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Chapter 1

Linear Models and Matrix Algebra

1.1 Introduction

The purpose of this chapter is to solve and analyze a system of m linear equations with n

unknowns:

a11x1 + a12x2 + ...+ a1nxn = d1

a21x1 + a22x2 + ...+ a2nxn = d2

...

am1x1 + am2x2 + ...+ amnxn = dm

(1.1)

In the above system, the unknown variables are x1, x2, ..., xn, the parameters (or numbers)

aij are the coeffi cients in equation i on variable xj, and the constants d1, d2, ..., dm are given

numbers. In a linear system, each of the m equations is a linear function of the unknown

variables x1, x2, ..., xn.

Example 1 The following are examples of linear systems:
(a) linear system with 3 equations and 3 unknowns (m = 3, n = 3):

6x1 + 3x2 + x3 = 22

x1 + 4x2 − 2x3 = 12

4x1 − x2 + 5x3 = 10

(b) Linear system with 2 equations and 3 unknowns (m = 2, n = 3):

x1 + x2 + x3 = 5

x2 − x3 = 0

1
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(c) Linear system with 3 equations and 2 unknowns (m = 3, n = 2):

5x1 + 3x2 = 10

2x1 − x2 = 4

7x1 + 2x2 = 14

Linear systems of equations are important because many popular models in economics are

linear by design, such as the linear regression model, and its estimation by Ordinary Least

Squares (OLS) requires solving a linear system of equations. Any quadratic optimization

problem results in first order conditions which are a linear system of equations. Linear

models are especially useful in finance and portfolio theory. Even if a model is not linear, an

equilibrium can be approximated locally with a system of linear equations. Finally, non-linear

models can be solved using computer algorithms, which use successive linear approximations.

1.1.1 Solutions to linear systems

Definition 1 A solution to linear system (1.1) is n-tuple x = x1, x2, ..., xn, which satisfies

each of the equations in (1.1). The set of all the solutions to a linear system is called the

solution set.

The key questions we ask about solutions to linear systems are:

1. Does a solution exist?

2. Under what conditions there exists a unique solution?

3. How to compute the solutions, if they exist?

Example 2 Consider the linear system:

x1 + x2 + x3 = 5

x2 − x3 = 0

Verify that [x1 = 3, x2 = 1, x3 = 1] is a solution to this system. Plugging the proposed solution

into the equations, gives:

3 + 1 + 1 = 5

1− 1 = 0
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Indeed, both equations are satisfied, and therefore, [x1 = 3, x2 = 1, x3 = 1] is a solution to the

given linear system of equations. You can verify however, that the proposed solution is not

unique, and there are many more solutions to this system. The solution set is in fact:

{(x1, x2, x3) |x1 = 5− 2x3, x2 = x3}

Before dealing with large systems of linear equations, it is useful to analyze a single linear

equation with one unknown:

a · x = d (1.2)

There are only three possibilities regarding the solution set of such equations:

1. Unique solution, when a 6= 0. In this case, the unique solution is given by x = a−1d.

2. No solution, when a = 0 and d 6= 0. There is no x that satisfies 0 · x = 5 for example.

3. Infinitely many solution, when a = 0 and d = 0. Any x satisfies 0 · x = 0.

It turns out that the above discussion is general, and the solution set to any linear

system with m equations and n unknowns either (i) contains a unique solution, (ii) empty

(no solution), or (iii) contains infinitely many solutions.

1.1.2 Solution methods

There are three methods of solving systems of m linear equations with n unknowns:

1. Substitution,

2. Elimination (Gaussian elimination),

3. Matrix algebra.

Gaussian elimination is computationally the fastest method. Most of this chapter is

dedicated to matrix algebra, because it allows complete characterization of solution sets to

general linear systems of m equations and n unknowns. In this section we briefly illustrate

the three methods.

With the substitution method we solve one of the equations in (1.1), say the first, for x1:

x1 =
d1 − (a12x2 + ...+ a1nxn)

a11
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and substitute in the remaining m − 1 equations. This gives a system of m − 1 equations,

and n− 1 unknowns x2, x3, ..., xn. Then solve for x2 from one of these m− 1 equations, and

substitute in the remaining m− 2 equations. Repeat this substitution until we are left with

either one equation, or one unknown, or both.

Example 3 (Substitution method). Consider the system of 3 equations and 3 unknowns.

6x1 + 3x2 + x3 = 22

x1 + 4x2 − 2x3 = 12

4x1 − x2 + 5x3 = 10

Solve the second equation for x1 in terms of x2 and x3, gives

x1 = 12− 4x2 + 2x3

Substitute this expression in the remaining two equations, gives a system with two equations

and two unknowns (x2, x3):

6 (12− 4x2 + 2x3) + 3x2 + x3 = 22

4 (12− 4x2 + 2x3)− x2 + 5x3 = 10

Simplifying,

21x2 − 13x3 = 50

17x2 − 13x3 = 38

Next, solve for x2 from the first equation above:

x2 =
50 + 13x3

21

Substitute in the last equation

17

(
50 + 13x3

21

)
− 13x3 = 38

850 + 221x3 − 273x3 = 798

52x3 = 52

x3 = 1
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Next, substitute x3 = 1 into the expression for x2

x2 =
50 + 13x3

21
=

50 + 13 · 1
21

= 3

Finally, substitute x2 = 3 and x3 = 1 into the expression for x1

x1 = 12− 4x2 + 2x3 = 12− 4 · 3 + 2 · 1 = 2

Thus, the solution we found is [x1 = 2, x2 = 3, x3 = 1], which turns out to be the unique

solution to the given system.

A very similar method is elimination. It requires the application of elementary equa-
tion operations, each of them creates an equivalent system of equations, which has the

same solution as the original system. The elementary equation operations are:

1. Multiplying an equation by a non-zero scalar,

2. Interchanging two equations,

3. Adding two equations.

We will illustrate the elimination method in the next example.

Example 4 (Elimination method). Consider the linear system

6x1 + 3x2 + x3 = 22

x1 + 4x2 − 2x3 = 12

4x1 − x2 + 5x3 = 10

We can interchange the first and second equations:

x1 + 4x2 − 2x3 = 12

6x1 + 3x2 + x3 = 22

4x1 − x2 + 5x3 = 10

Then using the first equation, eliminate x1 from the second and third equations. That is, add
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to the second equation −6× eq1 and add to the third equation −4× eq1:

x1 + 4x2 − 2x3 = 12

−21x2 + 13x3 = −50

−17x2 + 13x3 = −38

Next, use equation 2 to eliminate x2 from the last equation. That is, add −17
21
× eq2 to the

last equation:

x1 + 4x2 − 2x3 = 12

−21x2 + 13x3 = −50(
13− 17

21
13

)
x3 = −38 +

17

21
· 50

The last equation simplifies to

52x3 = 52, x3 = 1

Then, substitute this solution into the second equation, containing x2 and x3, and solve for

x2:

−21x2 + 13 · 1 = −50

The solution is x2 = 3. Substitute x2 = 3 and x3 = 1 into equation containing these variables

and x1, and get

x1 + 4 · 3− 2 · 1 = 12

The solution is x1 = 2. Thus, we found [x1 = 2, x2 = 3, x3 = 1].

Finally, an alternative method to substitution and elimination is using matrix algebra.

The linear system of equations in (1.1) can be written in matrix form as follows. Arrange all

the coeffi cients aij in a coeffi cient matrix A, the unknown variables x1, ..., xn in a vector

x, and the constants d1, ..., dn in vector d:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann


m×n

, x =


x1

x2

...

xn


n×1

, d =


d1

d2

...

dn


n×1

Then, the system in (1.1) can be written compactly as

Ax = d (1.3)



1.2. MATRICES 7

For example, the system

6x1 + 3x2 + x3 = 22

x1 + 4x2 − 2x3 = 12

4x1 − x2 + 5x3 = 10

Can be written as Ax = d, where

A =

 6 3 1

1 4 −2

4 −1 5


3×3

, x =

 x1

x2

x3

 , d =

 22

12

10


Matrix algebra enables us to write the system in (1.1) as Ax = d, which is much shorter,

but this is not the only advantage of matrix algebra. Matrix algebra also enables us to derive

analytical solution to the system of m linear equations with n unknowns, if such solution

exists. For example, if Ax = d is a linear system with n equations and n unknowns, then it

has a unique solution if and only if the inverse matrix A−1 of A exists. In such case, the

unique solution is given by:

x∗ = A−1d (1.4)

Suppose we calculated the inverse matrix A−1, and we want to see how changes in the

constant vector d affect the solution x∗. All we need to do, is multiply A−1 by the new

vector d, which is a simple operation. If instead we did not use matrix algebra, and solved

the system in (1.1) by elimination, then each time we change d would require solving the

entire system all over again. Moreover, matrix algebra gives us easy-to-check conditions on

the coeffi cient matrix A that guarantee existence of a unique solution to the linear system.

1.2 Matrices

Amatrix is a rectangular array of elements (or terms). The dimension of a matrix is given
by the number of rows and the number of columns. Thus, a matrix A of order m× n is

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


m×n
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The above matrix has dimension m× n, sometimes indicated for clarity as above. The first
dimension is always the number of rows, and the second dimension is always the number

of columns. The dimension m × n reads "m by n". The typical element of a matrix is aij,

which is the element in row i and column j.

We can think of matrices as generalization of numbers, since a single number (scalar) is

a matrix with dimension 1 × 1. Just as with numbers, we need to define basic operations

with matrices, such as addition, multiplication, and other operations which generalize the

ones we are familiar with from number arithmetics.

1.2.1 Matrix addition and subtraction

Two matrices can be added or subtracted if and only if they have the same dimension.

Then, the sum (difference) of the matrices requires adding (subtracting) the corresponding

elements. For example, A3×2 +B3×2 is a11 a12

a21 a22

a31 a32


3×2

+

 b11 b12

b21 b22

b31 b32


3×2

=

 a11 + b11 a12 + b12

a21 + b21 a22 + b22

a31 + b31 a32 + b32


3×2

In other words, if A+B = C, then cij = aij + bij for all i and j. Notice that A+B = B+A

and A−B = −B+A i.e. the commutative law applies for matrix addition and subtraction.

1.2.2 Scalar multiplication

To multiply a matrix by a scalar (a number) we need to multiply each element in the matrix

by that scalar. For example,

5

 a11 a12

a21 a22

a31 a32

 =

 5a11 5a12

5a21 5a22

5a31 5a32



1.2.3 Multiplication of matrices

There are at least three different ways to define multiplication of two matrices: (i) matrix

product, (ii) Hadamard product (also known as Schur product or elementwise product) and

(iii) Kronecker product.
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Matrix product

If matrix A has dimension m× n and matrix B has dimension n× p, the product AB = C

has dimension m× p and is defined as follows:

cij = ri (A) · cj (B) =
[
ai1 ai2 · · · ain

]
1×n


b1j

b2j

...

bnj


n×1

=
n∑
k=1

aikbkj

In other words, element cij in the product matrix C = AB, is equal to the sum of the

products of row i in A and column j in B, denoted ri (A) and cj (B) respectively. Notice

that the matrix product AB is defined only if the number of columns in A is the same as

the number of rows in B. For example,

A =
[
a11 a12

]
1×2
, B =

[
b11 b12 b13

b21 b22 b23

]
2×3

C = AB =
[
a11b11 + a12b21 a11b12 + a12b22 a11b13 + a12b23

]
1×3

Notice that in the above example, the product BA is not defined. Thus, unlike products of

numbers, e.g. 3 · 7 = 7 · 3, with matrices in general AB 6= BA. In Matlab, matrix product

is computed as follows: A*B.

Hadamard product

For two matrices A, B of the same dimensionm×n, the Hadamard product (or element-wise
product), A ◦B = C is of the same dimension m× n, with elements

cij = aij · bij

For example

A ◦B = C a11 a12

a21 a22

a31 a32


3×2

◦

 b11 b12

b21 b22

b31 b32


3×2

=

 a11b11 a12b12

a21b21 a22b22

a31b31 a32b32


For matrices of different dimension, the Hadamard product is not defined. In Matlab,

Hadamard product is computed as follows: A.*B (notice the .* instead of *).
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Kronecker product

For two matrices of any size, A is an m× n matrix and B is a p× q matrix, the Kronecker
product A⊗B = C is the mp× nq block matrix with elements

cij = aijB

For example

A⊗B = C

Am×n ⊗Bp×q =


a11B · · · a1nB
...

. . .
...

am1B · · · amnB


mp×nq

Thus, if A is 7×5 and B is 3×10, then the dimension of the Kronecker product A7×5⊗B3×10

is 21× 50. In Matlab, Kronecker product is computed via kron(A,B).

1.2.4 Transpose of a matrix

The transpose of a matrix A is the matrix A′ constructed such that row i in A becomes

column i in A′. Thus, if A is m× n, its transpose A′ is n×m, and aij = aji.

For example,

A =

[
1 2 3

2 0 4

]
2×3

, A′ =

 1 2

2 0

3 4


3×2

Notice that the transpose of a scalar is the scalar itself, since scalar are 1× 1 matrices.

1.2.5 Special matrices

1. A matrix with the same number of rows as the number of columns (i.e. m = n) is

called square. For example, the following matrices are square:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann


n×n

, B =

 1 0 3

7 5 0

9 2 4


3×3

2. A matrix with one column (n = 1) is called column vector, and a matrix with only
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one row (m = 1) is called row vector. A matrix with only one element (m = n = 1)

is called a scalar or a number. For example,

x =


x1

x2

...

xn


n×1

, x′ =
[
x1 x2 · · · xn

]
1×n

, a = 5

x is a column vector (with n rows), x′ is a row vector (with n columns), and a is a

scalar (with one row and one column).

3. A square matrix A, that is equal to its transpose (i.e. A = A′), is called symmetric.
For example, the next matrix is symmetric:

A =

 1 −1 4

−1 0 3

4 3 2


3×3

= A′

Thus, in a symmetric matrix, we must have aij = aji ∀i, j, and it must be square.

4. A square matrix that has all off-diagonal elements equal to zero, and at least one

element on the diagonal is not zero, is called diagonal. For example, A is diagonal:

A =


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann


n×n

5. A diagonal matrix, with all elements on the diagonal being 1 is called the identity
matrix, and denoted I or In:

In =


1 0 · · · 0

0 1 · · · 0
...
...
. . .

...

0 0 · · · 1


n×n

6. A matrix with all elements equal to zero is called a null matrix, and denoted by 0 or
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0m×n:

0m×n =


0 0 · · · 0

0 0 · · · 0
...
...
. . .

...

0 0 · · · 0


m×n

7. A square matrix that has zeros everywhere above the diagonal is called lower triangu-
lar matrix, and a matrix that has zeros everywhere below the diagonal is called upper
triangular. In the next example, A is lower triangular, and B is upper triangular:

A =

 a11 0 0

a21 a22 0

a31 a32 a33


3×3

, B =

 b11 b12 b13

0 b22 b23

0 0 b33


3×3

8. A square matrix A, for which A · A = A is called idempotent. For example,

A =

[
5 −5

4 −4

]
,

A · A =

[
5 −5

4 −4

][
5 −5

4 −4

]

=

[
5 · 5 + (−5) · 4 5 · (−5) + (−5) · (−4)

4 · 5 + (−4) · 4 4 · (−5) + (−4) · (−4)

]
=

[
5 −5

4 −4

]

Exercise 1 let An×n be a square matrix and In is identity matrix of the same size as A.
Prove that

IA = AI = A

That is, pre-multiplying or post-multiplying any square matrix by identity matrix does not

change the original matrix.

1.2.6 Determinant of a square matrix

The determinant of a square matrix A, denoted by |A| or det (A), is a uniquely defined scalar

(number) associated with that matrix. Determinants are defined only for square matrices.
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The determinant of a scalar (a 1× 1 matrix) is the scalar itself. For a 2× 2 matrix,

A =

[
a11 a12

a21 a22

]
, |A| = a11a22 − a21a12

For a n × n matrix, the determinant can be computed by Laplase-expansion. For that, we
need the concepts of minors and cofactors.

The ij minor of a square matrix A, denoted |Mij|, is the determinant of a smaller square
matrix, obtained by removing row i and column j from A. For example, let A be 3× 3:

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


3×3

Then, |M11| is the determinant of a smaller, 2× 2 matrix, obtained by deleting the first row

and the first column of A:

|M11| =

∣∣∣∣∣∣∣
� � �
� a22 a23

� a32 a33

∣∣∣∣∣∣∣ = a22a33 − a32a23

Similarly, |M31| is the determinant of a matrix obtained by deleting the 3rd row and the first
column of A:

|M31| =

∣∣∣∣∣∣∣
� a12 a13

� a22 a23

� � �

∣∣∣∣∣∣∣ = a12a23 − a22a13

And |M22| is the determinant of a matrix obtained by deleting the 2nd row and 2nd column
of A :

|M22| =

∣∣∣∣∣∣∣
a11 � a13

� � �
a31 � a33

∣∣∣∣∣∣∣ = a11a33 − a31a13

Notice that the minors of a 3×3 matrix are determinants of a 2×2 matrix, which we already

defined.

The ij cofactor of a matrix A, is the ij minor with a prescribed sign, as follows:

|Cij| = (−1)i+j |Mij|

Notice that when i + j is even, then (−1)i+j = 1, and the cofactor is equal to the minor.
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However, when i+ j is odd, then (−1)i+j = −1, and the cofactor has the opposite sign from

the minor. Thus, the signs of (−1)i+j in a n× n matrix have the following pattern:
+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...
. . .


Using these concepts, the determinant of An×n can be computed as follows:

|A| =
n∑
j=1

aij|Cij| [expansion along the ith row]

=
n∑
i=1

aij|Cij| [expansion along the jth column]

This means that for computing the determinant of a square matrix, one can pick any row

or any column, and sum over the elements of the row or column, weighted by the cofactors

of these elements. Of course, we would prefer to choose an "easy" row or column, with as

many zeros as possible. Always remember that a determinant of a square matrix is a scalar

(a number), not a matrix.

Example 5 Use Laplace expansion to find the determinant of

A =

 6 1 1

4 −2 5

2 8 7


expanding along the 1st row, gives:

|A| = 6 ·
∣∣∣∣∣ −2 5

8 7

∣∣∣∣∣− 1 ·
∣∣∣∣∣ 4 5

2 7

∣∣∣∣∣+ 1 ·
∣∣∣∣∣ 4 −2

2 8

∣∣∣∣∣
= 6 · (−2 · 7− 8 · 5)− 1 · (4 · 7− 2 · 5) + 1 · (4 · 8 + 2 · 2)

= 6 · (−54)− 18 + 36 = −306

1.2.7 Inverse of a square matrix

Recall that an inverse of a scalar a is a scalar a−1 such that a−1a = 1 and aa−1 = 1. Such

inverse exists if a 6= 0. We now generalize this concept to matrices. An inverse of a square
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matrix A, if it exists, is a matrix A−1 such that

A−1A = AA−1 = In

In other words, the inverse of a square (n × n) matrix A (when exists), is another matrix,

that when pre-multiplies or post-multiplies A, results in an identity matrix. If the inverse of

a matrix A exists, we say that A is nonsingular (or invertible) matrix, and if the inverse
does not exist, we say that A is singular (or non-invertible) matrix.

One way to compute the inverse of a square matrix (the Adjoint method), uses the
cofactors defined previously. Let A be n× n matrix,

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann


n×n

Step 1: Create the cofactor matrix C = [|Cij|], where each element aij is replaced by the
ij cofactor:

C =


|C11| |C12| · · · |C1n|
|C21| |C22| · · · |C2n|
...

...
. . .

...

|Cn1| |Cn2| · · · |Cnn|


n×n

Step 2: Transpose C, to create the so called adjoint matrix of A:

adj (A) = C ′ =


|C11| |C21| · · · |Cn1|
|C12| |C22| · · · |Cn2|
...

...
. . .

...

|C1n| |C2n| · · · |Cnn|


n×n

Step 3: The inverse of A is:

A−1 =
1

|A|adj (A)

This step requires calculating the determinant of A.

Now we can see that an inverse of a square matrix A exists, i.e. A is nonsingular, if

and only if |A| 6= 0, i.e. the determinant of the matrix is not zero. Thus, the determinant

"determines" if the matrix is invertible. It is a good idea to start with the calculation of the

determinant, and if it is not zero, continue with the steps of matrix inversion.
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Example 6 Find the inverse of a 2× 2 matrix

A =

[
a b

c d

]

Step 1: the matrix of cofactors is

C =

[
d −c
−b a

]

Step 2: adjoint matrix of A:

adj (A) = C ′ =

[
d −b
−c a

]

Step 3: inverse of A:

A−1 =
1

|A|adj (A) =
1

ad− cb

[
d −b
−c a

]

The above formula is well defined if |A| = ad − cb 6= 0. The above is a useful formula that

can be applied each time you have to invert some 2× 2 matrix.

Exercise 2 Verify that
1

ad− cb

[
d −b
−c a

]
is the inverse matrix of [

a b

c d

]

Solution 1 The product of the two matrices is

1

ad− cb

[
d −b
−c a

][
a b

c d

]
=

1

ad− cb

[
ad− bc 0

0 ad− bc

]

=

[
1 0

0 1

]
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Example 7 Find the inverse of a 3× 3 matrix

A =

 6 3 1

1 4 −2

4 −1 5


We start with calculating the determinant of A, since we know that it is needed in step 3 of

matrix inversion. Laplace expansion along the 1st row, gives:

|A| = 6

∣∣∣∣∣ 4 −2

−1 5

∣∣∣∣∣− 3

∣∣∣∣∣ 1 −2

4 5

∣∣∣∣∣+ 1

∣∣∣∣∣ 1 4

4 −1

∣∣∣∣∣
= 6 · 18− 3 · 13− 17 = 52

Next, the cofactor matrix:

C =



∣∣∣∣∣ 4 −2

−1 5

∣∣∣∣∣ −
∣∣∣∣∣ 1 −2

4 5

∣∣∣∣∣
∣∣∣∣∣ 1 4

4 −1

∣∣∣∣∣
−
∣∣∣∣∣ 3 1

−1 5

∣∣∣∣∣
∣∣∣∣∣ 6 1

4 5

∣∣∣∣∣ −
∣∣∣∣∣ 6 3

4 −1

∣∣∣∣∣∣∣∣∣∣ 3 1

4 −2

∣∣∣∣∣ −
∣∣∣∣∣ 6 1

1 −2

∣∣∣∣∣
∣∣∣∣∣ 6 3

1 4

∣∣∣∣∣


=

 18 −13 −17

−16 26 18

−10 13 21



Next, the adjoint matrix:

adj (A) = C ′ =

 18 −16 −10

−13 26 13

−17 18 21


Thus, the inverse matrix of A is:

A−1 =
1

|A|adj (A) =
1

52

 18 −16 −10

−13 26 13

−17 18 21

 =

 0.346 15 −0.307 69 −0.192 31

−0.25 0.5 0.25

−0.326 92 0.346 15 0.403 85



The Matlab commands that compute the inverse of a square matrix are inv(A) or A^-1,

both use the same algorithm and both produce the same result.
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1.3 Properties of Matrix Operations, Determinants and

Inverses

1.3.1 Properties of matrix addition

Note that there is no need in separate discussion of matrix subtraction, because subtraction

can be written as: A−B = A+ (−B). Thus, for matrices of the same size (conformable for

addition), the following properties hold:

1. A+B = B + A, commutative law holds for addition.

2. (A+B) + C = A + (B + C), associative law holds for matrix addition. This means

that the order at which you add matrices does not matter.

1.3.2 Properties of matrix product

1. AB 6= BA, so in general commutative law does not hold for matrix product.

2. (AB)C = A (BC) = ABC, associative law holds for matrix product.

3. A (B + C) = AB +AC, and (B + C)A = BA+CA, distributive law holds for matrix

product.

1.3.3 Properties of Hadamard product

1. A ◦B = B ◦ A, commutative holds for Hadamard product.

2. (A ◦B) ◦ C = A ◦ (B ◦ C) = A ◦B ◦ C, associative law holds for Hadamard product.

3. A ◦ (B + C) = A ◦B + A ◦ C, distributive law holds for Hadamard product.

1.3.4 Properties of transposes

1. (A′)′ = A, transpose of a transpose is the original matrix.

2. (A+B)′ = A′ +B′, transpose of a sum is sum of transposes.

3. (AB)′ = B′A′, transpose of a product is product of transposes, in reverse order.

Proof. We prove that (AB)′ = B′A′. Let Am×n and Bn×p. Thus (AB)m×p, (AB)′p×m and(
B′p×nA

′
n×m

)
p×m, so the dimentions are correct.
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Let ri (A) denote row i in matrix A and cj (B) denote column j in matrix B. Also denote

by aij, bij be the elements in row i column j of A and B respectively. Similarly, a′ij, b
′
ij be

the elements in row i column j of A′ and B′ respectively. Notice that a′ij = aji and b′ij = bji.

Then, observe that:

Matrix Element ij

AB ri (A) · cj (B) =
∑n

k=1 aikbkj

(AB)′ rj (A) · ci (B) =
∑n

k=1 ajkbki, i.e. ji element in AB

B′A′ ri (B
′) · cj (A′) =

∑n
k=1 b

′
ika
′
kj =

∑n
k=1 bkiajk

Notice that in the above we used the fact that a′kj = ajk and b′ik = bki. Thus,

(AB)′ij =

n∑
k=1

ajkbki = (B′A′)ij

1.3.5 Properties of inverses

1. (A−1)
−1

= A, the inverse of an inverse is the original matrix.

2. (AB)−1 = B−1A−1, the inverse of a product is the product of inverses, in reverse order.

3. (A′)−1 = (A−1)
′, the inverse of the transpose is the transpose of the inverse.

Proof. (1) (A−1)
−1

= A.

By definition of (A−1)
−1, (

A−1
)−1

A−1 = I

To see the above, denote B = A−1, so the above is the definition of an inverse: B−1B = I.

Multiply both sides by A

(
A−1

)−1
A−1A = IA(

A−1
)−1

= A

(2) (AB)−1 = B−1A−1.

Post-multiply B−1A−1 by AB (recall that all the matrices here are square, since inverses

are only defined for square matrices, so all the products are well defined):

B−1A−1AB = B−1IB = B−1B = I
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The last equality says that the inverse of AB is B−1A−1, which implies that B−1A−1 =

(AB)−1.

(3) (A′)−1 = (A−1)
′.

By definition of A−1,

A−1A = I

Transposing both sides of the equation:

(
A−1A

)′
= (I)′ = I

A′
(
A−1

)′
= I

On the left hand side, we used the property that transpose of a product is product of

transposes, in reverse order. Therefore, the last equality says that the inverse of A′ is (A−1)
′,

which implies that (A−1)
′
= (A′)−1.

1.3.6 Properties of determinants

1. |A| = |A′|, determinant of a matrix is the same as the determinant of its transpose.

2. |A−1| = 1
|A| , determinant of an inverse is one over the determinant of the original

matrix.

3. |AB| = |A| · |B|, determinant of a product is product of determinants.

