adjustment 
Mechanism

Environment

Issues
1 Requires more parameter tuning.
2 No automatic shut-off system.
3 Less accurate than supervised counterparts when used for decision-making.
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3. Reinforcement Learning
Originated in psychology with experiments on animal learning.
No unambiguous outcome as in supervised learning i.e. no explicit supervision.
Given training set {x(k), r(k)}Kk=1, where r(k) = {−1,+1} is supplied by a
“critic” (not desired signal) as a reinforcement (or appropriateness) signal.
Reward and Punishment-based actions designed to maximize the expected value
of a criterion function.
Learning should devise a sequence of actions over time to obtain large
Cumulative Reward.
Applied in web-indexing, cell-phone network routing, control theory (e.g.,
robotics, unmanned vehicles), marketing strategy selection, etc.

x(k) ANN 
h(.)

o(k)

Adjustment 
Mechanism

Environment

Critic

Primary
Reinforcement 
signal

Heuristic
Reinforcement 
signal

Action

In machine learning, environment is typically formulated as a Markov decision
process (MDP) =⇒ dynamic programming techniques.
It provides feedback to the environment in forms of actions (i.e. allows for
interaction).
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Generalized Learning Rule (Amari 1990)

Weight vector wi is updated in proportion to the input x(k) and a
learning signal r(wi(k), x(k), di(k)).

Thus, increment of wi(k) at iteration k is ∆wi(k) = µ r(wi(k), x(k), di(k)) x(k)
where µ is learning rate (or step size).

Then, the weight vector at iteration k + 1 is adjusted using

wi(k + 1) = wi(k) + ∆wi(k)

wi(0)’s are randomly initialized.

wi1

wij

win

Cell i

oi(k)x(k)

Adjustment 
Mechanism

di(k)

x(k)
μ : step size

wiN

Δwi

.

.

.

Teacher

This provides a unified representation for several learning rules that we shall cover. In
the next few lectures we cover,

(a) Performance Learning - used for classification, function approximation.
(b) Coincidence Learning - used for association (memory learning).
(c) Competitive Learning - used for clustering.
(d) Reinforcement Learning used in controls, game theory, multi-agent systems.
and their applications in real-world problems.
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a. Performance Learning-ADALINE (Widrow-Hopf 1960)

These learning methods are based upon minimizing or maximizing a
performance measure (cost function).

ADALINE (ADAptive LINear Element) is based upon McCulloch-Pitts model with
bipolar HL activation.

wi1

wij

win

Cell i

oi(k)x(k)

Adjustment 
Mechanism

wiN

.

.

.

HL

ei(k)

neti(k)

+

- di(k)

Objective: Find wi such that MSE between neti and the desired (supervised) is
minimized.
That is, given {x(k), di(k)}Kk=1, find w∗i to minimize,

J(wi) =
1

K

K∑
k=1

(di(k)− neti(k))2 =
1

K

K∑
k=1

e2i (k) : Time-Averaged SE (1)

where neti(k) = wtix(k) and di(k) = neti(k) + ei(k).
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For an ergodic process the time-averaged MSE can be rewritten in terms of ensemble
average MSE, i.e.

J(wi) = E[(di(k)− wtix(k))2]

= E[d2i (k)] + wtiE[x(k)xt(k)] wi − 2wtiE[x(k)di(k)]

= σ2
d + wtiRxx wi − 2wtiRxd

where E[.]: Expectation Operation, σ2
d = E[d2i (k)]: variance of di(k),

Rxx = E[x(k)xt(k)]: correlation matrix of data; and Rxd = E[x(k)di]:
cross-correlation vector between input data and desired signal.

As can be seen J(wi) is quadratic and has a bowl-shaped surface as a function of wi
which is also referred to as Error Performance Surface.

Absolute Minimum Jmin 

Error Surface

wi1

wi2

J(wi)

This surface has a unique global minimum at which,

∂J(wi)

∂wi
= 0⇒ 2Rxxwi − 2Rxd = 0

Solving for w∗i gives,

w∗i = R−1
xxRxd

which is the Wiener-Hopf solution (or Minimum Mean Squared Error solution
(MMSE)).
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Example:
Use an ADALINE to estimate weights of a 2nd order AR based linear predictor.
x(k) = a1x(k − 1) + a2x(k − 2) + u(k), u(k) ∼ N (0, σ2

u)

Here, net(k) = w(k)tx(k), where x(k) = [x(k − 1) x(k − 2)]t and
wi(k) = [a1(k) a2(k)]t. Also, we choose d(k) = x(k). Solving for w∗ yields a1 and
a2.

z-1
x(k)

z-1 net(k)

x(k)

e(k)-

+

w1(k)

w2(k)

Remarks
1 Using the Wiener-Hopf solution the minimum MSE is
Jmin(w∗i ) = σ2

d − w
∗t
i Rxd

2 For stationary processes the error surface has a fixed shape and orientation;
whereas for non-stationary processes the bottom of the error surface moves
continually and orientation and curvature may be changing too. Thus, the
solution should not only seek the bottom but also track it.