4. |kA| = kn|A|, multiplication of n×n matrix by a constant k, changes the determinant
by a factor kn.

5. Multiplication of only one row or one column by a constant k, will result in determinant

k|A|.

6. If one of the rows is a linear combination of other rows, the determinant is zero. Same

is true for columns. In this case, we say that the matrix is singular or noninvertible.

7. Interchanging any two rows or any two columns, will change the sign of the determinant.

8. Adding a scalar multiple of one row to another row leaves the determinant unchanged.

Same is true for columns.

Exercise 3 Prove that the determinant of a triangular matrix, is equal to the product of the
elements on its diagonal.
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Solution 2 Consider a lower-triangular matrix A:

A =



a11 0 0 · · · 0

a21 a22 0 · · · 0

a31 a32 a33 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · ann


n×n

Using Laplace expansion along the 1st row:

|A| = a11 ·

∣∣∣∣∣∣∣∣∣∣
a22 0 · · · 0

a32 a33 · · · 0
...

...
. . .

...

an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣∣
= a11 · a22 ·

∣∣∣∣∣∣∣∣
a33 · · · 0
...

. . .
...

an3 · · · ann

∣∣∣∣∣∣∣∣ = a11 · a22 · ... · ann

For upper-triangular matrix, we can expand along the 1st column.

Exercise 4 Prove that the determinant of an identity matrix is 1. That is, |In| = 1.

Solution 3 Since identity matrix is a special case of triangular matrix, we have

|In| = 1 · 1 · ... · 1︸ ︷︷ ︸
n times

= 1

Exercise 5 Calculate the determinants of the following matrices:

A =

 6 1 1

4 −2 5

2 8 7

 , B =

 4 −2 5

6 1 1

2 8 7


Solution 4 Expanding along the 1st row of A, gives:

|A| = 6 ·
∣∣∣∣∣ −2 5

8 7

∣∣∣∣∣− 1 ·
∣∣∣∣∣ 4 5

2 7

∣∣∣∣∣+ 1 ·
∣∣∣∣∣ 4 −2

2 8

∣∣∣∣∣
= 6 · (−2 · 7− 8 · 5)− 1 · (4 · 7− 2 · 5) + 1 · (4 · 8 + 2 · 2)

= 6 · (−54)− 18 + 36 = −306
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expanding along the 2nd row of B, gives:

|B| = −6 ·
∣∣∣∣∣ −2 5

8 7

∣∣∣∣∣+ 1 ·
∣∣∣∣∣ 4 5

2 7

∣∣∣∣∣− 1 ·
∣∣∣∣∣ 4 −2

2 8

∣∣∣∣∣ = 306

Notice that the only difference between |A| and |B| is the sign of the cofactors - all the signs
changed dues to the fact that row 1 in A is now row 2 in B.

1.4 Systems of Equations

Consider first systems with first n linear equations with n unknowns, a special case of (1.1),

with m = n:
a11x1 + a12x2 + ...+ a1nxn = d1

a21x1 + a22x2 + ...+ a2nxn = d2

...

an1x1 + an2x2 + ...+ annxn = dn

We can represent the above system in matrix form, as

Ax = d

where A is n × n, x is n × 1 and d is n × 1. Following our previous discussion about

determinant and inverses, we have an important result about existence of a unique solution

to this system:

Theorem 1 (Existence of a unique solution to linear system of equations). Sup-
pose Ax = d, and A is n× n coeffi cient matrix. Then, the following are equivalent:

1. |A| 6= 0, i.e. the rows and columns of the matrix A are independent,

2. A is nonsingular,

3. A−1 exists (A is invertible),

4. a unique solution x∗ = A−1d exists.

The above theorem generalizes to systems ofm equations with n unknowns. Such systems

are often encountered in financial economics, where we often solve linear systems withm > n,

for example 7 equations and 3 unknowns. Although these systems are beyond the scope of

this course, we present here the general theorem about linear systems, with the number of
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equations and unknowns is not necessarily the same. The general theorem uses the concept

of a rank of a matrix, which is the number of independent columns or rows in a matrix
(must be the same number). The rank of a matrix is easily computed using any modern

mathematical software. For example, in Matlab rank(A) gives the rank of any matrix.

Theorem 2 (Solution set to linear systems). Suppose Ax = d, and A is m × n co-

effi cient matrix (possibly m 6= n). Let the matrix [A|d] be the augmented matrix of
coeffi cients, with additional column containing the constants d. The next four conditions

characterize the possible solution set.

1. If rank(A) 6= rank ([A|d]), then the system has no solution1.

2. If rank(A) = rank ([A|d]), then there exists at least one solution to the system (and

possibly infinitely many solutions).

3. If rank(A) = rank ([A|d]) = n, then there exists a unique solution to the system.

4. If rank(A) = rank ([A|d]) < n, then there exist infinitely many solutions to the system.

So far, we have two methods of solving a system of linear equation Ax = d: (i) solving

by elimination (substitution), or (ii) finding the inverse of the coeffi cient matrix and premul-

tiplying the constant vector: x∗ = A−1d. One advantage of the second method is that we

can easily find solutions to systems for many different d vectors. Once we calculated A−1, it

is easy to multiply it by many different d. Yet another method of solving a linear system of

equations is by Cramer’s rule. While solving the system by inverting A gives the solution to

all x, Cramer’s rule allows solving for each unknown value separately.

1.4.1 Cramer’s rule

Cramer’s rule allows solving for each unknown value separately. Let the vector of unknowns

be

x =


x1

x2

...

xn


n×1

1When adding a column (or row) to a matrix, the rank of the augment matrix is either unchanged (if
the new column can be expressed as a linear combination of previous columns) or increases by 1 (if the new
column is independent of the previous columns).
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The solution to unknown j is:

x∗j =
|Aj|
|A|

where Aj is the same as the coeffi cient matrix A obtained after replacing column j by the

constant vector d, and as usual, |Aj| is the determinant of Aj. That is,

|Aj| =

∣∣∣∣∣∣∣∣∣∣
a11 a12 · · · d1 · · · a1n

a21 a22 · · · d2 · · · a2n

...
...

...
...

...
...

an1 an2 · · · dn · · · ann

∣∣∣∣∣∣∣∣∣∣
column j is replaced by d

1.5 Applications

1.5.1 Solving linear system of equations

Example 8 Express the following system in matrix form, and solve it using (i) matrix

inversion and (ii) Cramer’s rule.

7x1 − x2 − x3 = 0

10x1 − 2x2 + x3 = 8

6x1 + 3x2 − 2x3 = 7

Solution 5 The system in matrix form (Ax = d) is: 7 −1 −1

10 −2 1

6 3 −2


︸ ︷︷ ︸

A

 x1

x2

x3


︸ ︷︷ ︸

x

=

 0

8

7


︸ ︷︷ ︸

d

Whether we use inversion of A or Cramer’s rule, we must find the determinant of A. We

use Laplace expansion along the first row:

|A| = 7 · |C11| − 1 · |C12| − 1 · |C13|



1.5. APPLICATIONS 25

Here |Cij| is the ij cofactor:

|C11| = (−1)1+1

∣∣∣∣∣ −2 1

3 −2

∣∣∣∣∣ = 1 · [(−2) · (−2)− 3 · 1] = 1

|C12| = (−1)1+2

∣∣∣∣∣ 10 1

6 −2

∣∣∣∣∣ = (−1) · [10 · (−2)− 6 · 1] = 26

|C13| = (−1)1+3

∣∣∣∣∣ 10 −2

6 3

∣∣∣∣∣ = 1 · [10 · 3− 6 · (−2)] = 42

Later, we will need the other cofactors as well, so in the same manner we find:

|C21| = (−1)2+1

∣∣∣∣∣ −1 −1

3 −2

∣∣∣∣∣ = −5

|C22| = (−1)2+2

∣∣∣∣∣ 7 −1

6 −2

∣∣∣∣∣ = −8

|C23| = (−1)2+3

∣∣∣∣∣ 7 −1

6 3

∣∣∣∣∣ = −27

|C31| = (−1)3+1

∣∣∣∣∣ −1 −1

−2 1

∣∣∣∣∣ = −3

|C32| = (−1)3+2

∣∣∣∣∣ 7 −1

10 1

∣∣∣∣∣ = −17

|C33| = (−1)3+3

∣∣∣∣∣ 7 −1

10 −2

∣∣∣∣∣ = −4

Thus, the determinant of A is:

|A| = 7 · 1− 1 · 26− 1 · 42 = −61

Next, create the matrix of cofactors (each element in A is replaced by its cofactor).

C =

 |C11| |C12| |C13|
|C21| |C22| |C23|
|C31| |C32| |C33|

 =

 1 26 42

−5 −8 −27

−3 −17 −4
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The adjoint matrix of A is the transpose of the matrix of cofactors:

adj (A) = C ′ =

 1 −5 −3

26 −8 −17

42 −27 −4


Thus, the inverse of A is:

A−1 =
1

|A|adj (A) =
1

−61

 1 −5 −3

26 −8 −17

42 −27 −4


Finally, the solution to the linear system is x∗1

x∗2

x∗3

 = A−1d =
1

−61

 1 −5 −3

26 −8 −17

42 −27 −4


 0

8

7

 =

 1

3

4



Using Cramer’s rule, the solution to the first unknown is:

x∗1 =
|A1|
|A| =

1

−61

∣∣∣∣∣∣∣
0 −1 −1

8 −2 1

7 3 −2

∣∣∣∣∣∣∣ = 1

Here, Aj is a matrix obtained from A when column j is replaced by d. Calculation of the above

determinant involves the same steps as in |A|, and therefore I skip these steps. Similarly,

x∗2 =
|A2|
|A| =

1

−61

∣∣∣∣∣∣∣
7 0 −1

10 8 1

6 7 −2

∣∣∣∣∣∣∣ = 3

x∗3 =
|A3|
|A| =

1

−61

∣∣∣∣∣∣∣
7 −1 0

10 −2 8

6 3 7

∣∣∣∣∣∣∣ = 4
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1.5.2 Market equilibrium (supply and demand)

Given demand and supply

Qd = a− bP a, b > 0

Qs = −c+ dP c, d > 0

Find the equilibrium (Q∗, P ∗).

Equilibrium requires Qd = Qs = Q. Thus, the system to be solved is:

Q = a− bP
Q = −c+ dP

or

Q+ bP = a

Q− dP = −c

In matrix form: [
1 b

1 −d

][
Q

P

]
=

[
a

−c

]
Ax = d

Recall that:

A−1 =
1

|A|adj (A)

Determinant of A:

|A| = −d− b 6= 0

The matrix of cofactors:

C =

[
−d −1

−b 1

]
The adjoint matrix:

adj (A) = C ′ =

[
−d −b
−1 1

]
Thus, [

Q∗

P ∗

]
=

1

−d− b

[
−d −b
−1 1

][
a

−c

]
=

[
ad−bc
b+d
a+c
b+d

]
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Using Cramer’s rule is left as an exercise.

1.5.3 General equilibrium (two or more markets)

Consider two markets, indexed 1 and 2, with the following linear demand and supply:

Market 1

Qd1 = a1 + a11P1 + a12P2

Qs1 = b1 + b11P1 + b12P2

Market 2

Qd2 = a2 + a21P1 + a22P2

Qs2 = b2 + b21P1 + b22P2

Thus, aij is the coeffi cient in demand for good i on the price of good j. Recall that two goods

can be related as complements (aij < 0), substitutes (aij > 0) or unrelated (aij = 0). Using

the market clearing conditions Qd1 = Qs1 = Q1 and Qd2 = Qs2 = Q2, we have a system of 4

equations and 4 unknowns (Q1, Q2, P1, P2):

Q1 = a1 + a11P1 + a12P2

Q1 = b1 + b11P1 + b12P2

Q2 = a2 + a21P1 + a22P2

Q2 = b2 + b21P1 + b22P2

Rearranging,
Q1 −a11P1 −a12P2 = a1

Q1 −b11P1 −b12P2 = b1

Q2 −a21P1 −a22P2 = a2

Q2 −b21P1 −b22P2 = b2

In matrix form: 
1 0 −a11 −a12

1 0 −b11 −b12

0 1 −a21 −a22

0 1 −b21 −b22


︸ ︷︷ ︸

A


Q1

Q2

P1

P2


︸ ︷︷ ︸

x

=


a1

b1

a2

b2


︸ ︷︷ ︸

d

Solving this system, by inverting A4×4 or using Cramer’s rule, is very tedious. Alterna-

tively, we subtract supply from demand in each market, and eliminate the quantities Q1 and
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Q2. This will result in a system with only prices as unknowns (P1 and P2):

(b11 − a11)P1 + (b12 − a12)P2 = a1 − b1

(b21 − a21)P1 + (b22 − a22)P2 = a2 − b2

Written compactly,

c11P1 + c12P2 = d1

c21P1 + c22P2 = d2

where
c11 = b11 − a11, c12 = b12 − a12

c21 = b21 − a21 c22 = b22 − a22

and
d1 = a1 − b1

d2 = a2 − b2

In matrix form, the system is: [
c11 c12

c21 c22

]
︸ ︷︷ ︸

A

[
P1

P2

]
︸ ︷︷ ︸

x

=

[
d1

d2

]
︸ ︷︷ ︸

d

This system has only 2 equations with 2 unknowns, and can be easily solved with matrix

inversion or using Cramer’s rule. We then substitute the equilibrium prices into either

demand or supply in the two markets.

1.5.4 Keynesian model with taxes

Goods market:

[Equilibrium in closed economy] : Y = C + I +G

[Demand for consumption] : C = C0 + b (Y − T )

[Taxes] : T = T0 + tY

[Planned investment] : I = I0

[Government spending] : G = G0 + gY

This system has 5 unknown endogenous variables: Y,C, T, I, G. It is easy to solve this

entire system without linear algebra, by substituting equations 2 - 4 into the first equation,

and solving for equilibrium output Y ∗. But in order to demonstrate application of matrix

algebra, we will reduce this system into 3 equations with unknowns Y,C, T , by substituting
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the last two equations into the first one:

Y = C + I0 +G0 + gY

C = C0 + b (Y − T )

T = T0 + tY

Rearranging the above for matrix form:

(1− g)Y −C = I0 +G0

−bY +C +bT = C0

−tY T = T0

And the matrix form is:  1− g −1 0

−b 1 b

−t 0 1


︸ ︷︷ ︸

A

 Y

C

T


︸ ︷︷ ︸

x

=

 I0 +G0

C0

T0


︸ ︷︷ ︸

d

Once again, we have a system of the Ax = d form, which can be solved using matrix algebra

(either inverting A or using Cramer’s rule).

1.5.5 IS/LM model with taxes

This model adds the money market to the Keynesian model in the previous section. With the

money market, there are too many equations in the model, we typically reduce the system

to 2 equations: The IS curve and the LM curve. The goods market:

[Equilibrium in closed economy] : Y = C + I +G

[Demand for consumption] : C = C0 + b (Y − T )

[Taxes] : T = T0 + tY

[Planned investment] : I = I0 − hi
[Government spending] : G = G0 + gY
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From the goods market, we derive the IS curve (the combinations of Y and i that constitute

equilibrium in the goods market), by substituting equations 2 - 5 into the first equation:

Y = C0 + b (Y − T0 − tY )︸ ︷︷ ︸
C

+ I0 − hi︸ ︷︷ ︸
I

+G0 + gY︸ ︷︷ ︸
G

Y − b (1− t)Y − gY = C0 − bT0 + I0 +G0 − hi

Y =
C0 − bT0 + I0 +G0

1− b (1− t)− g − h

1− b (1− t)− g i

The IS curve is therefore:

[IS] : Y =
A

1− b (1− t)− g −
h

1− b (1− t)− g i

There are many variants of the Keynesian goods market. For example, if government spend-

ing is just constant G = G0, and if there is no proportional tax, then the IS curve simplifies

to:

[IS] : Y =
A

1− b −
h

1− bi

Another variation is to allow investment to depend on output: I = I0 + dY − hi. As an

exercise, derive the IS curve with this investment function. In all variations however, the IS

curve is a linear relationship between Y and i.

The money market:

[Money demand] : Md = kY − li
[Money supply] : Ms = M0

From the money market we derive the LM curve:

[LM ] : Y =
M0

k
+
l

k
i

Thus, the goal is to use the IS and LM (linear) equations to solve for equilibrium output

and interest rate (Y ∗, i∗). Here we choose the simplest IS curve.

[IS] : Y =
A

1− b −
h

1− bi

[LM ] : Y =
M0

k
+
l

k
i
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As always, the above system must be rearranged into matrix form Ax = d. Thus, we write

Y +
h

1− bi =
A

1− b

Y − l

k
i =

M0

k

or [
1 h

1−b
1 − l

k

]
︸ ︷︷ ︸

A

[
Y

i

]
︸ ︷︷ ︸

x

=

[
A

1−b
M0

k

]
︸ ︷︷ ︸

d

Once again, we obtain a familiar linear system, which can be solved using matrix inversion or

Cramer’s rule. You should think of the IS/LM model as a relatively simple macroeconomic

model, which allows analyzing the effects of fiscal and monetary policy on the economy.

Fiscal policy in this model is represented by government spending parameters G0 and g,

and tax policy parameters T0 and t. The monetary policy is represented by the money

supply M0. Thus, with the tools you have developed in this chapter, we can change these

exogenous policy parameters and calculate the impact on endogenous variables, such as

output, consumption, government deficit (G− T ), investment.

1.5.6 Leontief Input-Output model

This is a model designed for command economy, i.e. instead of letting the markets determine

the quantities of goods produced (based on supply and demand), the central planners decide

on the levels of production of every good and service. There are n industries. Each industry

produces a single output, using as inputs the products produced by other industries or its

own product. For example, the steel industry requires steel as one of its inputs, as well as

machines and other inputs. The production function is of the fixed proportions type, i.e. to

produce one unit of good j you need particular amounts of inputs. Let aij be the amount

of good i needed to produce 1 unit of good j. Since the units of goods are all different, it is

convenient to convert them all to dollars. So a32 = 0.35 means that 35 cents worth of good 3

is needed to produce 1 dollar worth of good 2. The [aij] is called the input-output coeffi cient
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matrix. We can summarize all the input coeffi cients in a matrix:

Output

Input

1 2 · · · n

1 a11 a12 · · · a1n

2 a21 a22 · · · a2n

...
...

...
. . .

...

n an1 an2 · · · ann


, A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann


n×n

There are also consumers in this model, and we let di be the demand of consumers for

product i. Thus, for all products i = 1, 2, ..., n, we must have:

x1 = a11x1 + a12x2 + ...+ a1nxn + d1

x2 = a21x1 + a22x2 + ...+ a2nxn + d2

...

xn = an1x1 + an2x2 + ...+ annxn + dn

The left hand side of a typical equation, say xi, is the total output (in dollars) produced

by industry i. This output is used by all other industries : ai1x1 + ai2x2 + ... + ainxn (as

intermediate good), as well as consumed by the consumers di (as final good). The above

system can be rewritten as:

(1− a11)x1 − a12x2 − ...− a1nxn = d1

−a21x1 + (1− a22)x2 − ...− a2nxn = d2

...

−an1x1 − an2x2 − ...+ (1− ann)xn = dn

In matrix form, the above becomes:
1− a11 −a12 · · · −a1n

−a21 1− a22 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · 1− ann


n×n


x1

x2

...

xn


n×1

=


d1

d2

...

dn


n×1

(1.5)

The matrix on the left is called technology matrix or Leontief matrix, and can be written

as

T = I − A
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Then, for any given demand d, we want to find out the necessary output x in each industry,

which will satisfy simultaneously the consumer demand and the inter-industry demand.

These required industry output levels can be found by solving the system in (1.5), or in

matrix notation:

Tx = d

We already know that if T is nonsingular, there is a unique solution:

x∗ = T−1d

It turns out that if the input-output coeffi cient matrix A has all nonnegative values and the

sum of entries in each column is less than 1 (i.e.
∑n

i=1 aij < 1 ∀j), then the inverse (I − A)−1

exists, and contains only nonnegative values (which implies that the industry outputs are

also nonnegative). The condition
∑n

i=1 aij < 1 ∀j means that the cost of producing 1 dollar
worth of good j is less than 1 dollar. If this condition is not satisfied, the production of good

j is not economically justifiable.

Example 9 Suppose the input-output matrix is

A =

 0.15 0.5 0.25

0.3 0.1 0.4

0.15 0.3 0.2


Suppose that consumer demand fluctuates between

d =

 20

20

10

 and d =

 10

20

20


Find the corresponding industry outputs that simultaneously satisfy the consumer demands

and the inter-industry input requirements.

Solution 6

T = I − A =

 1− 0.15 −0.5 −0.25

−0.3 1− 0.1 −0.4

−0.15 −0.3 1− 0.2


Need to solve

Tx = d
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The solution is:

x = T−1

 20

20

10

 =

 84.774

75.72

56.79



x = T−1

 10

20

20

 =

 79.012

79.506

69.630


1.5.7 Ordinary Least Squares

Another important application of linear algebra is in statistics, specifically in multiple re-

gression analysis. We assume that the data is generated with the following model:

Yi = β1 + β2X2,i + β3X3,i + ...+ βkXk,i + ui (1.6)

Here Yi is the value of the dependent variable (i.e. variable of interest, which we want

to predict) for subject i, X2,i, ..., Xk,i are values of independent variables (regressors) for

subject i, β1, ..., βk are unknown coeffi cients to be estimated, and ui is unobserved error

term representing all influences on the dependent variable other than the regressors. The

only assumption about ui needed here is that it has mean zero, i.e. E (ui) = 0. There

are a number of ways to estimate the unknown parameters β1, ..., βk, but the most popular

method is Ordinary Least Squares (OLS). Suppose that we have a random sample of size n

on the dependent variable and the regressors.

Definition 2 (OLS estimator). Let b1, ..., bk be some estimators of the unknown coeffi cients

β1, ..., βk in (1.6). The fitted (or predicted) values of the dependent variable are

Ŷi = b1 + b2X2,i + b3X3,i + ...+ bkXk,i (1.7)

and residual (or prediction error) for observation i:

ei = Yi − Ŷi = Yi − b1 − b2X2,i − b3X3,i − ...− bkXk,i (1.8)

The OLS estimator of β1, ..., βk is the vector
(
bOLS1 , ..., bOLSk

)
which minimizes the sum of

squared residuals

RSS =

n∑
i=1

e2
i =

n∑
i=1

(Yi − b1 − b2X2,i − b3X3,i − ...− bkXk,i)
2 (1.9)
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Mathematically, OLS estimator is defined as2

(
bOLS1 , ..., bOLSk

)
= arg min

b1,...,bk

n∑
i=1

(Yi − b1 − b2X2,i − b3X3,i − ...− bkXk,i)
2

In order to solve for the OLS estimator we need to solve the first order conditions

∂RSS

∂bj
= 0, for j = 1, ..., k (1.10)

Notice that since the objective function is quadratic, the first order conditions are linear.

Thus, solving for OLS estimator boils down to solving a system of k linear equations and k

unknowns. This task is fairly simple for k = 2 and leads to easy to interpret solution:

b2 =

∑n
i=1

(
X2,i − X̄2

) (
Yi − Ȳ

)∑n
i=1

(
X2,i − X̄2

)2

b1 = Ȳ − b2X̄2

where X̄2 and Ȳ2 are sample averages of X2 and Y : X̄2 = 1
n

∑n
i=1X2,i and Ȳ = 1

n

∑n
i=1 Yi.

When k = 3 solving 1.10 without linear algebra is very messy and leads to equations that

would barely fit this page. With k = 4 the task of solving for the OLS estimator without

linear algebra is nearly impossible. Next, we demonstrate how the OLS estimation problem

can be elegantly stated and solved using linear algebra tools discussed in this chapter.

OLS with linear algebra

First, all the data on regressors can be written as an n by k matrix:

X =


1 X2,1 X3,1 · · · Xk,1

1 X2,2 X3,2 · · · Xk,2

...
...

...
. . .

...

1 X2,n X3,n · · · Xk,n


n×k

There are n observations (rows), and k regressors (columns), where the first regressor X1 is

just a vector of 1s. The data on the dependent variable is just an n by 1 vector, as well as

2argmin of some function f (x) is the argument or the element x∗ which minimizes the function f .
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the error term:

Y =


Y1

Y2

...

Yn


n×1

, u =


u1

u2

...

un


n×1

Finally, the unknown coeffi cients, and their estimators are k by 1 vectors:

β =


β1

β2
...

βk


k×1

, b =


b1

b2

...

bk


k×1

With this notation, the multiple regression model in 1.6 can be written as

Y = Xβ + u,

the fitted equation is

Ŷ = Xb,

the residuals

e = Y − Ŷ = Y −Xb,

and the sum of squared residuals becomes

RSS = e′e = (Y −Xb)′ (Y −Xb)

To see why the last step is correct, notice that

e =


e1

e2

...

en


and

e′e =
[
e1 e2 · · · en

]

e1

e2

...

en

 =

n∑
i=1

e2
i
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Thus, the OLS problem we need to solve is

min
b
RSS = (Y −Xb)′ (Y −Xb)

Using rules of transpose (transpose of a product = product of transposes in reverse order),

we have (Y −Xb)′ = Y ′ − b′X ′. Thus, the OLS problem is:

min
b
RSS = (Y ′ − b′X ′) (Y −Xb)

= Y ′Y − Y ′Xb− b′X ′Y + b′X ′Xb

Observe that the two middle terms are transposes of each other and they have dimension

1×1 (i.e. scalar): Y ′1×nXn×kbk×1. Thus, the two middle terms are the same because transpose

of a scalar is the scalar itself. Thus, the OLS problem is reduced to

min
b
RSS = Y ′Y − 2b′X ′Y + b′X ′Xb

There are two terms with b - the first one is linear −2b′X ′Y and the second one is quadratic

b′X ′Xb (to be discussed in section 3.5.2 on quadratic forms). It is easy to verify the following

rules of derivatives (gradient vector) with respect to vector xk×1, where a is k× 1 vector (in

our case a = X ′Y ), A is k × k matrix:

∂

∂x
(a′x) =

∂

∂x
(x′a) = a

∂

∂x
(x′Ax) = 2Ax

Applying these rules gives us the first order necessary conditions for the OLS problem:

∂RSS

∂b
= −2X ′Y + 2X ′Xb = 0

X ′Xb = X ′Y

As we will see in chapter 3, the above condition characterizes a unique global minimum. The

solution, if it exists, is given by:

bOLS = (X ′X)
−1
X ′Y (1.11)

From 1.11 we see that a unique solution exists if and only if X ′X is invertible. It turns

out that this is equivalent to all of the k columns of X being linearly independent. If two or

more columns are linearly dependent, the problem is called perfect multicollinearity, and in
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this case the OLS estimator cannot be calculated. Also observe, that X ′X is k × k matrix.
While the data size may be large (n can be millions of observations), the number of estimated

parameters k is usually no more than a few dozens. Most of the computational power is spent

on matrix multiplications X ′X and X ′Y .