3 Wiener-Hopf solution requires computing Rxx, R−1
xx , and Rxd which makes it

unsuitable for online learning.
4 For ergodic processes, solving the original time-averaged SE, which corresponds

to Least Squares (LS) solution, approaches the Wiener-Hopf (i.e. MMSE)
solution for large K. This is shown next.
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Least Squares Solution & Geometric Interpretation

Let us reconsider the time-averaged SE in (1). Now, if we define

di = [di(1), · · · , di(K)]t: Desired vector
ei = [ei(1), · · · , ei(K)]t: Error vector

X =

 xt(1)
...

xt(K)


K×N

: Data matrix

Then we can write di = Xwi + ei = neti + ei

Now, the time-averaged SE is J(wi) = 1
K
‖e2i ‖ = 1

K
(di −Xwi)t(di −Xwi)

Setting
∂J(wi)

∂wi
= 0 yields

−2Xt(di −XŵiLS
) = 0 =⇒ XtXŵiLS

= Xtdi

which gives the LS solution,

ŵiLS
= (XtX)−1Xtdi = X†di

where X† = (XtX)−1Xt is the pseudo inverse of X.
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Recall from LS solution ŵiLS
= (XtX)−1Xtdi = R̃−1

xx R̃xd where

XtX = [x(1) · · ·x(K)]

 xt(1)
...

xt(K)

 =
∑K
k=1 x(k)x(k)t = R̃xx: Sample Correlation

Matrix

Xtdi = [x(1) · · ·x(K)]

 di(1)
...

di(K)

 =
∑K
k=1 x(k)di(k) = R̃xd: Sample

Cross-correlation Vector
Clearly,

R̃xx, R̃xd : Time-averaged
Rxx, Rxd : Ensemble averaged

If data is stationary and ergodic, the LS solution asymptotically approaches the
Wiener-Hopf solution for large K, i.e.

limK→∞R̃xx → Rxx
limK→∞R̃xd → Rxd

then ŵiLS
→ w∗iMMSE

.
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Now, define Orthogonal Projection Matrix, PX ,

PX = X(XtX)−1Xt

which is idempotent i.e. P 2
X = PX or PnX = PX ,∀n and Symmetrical i.e. P tx = PX .

Then,
n̂eti = XŵiLS

= PXdi

i.e. projection of di onto a space spanned by columns of X. Using this result the error
vector at the LS solution is,

êi = di − n̂eti = di − PXdi = P⊥X di

where P⊥X = I − PX is the orthogonal complement of PX .

Note that ei = êi + (n̂eti − neti). The geometrical representation of these is shown
in the figure.
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Homework 1-Due September 15th, 2015

Problems:

1 Using the Wiener-Hopf solution show that the estimation error
eo(k) = d(k)− w∗tx(k) is orthogonal to the data, i.e.
E[x(k)eo(k)] = E[x(k)(d(k)− w∗tx(k))] = 0. Explain the importance of this
property.

2 Is the same orthogonality property valid for the LS solution? If it does, drive it.
Compare the results in Problems 1 and 2 and their interpretations.

3 To guarantee uniqueness and improve stability of LS solution, typically a
regularization term is added to the cost function, i.e.
J(wi) = (di −Xwi)t(di −Xwi) + λ||wi||2.
Find the solution of this regularized (or constrained) LS and investigate its
relation to the LS solution.

4 Solve Problem 2.3 in your textbook.
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b. Performance Learning-Steepest Descent

An alternative procedure using steepest (or gradient) descent method can be devised
to find the weights in ADALINE without requiring to find R−1

xx . This method involves
following steps.

1 Start with an initial guess for wi(0).

2 Use this guess to compute the gradient vector

∇J(wi(k)) ,
∂J(wi(k))

∂wi(k)
at iteration (training sample) k.

3 Update weight in a direction opposite to the gradient
wi(k + 1) = wi(k)− 1

2
µ∇J(wi(k)) where µ: Step Size

4 Go back to step (2) and repeat until convergence conditions met.

From the previous result ∇J(wi(k)) = −2Rxd + 2Rxxwi(k)

Thus, wi(k + 1) = wi(k) + µ[Rxd −Rxxwi(k)]

i.e. no matrix inversion is required, but still needs to compute Rxx and Rxd.

Step size µ controls the size of incremental corrections. For convergence,

0 < µ < 2
λmax

, where λmax: largest eigenvalue of Rxx.
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