In Matlab, it is possible to find OLS estimators with b = inv(X’*X)*X’*Y, however

Matlab will issue a warning saying that matrix inversion is slower and less accurate and

suggesting that we use b = (X’*X)\(X’*Y), which uses Gaussian elimination to solve the
system of first order conditions X ′Xb = X ′Y . If you simply type b = X\Y, matlab will
understand that you are interested in b = (X’*X)\(X’*Y), but will spend a few seconds

rearranging X\Y as (X’*X)\(X’*Y), and will lose some accuracy in the process.
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Chapter 2

Limits and Differential Calculus

2.1 Functions, Limits, Continuity and Derivatives

In this section, we review basic concepts of functions, their graphs and their inverses, limits

and derivatives. All these concepts should be familiar from your calculus course.

2.1.1 Set basics

Definition of a set

A set is any collection of elements. For example:

1. A = {0, 2, 4, 6, 8, 10} - the set of even numbers between zero and 10.

2. B = {red, white, blue} - the set of colors on the U.S. national flag.

3. C = {SFSU students|female, GPA ≥ 3.2} - the set of SFSU students that satisfy the
conditions listed after the vertical bar, i.e., female and GPA at least 3.2.

4. D = {(x, y) ∈ R2|x = y} - the set of vectors in the two dimensional Euclidean space,
such that the x-coordinate is equal to the y-coordinate.

5. E = {(x, y) ∈ R2|0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x ≥ y} - the set of vectors in the two
dimensional Euclidean space such that both coordinates are between 0 and 1 and the

x-coordinate is greater or equal to the y-coordinate. The next figure illustrates this set

graphically.

41
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6. F = {} is an empty set, also denoted by ∅, is a set which does not contain any elements.

Set operations

Elements contained in set A are denoted by a ∈ A and elements that are not contained
in A are denoted b /∈ A. For example, if A = {1, 2, 3}, then 3 ∈ A and 7 /∈ A.

B is a subset of set A, denoted B ⊆ A, if every element in B is also contained in A. For

example, if A = {1, 2, 3, 4, 5}, then both B = {1, 5} and C = {1, 2, 3, 4, 5} are subsets of A,
but D = {4, 5, 10} is not a subset of A because 10 /∈ A.
Complement of set A is the set Ac, which contains all the elements that are not in A.

For example, if A = {1, 2, 3}, then 5 ∈ Ac, that is 5 /∈ A.
Cartesian product of sets A and B is the set A×B of all ordered pairs such that the

first element belongs to A and the second belongs to B. For example, if A = {1, 2, 3} and
B = {7, 8}, then A×B = {(1, 7), (1, 8), (2, 7), (2, 8), (3, 7), (3, 8)}.
Union of sets A and B is the set A ∪ B of elements that are either in A or in B. For

example, if A = {1, 2, 3} and B = {3, 4, 5}, then A ∪B = {1, 2, 3, 4, 5}.
Intersection of sets A and B is the set A ∩ B that contains only the elements that are

in both A and B. For example, if A = {1, 2, 3} and B = {3, 4, 5}, then A ∩B = {3}.
Set subtraction, denoted A − B or A\B, is the set of elements in A, that are not in

B. That is, A\B = {a ∈ A ∩Bc}. For example, if A = {1, 2, 3} and B = {3, 4, 5}, then
A\B = {1, 2}. The set R\ {0} denotes the set of all real numbers, except zero.



2.1. FUNCTIONS, LIMITS, CONTINUITY AND DERIVATIVES 43

Special sets

Convex sets: the set B is convex if ∀x, y ∈ B, we have αx + (1 − α)y ∈ B, ∀α ∈ [0, 1].

In words, a linear combination of any two elements in the set, also belongs to the set. For

example, the set of real numbers is convex since a linear combination of any two real numbers

is convex. However, the set of integers Z is not convex, since 1 and 4 is 2.5, not an integer.

The set of real numbers is denoted by R, and it contains all numbers in (−∞,∞). The

Cartesian product R× R = R2 contains all the two-dimensional vectors in the real plane:

{(x, y) |x ∈ R, y ∈ R}. Similarly, R3,R4,...,Rn represent spaces of real numbers (Euclidean
spaces) of 3-dimensions, 4-dimenstions, etc. The set R+ contains all non-negative numbers,

i.e. [0,∞) and the set R++ contains all positive real numbers (0,∞). The set of extended

real numbers is R̄ = R∪{−∞,∞}, which contains the real numbers, as well as −∞ and∞.

2.1.2 Basic concepts of functions

Definition 3 A function f : A → B consists of the domain set A, the codomain set B,

and a rule that assigns to every element in the domain, a unique element in the codomain1.

We can say that the function f maps from A into B.

Example 10 Let F : R2
+ → R be a function, with the rule F (K,L) = AKθL1−θ, A > 0,

0 < θ < 1. The domain is R2
+ = R+ × R+, meaning that K ∈ R+ and L ∈ R+ (K ≥ 0

and L ≥ 0). The codomain is R - the set of real numbers. Thus, this function maps pairs
of non-negative numbers (K,L) into a real number AKθL1−θ. For example, if A = 2, and

θ = 0.3, then the point (K,L) = (10, 5) is mapped into 2 · 100.3 · 51−0.3 = 12.311. We say that

12.311 is the image of (10, 5) under F or the value of F at (10, 5).

Often, when describing a function, we simply write the mapping rule, without specifying

the domain and the codomain, which are supposed to be clear from the context.

Definition 4 The image of a function f : A→ B is the set

Im (f) = Im (A) = {y ∈ B|y = f (x) , x ∈ A}

or in short

Im (f) = {f (x) ∈ B|x ∈ A}

The term range of a function is often used as synonym of image, and sometimes used to

refer to the codomain.
1A mapping that assigns possibly more than one value to every element in the domain is called corre-

spondence.
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Example 11 Let f : R+ → R be a function, with the rule f (x) = x
1+x
. The domain of f is

R+, its codomain is R, but the image of f is the set [0, 1).

Figure (2.1) is a graphical illustration of domain A, codomain B and an image Im, of

some abstract function.

Figure 2.1: Domain A, codomain B, and image IM .

Definition 5 The graph of a function f : A→ B is the set of all ordered pairs of the form

(x, y) such that x ∈ A and y = f (x) ∈ B. Formally

Gr (f) = {(x, y) ∈ A×B|y = f (x)}

Example 12 The graph of the function f : R→ R, with rule f (x) = x3, is:

Gr (f) =
{

(x, y) ∈ R× R|y = x3
}

The graph of F (K,L) = AKθL1−θ is:

Gr (F ) =
{

(K,L, Y ) ∈ R2
+ × R|Y = AKθL1−θ}

Definition 6 Let f : A→ B be a function. Then f has an inverse if there exists a function
g : Im (f)→ A such that

f (x) = y ⇐⇒ g (y) = x

for all x ∈ A and all y in Im (f). In this case, g is the inverse of f , and is denoted by f−1.

It is easy to verify that an inverse of a function f exists if for every y in the image of f

there is a unique x in the domain of f . This property is satisfied if f is strictly monotone.



2.1. FUNCTIONS, LIMITS, CONTINUITY AND DERIVATIVES 45

A function f is strictly increasing if for any x1 and x2 in the domain of f , we have

x1 > x2 ⇒ f (x1) > f (x2)

and strictly decreasing, if

x1 > x2 ⇒ f (x1) < f (x2)

In either of these cases, the inverse f−1 exists.

Example 13 Let f (x) = x3. Notice that f is strictly increasing. The inverse of f is

f−1 (y) = y1/3.

In the above example, the domain of the function f (x) = x3 is the set of real numbers

R, (also called the real line or the unidimensional Euclidian space). The codomain of this
function is also R. This is an example of a function of one variable - x. We often encounter
functions of several variables, for example, utility function can depend on quantities con-

sumed of several goods: u (x, y) = xαyβ, α, β > 0. Here the utility u depends on quantities

of two goods, and the domain of this function is R+×R+, or R2
+, where the + indicates that

quantities consumed are restricted to non-negative numbers. The value of utility associated

with each pair (x, y) is xαyβ, which is a real number. Thus, the codomain of u is R or R+.

Thus, we can write u : R2
+ → R, i.e., the utility function maps elements (pairs) from the

two-dimensional Euclidian space into the real line.

Example 14 The following function f : R2 → R3, defined by (x, y) → (x+ y, x2 − y2, x3)

is a function that maps every element in R2 to an element in R3.

The most general real-valued functions are f : Rm → Rn, i.e. mapping m-dimensional
Euclidian spaces into n-dimensional Euclidian spaces.

2.1.3 Limit of a function

There are several ways to define a limit of a function, and here we present just one way, that

I find the most convenient for this course. This definition is based on one-sided limits.

Definition 7 The left limit of the function f at point x0 is L, written as,

lim
x↗x0

f (x) = L
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if for every ε > 0, there exists a δ > 0 such that x0− x < δ ⇒ |f (x)−L| < ε. The notation

x↗ x0 means that x approaches x0 from below (from the left). In words, L is the left limit

if the function can approach arbitrarily close to L (i.e. |f (x) − L| < ε) when x approaches

close enough to x0 from below (i.e. x0 − x < δ).

Similarly, the right limit of the function f at point x0 is L, written as,

lim
x↘x0

f (x) = L

if for every ε > 0, there exists a δ > 0 such that x− x0 < δ ⇒ |f (x)−L| < ε. The notation

x ↘ x0 means that x approaches x0 from above (from the right). In words, L is the right

limit if the function can approach arbitrarily close to L (|f (x)−L| < ε) when x approaches

close enough to x0 from above (i.e. x− x0 < δ).

If both of these limits are the same, we say that the function f has the limit L at point
x0, and write:

lim
x→x0

f (x) = L

Conversely, if the left limit is not the same as the right limit, then we say that the limit of

f at point x0 does not exist.

Example 15 Figure (2.2) shows a function f such that the left limit L1 is not equal to the

right limit L2, and therefore, the limit of the function at point x0 does not exist.

Figure 2.2: The limit of f at x0 does not exist.
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Limits involving infinity

A word of caution is needed here. In the above definition, the point x0 as well as the limit L

are real numbers. The set of real numbers is denoted by R. Often we need limits of functions
where x0 is infinity or minus infinity (∞ or −∞). In other cases, the limit itself, L, can be
∞ or −∞. The definition we presented must be modified, to accommodate such cases. For
such cases, we define the extended real line as R̄ ≡ R∪{−∞,∞}, i.e. the union of the set
of real numbers with the two objects ∞ and −∞. Since these objects are not numbers, the
difference x−x0 is not defined when x is a number and x0 is either∞ or −∞. The definition
of a limit of a function at x0, when x0 is infinity or minus infinity, goes as follows:

Definition 8 The limit of the function f as x approaches ∞ is L, written as,

lim
x→∞

f (x) = L

if for every ε > 0, there exists a number M > 0, such that x > M ⇒ |f (x) − L| < ε.

In words, we can always find a large enough positive number M such that for x > M the

function f (x) gets arbitrarily close to L.

Similarly, The limit of the function f as x approaches −∞ is L, written as,

lim
x→−∞

f (x) = L

if for every ε > 0, there exists a number M < 0, such that x < M ⇒ |f (x) − L| < ε.

In words, we can always find a large enough negative number M such that for x < M the

function f (x) gets arbitrarily close to L.

The definition of limit of a function at x0, when the limit L is infinity or minus infinity,

goes as follows:

Definition 9 The limit of the function f at point x0 is ∞, written as,

lim
x→x0

f (x) =∞

if for every M > 0 there exists δ > 0 such that |x−x0| < δ ⇒ f (x) > M . In words, for any

positive number M , we can always make the function f (x) exceed this number, if we choose

x close enough to x0.

Similarly, the limit of the function f at point x0 is −∞, written as,

lim
x→x0

f (x) = −∞
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if for every M < 0 there exists δ > 0 such that |x−x0| < δ ⇒ f (x) < M . In words, for any

negative number M , we can always make the function f (x) be smaller than this number, if

we choose x close enough to x0.

We could add to the above the definitions of limits of the type: limx→∞ f (x) = ∞,
limx→∞ f (x) = −∞, limx→−∞ f (x) = ∞, limx→−∞ f (x) = −∞, but these are straightfor-
ward and omitted. The next table summarizes our limits definitions:

x0 ∈ R, L ∈ R
limx↗x0 f (x) = L1 if ∀ε > 0, ∃δ > 0 s.t. x0 − x < δ ⇒ |f (x)− L| < ε

limx↘x0 f (x) = L2 if ∀ε > 0, ∃δ > 0 s.t. x− x0 < δ ⇒ |f (x)− L| < ε

limx→x0 f (x) = L if L1 = L2 = L

L1 6= L2 ⇒ @ limx→x0 f (x)

x0 ∈ {−∞,∞}, L ∈ R
limx→∞ f (x) = L if ∀ε > 0, ∃M > 0 s.t. x > M ⇒ |f (x)− L| < ε

limx→−∞ f (x) = L if ∀ε > 0, ∃M < 0 s.t. x < M ⇒ |f (x)− L| < ε

x0 ∈ R, L ∈ {−∞,∞}
limx→x0 f (x) =∞ if ∀M > 0, ∃δ > 0 s.t. |x− x0| < δ ⇒ f (x) > M

limx→x0 f (x) = −∞ if ∀M < 0, ∃δ > 0 s.t. |x− x0| < δ ⇒ f (x) < M

The next two examples illustrate the use of the definitions of limits to prove that a

function has a given limit at a given point.

Example 16 Consider the function f : R→ R, with f (x) = x2. Prove that

lim
x↗5

x2 = 25

That is, prove that the left limit of f at 5 is 25.

Solution 7 We need to find a number δ > 0, such that 5 − x < δ ⇒ |x2 − 25| < ε for any

ε > 0. In words, we can make the function x2 approach 25 arbitrarily close, by letting x

approach close enough to 5 from below. Since x↗ 5, we know that x < 5, and x2 − 25 < 0.

Therefore, |x2 − 25| = 25 − x2 by definition of absolute value. Thus, we need to find δ > 0

such that

[x > 5− δ] ⇒
[
25− x2 < ε

]
or

[x > 5− δ] ⇒
[
25− ε < x2

]
or

[x > 5− δ] ⇒
[
x >
√

25− ε
]
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We can see that the required δ > 0 is such that

5− δ ≥
√

25− ε
or

0 < δ ≤ 5−
√

25− ε

Notice that the interval containing the desired δ is not empty for any ε > 0 because the upper

bound 5 −
√

25− ε > 0. Thus, we proved that for any ε > 0, we can find δ > 0 such that

5− x < δ ⇒ |x2 − 25| < ε. For example, if ε = 0.01, we can pick

δ = 5−
√

25− 0.01 = 0.0010001

and this δ is guaranteed to satisfy the definition of lower limit.

Example 17 Prove that
lim
x→∞

x

1 + x
= 1

Solution 8 We need to find a number M > 0 such that x > M ⇒
∣∣ x

1+x
− 1
∣∣ < ε for any

ε > 0. In words, we can make the function x
1+x

approach arbitrarily close to 1, by choosing

x big enough (bigger than some M > 0). Notice that for any x > 0, we have x
1+x

< 1 and
x

1+x
− 1 < 0. Thus, the absolute value is

∣∣ x
1+x
− 1
∣∣ = 1− x

1+x
. Therefore, the desired M > 0

is such that:

[x > M ] ⇒
[
1− x

1 + x
< ε

]
[x > M ] ⇒

[
1

1 + x
< ε

]
[x > M ] ⇒ [1 < ε+ εx]

[x > M ] ⇒
[
x >

1− ε
ε

]
Thus, the desired M is M ≥ 1−ε

ε
. For example, if ε = 0.01, we can choose M = 1−0.01

0.01
= 99.

Larger M than that will obviously work as well. For example, M = 1
ε
.

Properties of limits

Limits of sums, differences, products and ratios of functions, are sums, differences, products

and ratios. Formally, let f and g be two functions, such that limx→x0 f (x) and limx→x0 g (x)

both exist. Then,



50 CHAPTER 2. LIMITS AND DIFFERENTIAL CALCULUS

1.

lim
x→x0

(f (x) + g (x)) = lim
x→x0

f (x) + lim
x→x0

g (x)

2.

lim
x→x0

(f (x)− g (x)) = lim
x→x0

f (x)− lim
x→x0

g (x)

3.

lim
x→x0

(f (x) · g (x)) =

(
lim
x→x0

f (x)

)
·
(

lim
x→x0

g (x)

)
4.

lim
x→x0

(
f (x)

g (x)

)
=

limx→x0 f (x)

limx→x0 g (x)

This property holds provided that the denominator is not zero.

5. Substitution rule (chain rule). Suppose that limx→x0 f (x) = c, and limy→c g (y)

exists. Then,

lim
x→x0

g (f (x)) = lim
y→c

g (y) ,

provided that at least one of the following additional conditions hold:

(a) g (y) is continuous at c.2

(b) f (x) 6= c for all x in some open interval around c, except at x = x0.

This means that, in most cases, if you have a composite function g (f (x)). Then you

can calculate the limit of f (x) first (suppose this limit is c), and then calculate the

limit of g (y) as y → c.

Example 18 (Substitution rule). Find

lim
x→∞

2x

1 + x

Notice that this limit is of the form ∞
∞ , and in the future we will find such limits with the

help of L’Hôpital’s rule. Here we show an alternative way, which utilizes the substitution

rule. Dividing the numerator and denominator by x, gives

lim
x→∞

2x

1 + x
= lim

x→∞

2

1/x+ 1

2Continuity of functions is defined in the next section.
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Let f (x) = 1
x
and g (y) = 2

y+1
. Then, using the substitution rule

lim
x→∞

f (x) = lim
x→∞

1

x
= 0

and

lim
y→0

g (y) = lim
y→0

2

y + 1
= 2

2.1.4 Continuous functions

Definition 10 The function f is continuous at point x0 of its domain, if

lim
x→x0

f (x) = f (x0)

This means that (i) the function f has to be defined at point x0, (ii) the limit as x approaches

x0 exists (a finite number), and (iii) this limit is equal to the value of the function at point

x0. If the function f is continuous at every point at its domain, then we say that f is a

continuous function.

Notice that if we know in advance that a function f is continuous at x0, then we can

immediately find the limit by simply plugging in the point x0 into the function. For example,

if we know that ex is continuous, then limx→0 e
x = e0 = 1.

Continuous functions are very important in optimization (finding maximum or minimum).

In Economics, many problems involve finding minimum or maximum of a function (e.g. profit

maximization, utility maximization, cost minimization, minimum least squares, etc.). The

next theorem says that all continuous function have at least one minimum and at least one

maximum.

Theorem 3 (Extreme Value Theorem) if a real-valued function f is continuous on a

closed and bounded interval [a, b], then f must attain its maximum and minimum value,

each at least once. That is, there exist numbers c and d in [a, b] such that:

f (c) ≥ f (x) ≥ f (d) for all x ∈ [a, b]

The next figure illustrates the Extreme Value Theorem:
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The Extreme Value Theorem extends to continuous functions of any number of variables.3

2.1.5 Derivative of a function

Intuitively, the derivative of a function at a point, gives the slope of the function at that

point. In other words, f ′ (x) is the answer to the question "what is the change in the function

f that results from a small change in its input x?" For example, if the function C (q) gives

the cost of producing q units of output, the derivative of the cost function, C ′ (q) gives the

change in cost resulting from producing additional unit of q, and we call this derivative the

marginal cost. The marginal cost can be seen as the slope of the cost function with respect

to quantity.

In addition, we often use derivatives to find maximum or minimum of a function. If the

slope is positive, we know that the function f is increasing, and finding maximum requires

increasing the value of x. Similarly, if the slope is negative, we know that the function f

is decreasing, and finding maximum requires decreasing the value of x. Formally, we define

derivative of a function with one variable, as follows.

3A continuous real-valued function on a nonempty compact space is bounded above and attains its
supremum.
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Definition 11 The derivative of a function f at point x0 is

f ′ (x0) = lim
h→0

f (x0 + h)− f (x0)

h

If the above limit exists, we say that the function f is differentiable at point x0. If the

derivative of f exists at each point of its domain, we say that f is a differentiable function.

The above limit can be equivalently expressed as follows (letting x = x0 + h):

f ′ (x0) = lim
x→x0

f (x)− f (x0)

x− x0

The denominator is the change on the horizontal axis, ∆x, and the numerator is the change

on the vertical axis, ∆y. Thus, the derivative gives the change of the function value (vertical

axis) resulting from a small change in the function argument (horizontal axis) - a slope.

Therefore, the derivative of a function at a point indicates whether the function is increasing

or decreasing with the value of its argument, in the neighborhood of that point.

Another commonly used notation for the derivative of a function of one variable is:

f ′ (x) =
df (x)

dx
or

d

dx
f (x)

As with the definition of limits, there are cases where the slope of the function at a given

point is infinity or minus infinity. In the above definition, the words "limit exists" mean

that the limit is a real number. With such definition, which restricts derivatives to be real

numbers, we can prove that a differentiable function must be continuous.

Theorem 4 (Differentiability implies continuity). If f is differentiable at x0, then f

is continuous at x0.

Proof. The definition of continuity at point x0 can be written as

lim
x→x0

[f (x)− f (x0)] = 0

We need to prove that the above definition is satisfied whenever f has derivative at x0, which

means that the following limit exists:

f ′ (x0) = lim
x→x0

f (x)− f (x0)

x− x0
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Multiply and divide the term in the brackets by x− x0:

lim
x→x0

[f (x)− f (x0)] = lim
x→x0

[
f (x)− f (x0)

x− x0

(x− x0)

]
= lim

x→x0

[
f (x)− f (x0)

x− x0

]
· lim
x→x0

(x− x0)

= f ′ (x0) · 0 = 0

The second step uses the property that limit of a product = product of limits. The last step

uses the given, that f is differentiable at x0, so the derivative f ′ (x0) exists and is finite.

Example 19 The following is a continuous function at x = 1, but not differentiable.

f (x) =

{
x if 0 ≤ x ≤ 1

2− x if 1 ≤ x ≤ 2

Notice that

lim
x→1

f (x) = f (1) = 1

However, f (x) is not differentiable at x = 1. The left derivative is 1 and the right derivative

is −1, as seen the next figure.
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2.1.6 Rules of differentiation

The derivative of a function f at a point x, f ′ (x), is itself a function. Finding the derivative

function from the original function f is called differentiation. The definition of derivatives

in the previous section, can be used to prove the following rules of differentiation:
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1. For constant a,
d

dx
a = 0

2. Power rule:
d

dx

(
axb
)

= abxb−1

The first two rules imply that for linear functions

d

dx
(a+ bx) = b

3. Sums or differences rule:

d

dx
[f (x)± g (x)] = f ′ (x)± g′ (x)

4. Product rule:
d

dx
[f (x) · g (x)] = f ′ (x) g (x) + f (x) g′ (x)

5. Quotient rule:
d

dx

[
f (x)

g (x)

]
=
f ′ (x) g (x)− f (x) g′ (x)

g (x)2

6. Chain rule:
d

dx
[f (g (x))] = f ′ (g (x)) g′ (x)

7. Logarithmic function:
d

dx
ln (x) =

1

x

8. Exponential function:

d

dx
ax = ln (a) ax

in particular,
d

dx
ex = ex

9. Inverse function rule: let y = f (x) and x = f−1 (y), then

dy

dx
=
df (x)

dx
=

1

df−1 (y) /dy
=

1

dx/dy

Example 20 As example for the last rule, consider y = ex, so the inverse is x = f−1 (y) =
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ln (y). Observe that

dy

dx
= ex [rule 8]

dx

dy
=

1

y
=

1

ex
[rule 7]

Since y = ex, we have dy
dx

= 1
dx/dy

.

2.1.7 L’Hôpital’s rule

Another important result, which sometimes helps to compute limits of ratios of functions, is

known as the L’Hôpital’s rule.

Theorem 5 (L’Hôpital’s rule). Suppose limx→x0 f (x) = limx→x0 g (x) = 0 or ±∞, and

lim
x→x0

f ′ (x)

g′ (x)
exists, and g′ (x) 6= 0 for all x 6= x0

then

lim
x→x0

f (x)

g (x)
= lim

x→x0

f ′ (x)

g′ (x)

The L’Hôpital’s rule sometimes helps computing limits of ratios, of the form 0
0
, ∞∞ ,

−∞
∞

or ∞
−∞ , if the numerator and denominator are simplified by differentiations.

Example 21 Consider the function

f (x) =
a1−x − 1

1− x , x > 0, a > 0

We would like to compute the limit limx→1 f (x), and indeed when x→ 1, both the numerator

and denominator approach zero (i.e., we have a limit of the form 0
0
). Using the L’Hôpital’s

rule

lim
x→1

a1−x − 1

1− x = lim
x→1

− ln (a) a1−x

−1
= ln (a)

Notice that we used the differentiation of exponential function, rule 8, as well as the chain

rule, which resulted in the "−" in front of the ln.

Example 22 Consider the function f (x) = x ln (x). We would like to find the limit limx↘0 f (x),

using L’Hôpital’s rule. Recall that limx↘0 is the right limit, when x approaches 0 from the

right (from above), also denoted limx→0+. The ln (·) function is defined only for strictly pos-
itive numbers, and therefore there can only be right limit here (the left limit does not exist).
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At first glance this does not look like a quotient for which the rule can be applied. But notice

that

x ln (x) =
ln (x)

x−1

and limx↘0 ln (x) = −∞, limx↘0 x
−1 = ∞. Thus, we have a limit of the form −∞

∞ , and we

can apply L’Hôpital’s rule.

lim
x↘0

ln (x)

x−1
= lim

x↘0

x−1

−x−2
= lim

x↘0
−x = 0

Thus, we proved that limx↘0 x ln (x) = 0.

Exercise 6 Using L’Hôpital’s rule, prove that

lim
x→0

ln (1 + x)

x
= 1

Exercise 7 Using L’Hôpital’s rule, prove that

lim
x→∞

x2

ex
= 0

Exercise 8 Using L’Hôpital’s rule, prove that

lim
x→0

xx = 1

Hint: use the chain rule with f (x) = ln (xx) and g (y) = ey.

Exercise 9 Let the production function be F (K,L) = A [θKρ + (1− θ)Lρ]
1
ρ , θ ∈ (0, 1),

ρ ≤ 1, A > 0. Using L’Hôpital’s rule, prove that

lim
ρ→0

A [θKρ + (1− θ)Lρ]
1
ρ = AKθL1−θ

2.1.8 Higher order derivatives

Since the derivative of f , f ′ (x), is itself a function of x, we can define the derivative of f ′ (x).

This derivative of derivative is the second derivative of f , and denoted

f ′′ (x) or
d2f (x)

dx2
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and defined as usual as the regular derivative, but instead of f we use f ′ in the definition:

lim
h→0

f ′ (x+ h)− f ′ (x)

h

More generally, the n-order derivative of f is denoted

dnf (x)

dxn

and is obtained by differentiating the function f , n times. If derivative of order n exists, we

say that f is n-times differentiable.

Exercise 10 let u (x) be utility from wealth. We define the Arrow-Pratt coeffi cient of
relative risk aversion as4

RRA = −u
′′ (x)

u′ (x)
x

Calculate the coeffi cient of relative risk aversion for

u (x) =
x1−γ − 1

1− γ , γ 6= 1

2.1.9 Partial derivatives

Suppose that f : Rn → R is given by y = f (x1, ..., xn), i.e. f is a function of n variables.

The derivative of f with respect to xi is defined as

∂

∂xi
f (x1, ..., xn) = lim

h→0

f (x1, ..., xi + h, ..., xn)− f (x1, ..., xn)

h

Other notations
∂

∂xi
f (x1, ..., xn) ≡ fxi (x1, ..., xn) ≡ fi (x1, ..., xn)

There is nothing special about partial derivative, compared to the regular derivative.

When we calculate the partial derivative of a function of several variables, with respect to

variable xi, we treat the function as a function of that variable only, and all other variables

are held constant. The intuitive meaning of the partial derivative ∂
∂xi
f (x1, ..., xn) is the

change in the value of the function, per small unit increase in the variable xi, holding all

other variables constant.

4Higher RRA means the investors are willing to invest smaller fraction of their portfolio in risky assets.
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Chain rule

All the rules of derivatives for functions of one variable, apply to partial derivatives. The

chain rule for multivariate functions is similar to the one for univariate function. Suppose

that the function f is a function of two variables, g and h, which are functions of t. Then,

∂

∂t
f (g (t) , h (t)) =

∂f

∂g
g′ (t) +

∂f

∂h
h′ (t)

Thus, changing t affects f through its effect on g and through its effect on h. The total effect

is the sum of these two partial effects. In general, let y = f (x1, x2, ..., xn) and x1, x2, ..., xn

are functions of another variable, say t, we can write y (t) = f (x1 (t) , x2 (t) , ..., xn (t)) and

the chain rule becomes

y′ (t) =
∂f

∂x1

x′1 (t) +
∂f

∂x2

x′2 (t) + ...+
∂f

∂xn
x′n (t)

In some texts, the above equation is called total derivative. Notice that the total effect
of t is the sum of all the partial effects, through x1, x2, ..., xn. This is in contrast to partial

derivative, which measures only one of these effects, holding all others constant.

Gradient vector

It is often convenient to collect all the partial derivatives of a function f (x1, ..., xn) in a

vector called the gradient vector, and defined as follows:

∇f (x1, ..., xn) =


f1

f2

...

fn


where fi is the partial derivative of the function f (x1, ..., xn) with respect to variable xi.
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2.2 Applications of Derivatives to Economics

2.2.1 Average v.s. marginal cost functions

Suppose a firm has a total cost function, which depends on the quantity of output produced

Q. The typical, short run cost function, is

TC (Q) = FC + V C (Q)

The total cost consist of fixed cost FC, which the firm already committed to pay, and

variable cost V C (Q) which increases in the quantity produced. The average cost per unit

is important to the firm, because the average cost determines whether the firm is making

profit or not (if the average cost is greater then the price it gets per unit, the firm has a

loss). The average total cost is:

ATC (Q) =
TC (Q)

Q
=
FC + V C (Q)

Q
=
FC

Q︸︷︷︸
AFC

+
V C (Q)

Q︸ ︷︷ ︸
AV C(Q)

Here AV C (Q) is the average variable cost, and AFC is the average fixed cost.

The marginal cost,MC (Q), is the change in the total cost when the firm increases output

by a small unit:

MC (Q) =
d

dQ
TC (Q) =

d

dQ
V C (Q)

It turns out that any average quantity is increasing (decreasing) when the marginal is above

(below) it. Consider the relationship between your average grades (GPA) and your marginal

grade (the grade in the last course you took). Whenever the marginal is above the average,

it will drive the average up, and whenever the marginal is below the average, the average

will decline. The next proposition proves this for average and marginal cost functions.

Proposition 1 Suppose that the total cost is differential function TC (Q), with the associ-

ated average and marginal cost functions ATC (Q) = TC(Q)
Q

and MC (Q) = TC ′ (Q). Then

d

dQ
ATC (Q) ≷ 0 ⇐⇒ MC (Q) ≷ AV C (Q)

Proof. Differentiating the average total cost, ATC (Q) = TC(Q)
Q
, with respect to Q, requires

using the quotient rule:

d

dQ
ATC (Q) =

TC ′ (Q)Q− TC (Q)

Q2
=
TC ′ (Q)− TC (Q) /Q

Q
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Note that

d

dQ
ATC (Q) ≷ 0 ⇐⇒ TC ′ (Q)︸ ︷︷ ︸

MC(Q)

− TC (Q) /Q︸ ︷︷ ︸
ATC(Q)

≷ 0 ⇐⇒ MC (Q) ≷ ATC (Q)

Thus, the average total cost function ATC (Q) is increasing whenever the marginal cost

MC (Q) is above it, and ATC (Q) is decreasing whenever MC (Q) is below it. The same is

true for the relationship between the average variable cost and marginal cost functions:

d

dQ
AV C (Q) ≷ 0 ⇐⇒ MC (Q) ≷ AV C (Q)

Simply repeat the previous proof, with V C (Q) instead of TC (Q).

Exercise 11 Given the total cost function

TC (Q) = Q3 − 5Q2 + 12Q+ 75,

write out the variable cost function, V C (Q), the marginal cost functionMC (Q), the average

total cost function ATC (Q), and the average variable cost function AV C (Q).

Exercise 12 Consider the average variable cost function, defined as

AV C (Q) =
V C (Q)

Q

Prove that

lim
Q→0

AV C (Q) = MC (0)

where MC (Q) is the marginal cost function.

2.2.2 Marginal utility and marginal products

Preferences of individuals are often described with utility functions. For example, if indi-

viduals derive utility from quantities of two goods, their utility function if u (x, y). The

marginal utilities from the two goods are the partial derivatives:

[Marginal utility from x] : MUx =
∂

∂x
u (x, y) = ux (x, y)

[Marginal utility from y] : MUy =
∂

∂y
u (x, y) = uy (x, y)



62 CHAPTER 2. LIMITS AND DIFFERENTIAL CALCULUS

The marginal utility from good x is the change in the utility per small unit increase in x,

holding the quantity of y fixed. Marginal utility from y has similar interpretation. If the

marginal utility from a good is positive, say ux (x, y) > 0, it means that utility is increasing

in that good.

The ratio of marginal utility from x to that of y is known as the Marginal Rate of

Substitution between x and y, and is also the absolute value of the slope of indifference

curves:

MRSx,y =
ux (x, y)

uy (x, y)

The MRSx,y describes the rate at which the consumers are willing to substitute good y for

good x. For example, ifMRSx,y = 2, then the consumer is willing to give up 2 units of good

y for one unit of good x, and remain on the same indifference curve (i.e. attain the same

utility). The Marginal Rate of Substitution between y and x is therefore MRSy,x = uy(x,y)

ux(x,y)
,

and represents the rate at which the consumer is willing to substitute good x for good y.

The above marginal utilities can be differentiated once again, to obtain the second deriv-

atives of the utility function.

uxx (x, y) =
∂

∂x
ux (x, y)

uyy (x, y) =
∂

∂y
uy (x, y)

uxy (x, y) = uyx (x, y) =
∂

∂y
ux (x, y)

The second derivatives of the utility function describe how the marginal utilities change

when the quantities of x and y change. For example, if uxx (x, y) < 0, then we say that

there is diminishing marginal utility from good x. Thus, ux (x, y) > 0 and uxx (x, y) < 0

mean that utility is increasing with x, but at diminishing rate. For example, suppose x is

chocolate, then ux (x, y) > 0 means that your utility is increasing in the quantity of chocolate

consumed, but uxx (x, y) < 0 means that each additional bite of chocolate does not increase

utility as much as the previous, because you are getting full. At some point you could have

ux (x, y) < 0 because you ate too much chocolate.

Firm’s technology is often described by production function. Formally, the production
function gives the maximal output level that can be produced with given inputs. Suppose
output is Y and there are two inputs, K and L (capital and labor). Then, the production

function is written as Y = F (K,L). In analogy to the marginal utilities, we define the



2.2. APPLICATIONS OF DERIVATIVES TO ECONOMICS 63

marginal products:

[Marginal product of K] : MPK =
∂

∂K
F (K,L) = FK (K,L)

[Marginal product of L] : MPL =
∂

∂L
F (K,L) = FL (K,L)

The marginal product of an input gives the change in output per small unit increase in that

input, holding all other inputs fixed. For example, the marginal product of labor gives the

increase in output due to hiring additional worker, holding the capital fixed. In fact, the

marginal product of labor determines how many workers are hired by a firm. A competitive

firm, will hire workers as long as the value of their marginal product is greater than their

wage. If the value of production contributed by additional worker is smaller than the wage

paid by the firm, it is not in the firm’s best interest to employ that worker.

Similar to MRS in consumer’s utility, the ratio of marginal products give the Marginal

Rate of Technical Substitution, which describes the rate at which inputs can be substituted

in production, without changing the output level:

MRTSK,L =
FK (K,L)

FL (K,L)

MRTSL,K =
FL (K,L)

FK (K,L)

For example, if MRTSL,K = FL(K,L)
FK(K,L)

= 2, this means that one worker can be substituted

with 2 machines, without changing the total output (i.e. remaining on the same isoquant).

Typically, we expect the marginal products of all inputs to be positive, MPK ,MPL > 0,

but due to congestion, we expect that the marginal products themselves be decreasing. This

requires computing the second derivatives:

∂2

∂K2
F (K,L) = FKK (K,L)

∂2

∂L2
F (K,L) = FLL (K,L)

If these are negative, then the production function exhibits decreasing marginal products of

K and L.

Example 23 Consider the Constant Elasticity of Substitution (CES) utility function:

u (x, y) = [αxσ + (1− α) yσ]
1
σ , σ ≤ 1
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Prove that the marginal utility of x and y is positive and diminishing.

Solution 9 The marginal utility of x:

ux = [αxσ + (1− α) yσ]
1−σ
σ αxσ−1 > 0

The second derivative:

uxx = (1− σ) [αxσ + (1− α) yσ]
1−σ
σ
−1 α2x2σ−2 − (1− σ) [αxσ + (1− α) yσ]

1−σ
σ αxσ−2

= (1− σ) [αxσ + (1− α) yσ]
1−σ
σ αxσ−2

{
[αxσ + (1− α) yσ]−1 αxσ − 1

}
= (1− σ) [αxσ + (1− α) yσ]

1−σ
σ αxσ−2

{
αxσ

αxσ + (1− α) yσ
− 1

}
< 0

The fraction in the curly brackets is smaller than 1, and therefore the sign of the brackets is

negative. The proof for y is identical.

2.2.3 Comparative statics analysis

Comparative statics is the analysis of the effect on equilibrium of some model (endogenous

variables), of changes in exogenous variables or parameters. For example, consider the system

of supply and demand:

[Demand] : Qd = a− bP
[Supply] : Qs = −c+ dP

where a, b, c, d > 0, Q is quantity and P is price. The equilibrium requires Qd = Qs = Q.

Solving the model for equilibrium price and quantity gives:

P ∗ =
a+ c

b+ d

Q∗ =
ad− bc
b+ d

Suppose that we want to assess the effect of one small unit increase in a on equilibrium.

This is called comparative statics, and simply requires computing

∂

∂a
P ∗ =

1

b+ d
∂

∂a
Q∗ =

d

b+ d
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Without knowing the values of the parameters, we can only say that both these effects are

positive.

2.3 Differential

A closely related to derivatives, and often misunderstood concept, is the differential. It has
enormous importance in applications to economics. For example, differential is very useful in

comparative statics involving systems of non-linear equations, such as first order conditions.

2.3.1 Univariate functions

Definition 12 Suppose y = f (x) is a function of one variable. We denote its derivative as:

dy

dx
= f ′ (x)

The quantity

dy = f ′ (x) dx

is called the differential of f at x, with increment dx.

Thus, the differential gives the approximate change in y, resulting from a change dx in

x. The reason why we say that this is an approximation, is because the slope f ′ (x) is the

slope of the tangent line to the function f at point x. So the differential gives the change in

y as we move along the tangent line to the function f and not along the function f itself.

The exact change in y as x increases by dx is

∆y = f (x+ dx)− f (x) =
f (x+ dx)− f (x)

dx
dx

Comparing this to the differential, dy = f ′ (x) dx, we see that as dx becomes small, the

quotient in the above expression approaches the derivative f ′ (x), and the approximation is

closer - small change along the function f (x) is close to the change along the tangent line to

the function. The next figure illustrates the differential dy = f ′ (x) dx vs. the exact change

∆y = f (x+ dx)− f (x) in some function, due to increment dx.
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Example 24 Suppose we want to approximate the change in y = f (x) = x2 at x = 2, when

x changes by increment dx = 0.1. The exact change in y is

∆y = f (2.1)− f (2) = 2.12 − 22 = 0.41

Now, suppose that we want to approximate this change with differential. The derivative at

the initial point is f ′ (x) = 2x = 4. So the differential of f at x = 2, with increment dx = 0.1

is

dy = f ′ (x) dx = 4 · 0.1 = 0.4

In the above example, the exact change is ∆y = 0.41 and the approximate change based

on differential is dy = 0.4. These are very close because the increment dx = 0.1 is small, so

the tangent line is close to the actual function.

In terms of notation, if we are given a function y = f (x), the following objects are often

used interchangeably:

dy, df , df (x)

and they all denote the differential of y or of f at x, with increment dx, i.e. f ′ (x) dx.

2.3.2 Multivariate functions

Now suppose that we have a function of n variables, y = f (x1, ..., xn). The total differential
of f at x1, ..., xn, with increments dx1, ..., dxn, is

dy =
∂

∂x1

f (x1, ..., xn) dx1 +
∂

∂x1

f (x1, ..., xn) dx2 + ...+
∂

∂xn
f (x1, ..., xn) dxn
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or, in more compact notation,

dy = f1dx1 + ...+ fndxn

where fi is the partial derivative with respect to xi.

The total differential approximates the change in the value of the multivariate function y,

resulting from small changes in its arguments x1, ..., xn. In the case of a univariate function,

f (x), the differential dy approximates the actual change in y moving along a tangent line.

In the multivariate case, the differential dy approximates the actual change in y by moving

on a tangent plane.

Example 25 Suppose the profit of a firm depends on its output x1 and advertising x2 ac-

cording to

y = f (x1, x2) = 10x1 − x2
1 + 20x2 − x2

2

Suppose that initially the firm produces 4 units of output and 11 units of advertising. What

will be the change in the firm’s profit if it increases the output by 0.1 units and reduces

advertising by 0.05 units? Notice that this question examines simultaneous change in two

arguments of the function, in contrast to the usual "ceteris paribus", by which we change one

thing at a time, holding all else constant. One way to answer the question is to calculate the

profit before and after the change:

f (4, 11) = 10 · 4− 42 + 20 · 11− 112 = 123

f (4 + 0.1, 11− 0.05) = 10 · 4.1− 4.12 + 20 · 10.95− 10.952 = 123.29

Thus, the exact change in profit is ∆y = 123.29− 123 = 0.29.

Now, suppose we want to approximate the above change using total differential. The
partial derivatives at the initial point are:

f1 (x1, x2) = 10− 2x1 = 10− 8 = 2

f2 (x1, x2) = 20− 2x2 = 20− 22 = −2

As a side comment, the above derivatives indicate that the firm’s profit is increasing in output

but decreasing in advertisement. This suggests that the firm should increase output and

reduce it advertising level. The proposed changes in output and advertising are: dx1 = 0.1,

and dx2 = −0.05. Thus, the approximate change in profit, based on the total differential is:

dy = f1 · dx1 + f2 · dx2 = 2 · 0.1 + (−2) · (−0.05) = 0.3
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In the above example, the exact change in profit ∆y = 0.29 and the approximate change

based on total differential is dy = 0.3. Since the increments dx1, dx2 are small, the approxi-

mation is close to the exact change in y.

2.3.3 Rules of differentials

Since the concept of differential is closely related to the derivative (recall that the differential

of f is dy = f ′ (x) dx, where f ′ (x) is the derivative of f), it is not surprising that the

rules of differentials are very similar to the rules of derivatives. For example, suppose that

y = f (x) = ln (x). Then,

[Derivative] : f ′ (x) =
1

x

[Differential] : dy =
1

x
dx

Thus, let a, b be a constants and u and v are two functions of variables x1 and x2 respectively.

Then,

1. For constant a,

da = 0

2. Power rule:

d
(
aub
)

= abub−1du

The first two rules imply that for linear functions

d (a+ bu) = bdu

3. Sums or differences rule:

d [u± v] = du± dv

4. Product rule:

d [u · v] = du · v + u · dv

5. Quotient rule:

d
[u
v

]
=
du · v − u · dv

v2

6. Logarithmic function:

d ln (x) =
1

x
dx
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7. Exponential function:

dax = ln (a) axdx

in particular, dex = exdx

2.3.4 Elasticities

Economics is about change - prices, quantities, profits, unemployment, wealth, all change

over time. The rate of change in some variable from initial value y to new value y1 is

defined to be

ŷ =
y1 − y
y

=
∆y

y
(2.1)

where ∆ (delta) means "change". The percentage change in a variable is the rate of
change, multiplied by 100:

∆y

y
=

(
100

∆y

y

)
% (2.2)

Example 26 The price of pair of shoes changed from $100 to $105. What is the rate of
change in the price?

p̂ =
105− 100

100
=

5

100
= 0.05

We can express the change in percentages, by multiplying the rate of change by 100, so the

percentage change in the price is

(100p̂) % = (100 · 0.05) % = 5%

Point elasticity

Economic theory often describes a relationship between a pair of variables, such as quantity

demanded of a good and the price of that good, or the quantity demanded of a good and

income of buyers. The theory tells us that when the price of a good goes up, then under some

conditions, the quantity demanded of that good will go down. Economics is a quantitative

discipline, so to make the relationship between variables quantitative, we ask what is the

percentage change in the quantity demanded of a good resulting from 1% increase in the

price of a good, holding all other factors affecting the demand constant. The answer to

that question is the price elasticity of demand. Similarly, we would like to measure
the percentage change in the quantity demanded of a good resulting from a 1% increase in

buyers’income, holding all other factors affecting the demand constant. The answer to this

question is income elasticity of demand. In general, the elasticity of y with respect
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to x is defined:
ηy,x =

% change in y
% change in x

=
%∆y

%∆x

In words, this is the prcentage change in y, resulting from a 1% increase in x.

Using the definition of percentage change (2.2), the elasticity of y with respect to x is:

ηy,x =

(
100∆y

y

)
%(

100∆x
x

)
%

=

(
∆y
y

)
(

∆x
x

)
When these changes are small, ∆y and ∆x by the differentials dy and dx. Recall that

differentials of functions approximate the change in the function using a linear approximation,

which is close when the increments in the function’s arguments are small. This leads to the

definition of the point elasticity of y with respect to x:

ηy,x =

(
dy
y

)
(
dx
x

) (2.3)

Thus, for small changes in the variables, the quantities dy
y
and dx

x
represent the rates of change

in these variables, and multiplication by 100 will turn them into percentage changes. Rear-

ranging the point elasticity definition (2.3), gives the practical formula we use to calculate

point elasticities:

ηy,x =
dy

dx

x

y

The first term above is the derivative of y with respect to x, dy
dx

= f ′ (x). If the relationship

between y and x involves other variables, then the derivative symbol d becomes the partial

derivative symbol ∂. So in general, it is perfectly fine to write the point elasticity formula

as:

ηy,x =
∂y

∂x

x

y

Recall that d ln (y) = 1
y
dy. Using this result, we can obtain another formula for point

elasticity:

ηy,x =
d ln (y)

d ln (x)
(2.4)

Here the numerator is d ln (y) = 1
y
dy and denominator is d ln (x) = 1

x
dx, and the formula

is exactly the same as the definition of point elasticity (2.3). This result is the reason why

in econometrics, a very popular specification is the log-log model, in which the estimated

coeffi cients are elasticities.
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Arc elasticity

Note that the point elasticity of demand is valid for small changes ∆y and ∆x. If these

changes are large (and say y changed between y1 and y2 while x changed between x1 and

x2), we define the arc elasticity of y with respect to x, where the rates of change are

usually calculated using the midpoint formula:

ηarcy,x =

(
∆y
y

)
(

∆x
x

) , where ∆y

y
=

y2 − y1

(y2 + y1) /2
,

∆x

x
=

x2 − x1

(x2 + x1) /2
(2.5)

The name midpoint formula comes from the fact that we calculate the rate of change of a

variable y relative to the midpoint between y1 and y2. This way, the arc elasticity becomes

independent of arbitrary choice of the initial point, which could be either y1 or y2. The

discussion of arc elasticity here is a sidestep from the main topic of differentials, and brought

here so that you have a complete picture of all there is to know about elasticities. Moreover,

when arc elasticity formula is applied to small changes, the result approaches point elasticity.

Most applied work in economics calculates or estimates some kind of elasticities, so the

importance of the topic cannot be overstated. Suppose the individual demand function for

some good

x = f (px, py, I)

where x is the quantity demanded of the good, px is the price of the good, py is the price

vector of other related goods (substitutes or complements), and I is income of the buyer.

We can define the following elasticities:

1. Price elasticity of demand:

ηx,px =
∂x

∂px

px
x

The price elasticity of demand gives the percentage change in the quantity demanded

x due to a 1% increase in the price of the good px.

2. Cross price elasticity of x with respect to price of y:

ηx,py =
∂x

∂py

py
y

This elasticity gives the percentage change in the quantity demanded x due to a 1%

increase in the price of another good, py. If the rise in price of y leads to an increase

in quantity demanded x (i.e. ηx,py > 0), we say that x is a gross substitute of y. If

the rise in price of y leads to a decrease in quantity demanded x (i.e. ηx,py < 0),
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we say that x is a gross complement of y. The word "gross" is there because a rise

in the price of any good embodies two effects (i) substitution effect, and (ii) income

effect, discussed in principles and intermediate microeconomics classes. Thus, gross

substitution or complementarity is determined by both effects. Similarly, ηy,px = ∂y
∂px

px
y

is the cross price elasticity of x with respect to the price of y.

3. Income elasticity of demand:

ηx,I =
∂x

∂I

I

x

This elasticity gives the percentage change in the quantity demanded x due to a 1%

increase in buyers’ income. Recall from principles and intermediate microeconomics

classes, if ηx,I > 0 then x is a normal good and if ηx,I < 0, then x is inferior good.

Example 27 Suppose the demand curve is

q = 100− 2p

where q is the quantity demanded of the good, p is the price of the good. Calculate the price

elasticity of demand.

ηq,p =
dq

dp

p

q
= −2

p

q
= −2

p

100− 2p
= − p

50− p

The (point) price elasticity of demand in this example depends on the particular point on the

demand curve at which it is calculated. This is the usual case with linear demand curves.

You can verify that

ηq,p (p = 0) = 0

ηq,p (p = 25) = −1

ηq,p (p = 45) = −9

lim
p↗50

ηq,p = −∞

Example 28 Suppose the demand curve is

q =
A

pε
, ε > 0

where q is the quantity demanded of the good, p is the price of the good. Calculate the price

elasticity of demand.
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Notice that the demand can be written as q = Ap−ε, and the price elasticity is:

ηq,p =
dq

dp

p

q
= −Aεp−ε−1 p

Ap−ε
= −ε

This demand curve has constant price elasticity of demand (same elasticity at every point),

equal to −ε.
Alternatively, we can use (2.4) formula to calculate elasticity. Taking ln of the demand:

ln q = lnA− ε ln p

and

ηq,p =
d ln q

d ln p
= −ε

Exercise 13 Suppose the production function of a firm is Y = AKθL1−θ, where 0 < θ < 1,

Y is output, A is productivity parameter, K is physical capital, and L is labor. This is the

Cobb-Douglas production function.

(a) Suppose that initially the firm employes K = 400 machines and L = 900 workers, and

assume that A = 2, and θ = 0.5. Find the exact change in output resulting from employing

additional machine and one more worker (i.e. K = 401, and L = 901).

(b) Using total differential, calculate the approximate change in output for the same

increments as in the previous section (i.e. dK = 1, and dL = 1). Still assume that θ = 0.5.

(c) Prove that the elasticity of output with respect to capital is θ, and the elasticity of

output with respect to labor is 1 − θ. Here use θ as unknown parameter, without assuming
particular value.

So far we calculated the elasticity of some functions, with respect to one of the arguments,

while holding all other arguments fixed. Alternatively, we can calculate the "total" elasticity

of a function, i.e. the % change in the value of the function, resulting from any percent

change in all its arguments: %∆x1,%∆x2, ...,%∆xn.

Proposition 2 Suppose y = f (x1, x2, ..., xn) is a differentiable function of n variables.

Then,

%∆y ≈ ηy,x1 ·%∆x1 + ηy,x2 ·%∆x2 + ...+ ηy,xn ·%∆xn

where ηy,xi is the elasticity of y with respect to xi and %∆ reads as percent change.

Proof. Totally differentiating the function, gives:

dy =
∂f

∂x1

· dx1 +
∂f

∂x2

· dx2 + ...+
∂f

∂xn
· dxn
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Dividing all terms by y

dy

y
=

∂f

∂x1

· dx1

y
+
∂f

∂x2

· dx2

y
+ ...+

∂f

∂xn
· dxn
y

Multiplying and dividing each term i on the right hand side by xi:

dy

y
=

∂f

∂x1

x1

y
· dx1

x1

+
∂f

∂x2

x2

y
· dx2

x2

+ ...+
∂f

∂xn

xn
y
· dxn
xn

The calculus formula of point elasticity of y with respect to xi is:

ηy,xi =
∂f

∂xi

xi
y

Thus, we have
dy

y
= ηy,x1 ·

dx1

x1

+ ηy,x2 ·
dx2

x2

+ ...+ ηy,x2 ·
dxn
xn

The term dy
y
is the approximate percent change in y, since dy is differential (linear approxi-

mation of the actual change in y), while the terms dxi
xi
are % change in xi. Thus, the exact

percent change in y, i.e. %∆y, is only approximated by the right hand side of the last

equation:

%∆y ≈ ηy,x1 ·%∆x1 + ηy,x2 ·%∆x2 + ...+ ηy,xn ·%∆xn

2.3.5 Elasticity of Substitution

The elasticities we discussed so far measured the response of one variable (in %) to a 1%

increase in another variable. Another type of elasticity is designed to measure the willingness

of consumers to substitute one good for another in utility, and how easy it is to substitute

inputs in production. In this section we focus on utility, and the treatment of production

functions is analogous.

Definition 13 Let u (x, y) be a utility function. The the elasticity of substitution between x

and y is

ESy,x =
%∆ (y/x)

%∆MRSx,y

Thus, the elasticity of substitution between y and x is the percentage change in the ratio

of y/x that results from a 1% change in the slope of the indifference curves. The range of

elasticity of substitution is ESy,x ∈ [0,∞), with ESy,x > 1 defines x and y to be substitutes
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and ESy,x < 1 defines x and y to be complements. There are several equivalent calculus

formulas for the ES:

ESy,x =

(
∂ (y/x)

y/x

)
/

(
∂MRSx,y
MRSx,y

)
=

∂ (y/x)

∂MRSx,y
· MRSx,y

y/x
=

∂ ln (y/x)

∂ ln (MRSx,y)

In equilibrium, the Marginal Rate of Substitution is equal to the ratio of prices, MRSx,y =

px/py, and elasticity of substitution can be defined in equilibrium as follows:

ESy,x =
%∆ (y/x)

%∆ (px/py)

The cross price elasticities, ηx,px and ηy,py , which we discussed earlier, measure the re-

sponse of quantity demanded of one good to changes in price of another good. The elasticity

of substitution on the other hand measures the response of the relative demand y/x to change

in relative price px/py. The purpose of the concept of elasticity of substitution may seem

obscure at first. Afterall, we do have the cross price elasticities already. Recall however that

consumers’optimal consumption mix depends on ratio of goods prices (MRSx,y = px/py),

and producers’optimal input mix depends on inputs price ratio (MRTSK,L = pK/pL).

The concept of elasticity of substitution was first introduced by Hicks 1932 [2] "The

Theory of Wages" when he studied the distribution of national income between various

factors of production. In particular, let the ratio of capital to labor income be

pK ·K
w · L

Suppose that the relative price of labor to capital in the economy increases, i.e. (w/pK) ↑.
What happens to the relative share of labor income in the economy (or in some industry)?

Hicks showed that the answer to this question depends on the elasticity of substitution

between the two factors, Labor and Capital. The share of capital will increase if and only if

%∆

(
pK ·K
w · L

)
> 0

⇐⇒ %∆

(
K/L

w/pk

)
> 0

⇐⇒ %∆ (K/L)

%∆ (w/pk)
> 1

⇐⇒ ESK,L > 1

That is, the share of capital will increase ifK and L are substitutes, i.e. if it is easy to replace

workers with machines. However, if labor and capital are complements, i.e. ESK,L < 1 (not
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easy to replace workers with machines), then the share of capital will actually decline when

relative wages increase.

Exercise 14 Suppose that consumers spend their budget on housing h and consumption c.
Show that in response to rising relative housing prices, (ph/pc) ↑, the share spent on housing
will increase, if the elasticity of substitution between housing and consumption is less than

one, i.e. ESh,c < 1.

Solution 10 The share of housing in the budget will increase if and only if the ratio of
spending on consumption to spending on housing decreases:(

pc · c
ph · h

)
↓

Thus,

%∆

(
pc · c
ph · h

)
< 0

⇐⇒ %∆

(
c/h

ph/pc

)
< 0

⇐⇒ %∆ (c/h)

%∆ (ph/pc)
< 1

⇐⇒ ESh,c < 1

Thus, if consumers cannot easily replace housing with other consumption goods (say, not

willing to switch from 3 bedroom to 2 bedroom when rent increases), then the relative share

spent on housing will increase.

Exercise 15 Prove that ESx,y = ESy,x.

In applied economics reserach, the following utility (and analogous production) function

is widely used.

Definition 14 Constant Elasticity of Substitution (CES) utility function of 2 goods is

u (x, y) = [αxσ + (1− α) yσ]
1
σ , σ ≤ 1

When σ = 0, the above utility is defined to be Cobb-Douglas xαy1−α.

The reason for defining the CES utility with σ = 0 as Cobb-Douglas xαy1−α, is the

following result.
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Proposition 3 (Cobb-Douglas limit). The limiting case as σ → 0 is the Cobb-Douglas

utility:

lim
σ→0

[αxσ + (1− α) yσ]
1
σ = xαy1−α

Proof. Using the chain rule of limits, we take log of the CES utility and then taking limit
as σ → 0 gives

lim
σ→0

1

σ
log [αxσ + (1− α) yσ]

This is a limit of the form 0
0
, so we will use L’̂Hopital’s rule (differentiating with respect to

σ).

lim
σ→0

1

σ
log [αxσ + (1− α) yσ] = lim

σ→0

αxσ lnx+ (1− α) yσ ln y

αxσ + (1− α) yσ
= α lnx+ (1− α) ln y

Therefore,

lim
σ→0

[αxσ + (1− α) yσ]
1
σ = xαy1−α

Marginal utility

We prove that the above CES function exhibits diminishing marginal utility.

ux = [αxσ + (1− α) yσ]
1−σ
σ αxσ−1 > 0

uxx = (1− σ) [αxσ + (1− α) yσ]
1−σ
σ
−1 α2x2σ−2 − (1− σ) [αxσ + (1− α) yσ]

1−σ
σ αxσ−2

= (1− σ) [αxσ + (1− α) yσ]
1−σ
σ αxσ−2

{
[αxσ + (1− α) yσ]−1 αxσ − 1

}
= (1− σ) [αxσ + (1− α) yσ]

1−σ
σ αxσ−2

{
αxσ

αxσ + (1− α) yσ
− 1

}
< 0

Derivation of elasticity of substitution

MRSx,y =
ασxσ−1

(1− α)σyσ−1
=

(
α

1− α

)(y
x

)1−σ

1

ESy,x
=

∂MRSx,y
∂ (y/x)

· y/x

MRSx,y
=

(
α

1− α

)
(1− σ)

(y
x

)−σ
· y/x(

α
1−α
) (

y
x

)1−σ = 1− σ

ESy,x =
1

1− σ

The range of parameters are: σ ≤ 1 and η ≥ 0. and we use the following classifications :
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1. Perfect substitutes σ = 1 ES =∞
2. Substitutes 0 < σ < 1 1 < ES <∞
3. Cobb-Douglas σ = 0 ES = 1

4. Complements −∞ < σ < 0 0 < ES < 1

5. Perfect complements σ = −∞ ES = 0

2.4 Implicit Functions

So far we have seen functions of the form y = f (x). This equation describes explicitly the

dependence of the endogenous variable y on another, exogenous variable, x. For example,

y = 2 + 5x3 describes the rule by which y is determined for every given value of x, and

for this reason it is called an explicit function, since y is explicitly expressed in terms of x.

In other words, y is endogenous variable while x is exogenous variable. Alternatively, the

same relationship between x and y can be written as y − 5x3 = 2. Here we do not make a

distinction between exogenous and endogenous variables, and such an equation is therefore

called an implicit function. In general, an implicit function of two variables, is written as

F (x, y) = c

where c is some constant. An implicit function of n variables is

F (x1, x2, ..., xn) = c

For example,

3x2yz + xyz2 = 30

is an implicit function of 3 variables, x, y, z. Sometimes we do know which variables are

endogenous and which ones are exogenous. In the last equation, if we know that y is

endogenous variable, depending on two exogenous variables x and z, then we can say that

the above equation implicitly defines y as a function of x and z. In the above example, it is

easy to express y explicitly as a function x and z:

y =
30

3x2z + xz2

In other cases, it is more diffi cult, or impossible to solve explicitly for a variable from an

implicitly given relationship. For example,

y5 − 5xy + 4x2 = 0
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cannot be solved analytically for y as a function of x.

In economics, we encounter implicit functions very frequently. For example, u (x, y) = ū,

where u is utility function and ū is a constant, is an implicit function which describes an

indifference curve, i.e. the combinations of x and y which generate a utility level of ū. As

another example, F (K,L) = Ȳ , where F is a production function and Ȳ is a constant, is an

implicit function, which defines an isoquant, i.e. the combinations of K and L which produce

an output of Ȳ units. Yet another example is the familiar budget constraint:

pxx+ pyy = I

The left hand side is the spending on goods x and y (with prices px, py), and the right hand

side is the income. The above budget constraint is written as implicit function of x and y,

and it is possible to derive y as explicit function of x:

y =
I

py
− px
py
x

Implicit functions also arise in optimization, as first order conditions that have a form of

F (x1, x2, ..., xn) = 0 (i.e. a derivative of some function equals to zero).

2.4.1 Derivatives of implicit functions

Even in cases where we cannot (or don’t want to) solve for a particular variable as explicit

function of other variables, it is still possible to find the derivative of one variable in terms

of another. For example, suppose that an indifference curve is given as an implicit function

u (x, y) = ū, where u is some utility function, and ū is a constant number. Taking full

differential of this equation:

du (x, y) = ux (x, y) dx+ uy (x, y) dy = dū = 0

Notice that dū = 0 because ū is a constant. Thus, the derivative of y with respect to x (slope

of the indifference curve) is
dy

dx
= −ux (x, y)

uy (x, y)

Notice however that the above derivative does not exist if uy (x, y) = 0.

The last example is an illustration (and a proof for special case of 2 variables) of the

Implicit Function Theorem.

Theorem 6 (Implicit Function Theorem 1). Let F (x1, x2, ..., xn, y) a function with
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continuous partial derivatives (i.e. continuously differentiable function, denoted C1) around

some point (x∗1, x
∗
2, ..., x

∗
n, y

∗), and suppose that

F (x∗1, x
∗
2, ..., x

∗
n, y

∗) = c

and that
∂

∂y
F (x∗1, x

∗
2, ..., x

∗
n, y

∗) 6= 0

Then, there is a C1 function y = f (x1, x2, ..., xn) defined on an open neighborhood B of

(x∗1, x
∗
2, ..., x

∗
n), such that:

(a) F (x1, x2, ..., xn, f (x1, x2, ..., xn)) = c for all (x1, x2, ..., xn) ∈ B,
(b) y∗ = f (x∗1, x

∗
2, ..., x

∗
n),

(c) for each i = 1, 2, ..., n, we have

∂y

∂xi
(x∗1, x

∗
2, ..., x

∗
n) = −Fxi (x∗1, x

∗
2, ..., x

∗
n, y

∗)

Fy (x∗1, x
∗
2, ..., x

∗
n, y

∗)

The above theorem establishes suffi cient conditions for the existence of y as a function

of all other variables x1, x2, ..., xn, and also shows how to calculate the derivative of y with

respect to any other variable (part (c) of the theorem). The last result is the most common

use of the implicit function theorem.

Example 29 Find the slope of the budget constraint

pxx+ pyy = I

using the implicit function theorem.

Let F (x, y) = pxx + pyy, so the implicit function can be written as F (x, y) = I. Then,

using the implicit function theorem,

dy

dx
= −Fx (x, y)

Fy (x, y)
= −px

py

To verify this result, we can write the budget constraint in explicit function form:

y =
I

py
− px
py
x

and use the regular derivatives to find that

dy

dx
= −px

py
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The advantage of implicit function theorem is that it enables us to calculate such derivatives

even when it is impossible to express y explicitly in terms of x.

2.4.2 General comparative statics (systems of nonlinear equations)

In chapter (1) we applied linear algebra to solve systems of linear equations. In most prac-

tical applications, we deal with systems of nonlinear equations, but such systems can be

approximated locally with linear functions, using total differentials. We will now demon-

strate how we can perform local comparative statics analysis (recall that comparative statics

is the analysis of the effect on endogenous variables, of changes in exogenous variables or

parameters). We begin with an example of two nonlinear equations, and then generalize the

method n nonlinear equations.

For example, the following is a nonlinear system:

x2 + axy + y2 = 1 (2.6)

x2 + y2 − a2 = −3

This is a nonlinear system of 2 equations, with 2 endogenous variables x, y and an exogenous

parameter a. For example, x and y could be consumption levels of some goods, and a can be

a tax rate or subsidy, which are outside of consumer’s control. We would like to evaluate the

effect of small changes in a on the endogenous variables x and y, around some point (locally).

Think of each equation as implicit function of x, y and a. Taking total differentials, with

increments dx, dy and da:

2xdx+ aydx+ axdy + xyda+ 2ydy = 0

2xdx+ 2ydy − 2ada = 0

Notice that the above system imposes restrictions on the increments, and they cannot be

arbitrary. Collecting terms, and moving terms with da to the right:

(2x+ ay) dx+ (ax+ 2y) dy = −xyda
2xdx+ 2ydy = 2ada
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In matrix form, the above is:[
2x+ ay ax+ 2y

2x 2y

][
dx

dy

]
=

[
−xy
2a

]
da

Suppose that initially (x, y, a) = (0, 1, 2) (verify that this point is a solution to the system

(2.6)). Then, [
2 2

0 2

][
dx

dy

]
=

[
0

4

]
da

[
dx

dy

]
=

[
2 2

0 2

]−1 [
0

4

]
da[

dx

dy

]
=

[
−2

2

]
da

This result means that if a increases from 2 to 2.01, i.e. da = 0.01, the resulting approximate

changes in x and y are: [
dx

dy

]
=

[
−0.02

0.02

]
The above results are approximate because we use the total differentials instead of actually

solving the system (2.6). If we do that (diffi cult without special computer package), we

find x = −0.019565 and y = 1.0197, so the exact changes are ∆x = −0.019565 and ∆y =

0.0197. Using total differentials gave us a good approximation of the effect on the endogenous

variables of a small change in exogenous variable, in a nonlinear system of equations, without

the need to solve the system exactly.

Now we would like to generalize the result from the above example of two endogenous

variables and one exogenous variable, to n endogenous variables and m exogenous variables

(or parameters). Suppose we have a system of n nonlinear equations, with n endogenous

variables y1, ..., yn and m exogenous variables (or parameters) x1, ..., xm:

F1 (y1, ..., yn;x1, ..., xm) = c1

F2 (y1, ..., yn;x1, ..., xm) = c2

... (2.7)

Fn (y1, ..., yn;x1, ..., xm) = cn
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Notice that each equation is an implicit function. Taking total differentials5:

∂F1

∂y1

dy1 +
∂F1

∂y2

dy2 + ...+
∂F1

∂yn
dyn +

∂F1

∂x1

dx1 +
∂F1

∂x2

dx2 + ...+
∂F1

∂xm
dxm = 0

∂F2

∂y1

dy1 +
∂F2

∂y2

dy2 + ...+
∂F2

∂yn
dyn +

∂F2

∂x1

dx1 +
∂F2

∂x2

dx2 + ...+
∂F2

∂xm
dxm = 0

...
∂Fn
∂y1

dy1 +
∂Fn
∂y2

dy2 + ...+
∂Fn
∂yn

dyn +
∂Fn
∂x1

dx1 +
∂Fn
∂x2

dx2 + ...+
∂Fn
∂xm

dxm = 0

This can be written in matrix form:
∂F1
∂y1

∂F1
∂y2

· · · ∂F1
∂yn

∂F2
∂y1

∂F2
∂y2

· · · ∂F2
∂yn

...
...

. . .
...

∂Fn
∂y1

∂Fn
∂y2

· · · ∂Fn
∂yn


︸ ︷︷ ︸

n×n
Jy


dy1

dy2

...

dyn


n×1

= −


∂F1
∂x1

∂F1
∂x2

· · · ∂F1
∂xm

∂F2
∂x1

∂F2
∂x2

· · · ∂F2
∂xm

...
...

. . .
...

∂Fn
∂x1

∂Fn
∂x2

· · · ∂Fn
∂xm


︸ ︷︷ ︸

n×m
Jx


dx1

dx2

...

dxm


m×1

Or, written compactly:

Jy · dy = −Jx · dx
dy = −J−1

y Jx · dx

Suppose that we want to evaluate the effect of a small change in one of the exogenous
variables, xi, on all the endogenous variables y1, ..., yn, while keeping all other exogenous

variables xj, j 6= i constant. That is, dxj = 0 for all j 6= i, and the above system becomes:
∂F1
∂y1

∂F1
∂y2

· · · ∂F1
∂yn

∂F2
∂y1

∂F2
∂y2

· · · ∂F2
∂yn

...
...

. . .
...

∂Fn
∂y1

∂Fn
∂y2

· · · ∂Fn
∂yn


︸ ︷︷ ︸

n×n
Jy


dy1

dy2

...

dyn


n×1

= −


∂F1
∂xi
∂F2
∂xi
...

∂Fn
∂xi


︸ ︷︷ ︸

n×1
∂F
∂xi

dxi

5This step is often referred to as linearizing the system of equations.
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Or, written compactly:

Jy · dy = −∂F
∂xi

dxi

⇒ dy = −J−1
y

∂F

∂xi
dxi

The n×n matrix of partial derivatives of the functions F1, ..., Fn, with respect to the endoge-

nous variables y1, ..., yn, is called the Jacobian Matrix, and denoted by Jy. Notice that
to solve for the changes in endogenous variables dy1, dy2, ..., dyn, resulting from dxi change

in xi, we need to invert the Jacobian matrix, which is possible if and only if the Jacobian
Determinant |Jy| is not zero. If we are interested in the partial derivatives, ∂y1∂xi

, ∂y2
∂xi
, ..., ∂yn

∂xi
,

we divide the above system by dxi, and switching from d to ∂, to denote partial derivatives:

∂y

∂xi
=



(
∂y1
∂xi

)(
∂y2
∂xi

)
...(
∂yn
∂xi

)

 = −J−1
y

∂F

∂xi

Once again, the key condition for the above solution to exist is |J | 6= 0, i.e. nonzero Jacobian

determinant. Alternatively, one can use Gaussian elimination or Cramer’s rule to solve for
∂y
∂xi

from

Jy
∂y

∂xi
= −∂F

∂xi

The conclusions of the above steps can be summarized in the most general Implicit

Function Theorem, for n implicit functions.

Theorem 7 (Implicit Function Theorem 2). Let F1, ..., Fn : Rn+m → R be C1 functions

(i.e. all partial derivatives exist, and are continuous functions). Consider the system of

equations

F1 (y1, ..., yn;x1, ..., xm) = c1

F2 (y1, ..., yn;x1, ..., xm) = c2

...

Fn (y1, ..., yn;x1, ..., xm) = cn

Suppose (y∗, x∗) = (y∗1, ..., y
∗
n;x∗1, ..., x

∗
m) is a solution to this system, and let Jy be the n× n
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Jacobian matrix with respect to y

Jy =


∂F1
∂y1

∂F1
∂y2

· · · ∂F1
∂yn

∂F2
∂y1

∂F2
∂y2

· · · ∂F2
∂yn

...
...

. . .
...

∂Fn
∂y1

∂Fn
∂y2

· · · ∂Fn
∂yn


evaluated at the solution (y∗, x∗). If the Jacobian determinant |J | 6= 0, then

(a) There exist C1 functions

y1 = f1 (x1, ..., xm)

y2 = f2 (x1, ..., xm)
...

yn = fn (x1, ..., xm)

defined in a neighborhood B of (y∗1, ..., y
∗
n;x∗1, ..., x

∗
m), such that for all x = (x1, ..., xm) ∈ B,

we have:

F1 (f1 (x) , ..., fn (x) ;x1, ..., xm) = c1

F2 (f1 (x) , ..., fn (x) ;x1, ..., xm) = c2

...

Fn (f1 (x) , ..., fn (x) ;x1, ..., xm) = cn

(b) The partial derivatives of y1, ..., yn with respect to x1, ..., xm can be computed by (i)

matrix inversion
∂y

∂xi
= −J−1

y

∂F

∂xi

or (ii) using Gaussian elimination

∂y

∂xi
= −Jy\

∂F

∂xi

or (iii) using Cramer’s rule
∂yh
∂xi

= −|Jy,h||Jy|

where Jy,h is the Jacobian matrix with column h replaced by ∂F
∂xi
.

The general Implicit Function Theorem provides suffi cient conditions under which a sys-
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tem with n nonlinear equations (2.7), can be solved for the n endogenous unknown variables

y1, ..., yn. It also provides a way of computing the partial derivatives of the endogenous

variables with respect to any of the exogenous variables.

Going back to the system in (2.6),

x2 + axy + y2 = 1

x2 + y2 − a2 = −3

Here x and y are the endogenous variables, and a is exogenous variable. We can write this

system as

F1 (x, y; a) = 1

F2 (x, y; a) = −3

Applying the general Implicit Function Theorem, we can compute the partial derivatives of

x and y with respect to a by solving:[
∂F1
∂x

∂F1
∂y

∂F2
∂x

∂F2
∂y

]
︸ ︷︷ ︸

J

[
∂x
∂a
∂y
∂a

]
= −

[
∂F1
∂a
∂F2
∂a

]

[
2x+ ay ax+ 2y

2x 2y

][
∂x
∂a
∂y
∂a

]
= −

[
xy

−2a

]

and the solution to the unknown partial derivatives is given by[
∂x
∂a
∂y
∂a

]
= −

[
2x+ ay ax+ 2y

2x 2y

]−1 [
xy

−2a

]

Suppose that initially (x, y, a) = (0, 1, 2). Then, the partial derivatives at this point are[
∂x
∂a
∂y
∂a

]
= −

[
2 2

0 2

]−1 [
0

−4

]
=

[
−2

2

]

To summarize, in this section we learned how to compute derivatives of variables that

are related to each other trough implicit function. The main result is the Implicit Function

Theorem. We then extended the analysis to systems of nonlinear equations, that can be

viewed as n implicit functions. The general implicit function theorem allows us to perform

comparative statics - i.e. evaluating the marginal effects of any exogenous variable, on any
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endogenous variable in a nonlinear system of equations.
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Chapter 3

Optimization

3.1 Introduction

By definition, Economics is a discipline that deals with optimization: "the study of choices

under scarcity". Every choice that people make can be viewed as part of some optimization

problem. For example, when someone decides to earn a college degree, this decision is made

to achieve some goals subject to time and resource constraints - an optimization problem.

Similarly, decisions made by firms are an attempt to optimize, for example maximize the

dividends for shareholders. It is not surprising that almost all economic theories are derived

from some mathematical optimization problems. Even when economists are simply looking

at patterns in the data, and estimating some relationships, the statistical methods used

are derived from optimization problems. For example, Ordinary Least Squares estimation

minimizes the sum of squared deviations of the statistical relationship and the actual data.

Another popular estimation method is Maximum Likelihood Estimator, which maximizes

the likelihood (chances) of obtaining the observed data with the proposed statistical model.

To make things precise, optimization theory is the field of mathematics that analyzes

minimum and maximum of functions. We call an optimization problem, any problem that

attempts to find a minimum or a maximum of some function, possibly under constraints.

The general structure of an optimization problem is:

max
x1,...,xn

f (x1, ..., xn) or min
x1,...,xn

f (x1, ..., xn)

s.t. constraints on x1, ..., xn

The function f is called the objective function, and x1, ..., xn are called the choice vari-
ables or decision variables. The choice variables are so called because the person solving
the optimization problem wants to choose them to maximize or to minimize the objective

89
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function. The number of choice variables n can be quite large, and often infinite. The

shorthand s.t. means "subject to" or "such that". The constraints usually restrict the range

of admissible values of the choice variables. For example, quantities and prices of goods

are often restricted to be nonnegative. A specific example of an optimization problem is

consumer’s choice problem:

max
x1,...,xn

u (x1, ..., xn)

s.t.

p1x1 + p2x2 + ...+ pnxn = I

x1, x2, ..., xn ≥ 0

In the above problem the objective function is the utility, and the choice variables are quan-

tities of n goods. These quantities are restricted to satisfy the budget constraint (prices are

p1, ..., pn and income is I). Moreover, the chosen quantities are restricted to be nonnegative.

The two most important questions related to optimization problems, are:

1. Does an optimum exist? For example, what is the largest number smaller than 100?
Such number does not exist, because for any number x < 100, there is always another

number x′, such that x′ > x and x′ < 100. So not every optimization problem has a

solution. Thus, existence of a solution is the most fundamental issue in optimization.

2. Is the solution unique? Often, a solution to an optimization problem is the pre-

diction of the model. If the solution is unique, it means that the model has a unique

prediction, and if there are many (sometimes infinitely many) solutions, it means that

the theory is indecisive about the issue being studied. For example, a theory that pre-

dicts that the effect of a given policy on growth is anything between −10% and 10%

with equal probabilities, is not very useful theory - i.e. a theory that says anything

can happen is not useful. Therefore, uniqueness of a solution is often something that

economists are interested in.

Besides existence and uniqueness, we need to distinguish between local and global opti-

mum (in the next section). In this chapter we will study mathematical techniques for solving

optimization problems. These are mainly calculus techniques. In practice, many optimiza-

tion problems can only be solved with the help of computers, and applied economists need

to be familiar with some numerical optimization techniques (computer algorithms). Numer-

ical methods for optimization problems are beyond the scope of this course, and they are

addressed in most texts on numerical analysis.
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3.1.1 Local v.s. global optima

A function f has a local maximum (or relative maximum) at a point x∗ if there exists a

neighborhood B of x∗ such that f (x∗) ≥ f (x) for all x ∈ B. Similarly, a function f has a
local minimum (or relative minimum) at a point x∗ if there exists a neighborhood B of x∗

such that f (x∗) ≤ f (x) for all x ∈ B.
A function f has a global maximum (or absolute maximum) at a point x∗ if f (x∗) ≥

f (x) for all x in the (possibly restricted) domain of f . Similarly, a function f has a global
minimum (or absolute minimum) at a point x∗ if f (x∗) ≤ f (x) for all x in the (possibly

restricted) domain of f . Notice that any global maximum (minimum) is also a local maximum

(minimum).

The general name for maximum or minimum is extremum (extrema in plural). The

points at which the objective function attains its global maximum are referred to as arg max

or maximizer, and we write x∗ = arg maxx f (x). Similarly, the points at which the objective

function attains its global minimum referred to as arg min, or minimizer, and we write

x∗ = arg minx f (x).

Figure (3.1) shows the graph of the function f (x) = x3− 12x2 + 36x+ 8, with restricted

domain −1 ≤ x ≤ 9. All the values −1 < x < 9 are called interior points, while x = −1

and x = 9 are boundary values.
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Figure 3.1: f (x) = x3 − 12x2 + 36x+ 8

In the above graph, the objective function f has local maximum at x∗1 = 2 and local

minimum at x∗2 = 6. Notice that there is neighborhood of x∗1 = 2, say B1 = (1.9, 2.1), such

that f (2) ≥ x for all x ∈ B1, which makes f (2) a local maximum. Similarly, there is a
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neighborhood of x∗2 = 6, say B2 = (5.9, 6.1), such that f (6) ≤ f (x) for all x ∈ B2, which

makes f (6) a local minimum.

Figure (3.1) also illustrates that the function f has a global minimum at x∗3 = −1 and a

global maximum at x∗4 = 9. We write

−1 = arg min
x
f (x)

9 = arg max
x

f (x)

These global extrema in figure (3.1) occur at the boundaries of the domain {−1, 9}, while
the local extrema occur at the interior of the domain (−1, 9).

Although the figure (3.1) illustrates extrema of a function of one variable, the above

definitions of local and global extrema apply to multivariate functions as well. The next

section deals with calculus techniques for finding local extrema of differentiable functions of

one variable, and also with identifying its type (maximum, minimum).

3.2 Optimizing Functions of One Variable

In this section we present calculus criteria for finding and characterizing local extrema (min-

ima and maxima) of differentiable functions. Looking at figure (3.1), and recalling that

the derivative f ′ (x) represents the slope of the function f at point x, leads to the conclu-

sion that if a function f has an interior extremum at point x∗, then it is necessary that

f ′ (x∗) = 0. If this was not true, and suppose f ′ (x∗) > 0, then f (x∗ + ε) > f (x∗) for some

small ε > 0, which means that f (x∗) cannot be a local maximum. Similarly, if f ′ (x∗) < 0,

then f (x∗ − ε) > f (x∗) for some small ε > 0, which means that f (x∗) cannot be a local

minimum. Thus, if either f ′ (x∗) > 0 or f ′ (x∗) < 0, then f (x∗) cannot be a local maximum

or a local minimum. Thus, we proved the following theorem.

Theorem 8 (First-order necessary condition for interior extrema). If a differentiable func-
tion f has a local maximum or a local minimum at an interior point x of its domain, then

it is necessary that
f ′ (x) = 0

In mathematical symbols, we write

f (x) is local extremum ⇒ f ′ (x) = 0

The condition f ′ (x) = 0 is necessary for local maximum or local minimum, but this

condition is not suffi cient. That is, if we have f ′ (x) = 0, this does not imply that the
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function f attains either a maximum or a minimum at point x. The next definition provides

the somewhat confusing terminology related to first order conditions.

Definition 15 Let x be a point in the domain of the function f such that f ′ (x) = 0 or

f ′ (x) doesn’t exist.

(i). x is called critical point or critical value,
(ii). f (x) is called the stationary value of f or critical value of f ,
(iii). (x, f (x)) is called a stationary point or critical point,
(iv). a stationary point (x, f (x)) that is not a local extremum (max or min), is called

saddle point.

As you can see from definition 15, there is unfortunately no unique definition of concepts

such as critical point and critical value, that all texts agree on.

Critical values are not always extreme values (i.e. maxima or minima), as the following

example illustrates.

Example 30 The function f (x) = x2−100x has one critical value, found by solving f ′ (x) =

0:

2x− 100 = 0

⇒ x = 50

Thus, x = 50 is the only critical value of this function. In the next figure we see that this

function has a local (and global) minimum at the point x = 50.
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f (x) = x2 − 100x
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The function f (x) = −x2 + 100x has one critical value, found by solving f ′ (x) = 0:

−2x+ 100 = 0

⇒ x = 50

Thus, x = 50 is the only critical value of this function. In the next figure we see that this

function has a local (and global) maximum at the point x = 50.
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f (x) = −x2 + 100x

The function f (x) = x3 has one critical value, found by solving f ′ (x) = 0:

3x2 = 0

⇒ x = 0

Thus, x = 0 is the only critical value of this function. In the next figure we see that at x = 0

the function does not have neither local minimum nor local maximum, despite the fact that

f ′ (0) = 0.
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f (x) = x3

The point (0, 0) is stationary, but not a local extremum, and is therefore a saddle point.

The function f (x) = 17 has f ′ (x) = 0 for all x ∈ R, so all x values in the domain are
critical values. All the values are both global minima and global maxima.
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f (x) = 17

The last example illustrates an important point that a critical value does not imply that

the function has an extremum at that point. But every value x∗ at which a differentiable

function attains an extremum, must be a critical value at which the derivative is zero,

f ′ (x∗) = 0. This is precisely what we mean when we say that a first-order necessary condition
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for maximum or minimum is f ′ (x∗) = 0. The name "first-order" is from the fact that it

utilizes the first-order derivative, which we usually call "first derivative" for short.

We should emphasize again that the first-order necessary condition can be used for dif-

ferentiable functions (functions that have first-order derivatives). Figure (3.2) illustrates a

non-differentiable function, with local maximum at a and local minimum at point b. These

points however cannot be found by solving f ′ (x) = 0, since the function f does not have

derivatives at these points. In practice, economists try to use differentiable functions in

Figure 3.2: Local Extrema of non-differentiable function.

their models, but sometimes we do encounter cases like the one in figure (3.2). There are

numerical techniques that allow finding local extrema without relying on derivatives (these

are called "derivative-free" methods).

After finding critical values x such that f ′ (x) = 0, there are four possibilities:

1. f (x) is a local maximum,

2. f (x) is a local minimum,

3. f (x) is both local minimum and local maximum,
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4. f (x) is neither local maximum nor minimum.

How do we know which one of the three cases occurs at a given critical value? Once again,

looking at figure (3.1), we see that at a local maximum the slope of the graph decreases

as we increase x a little bit, while at a local minimum, the slope of the graph increases

with x. Recall that the derivative of a function f ′ determines whether it is increasing or

decreasing at a point x: if f ′ (x) > 0 then f is increasing and if f ′ (x) < 0 the function f

is decreasing at point x. Similarly, the second derivative f ′′ (x) determines whether f ′ is

increasing or decreasing (because the second derivative of f is the first derivative of f ′, and

so it determines the slope of f ′). Thus, if we found a critical point x, at which f ′ (x) = 0,

the function f has a local maximum at that point if f ′′ (x) < 0 and f has a local minimum

if f ′′ (x) > 0. These conclusions are formally stated in the following theorem.

Theorem 9 (Second-order suffi cient conditions for interior extrema). Suppose that the

function f is twice differentiable, and x is a critical value of f , i.e. f ′ (x) = 0.

(i) if f ′′ (x) < 0 then f (x) is a local maximum,

(ii) if f ′′(x) > 0 then f (x) is a local minimum.

(iii) if f ′′(x) = 0 then f (x) could be a local maximum, or minimum, or neither (the

second-order test is inconclusive).

Thus, we say that f ′′ (x) < 0 is a second-order suffi cient condition for local maxi-
mum at critical value x, and f ′′(x) > 0 is a second-order suffi cient condition for local
minimum at critical value x.

Notice that the second-order suffi cient conditions are applicable only after the first-order

necessary conditions are satisfied (i.e. applicable to critical values only). We should also

mention that the above conditions are not necessary, i.e. it is possible that at some critical

point x we have f ′′ (x) = 0 (so the second-order suffi cient conditions do not hold), and yet

the function has a local maximum or minimum at x. Finally, the name "second-order" is

due to the fact that we utilize second-order derivatives.

Example 31 The function f (x) = x2 − 100x has one critical value x = 50, and f ′′ (50) =

2 > 0, so based on the second-order suffi cient condition we conclude that f (50) is a local

minimum.

The function f (x) = −x2 +100x has one critical value at x = 50, and f ′′ (50)−2 < 0, so

based on the second-order suffi cient condition we conclude that f (50) is a local maximum.

The function f (x) = x3 has one critical value at x = 0, and f ′′ (0) = 0, so the second-

order suffi cient condition does not tell us whether f (0) is a local maximum or a local mini-

mum or neither. In fact, when you plot the graph of this function, you see that this function
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does not have a local or global extrema. The point (0, 0) is inflection point, where the
function switches from convex to concave.

The function f (x) = 17 has all x ∈ R critical values. Also, f ′′ (x) = 0 for all x ∈ R,
thus the second-order suffi cient condition does not tell us whether f (x) is a local maximum

or a local minimum or neither for any x ∈ R. By looking at the graph of the function, we
do see that all f (x) are both global maxima and minima.

The above example illustrates that if f ′′ (x) = 0 at a critical value x, then the second-

order suffi cient condition does not determine whether f (x) is a maximum, minimum or

neither. Thus, we say that the second-order test is inconclusive.

Example 32 Given the function f (x) = x3 − 12x2 + 36x+ 8, x ∈ R,
(i) Find the critical values and stationary points of f .

f ′ (x) = 0

3x2 − 24x+ 36 = 0

x1, x2 =
24±

√
242 − 4 · 3 · 36

2 · 3 =
24± 12

6

Critical values are x1 = 2, x2 = 6. Stationary points are (2, f (2)) = (2, 40) and (6, f (6)) =

(6, 8).

(ii) Using the second-order suffi cient condition, determine whether the function f has a

local maximum, a local minimum or if the second-order test is inconclusive.

f ′′ (x) = 6x− 24

f ′′ (2) = 6 · 2− 24 = −12 < 0 ⇒ f (2) is local maximum

f ′′ (6) = 6 · 6− 24 = 12 > 0 ⇒ f (6) is local minimum

The next table summarizes the first-order necessary and second-order suffi cient conditions

for local extrema of univariate (one variable) functions.

Condition Maximum Minimum

First-order necessary f ′ (x) = 0 f ′ (x) = 0

Second-order suffi cient† f ′′ (x) < 0 f ′′ (x) > 0

†Applicable only after the first-order necessary condition is satisfied

In cases of f ′′ (x) = 0, the second-order test is inconclusive, and higher order derivatives

can be used. We will not discuss higher order tests here.
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Figure 3.3: Linear Approximation

3.3 Taylor Approximation

The previous section discussed first-order necessary and second-order suffi cient conditions

for local extrema. In practice, sometimes we encounter a diffi cult optimization problem,

that can only be solved numerically. What computers often do, in order to solve complex

optimization problems, is use an approximation of the objective function with some simpler

functions - usually polynomials. We have already encountered linear approximation to a

function of one variable, when we discussed the differential. Let’s recall that given y = f (x),

the differential of y at x0, when x increments by dx, is

dy = f ′ (x0) dx

The differential is in fact a linear approximation of the change in y, using the tangent line

to the original function, instead of the function f itself. Suppose that dx = x − x0, where

x0 is the initial value of x, and the actual change in y is ∆y = f (x)− f (x0). We can write

f (x) = f (x0) + ∆y ≈ f (x0) + dy = f (x0) + f ′ (x0) (x− x0) ≡ P1 (x)

The linear approximation is illustrated in figure (3.3).

Thus, the value of a function at point x can be linearly approximated near some point

x0 by using the tangent line to the function at x0, provided that the derivative at x0 exists.

Linear approximation can be viewed as approximation with a polynomial of degree 1. The
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same function f (x) can also be approximated with a polynomial of degree 2 near point x0,

provided that it is twice differentiable. It turns out that if we require that the approximating

polynomial should have the same value at x0 as the approximated function, i.e. P2 (x0) =

f (x0), as well as first and second derivatives (P ′2 (x0) = f ′ (x0) and P ′′2 (x0) = f ′′ (x0)), then

the approximation is:

f (x) ≈ f (x0) + f ′ (x0) (x− x0) +
f ′′ (x0)

2
(x− x0)2 ≡ P2 (x)

It turns out that any function that is n-times differentiable at point x0 can be approximated

around that point (locally) by a polynomial of degree n. This result is stated precisely in

the following theorem.

Theorem 10 (Taylor’s Theorem for functions of one variable). Suppose that f is n-times

differentiable at point x0. Then

f (x) =

[
f (x0) +

f ′ (x0)

1!
(x− x0) +

f ′′ (x0)

2!
(x− x0)2 + ...+

f (n) (x0)

n!
(x− x0)n

]
+Rn (x)

≡ Pn (x) +Rn (x)

and lim
x→x0

Rn (x) = 0

where n! = 1 · 2 · ... · n (read "n factorial"), and Rn (x) is a remainder.

Thus, when a function is approximated "close" to the given point, x→ x0, the approxi-

mation is more precise and the remainder disappears.

Example 33 Approximate the function f (x) = ex around x0 = 0 with Taylor polynomial

of degree 3, and compare this approximation to the actual value of f at x = 1.

P3 (x) = f (x0) +
f ′ (x0)

1!
(x− x0) +

f ′′ (x0)

2!
(x− x0)2 +

f ′′′ (x0)

3!
(x− x0)3

= ex0 +
ex0

1
x+

ex0

2
x2 +

ex0

6
x3

= 1 + x+
x2

2
+
x3

6
= 1 + 1 +

1

2
+

1

6
= 2.6667

The actual value of f (1) = e1 = 2.7183.

You might ask yourself, why approximate the function ex when any calculator can give

you "exact" value of this function at any x. The point is that your calculator uses Taylor

polynomials to give you an approximate value of functions such as ex, ln (x), sin (x), cos (x)

and many others.
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3.4 Exponential and Logarithmic Functions

Many problems in economics involve decisions over time - dynamic choices. For example, if

you are saving money for retirement, a deposit of y0 dollars today at interest rate r per year

will grow to yt = y0 (1 + r)t after t periods. This was an example of future value. Similarly,

the present value of an amount FV received t periods from today, and given the interest rate

r per period, is PV = FV (1 + r)−t. Such calculations of future and present values involve

exponential functions, and their inverses, the logarithmic functions. Due to their vast
importance in economics, these functions deserve the special attention in this chapter.

Definition 16 An exponential function with base b > 0, b 6= 1 has the form

y = f (x) = bx, x ∈ R

Notice that the domain of exponential functions consists of all real numbers. Examples

include

y = 2x, y = ex, y = 10x, y = 0.5x, y = 0.9x

where e = 2.718281828459046... Figure (3.4) plots the graphs of y = 2x (solid thin), y = ex

(dashed) and y = 4x (solid thick). All the functions in figure (3.4) are monotone increasing,
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Figure 3.4: y = 2x, y = ex, y = 4x

which is the case with all exponential functions with base b > 1. Moreover, all exponential

functions are positive valued functions (i.e. f (x) > 0 for all x). Also notice that as x→ −∞,
the value of exponential function with base b > 1 approaches 0.

Figure (3.5) plots the graphs of y = 0.2x (solid thin), y = 0.5x (dashed) and y = 0.7x

(solid thick). All the functions in figure (3.5) are monotone decreasing, which is the case
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Figure 3.5: y = 0.2x, y = 0.5x, y = 0.7x

with all exponential functions with base b < 1. Moreover, all exponential functions are

positive valued functions (i.e. f (x) > 0 for all x). Also notice that as x→∞, the value of
exponential function with base b < 1 approaches 0.

The definition of exponential functions excludes non-positive bases and b = 1. In the

case of b = 1, the function y = 1x = 1 is just a constant function, and is not classified as

exponential function. In the case of b ≤ 0, functions like y = 0x or y = (−2)x are not defined

for some x or do not always attain a real value. Thus, exponential functions restrict the base

to b > 0, b 6= 1.

Exponential functions should not be confused with power functions, such as y = 5x2,

y = 2x−0.5 or y = −1.5x5, or in general y = cxr with c, r ∈ R. A power function raises

the variable x to some constant power, while in exponential functions the variable x is the

exponent. Thus, in a power function the input x is the base, while in exponential function

the input x is the exponent.

Since exponential functions are monotone, there is only one value of x which is mapped

into each (positive) value of y. Thus, for every exponential function y = f (x) = bx, there

exists an inverse function f−1 (y) : R++ → R. These inverse functions are called logarithmic
functions and are defined as follows.

Definition 17 Let y = f (x) = bx, with b > 0, b 6= 1 and x ∈ R be an exponential function.
The inverse of f is denoted f−1 (y) = logb y (which reads "log base b of y") is defined as

follows1:

y = bx ⇐⇒ x = logb y, y > 0

1Sometimes we write logb (y) or without the parenthesis logb y.
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The logarithmic function therefore gives the value of x such that b raised to the power of

x is equal to y. For example, the next table presents some exponential functions and their

inverses (logarithmic functions).

Exponential function y = f (x) Logarithmic function x = f−1 (y)

y = 2x x = log2 y

y = ex x = loge y = ln y

y = 5x x = log5 y

y = 10x x = log10 y = log y

The base e = 2.71828... is called the natural base and we denote loge y = ln y (natural

logarithm). The base of b = 10 is called the common base and we denote log10 y = log y

(the common logarithm). In Matlab the notation is different, and it uses log y to denote the

natural logarithm. Thus, in Matlab, if we want to compute ln (7), we type log(7). In fact,

all other exponents and logarithms are rarely used, and can all be represented in terms of

base e exponents and logarithms.

Figure (3.6) illustrates the graphs of y = ex (solid) and y = ln (x) (dashed). The two
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Figure 3.6: y = ex, y = ln(x)

graphs are mirror images of each other, and symmetric about the 450 line.

3.4.1 The natural base e and base conversion

It is very surprising that of all the exponential functions y = 2x, y = 1.5x, y = 5x, y = 10x,

the most useful one is y = ex = (2.718281828459046...)x. The number e is not a rational
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number, i.e. cannot be written as a ratio of two integers, so we can’t even write the entire

number e. This number has infinitely many digits, and the first 50 are as follows:

e = 2.71828182845904523536028747135266249775724709369995...

In practice, we can only represent an approximation to this number. Surely, a base of b = 2

looks more "neat" than the natural base e. It turns out that when it comes to calculations

involving growth or discounting, the natural base is indeed "natural", as the next example

illustrates.

Suppose you deposit $1 for a year at interest rate of r = 100%. How much money will

you have after one year? We are tempted to say that the answer is $2, but this is the case

only when interest does not compound during the year, i.e. if you withdraw the money after

6 months, you still get the $1 deposited. Suppose that interest compounds every 6 moths,

i.e. twice a year. Then, after the first 6 moths you have 1 ·
(
1 + 100%

2

)
= (1 + 0.5) = $1.5

and at the end of the year we will have(
1 +

1

2

)(
1 +

1

2

)
=

(
1 +

1

2

)2

= $2.25

Notice that after the first 6 months you have $1.5, so in the second 6 months interest

accumulates on this new amount.

What if you want to withdraw your money after a quarter (3 months)? If the interest

compounds only two times a year, and you withdraw after 3 months, then you don’t get

any interest and simply get back your $1. However, if interest compounds every quarter of

a year, then after one quarter you get 1 ·
(
1 + 100%

4

)
= $1.25 and after a year you get

(
1 +

1

4

)4

= $2.4414

We can go on and ask what happens if you withdraw the money after one month. If interest

compounds monthly, then after one month you will receive
(
1 + 100%

12

)
and after a year

(
1 +

1

12

)12

= $2.613

Similarly, if interest compounds weekly, assuming 52 weeks per year, then after a year your

initial deposit of $1 becomes (
1 +

1

52

)52

= $2.692 6
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If interest compounds daily, then after a year (365 days) your initial deposit of $1 becomes2(
1 +

1

365

)365

= $2.714 6

With hourly compounding, (approximately 8766 hours per year), then after a year your

initial deposit of $1 becomes(
1 +

1

8766

)8766

= 2.718126797795577

We can go on and calculate the amount after one year with interest compounding every

minute, every second, every millisecond, etc. The results are summarized in the next table

Frequency of compounding n Gross return on $1 after year
(
1 + 1

n

)n
1 2

2 2.25

4 2.4414

12 2.613035290224676

52 2.692596954437168

365 2.714567482021973

8766 (hours per year) 2.718126797795577

525960 (minutes per year) 2.718126797795577

31, 557, 600 (seconds per year) 2.718281776412525
...

...

∞ e = 2.718281828459046...

Thus, one of several ways to define the number e is as follows.

Definition 18 The number e = 2.718281828459046... is defined as

e = lim
n→∞

(
1 +

1

n

)n
The economic interpretation of the number e is the gross return on $1 after one year

at annual interest rate of 100%, with continuous compounding (i.e. interest compounds

2In real world banking, the interest usually compounds daily. For example, your credit card agreement
might say that Annual Percentage Rate is 10%, with daily compounding. Thus, on every $1 of debt held for
a year, will become e0.1 = 1.105 2, i.e. will accumulate 10.52% Annual Percentage Yield. Mortgage interest
usually compounds monthly.
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n =∞ times per year, or every instant). Therefore, the number e indeed arises naturally in

economics.

Suppose that the annual interest rate is not 100% but is r 6= 0, and the interest compounds

n times per year. Then, after one year, the gross return on $1 is(
1 +

r

n

)n
Taking the limit as n→∞, gives

lim
n→∞

(
1 +

r

n

)n
= lim

n→∞

[(
1 +

1

n/r

)n
r

]r

Letting x = n/r, the above limit becomes

lim
x→∞

[(
1 +

1

x

)x]r
= lim

y→e
yr = er

Here we used the substitution rule of limits, since the limit of the term in the squared brackets

is, by definition, the number e. Thus, the function er gives the return on $1 invested at annual

interest rate r and continuous compounding. If, instead of $1 you invest $A, then the gross

return is Aer after one year and Aert after t years.

We will now show that any exponential function with base a can be represented as

another exponential function with base b. Similarly, any logarithmic function with base a

can be represented in terms of any other base b. This means that for all practical purposes,

you only need one base, and since base e arises naturally, we might as well use only the

natural base. Moreover, as you already know, y = ex is the only exponential function whose

derivative is the function itself ex. Therefore, the only exponential and logarithmic function

that one needs are ex and ln (x).

Let y = ax be exponential function with base a. This function can be written as

y = ax = (br)x

We simply write a as some other base b to some power r, which is yet unknown, but we

know that it exists. Thus, by definition of logarithmic function,

a = br ⇐⇒ r = logb a
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Thus, the original exponential function with base a can be written as

y = b(logb a)x

which is another exponential function with base b.

Next, write the two exponential functions together:

y = ax ⇐⇒ x = loga y

y = b(logb a)x ⇐⇒ (logb a)x = logb y

Those two together imply

(logb a) loga y = logb y

loga y =
logb y

logb a

To summarize, we derived two base-conversion formulas, which are summarized in the

following proposition.

Proposition 4 (Base-conversion for exponential and logarithmic functions). Given an ex-
ponential function y = ax and its inverse (the logarithmic function) x = loga y (both with

base a), we can represent them as exponential and logarithmic functions of base b:

y = ax = b(logb a)x

loga y =
logb y

logb a

In particular, suppose b = e, the natural base. Then the conversion to the natural base

becomes:

y = ax = e(ln a)x

loga y =
ln y

ln a

Example 34 Suppose we want to calculate log5 125. We know that this is 3, because log5 125

is the answer to the question "to which power we should raise 5 to get 125"? But suppose

that don’t know the answer, and have a calculator that can only calculate natural logarithms

ln (x). Thus, by the base-conversion theorem, we have

log5 125 =
ln 125

ln 5
=

4.8283

1.6094
= 3
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Example 35 Suppose we want to calculate log2 1024, but your calculator has only the natural

logarithm function ln (x). Show how you can compute log2 1024 using the ln (x) function only.

3.4.2 Rules of exponents and logarithms

For completeness, I present the rules of exponents and logarithms here.

Rules of exponents

1. xaxb = xa+b

2. (xa)b = xab

3. x−a = 1
xa

4. x0 = 1

5. (xy)a = xaya

The above rules apply to power functions as well as exponential functions.

Rules of logarithms

1. ln (xa) = a ln (x) (log turns power into a product).

2. ln (xy) = ln (x) + ln (y) (log of a product = sum of logs)

3. ln (x/y) = ln (x)− ln (y) (log of a ratio = difference of logs)

The above rules are proved using the rules of exponent.

Exercise 16 Prove the rules of logarithms using the rules of exponential functions.

Derivatives of exponential and logarithmic functions

You are already familiar with the following rules from the chapter about derivatives:Logarithmic

function:

1. Logarithmic function:
d

dx
ln (x) =

1

x
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2. Exponential function:

d

dx
ax = ln (a) ax

in particular,
d

dx
ex = ex

In this section we provide a proof of these rules.

Proof. (i) d
dx

ln (x) = 1
x
.

d

dx
ln (x) = lim

h→0

ln (x+ h)− ln (x)

h

= lim
h→0

ln

[(
x+ h

x

) 1
h

]

= lim
h→0

ln

[(
1 +

h

x

) 1
h

]

= lim
h→0

ln

[(
1 +

1/x

1/h

) 1
h

]

Let n = 1/h. The above limit becomes

d

dx
ln (x) = lim

n→∞
ln

[(
1 +

1/x

n

)n]
= ln lim

n→∞

[(
1 +

1/x

n

)n]
= ln e1/x =

1

x

The second step used the substitution rule of limits.

(ii) d
dx
ex = ex.

Let y = ex and the inverse function is x = ln (y). From the the inverse function rule of

derivatives,
dy

dx
=

1

dx/dy
=

1

1/y
= y = ex

(iii) d
dx
ax = ln (a) ax.

Let y = ax, and take ln of both sides:

ln y = x ln (a)
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Differentiate with respect to x:
1

y

dy

dx
= ln (a)

Rearranging:
dy

dx
= ln (a) y = ln (a) ax

3.4.3 Application: growth rates

In economics, we often want to analyze the change in variables over time: growth of GDP,

growth of prices (inflation), growth of sales, etc. Exponential and logarithmic functions were

designed to analyze anything that grows. In this section, we distinguish between discrete

time, t = ... − 2,−1, 0, 1, 2, ... (t can only be integer) and continuous time t ∈ R (t can be
any real number). A variable that evolves over time in discrete jumps is denoted by yt and

a variable that changes continuously is denoted y (t). The rates of growth are then

[t discrete] : ŷ =
yt+1 − yt

yt

[t continuous] : ŷ =
dy (t) /dt

y (t)
=

d

dt
ln y (t)

If a variable grows at constant rate g, then the value at time t is given by:

[t discrete] : yt = y0 (1 + g)t

[t continuous] : y (t) = y (0) egt

To verify that the above formulas for yt and y (t) generate a constant growth rate of these

variables, we use the corresponding growth rate formulas:

[t discrete] : ŷ =
yt+1 − yt

yt
=
y (0) (1 + g)t+1 − y (0) (1 + g)t

y (0) (1 + g)t
= g

[t continuous] : ŷ =
d

dt
ln y (t) =

d

dt
(ln y (0) + gt) = g

Notice that if a continuous time variable y (t) is growing at constant rate g, then ln y (t) =

ln y (0) + gt is a linear function of time with slope g. If a discrete time variable yt is growing

at constant rate g, then ln yt = ln y0 + t ln (1 + g) is a linear function of time with slope

ln (1 + g), which is approximately g for small g.3 An important application of this result is

3Recall that we proved limg→0
ln(1+g)

g = 1.
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for plots of time series data that exhibits growth. Instead of plotting the actual variable yt
as a function of time, we better plot its natural logarithm as a function of time. This way

we can see immediatly if the long run growth trend has constant or changing growth rate,

and we can apprioximately find the growth rate as the slope of the curve. For example, the

next figure plots the real GNP per capita in the U.S.A. during 1900-2000.

The next figure shows the ln of the same real GNP per capita time series. Notice that

from the graph of the ln(RGNP) we can see that during the 20th century the growth trend

exhibited constant growth rate (ln(RGNP) is a linear function of time), and the growth rate

was about 3.5−1.5
100

= 2% per year. None of that can be seen from looking at the original time

series data on real GNP.

Example 36 Calculate the growth rate of y(t) = 0.01t.

First, the notation y (t) means that time is continuous, and we must use the continuous

growth formula.

ŷ =
d

dt
ln y (t) =

1

0.01t
0.01 =

1

t



112 CHAPTER 3. OPTIMIZATION

Thus, y (t) is not growing at constant rate. In fact, it is growing at a diminishing rate, so

after 10 year the growth rate is 10% but after 20 years the growth rate is 5%.

Example 37 (Doubling time). Suppose China’s GDP per capita is growing at 7%. How
long will it take for Chinese GDP per capita to double? We will answer this question under

the two assumptions of discrete and continuous growth. If growth is discrete, then we need

to solve the following equation for the unknown t:

2y0 = y0 (1 + g)t

2 = (1 + g)t

ln 2 = t ln (1 + g)

t∗ =
ln 2

ln (1 + g)
=

0.69315

0.06765 9
= 10.245

If growth is continuous, then we need to solve the following equation for the unknown t:

2y (0) = y (0) egt

2 = egt

ln 2 = gt

t∗∗ =
ln 2

g
=

0.69315

0.07
= 9.9021

Notice that for small growth rate g, the two doubling times are very similar. Even for

g = 7% we got pretty similar t∗ and t∗∗. This is because we proved that

lim
g→0

ln (1 + g)

g
= 1

The last example gives rise to the famous rule of 70 for calculating approximate doubling
time, which works for small g. Using the continuous growth doubling time

t =
ln 2

g
=

0.69315

g
≈ 0.7

g
=

70

100 · g

Thus, the approximate doubling time is given by 70 divided by the percentage growth rate.

In the above example of China, the approximate doubling time with the rule of 70 is:

[Rule of 70] : t∗∗∗ =
70

7
= 10

Notice that even with fast growth rate of 7%, the rule of 70 gives a good approximation to
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the exact doubling times (compare with t∗ and t∗∗).

Growth rate of product and ratio

In economics, many variables of interest are products or ratios of other variables. For exam-

ple, revenue R = P ·Q is a product of price and quantity and GDP per capita y = GDP
POP

is a

ratio of GDP to population. If we know the growth rates of the underlying variables, what

is the growth rate of their products and rations? We first answer this question in continuous

time, i.e. the variables x (t) and y (t) are continuous (and differentiable) functions of time

t ∈ R.

x̂y =
d

dt
ln (x (t) y (t))

=
d

dt
[lnx (t) + ln y (t)]

=
d

dt
lnx (t) +

d

dt
ln y (t)

= x̂+ ŷ

Thus, the growth rate of a product is the sum of growth rates. Similarly, the growth of a

ratio is the difference of growth rates:

(̂
x

y

)
=

d

dt
ln (x (t) /y (t))

=
d

dt
[lnx (t)− ln y (t)]

=
d

dt
lnx (t)− d

dt
ln y (t)

= x̂− ŷ

For example, if the price of a good grows at 2% rate and the quantity sold grows at 3%, then

the revenue grows at 5%, when growth is continuous. Similarly, if GDP grows at 4% and

population grows at 1%, the GDP per capita grows at 3% rate, when growth is continuous.

In discrete time, we get similar results, which hold only approximately, for small growth
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rates. Thus, when time is discrete t = ...− 2,−1, 0, 1, 2, ..., we have

x̂y =
xt+1yt+1 − xtyt

xtyt
1 + x̂y = (1 + x̂) (1 + ŷ)

ln (1 + x̂y)︸ ︷︷ ︸
≈x̂y

= ln (1 + x̂)︸ ︷︷ ︸
≈x̂

+ ln (1 + ŷ)︸ ︷︷ ︸
≈ŷ

x̂y ≈ x̂+ ŷ

If all growth rates are small, then we can use the result limg→0 ln (1 + g) /g = 1 in the last

step.

Similarly, the growth of a ratio, when time is discrete, is approximately the difference of

growth rates.

x̂/y =

(
xt+1
yt+1

)
−
(
xt
yt

)
(
xt
yt

)
1 + x̂/y =

(1 + x̂)

(1 + ŷ)

ln
(

1 + x̂/y
)

︸ ︷︷ ︸
≈x̂/y

= ln (1 + x̂)︸ ︷︷ ︸
≈x̂

− ln (1 + ŷ)︸ ︷︷ ︸
≈ŷ

x̂/y ≈ x̂− ŷ

Again, the last step uses the result limg→0 ln (1 + g) /g = 1, which is justified if all growth

rates are small.

To summarize, if time is continuous, the growth rate of a product is the sum of growth

rates, and the growth rate of a ratio is the difference of growth rates. If time is discrete,

these results hold approximately, for small growth rates.

Growth rate of sum and difference

Skipped.

3.4.4 Application: present value

Suppose that you deposit an amount of PV in savings account. Then, after t periods with

continuous compounding, you will have a future value of

FV (t) = PV · ert
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The present value of a payment FV (t) received at time t is then

PV =
FV (t)

ert
= FV (t) e−rt

Similarly, with compounting at discrete intervals, the future (time t) value of current amount

of PV is

FVt = PV (1 + r)t

The present value of payment FVt received at time tis

PV =
FVt

(1 + r)t

Example 38 (Annuities). An annuity is a sequence of equal payments at regular intervals.
An example of annuity is a mortgage or loan, that pays to its holder (bank, financial institu-

tion) an amount of PMT at the end of every year, for the next T years. Thus, the present

value of this annuity (mortgage) is:

PV =
PMT

(1 + r)1 +
PMT

(1 + r)2 + ...+
PMT

(1 + r)T

=
T∑
t=1

PMT

(1 + r)t
= PMT

T∑
t=1

(
1

1 + r

)t
= PMT ·R (r, T )

Using the summation formula
T∑
t=1

qt =
q − qT+1

1− q

with q = 1/ (1 + r) we have for r 6= 0

T∑
t=1

qt =
q − qT+1

1− q =

(
1

1+r

)
−
(

1
1+r

)T+1

1−
(

1
1+r

) =
1−

(
1

1+r

)T
r

If r = 0, the above is not defined, and we have

T∑
t=1

(
1

1 + r

)t
=

T∑
t=1

1 = T

Thus,

R (r, T ) =

T∑
t=1

(
1

1 + r

)t
=

{ [
1−

(
1

1+r

)T]
/r

T

if r 6= 0

if r = 0
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Thus,

PV = PMT ·R (r, T )

If the amount of loan is given, and we wish to calculate the constant payment, then

PMT =
PV

R (r, T )

3.4.5 Application: optimal holding time

Suppose that the market value of an asset, at time t, is given by V (t) - a continuous and

differentiable function of time. Even if this value always increases over time, one needs to

take into account the interest that we give up by not selling the asset and investing the

money in the bank. Suppose that interest rate is r per period. Then the present value of

the asset, when it is sold at time t, is

PV (t) = V (t) e−rt

The owner of the asset wishes to maximize the present value of the asset, by selling it at the

right time. Thus, the optimization problem to be solved is:

max
t
PV (t) = V (t) e−rt

The first order necessary condition for maximum is:

d

dt
PV (t) = V ′ (t) e−rt − rV (t) e−rt = 0

or
V ′ (t)

V (t)
= r

The interpretation is that you keep the asset until the growth rate of it’s value equalizes to

the interest rate.

The second order suffi cient condition for maximum is:

d2PV (t)

dt2
=

d

dt

[
V ′ (t) e−rt − rV (t) e−rt

]
< 0

Recognizing that V (t) e−rt = PV (t), we compute the 2nd order suffi cient condition

d

dt

[
V ′ (t) e−rt − rPV (t)

]
= V ′′ (t) e−rt − rV ′ (t) e−rt − r d

dt
PV (t)︸ ︷︷ ︸

=0

= V ′′ (t) e−rt − rV ′ (t) e−rt
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The last term is zero because the second order suffi cient condition is checked at the point

where the first order necessary condition holds. Without knowing the function V (t), we

cannot tell if the second derivative is negative or not. But we can say that in order of the

second order suffi cient condition for maximum to hold, we need

V ′′ (t) e−rt − rV ′ (t) e−rt < 0

V ′′ (t)

V ′ (t)
< r

The left hand side is the growth of V ′ (t), and the condition says that this growth must be

small enough. Otherwise, we would never want to sell the asset and invest in interest bearing

financial asset.

Example 39 Suppose that you have an asset with initial value of $K, and over time the

value evolves according to

V (t) = Ke
√
t

The interest rate is r, and is constant over time. The present value of the asset, if it is sold

at time t, is:

PV (t) = Ke
√
te−rt = Ke

√
t−rt

Thus, the optimization problem to be solved is:

max
t
PV (t) = Ke

√
t−rt

The first order necessary condition is:

d

dt
PV (t) = Ke

√
t−rt (0.5t−0.5 − r

)
= 0

0.5t−0.5 = r

0.5 = rt0.5

t∗ =

(
0.5

r

)2

=
0.25

r2

Notice that optimal selling time decreases in interest rate. If interest rate is higher, then

the opportunity cost of holding the asset is also higher, and therefore we would sell the asset

earlier. Also notice that the initial value of the asset V (0) = K does not affect the optimal

holding time; what maters is the growth rate of the value of the asset, compared to the interest

rate (growth rate of the alternative financial asset).

The left hand side of the first order condition, 0.5t−0.5, based on our general discussion,
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is supposed to represent the growth rate of the value of the asset. Let’s verify this:

d

dt
lnV (t) =

d

dt
ln
(
Ke
√
t
)

=
d

dt

[
lnK + t0.5

]
= 0.5t−0.5

As always, we need to check the second order suffi cient condition for maximum:

d2

dt2
PV (t) < 0

Recognizing that PV (t) = Ke
√
t−rt, we compute

d

dt
PV (t)

(
0.5t−0.5 − r

)
= PV ′ (t)︸ ︷︷ ︸

=0

(
0.5t−0.5 − r

)
− PV (t) 0.25t−1.5 < 0

Notice that in the above we used the first order necessary condition PV ′ (t) = 0, because

the second order suffi cient condition applies at the critical value t = t∗. Thus, we say that

the second order condition for maximum holds, and therefore, t = t∗ = 0.25/r2 indeed is an

optimal time to sell the asset. For example, if the interest rate is 10%, we will hold the asset

for

t∗ =
0.25

0.12
= 25 years

The objective function in the last example, with r = 10% is displayed in the next figure.
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3.5 Unconstrained Optimization of Multivariate Func-

tions

In section (3.2) we derived first order necessary and second order suffi cient conditions for

local extrema of differentiable functions of one variable, summarized in the next table:

Condition Maximum Minimum

First-order necessary f ′ (x) = 0 f ′ (x) = 0

Second-order suffi cient† f ′′ (x) < 0 f ′′ (x) > 0

†Applicable only after the first-order necessary condition is satisfied

We applied these tests and solved profit maximization problems of firms that produce

only one output, or for finding the optimal timing to sell an asset. Now we extend the

analysis to functions of several variables, and derive necessary and suffi cient conditions for

problems of the following type:

max
x1,...,xn

f (x1, ..., xn) or min
x1,...,xn

f (x1, ..., xn)

Examples include profit maximization of multiproduct and many inputs firm.

3.5.1 First order necessary conditions for extrema

To derive first order necessary condition for multivariate function, it is convenient to use

differential, instead of derivatives. In one variable case, the first order necessary condition

of extremum of y = f (x) is f ′ (x) = 0. Recall that an x that satisfies this condition

is called critical value. An equivalent necessary condition for extremum can be presented

with differential, namely dy = f ′ (x) dx = 0 for any increment dx 6= 0. Intuitively, at an

extremum (minimum or maximum), the tangent line is flat, so any change in x in either

direction (dx > 0 or dx < 0) should not change the value of y (dy = 0) along the tangent

line. Obviously this condition is satisfied for all dx 6= 0 if an only if f ′ (x) = 0.
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Now consider a function of two variables, y = f (x1, x2). The total differential with

increments dx1,dx2 is

dy = f1 (x1, x2) dx1 + f2 (x1, x2) dx2

where fi (x1, x2) is the partial derivative with respect to xi, i = 1, 2. The total differential

approximates the change in y with a tangent plane, as illustrated in figure (3.7). At a

minimum or maximum, we expect that changes in any direction, along the tangent plane,

not to change the value of the function, i.e. dy = 0, ∀dx1, dx2 not both zero. Figure

(3.7) shows a function y = f (x1, x2) = 100 − x2
1 − x2

2, which has a maximum point at

x1 = x2 = 0. Notice that any movement in any direction along the tangent plane (dx1 > 0,

dx1 < 0, dx2 > 0 or dx2 < 0), must result in dy = 0, if the these changes occur at

an extremum point. This is precisely the meaning of total differential equal to zero - the

approximating plane tangent to the dome in figure (3.7) at a maximum, must be flat. In

order for dy = f1 (x1, x2) dx1 + f2 (x1, x2) dx2 = 0 to hold for any dx1, dx2, not both zero,

both partial derivatives must be zero: f1 (x1, x2) = f2 (x1, x2) = 0. This result extends to

functions of n variables, as stated in the next theorem.

Theorem 11 (First-order necessary condition for extrema of multivariate function). If a
function y = f (x1, ..., xn) is differentiable (i.e. has all partial derivatives), and if f has a

local minimum or maximum at x1, x2, ..., x3, then it is necessary that

f1 (x1, ..., xn) = f2 (x1, ..., xn) = ... = fn (x1, ..., xn) = 0

That is, the first order necessary condition for maximum or minimum of a multivariate

function, is that all partial derivatives must be zero at that point.
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3.5.2 Second order suffi cient conditions for local extrema

Recall that for a function of one variable, y = f (x), the second order suffi cient condition for

a maximum, at critical value x, is f ′′ (x) < 0 and for minimum f ′′ (x) > 0. These second

order conditions can be equivalently stated in terms of second-order differential, which is the

differential of the first differential:

d2y = d (dy) = d (f ′ (x) dx) = f ′′ (x) dxdx = f ′′ (x) dx2

Note that in the above differentiation, the increment dx is treated as some constant change

in x (can be negative or positive, say dx = −0.01). The second order suffi cient condition for

maximum can now be stated as d2y < 0, which holds for any dx 6= 0 if and only if f ′′ (x) < 0.

This condition requires that the first derivative (slope of the function) be decreasing locally,

if the objective function has a maximum at that point. Similarly, f ′′ (x) > 0 means that the

first derivative is increasing if the objective function has a minimum at that point.

Now consider a function of two variables, y = f (x1, x2) and its first-order total differential

dy = f1 (x1, x2) dx1 +f2 (x1, x2) dx2. The second order suffi cient condition for maximum, just

like in the univariate function case, is d2y < 0 and for minimum d2y > 0. Both conditions of

course are checked at critical values (after the first order necessary conditions are satisfied).
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The second-order total differential is

d2y = d [f1 (x1, x2) dx1] + d [f2 (x1, x2) dx2]

= f11dx1dx1 + f12dx2dx1 + f21dx1dx2 + f22dx2dx2

= f11dx
2
1 + 2f12dx1dx2 + f22dx

2
2

The increments dx1 and dx2 are some exogenous constants, say dx1 = −0.01 and dx2 = 0.007.

The derivatives f12 = ∂2f
∂x1∂x2

and f21 = ∂2f
∂x2∂x1

are called cross partial derivatives, and they
measure the change in the first derivative of one variable with respect to change in the other

variable. Following Young’s theorem, the two partial derivative are equal to each other,

f12 = f21, under some conditions.4 The second order suffi cient condition for maximum

is that d2y < 0 for all dx1 and dx2, not both equal to zero. Similarly, the second order

suffi cient condition for minimum is d2y > 0 for all dx1 and dx2, not both equal to zero.

What restrictions on the second order derivatives are implied by these conditions? For

maximum, we have:

d2y = f11dx
2
1 + 2f12dx1dx2 + f22dx

2
2 < 0

For this to hold for all dx1 and dx2, not both equal to zero, we must have f11 < 0 and

f22 < 0. To see why, notice that the above inequality must hold in particular for dx1 = 0

and dx2 6= 0, as well as for dx1 6= 0 and dx2 = 0. Next, we would like to see what restrictions

on the cross partial derivative, f12, would guarantee that d2y < 0 for all dx1 and dx2, not

both equal to zero. We can add and subtract f 2
12dx

2
2/f11 to second-order differential, and

rearrange as follows:

d2y = f11dx
2
1 + 2f12dx1dx2 +

f 2
12dx

2
2

f11

+ f22dx
2
2 −

f 2
12dx

2
2

f11

= f11

(
dx2

1 +
2f12

f11

dx1dx2 +
f 2

12

f 2
11

dx2
2

)
+

(
f22 −

f 2
12

f11

)
dx2

2

= f11

(
dx1 +

f12

f11

dx2

)2

+

(
f11f22 − f 2

12

f11

)
dx2

2 < 0

In order for this inequality to hold for all dx1 and dx2, both coeffi cients on the squared terms

must be negative, i.e. f11 < 0 and (
f11f22 − f 2

12

f11

)
< 0

4The theorem states that if a function f : R→ R has continuous partial derivatives, then fij (x1, ..., xn) =
fji (x1, ..., xn) for all i, j.
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The last inequality holds if and only if f11f22 − f 2
12 > 0 (since f11 < 0). Thus, the second

order suffi cient condition for maximum is

f11 < 0 and f11f22 − f 2
12 > 0

Notice that the above implies that f22 < 0, since otherwise it would never be possible to

satisfy f11f22 − f 2
12 > 0.

Similarly, the second order suffi cient condition for minimum is

d2y = f11

(
dx1 +

f12

f11

dx2

)2

+

(
f11f22 − f 2

12

f11

)
dx2

2 > 0

which must hold for all dx1 and dx2, not both equal to zero. This requirement is met if and

only if both coeffi cients on the quadratic terms are strictly positive, f11 > 0 and(
f11f22 − f 2

12

f11

)
> 0

The last inequality holds if and only if f11f22−f 2
12 > 0 (since f11 > 0). Therefore, the second

order suffi cient condition for minimum is

f11 > 0 and f11f22 − f 2
12 > 0

Thus, we derived the second order suffi cient conditions for maximum and minimum of a

two-variable function, and it took quite a few steps. The derivation of second order suffi cient

conditions for functions of 3 variable is much more messy, and things become intractable

if we try to derive them for a function of n variables in this way. An easier way to derive

the second order conditions for a function of n variables, requires the concept of quadratic
form. Before we proceed to a formal discussion, notice that the second differential of two-
variable function, y = f (x1, x2), can be written in matrix form as follows:

d2y = f11dx
2
1 + 2f12dx1dx2 + f22dx

2
2

=
[
dx1 dx2

] [ f11 f12

f12 f22

][
dx1

dx2

]

Viewed as a function of the increments dx1 and dx2, the above is called a quadratic form

(because the sum of exponents on the variables is 2 in every term). Our second order

suffi cient conditions require the above form to be always negative (for maximum) or always

positive (for minimum), for any dx1 and dx2, not both equal to zero. The matrix of second
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derivatives in the middle of the above quadratic form is called theHessian. It turns out that
there are theorems that provide conditions under which a quadratic form is always positive

(positive definite) or always negative (negative definite).

Quadratic forms and definite matrices

Definition 19 A quadratic form on Rn is a real valued function

Q (x) = x′Ax

where x is a nonzero n× 1 vector and A is n× n symmetric matrix:

x =


x1

x2

...

xn


n×1

, A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann


n×n

Recall that symmetric matrix means that aij = aji ∀i, j, orA′ = A. Also note thatQ (x) is

a scalar. Our interest in quadratic forms stems from the fact that second order differential,

which determines the second order suffi cient conditions for maximum and minimum, is a

quadratic form. We want to know under what conditions this form is always (definitely)

positive or always (definitely) negative. What determines the sign of a quadratic form x′Ax

is the matrix A, since x is any nonzero vector. Therefore, we can classify the matrix A as

follows:

Definition 20 (Definite matrices). Let A be n× n symmetric matrix. Then A is:
(a) positive definite if x′Ax > 0 for all x ∈ Rn, x 6= 0.

(b) negative definite if x′Ax < 0 for all x ∈ Rn, x 6= 0.

(c) positive semidefinite if x′Ax ≥ 0 for all x ∈ Rn, x 6= 0.

(d) negative semidefinite if x′Ax ≤ 0 for all x ∈ Rn, x 6= 0.

(e) indefinite if x′Ax < 0 for some x ∈ Rn, and x′Ax > 0 for some other x ∈ Rn.

Now consider the function of n variables, y = f (x1, ..., xn). As we have seen with a

function of two variables, the second-order differential of a function of n variables can be
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written in the following quadratic form:

d2y =
[
dx1 dx2 · · · dxn

]

f11 f12 · · · f1n

f21 f22 · · · f2n

...
...

. . .
...

fn1 fn2 · · · fnn


︸ ︷︷ ︸

H


dx1

dx2

...

dxn



The matrix of second derivatives in the middle is the Hessian matrix H, which is symmetric

due to Young’s theorem (fij = fji when these cross partial derivatives are continuous func-

tions). Thus, the second order suffi cient condition for maximum is equivalent to the Hessian

matrix H being negative definite and the second order suffi cient condition for minimum is

equivalent to the Hessian matrix H being positive definite. What are the conditions on sym-

metric matrices, that guarantee them to be definite? These conditions are stated in terms

of leading principal minors of the matrix. Recall that the ij minor of a square matrix
A, denoted |Mij|, is the determinant of a smaller square matrix, obtained by removing row
i and column j from A. A submatrix obtained from n × n matrix A by keeping the first

k rows and the first k columns, is called the kth order leading principal matrix. Its
determinant is called the kth order leading principal minor of A. For example, consider a

3× 3 matrix A

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


The 3 leading principle minors are

1st leading principle minor : |A1| = |a11|

2nd leading principal minor : |A2| =
∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
3rd leading principal minor : |A3| =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
Theorem 12 (Characterization of definite matrices by leading principal minors). Let A be
n× n symmetric matrix. Then,

(a) A is positive definite if and only if all its n leading principal minors are positive:

|A1| > 0, |A2| > 0, |A3| > 0,...
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(b) A is negative definite if and only if its n leading principal minors alternate in sign
as follows:

|A1| < 0, |A2| > 0, |A3| < 0,...

(c) A is positive semidefinite if and only if all its n leading principal ≥ 0.

(d) A is negative semidefinite if and only if its n leading principal minors alternate
in sign as follows:

|A1| ≤ 0, |A2| ≥ 0, |A3| ≤ 0,...

(e) A is indefinite if the signs of its leading principal minors do not fit any of the above
patterns.

The above theorem, applied to the Hessian matrix, gives us the second order suffi cient

conditions for local minimum or maximum, as summarized in the next theorem.

Theorem 13 (Second order suffi cient conditions for local extrema of n-variable functions).
Let f : U → R be C2 (twice continuously differential) function, whose domain is an open set

U ⊆ Rn, and suppose that x∗ =
[
x∗1 x∗2 · · · x∗n

]′
is a critical point, i.e.

fi (x
∗
1, ..., x

∗
n) = 0 ∀i = 1, 2, ..., n

Let the Hessian matrix (i.e. matrix of all second derivatives), evaluated at x∗, be

H =


f11 f12 · · · f1n

f21 f22 · · · f2n

...
...

. . .
...

fn1 fn2 · · · fnn


(a) If H is negative definite, i.e. if the leading principal minors of H alternate sign as

follows:

|H1| = |f11| < 0, |H2| =
∣∣∣∣∣ f11 f12

f21 f22

∣∣∣∣∣ > 0, |H3| =

∣∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣∣ < 0,...

then f (x∗) is a local maximum. Put differently, H negative definite is a second order

suffi cient condition for local maximum.
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(b) If H is positive definite, i.e. if the leading principal minors of H are all positive:

|H1| = |f11| > 0, |H2| =
∣∣∣∣∣ f11 f12

f21 f22

∣∣∣∣∣ > 0, |H3| =

∣∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣∣ > 0,...

then f (x∗) is a local minimum. Put differently, H positive definite is a second order

suffi cient condition for local minimum.

(c) If H is indefinite, i.e. some leading principle minor (or some pair of them) is not
zero and violates both sign patterns in (a) and (b), then x∗ is a saddle point.

(d) If the leading principal minors of H violate the patterns of (a) or (b) only by be-
ing zero, then the second order test is inconclusive, and x∗ could be anything (maximum,
minimum saddle or something else).

In this course, we are primarily interested in maxima and minima, so we will check for

patterns in (a) and (b), i.e. check for suffi cient conditions for minima or maxima. If these

conditions are violated, either as in part (c) of the theorem, or as in part (d) of the theorem,

it is enough for us to say that the second order suffi cient conditions do not hold. It is not

important for us to classify the critical point into saddle or something else. What we do

need to remember about second order suffi cient conditions is that they are not necessary,

and if they are violated, the point can still, in principle, be minimum or maximum or neither,

depending on the type of the violation.

Equipped with the above theorem, we can solve some examples.

Example 40 Let y = f (x1, x2) = 100 − x2
1 − x2

2. Find the critical values of this function,

and classify them as local max, local min or saddle point.

The critical values:

f1 (x1, x2) = −2x1 = 0

f2 (x1, x2) = −2x2 = 0

The solution is (x∗1, x
∗
2) = (0, 0).

The Hessian matrix is

H =

[
f11 f12

f21 f22

]
=

[
−2 0

0 −2

]
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The leading principal minors are

|H1| = |f11| = −2 < 0

|H2| =

∣∣∣∣∣ f11 f12

f21 f22

∣∣∣∣∣ = (−2) (−2)− 0 = 4 > 0

Thus, the leading principle minors alternate sign in a way that makes the Hessian matrix

negative definite, which is the second order suffi cient condition for maximum. Thus, by

theorem (13), the function has a local maximum at (x∗1, x
∗
2) = (0, 0). The graph of the

function in this example is plotted in figure (3.7).

Example 41 Let y = f (x1, x2) = x2
1 + x2

2. Find the critical values of this function, and

classify them as local max, local min or saddle point.

The critical values:

f1 (x1, x2) = 2x1 = 0

f2 (x1, x2) = 2x2 = 0

The solution is (x∗1, x
∗
2) = (0, 0).

The Hessian matrix is

H =

[
f11 f12

f21 f22

]
=

[
2 0

0 2

]
The leading principal minors are

|H1| = |f11| = 2 > 0

|H2| =

∣∣∣∣∣ f11 f12

f21 f22

∣∣∣∣∣ = 2 · 2− 0 = 4 > 0

All leading principle minors are positive, and therefore the Hessian matrix is positive definite,

which is the second order suffi cient condition for minimum. Thus, by theorem (13), the

function has a local minimum at (x∗1, x
∗
2) = (0, 0). The graph of the function in this example

is plotted in figure (3.8).

Example 42 Let y = f (x1, x2) = x2
1 − x2

2. Find the critical values of this function, and

classify them as local max, local min or saddle point.
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The critical values:

f1 (x1, x2) = 2x1 = 0

f2 (x1, x2) = −2x2 = 0

The solution is (x∗1, x
∗
2) = (0, 0).

The Hessian matrix is

H =

[
f11 f12

f21 f22

]
=

[
2 0

0 −2

]

The leading principal minors are

|H1| = |f11| = 2 > 0

|H2| =

∣∣∣∣∣ f11 f12

f21 f22

∣∣∣∣∣ = 2 · (−2)− 0 = −4 < 0

The leading principle minors violate the pattern for either negative definiteness or positive

definiteness, and therefore the Hessian matrix is indefinite. Thus, by theorem 13, the function

has a saddle point at (x∗1, x
∗
2) = (0, 0), because of |H2| (it is not zero, and violates both patterns

(a) and (b) of the theorem). The graph of the function in this example is plotted in figure

(3.9).
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Example 43 Let y = f (x1, x2, x3) = 2x2
1 + x1x2 + 4x2

2 + x1x3 + x2
3 + 2. Find the critical

values of this function, and classify them as local max, local min or saddle point.

The critical values:

f1 = 4x1 + x2 + x3 = 0

f2 = x1 + 8x2 = 0

f3 = x1 + 2x3 = 0

The solution is (x∗1, x
∗
2, x
∗
3) = (0, 0, 0).

The Hessian matrix is

H =

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 =

 4 1 1

1 8 0

1 0 2
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The leading principal minors are:

|H1| = |f11| = 4 > 0

|H2| =

∣∣∣∣∣ f11 f12

f21 f22

∣∣∣∣∣ =

∣∣∣∣∣ 4 1

1 8

∣∣∣∣∣ = 31 > 0

|H3| =

∣∣∣∣∣∣∣
4 1 1

1 8 0

1 0 2

∣∣∣∣∣∣∣ = 54 > 0

Thus, by theorem 13 we conclude that the function has a local minimum at the critical point

(x∗1, x
∗
2, x
∗
3) = (0, 0, 0). The function in this example cannot be graphed, because it has 4

dimensions.

3.5.3 Second order suffi cient conditions for global extrema

In economic applications, we usually hope to have a unique global (absolute) maximum or

minimum. This is because the solution of the model is its prediction, and we want there to be

a particular prediction, instead of many or none. Notice that the local maximum we found

for y = f (x1, x2) = 100 − x2
1 − x2

2, and plotted in figure (3.7), is not only local maximum,

but also global maximum. The Hessian matrix for this function is

H =

[
f11 f12

f21 f22

]
=

[
−2 0

0 −2

]

The leading principal minors are

|H1| = |f11| = −2 < 0

|H2| =

∣∣∣∣∣ f11 f12

f21 f22

∣∣∣∣∣ = (−2) (−2)− 0 = 4 > 0

Notice that the Hessian matrix and the sign pattern of the leading principle minors, do not

depend on particular point at which they are computed. In other words, the leading principle

minors always alternate sign as follows: |H1| < 0, |H2| > 0, for all (x1, x2) in the domain of

the function. It turns out that this is a suffi cient condition for global maximum. Similarly,

the suffi cient condition for global minimum is that all leading principal minors should be

positive. The following theorem summarizes this discussion.

Theorem 14 (Second order suffi cient conditions for global extrema of n-variable func-
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tions). Let f : U → R be C2 (twice continuously differential) function, whose domain is

an open set U ⊆ Rn, and suppose that x∗ =
[
x∗1 x∗2 · · · x∗n

]′
is a critical point, i.e.

fi (x
∗
1, ..., x

∗
n) = 0 ∀i = 1, 2, ..., n

Let the Hessian matrix (i.e. matrix of all second derivatives) be

H =


f11 f12 · · · f1n

f21 f22 · · · f2n

...
...

. . .
...

fn1 fn2 · · · fnn


(a) If the Hessian matrix is negative semidefinite for all x ∈ U , then f is concave,

and f (x∗) is a global maximum (but not necessarily unique).

(b) If the Hessian matrix is positive semidefinite for all x ∈ U , then f is convex,
and f (x∗) is a global minimum (but not necessarily unique).

(c) If the Hessian matrix is negative definite for all x ∈ U , then f is strictly concave,
and f (x∗) is a unique global maximum.
(d) If the Hessian matrix is positive definite for all x ∈ U , then f is strictly convex,

and f (x∗) is a unique global minimum.

Theorem 14 says that if we found a critical value on strictly concave function, then we

are guaranteed that the function has a unique global maximum at that point. This is a very

good reason why economists want to construct models where they maximize a strictly concave

objective function or minimize a strictly convex function - the first order conditions give a

unique global optimum. It turns out that the checking the sign pattern of leading principal

minors is often very complicated. Fortunately, there are powerful theorems that make the

task of identifying concave functions easier. For example, the sum of concave functions is

concave, so if we maximize F (x1, x2) = f (x1, x2) + g (x1, x2), and f, g are concave, then

their sum is also concave. The next section provides a brief review of concave functions and

presents the most useful results needed for optimization.

3.5.4 Concave functions

Concave functions are best illustrated graphically for a one-variable case. Notice that accord-

ing to theorem 14, strict concavity of a one-variable twice continuously differentiable function

f (x) is characterized by f ′′ (x) < 0 for all x in the domain of f . The general definition of a

concave function does not rely on second derivatives, or even on first derivatives.
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Definition 21 (Concave function). A real valued function on a convex subset U of Rn is
concave if for all x1, x2 ∈ U and for all θ ∈ (0, 1),

f (θx1 + (1− θ)x2) ≥ θf (x1) + (1− θ) f (x2)

The function is strictly concave if the above inequality is strict. The next figure plots the
graph of a concave function of one variable.

The graphical interpretation of a concave function is that any cord connecting two points

on the graph of the function must be below the graph. Convex function is defined similarly,
with the inequality reversed. A convex function of one variable is such that any cord connec-

tion two points on the graph, should be above the graph of the function. Linear functions
are both concave and convex.

For differentiable functions of one variable, concavity can be characterized by saying

that any tangent line to the graph of the function lies above the graph of the function.

Mathematically, for all x0 in the domain of a concave function f , and any x in the domain,

with x 6= x0, we have

f (x0) + f ′ (x0) (x− x0) ≥ f (x0)

For strictly concave functions the above inequality becomes strict, and for convex functions

the direction of the inequality is reversed.
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Finally, twice continuously differentiable concave functions are characterized as in theo-

rem 14. For example, a function y = 10−x2 is strictly concave function in one variable. The

easiest way to check it is using the second derivative test (since this function is twice differ-

entiable), that is f ′′ (x) = −2 < 0 ∀x. A function of two variables, y = 100− x2
1 − x2

2, with

a graph plotted in figure (3.7) is strictly concave, as we saw earlier, with negative definite

Hessian matrix:

H =

[
f11 f12

f21 f22

]
=

[
−2 0

0 −2

]
The leading principal minors are

|H1| = |f11| = −2 < 0

|H2| =

∣∣∣∣∣ f11 f12

f21 f22

∣∣∣∣∣ = (−2) (−2)− 0 = 4 > 0

Thus y = f (x1, x2) = 100 − x2
1 − x2

2 is strictly concave function. This means that at the

critical value (x∗1, x
∗
2) = (0, 0), the function f attains its unique global maximum.

The next theorem provides useful properties of concave functions, which help us test for

concavity without calculating the Hessian and leading principal minors.

Theorem 15 (Properties of concave functions).

1. A function f : U ⊆ Rn → R (n-variable real valued function) is concave if and only if
−f is convex.

2. Let f1, ..., fk : U ⊆ Rn → R (n-variable real valued functions), and let α1, ..., αk be

positive numbers. If f1, ..., fk are all concave then the sum α1f1 + ... + αkfk is also

concave, and if the functions are convex, then the sum is convex.

3. An increasing and concave transformation of a concave function, is a concave function.

Using the above properties, we can say that a suffi cient condition for the profit function

π (Q1, Q2, Q3) = R1 (Q1) + R2 (Q2) + R3 (Q3) − C (Q1 +Q2 +Q3) to be concave (which

guarantees that a critical point is a unique global maximum), is that R1 (Q1) + R2 (Q2) +

R3 (Q3) are concave, and C (Q1 +Q2 +Q3) is convex (which means that −C (Q1 +Q2 +Q3)

is concave).

Proof. The easiest and most general proof of the above uses the definition of concave

functions (21).
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1. Multiply the definition by −1, gives:

f (θx1 + (1− θ)x2) ≥ θf (x1) + (1− θ) f (x2)

−f (θx1 + (1− θ)x2) ≤ θ · (−f (x1)) + (1− θ) · (−f (x2))

The last inequality is exactly the definition of −f being a convex function.

2. Let f1, ..., fk be concave functions. By definition (21), we have:

f1 (θx1 + (1− θ)x2) ≥ θf1 (x1) + (1− θ) f1 (x2)

f2 (θx1 + (1− θ)x2) ≥ θf2 (x1) + (1− θ) f2 (x2)
...

fk (θx1 + (1− θ)x2) ≥ θfk (x1) + (1− θ) fk (x2)

Multiplying the above inequalities by positive numbers α1, ..., αk (which preserves the

direction of inequality), and summing, gives:

k∑
i=1

αifi (θx1 + (1− θ)x2) ≥
k∑
i=1

αi [θfi (x1) + (1− θ) fi (x2)]

= θ
k∑
i=1

αifi (x1) + (1− θ)
k∑
i=1

αifi (x2) ,

which is exactly the definition of α1f1 + ...+ αkfk being concave.

3. Let f be concave function, and let g be another concave function, which is also in-

creasing. Then

f (θx1 + (1− θ)x2) ≥ θf (x1) + (1− θ) f (x2)

g (f (θx1 + (1− θ)x2)) ≥ g (θf (x1) + (1− θ) f2 (x2)) g is increasing, & f is concave

≥ θg (f(x1) + (1− θ) g (f (x2)) concavity of g

Exercise 17 The above proof is general, in that it does not make any assumptions about
differentiability. As an exercise, prove theorem 15, given that the functions in question are

twice continuously differentiable. Hint, use the definition of definite matrices (definition 20),

and prove that
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1. If H, the Hessian matrix of function f , is negative definite, then −H is positive definite.

2. If H1, ..., Hk are negative definite Hessian matrices of f1, ..., fk, then the sum αiH1 +

...+αkHk is also negative definite matrix (for positive numbers α1, ..., αk), proving that

α1f1 + ...+ αkfk is also concave.

Now looking back at the function f (x1, x2) = 100−x2
1−x2

2, recognizing that x
2 is strictly

convex, we can say that based on theorem 15, −x2 is strictly concave, and the sum −x2
1−x2

2

is strictly concave. Notice that addition of constants does not affect concavity. As another

example, if we maximize profit of a firm, when profit is the difference between revenue and

cost, π (Q) = R (Q) − C (Q), then concavity of R (Q) and convexity of C (Q) (concavity of

−C (Q)), imply concavity of π (Q).

3.5.5 Application: multiproduct competitive firm

Suppose a competitive firm produces quantities of two goods, Q1 and Q2, and sells them at

given prices P1 and P2. Recall that a competitive firm takes the prices as given, and can

only choose the quantities produced. Then the revenue of the firm is given by:

R (Q1, Q2) = P1Q1 + P2Q2

In addition it is given that the cost function of the firm is given by:

C (Q1, Q2) = 2Q2
1 +Q1Q2 + 2Q2

2

Notice that such cost function indicates that the production lines of the two products are

not separate. That is, the marginal cost of each product depends on the quantities produced

of both products:

MC1 =
∂

∂Q1

C (Q1, Q2) = 4Q1 +Q2

MC2 =
∂

∂Q2

C (Q1, Q2) = 4Q2 +Q1

Observe that higher production of one good, makes it more expensive to produce the other

good, perhaps because some factors, while producing one good, cannot be used in the pro-

duction of the other good at the same time.

In any case, with the given revenue and cost functions, the firm maximizes the profit

π = R− C:
max
Q1,Q2

π (Q1, Q2) = P1Q1 + P2Q2 − 2Q2
1 −Q1Q2 − 2Q2

2
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The first order necessary conditions are:

π1 (Q1, Q2) = P1 − 4Q1 −Q2 = 0

π2 (Q1, Q2) = P2 − 4Q2 −Q1 = 0

where πi is a shorthand notation for ∂π/∂Qi. Notice that these conditions equate the

marginal revenues (P1 and P2) with the marginal costs of each product. Solving the first

order necessary conditions, give the unique critical values:

Q∗1 =
4P1 − P2

15

Q∗2 =
4P2 − P1

15

Notice that the quantity produced of one product increases in the price of that product,

but decreases in the price of the other product. This is of course provided that Q∗1 and Q
∗
2

indeed maximize the profit. For example, if P1 = 12 and P2 = 18, then Q∗1 = 2, Q∗2 = 4 and

π (Q∗1, Q
∗
2) = 48.

To verify that the critical point does represent maximum, we need to check the second

order condition. The Hessian of the profit function is

H =

[
π11 π12

π21 π22

]
=

[
−4 −1

−1 −4

]

The leading principal minors are

|H1| = −4 < 0

|H2| = 15 > 0

Thus, the Hessian is negative definite, and the signs of the leading principal minors do not

depend on where they are evaluated (do not depend on Q1 and Q2), by theorem 14 we

conclude that the profit function is strictly concave, and π (Q∗1, Q
∗
2) is the unique global

maximum.

Notice that π12 = π21 < 0, which means that the marginal profit of good i decreases

as the firm produces more of the other good. This is because the marginal cost of good i

increase with the production of the other good, as discussed above.
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3.5.6 Application: multiproduct monopoly

Now suppose we examine a monopoly (a single seller), that sells two goods, Q1 and Q2. The

price will be determined by these chosen quantities, according to the inverse demand curves

for these products:

P1 = 55−Q1 −Q2

P2 = 70−Q1 − 2Q2

Notice that higher quantity sold of good i lowers the price the monopoly receives for that

good. Moreover, higher quantity sold of good i also leads to lower price for the other good

j, which means that the two goods are substitutes for the consumers. The revenue is then

given by

R (Q1, Q2) = (55−Q1 −Q2)Q1 + (70−Q1 − 2Q2)Q2

= 55Q1 + 70Q2 − 2Q1Q2 −Q2
1 − 2Q2

2

Let the cost function be:

C (Q1, Q2) = Q2
1 +Q1Q2 +Q2

2

The monoply’s profit is therefore:

π (Q1, Q2) = 55Q1 + 70Q2 − 2Q1Q2 −Q2
1 − 2Q2

2 −
(
Q2

1 +Q1Q2 +Q2
2

)
= 55Q1 + 70Q2 − 3Q1Q2 − 2Q2

1 − 3Q2
2

The monopoly’s problem is:

max
Q1,Q2

π (Q1, Q2) = 55Q1 + 70Q2 − 3Q1Q2 − 2Q2
1 − 3Q2

2

The first order necessary conditions are:

π1 (Q1, Q2) = 55− 3Q2 − 4Q1 = 0

π2 (Q1, Q2) = 70− 3Q1 − 6Q2 = 0

The solution is

(Q∗1, Q
∗
2) =

(
8, 7

2

3

)
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The implied prices and profit are:

P ∗1 = 55−Q∗1 −Q∗2 = 55− 8− 7
2

3
=

118

3
= 39

1

3

P ∗2 = 70−Q∗1 −Q∗2 = 70− 8− 2 · 72

3
=

140

3
= 46

2

3

π∗ = 488
1

3

To verify that we indeed found the maximal profit of the monopoly, we need to check the

second order conditions. The Hessian of the profit function is:

H =

[
π11 π12

π21 π22

]
=

[
−4 −3

−3 −6

]

The leading principal minors are:

|H1| = −4 < 0

|H2| = 15 > 0

This pattern, according to theorem 14, implies that the Hessian matrix is negative definite,

and that the profit function is strictly concave, regardless of the point at which the Hessian

is evaluated. Therefore, the solution that we found with the first order necessary conditions

is the unique global maximum.

3.5.7 Application: price discriminating monopoly

Now suppose that a monopoly sells a single good, to 3 separated (or segmented) markets.

Separation of markets is another way of saying that buyers cannot perform arbitrage - buy

in a lower price market and sell at a higher price market. The total revenue from all markets

is then the sum of the revenues in each market:

R (Q1, Q2, Q3) = R1 (Q1) +R2 (Q2) +R3 (Q3)

The cost function depends on the total amount of the single good produced, regardless of

where the good is sold:

C (Q) = C (Q1 +Q2 +Q3)
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The firm’s problem is

max
Q1,Q2,Q3

π (Q1, Q2, Q3) = R1 (Q1) +R2 (Q2) +R3 (Q3)− C (Q1 +Q2 +Q3)

The first order necessary conditions are:

π1 (Q1, Q2, Q3) = R′1 (Q1)− C ′ (Q) = 0

π2 (Q1, Q2, Q3) = R′2 (Q2)− C ′ (Q) = 0

π3 (Q1, Q2, Q3) = R′3 (Q3)− C ′ (Q) = 0

In other words, the marginal revenue in all markets must be the same, and equal to the

common marginal cost:

MRi (Qi) = MC (Q) , i = 1, 2, 3

We will not analyze the second order calculus conditions for maximum from theorem (14).

These conditions are complicated and do not reveal much about this problem. Instead, we

notice that π (Q1, Q2, Q3) is a sum of 4 functions, and we have useful results about sums of

concave and convex functions (theorem 15). Then, if we know that all 4 functions R1 (Q1) ,

R2 (Q2), R3 (Q3), −C (Q1 +Q2 +Q3) are concave, then we can conclude that the objective

function π (Q1, Q2, Q3) is also concave, and the first order necessary conditions determine a

global maximum. If concavity is strict, then the global maximum is unique.

The condition MR (Q) = MC (Q) can be written in such a way that relates the price

to marginal cost, and helps understand how firms with market power price their products

in segmented markets. Let the revenue be R (Q) = P (Q) · Q, where P (Q) is the inverse

demand. The marginal revenue is then

MR (Q) = R′ (Q) = P ′ (Q)Q+ P (Q) = P (Q)

[
1 + P ′ (Q)

Q

P (Q)

]
Since the price elasticity of demand is

η =
dQ

dP

P

Q

we see that the marginal revenue can be written as

MR (Q) = P (Q)

[
1 +

1

η

]
Since the demand is in general decreasing, the price elasticity of demand is a negative number,
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η < 0, and we can write

MR (Q) = P (Q)

[
1− 1

|η|

]
The first order condition says that this marginal revenue must be equal to the marginal cost:

P (Q)

[
1− 1

|η|

]
= MC (Q)

If the firm is competitive and takes the market price as given, P ′ (Q) = 0 and the demand it

faces is perfectly elastic |η| =∞. In such case, the first order necessary condition reduces to
P = MC (price = marginal cost). However, if the firm can affect the price by its quantity,

then P ′ (Q) 6= 0 and the general condition MR (Q) = MC (Q) holds.

In fact, we can show that the price will be higher than the marginal cost. Notice that no

firm will sell units of output for negative marginal revenue, because these units are produced

at non-negative cost. Thus, we must have

MR (Q) > 0

P (Q)

[
1− 1

|η|

]
> 0

⇒ |η| > 1

This means that a firm with market power will operate on the elastic portion of any demand.

The price can be written as

P (Q) =

[
1 +

1

|η| − 1

]
MC (Q) = (1 + µ)MC (Q)

because the term in the square brackets is bigger than 1. The term µ = 1
|η|−1

is called the

markup rate. For example, suppose that |η| = 3, then the selling price is

P (Q) =

[
1 +

1

3− 1

]
MC (Q) = 1.5MC (Q)

so the markup is 50% above cost per unit. If the elasticity of demand is |η| = 2 (in absolute

value), then

P (Q) =

[
1 +

1

2− 1

]
MC (Q) = 2MC (Q)

so the markup is 100% above cost per unit. This math suggests that a firm which sells

products to distinct markets, will charge a higher price in a market with lower price elasticity

of demand (in absolute value). Intuitively, low elasticity of demand means that buyers do
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not respond to price increases with large decline in quantity bought, perhaps because the

product does not have good substitutes. The practice of price discrimination between distinct

markets, is called third degree price discrimination.

Exercise 18 Suppose that Pfizer can produce a medical drug at constant marginal cost of
$20. The company sells the drug in Canada and the U.S., with price elasticities of demand in

the two countries being −4 in Canada and −1.5 in the U.S. Assuming that arbitrage between

these countries is not possible (due to regulations), find the drug prices and markup rates in

the two countries.

Solution 11 Prices:

PCAN =

[
1 +

1

|η| − 1

]
MC =

(
1 +

1

4− 1

)
20 = $26

2

3

PUSA =

[
1 +

1

|η| − 1

]
MC =

(
1 +

1

1.5− 1

)
20 = $60

Markup rates:

µCAN =
PCAN
MC

− 1 =
262

3

20
− 1 = 0.333... = 33

1

3
%

µUSA =
PUSA
MC

− 1 =
60

20
− 1 = 2 = 200%

Remark: the markup rates can also be calculated using the formula:

µ =
1

|η| − 1

3.6 Constrained Optimization

In the last section we dealt with optimization problems of the form:

max
x1,...,xn

f (x1, ..., xn) or min
x1,...,xn

f (x1, ..., xn)

We developed a procedure for solving these problems, using first order necessary and sec-

ond order suffi cient conditions. In the above problem, the choice variables x1, ..., xn are

unconstrained, and can attain any real value. Many economics problems however involve

constraints on the choice variables. For example, consumer’s choice can be represented as
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the following constrained optimization problem:

max
x1,...,xn

u (x1, ..., xn)

s.t.

p1x1 + p2x2 + ...+ pnxn = I

x1, x2, ..., xn ≥ 0

The consumer chooses quantities of goods bought, x1, ..., xn, that maximize the utility func-

tion u (x1, ..., xn) (the objective function), subject to the budget constraint, and subject to

non-negativity (no short selling) constraints on the quantities of goods bought. The general

structure of a constrained optimization problem is:

max
x1,...,xn

f (x1, ..., xn) or min
x1,...,xn

f (x1, ..., xn)

s.t.

m equality constraints:


g1 (x1, ..., xn) = c1

...

gm (x1, ..., xn) = cm

k inequality constraints:


h1 (x1, ..., xn) ≤ d1

...

hk (x1, ..., xn) ≤ dk

Minimization problems are written in similar way, but with "min" instead of "max". Such

problems are extremely complex, but mathematicians have developed variety of necessary

and suffi cient conditions for them. The proofs of such conditions are very complex, and our

discussion will mostly state some important results from optimization theory, and show their

applications to economics.
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3.6.1 Equality constraints

We start with a problem of optimizing a multivariate function f (x1, ..., xn) subject to one

equality constraint. That is, we start with problems of the form:

max
x1,...,xn

f (x1, ..., xn) or min
x1,...,xn

f (x1, ..., xn)

s.t.

g (x1, ..., xn) = c

A specific example of a problem stated above is the problem of maximizing the area of a

rectangular x× y frame, subject to the constraint that all sides must add up to 100 feet:

max
x,y

xy

s.t. (3.1)

2x+ 2y = 100

Here the constraint is g (x, y) = 2x+2y, and c = 100. Problems like the above can sometimes

be solved by substituting the constraint into the objective. The constraint implies y = 50−x.
Plugging into the objective function gives the unconstrained problem:

max
x

x (50− x)

The first order necessary condition is

50− 2x = 0

and the critical value is

(x∗, y∗) = (25, 25)

The above example shows that sometimes we can substitute the constraints into the

objective, and create an unconstrained optimization problem. The substitution method can

work for simple constraints, but becomes impossible when we cannot solve explicitly for one

of the choice variables, or complicated for more complex problems. An alternative way to

solving (3.1) is to write the corresponding Lagrange function, of 3 unknown variables:

L (x, y, λ) = xy − λ [2x+ 2y − 100] (3.2)

The idea is to replace the constrained optimization problem in (3.1), with 2 unknowns
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(x, y), by an "unconstrained" optimization problem (3.2) with 3 unknowns (x, y, λ). The

object L (x, y, λ) is called the Lagrange function, and the coeffi cient λ is called the La-
grange multiplier. The reason for the quotation marks is that we are not exactly solving
maxx,y,λ L (x, y, λ), but the first order necessary conditions are the same, as if we actually

solved maxx,y,λ L (x, y, λ). These first order necessary conditions are:

Lλ (x, y, λ) = − (2x+ 2y − 100) = 0

Lx (x, y, λ) = y − 2λ = 0

Ly (x, y, λ) = x− 2λ = 0

These are 3 equations with 3 unknowns x, y, λ. The first conditionLλ (x, y, λ) = ∂
∂λ
L (x, y, λ) =

0 guarantees that the constraint is satisfied. The other two conditions imply that

λ =
y

2
=
x

2

Thus, x = y. Plugging this into the constraint, gives the same critical point of the Lagrange

as we found by substitution:

(x∗, y∗, λ∗) = (25, 25, 12.5)

Notice that x∗ = 25 is the critical point of the objective function we obtained via the

substitution method. It turns out that, although we were originally interested in finding

only x and y, the value of the Lagrange multiplier has important economic meaning that we

will explain later.

First order necessary conditions

The next theorem provides the general first order necessary conditions for optimization with

one equality constraint.

Theorem 16 (Lagrange Theorem1 - First Order Necessary Conditions for optimization with
one equality constraint). Let f and g be C1 functions. Suppose that x∗ = (x∗1, x

∗
2, ..., x

∗
n) is a

solution to

max
x1,...,xn

f (x1, ..., xn) or min
x1,...,xn

f (x1, ..., xn)

s.t. (3.3)

g (x1, ..., xn) = c
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Suppose further that x∗ = (x∗1, x
∗
2, ..., x

∗
n) is not a critical point of g. Then, there is a real

number λ∗ such that (x∗1, x
∗
2, ..., x

∗
n, λ

∗) is a critical point of the Lagrange function

L (x1, ..., xn, λ) = f (x1, ..., xn)− λ [g (x1, ..., xn)− c]

In other words, the first order necessary condition for the problem in (3.3) is

∂L
∂λ

=
∂L
∂x1

= ... =
∂L
∂xn

= 0

In order to get some intuition about the above theorem, consider the optimization prob-

lem:

max
x,y

u (x, y)

s.t. (3.4)

g (x, y) = c

The standard utility maximization problem, subject to a budget constraint, is a special case

of the above. The solution to the above problem can be described as a tangency condition

between a level curve u (x, y) = ū and the constraint g (x, y) = c.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

x

y

Illustration of Lagrange Theorem.

Notice that at the optimum, the level curve of the objective function (indifference curve) is

tangent to the constraint:
ux (x∗, y∗)

uy (x∗, y∗)
=
gx (x∗, y∗)

gy (x∗, y∗)
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If gx (x∗, y∗) , gy (x∗, y∗) 6= 0, i.e. (x∗, y∗) is not a critical value of g (x, y), the above can be

written as
ux (x∗, y∗)

gx (x∗, y∗)
=
uy (x∗, y∗)

gy (x∗, y∗)
= λ,

where λ is some constant. Rewriting the last equation as two equations, gives

ux (x∗, y∗)− λgx (x∗, y∗) = 0

uy (x∗, y∗)− λgy (x∗, y∗) = 0

Plus, the constraint must be satisfied, i.e. g (x∗, y∗) = c. But these are exactly the first

order conditions given by lagrange Theorem (16). Suppose we wrote the lagrange function

associated with problem (3.4):

L (x, y, λ) = u (x, y)− λ [g (x, y)− c]

According to the Lagrange Theorem (16), the first order necessary condition for maximum

or minimum is:

∂L
∂λ

= −g (x∗, y∗) + c = 0

∂L
∂x

= ux (x∗, y∗)− λgx (x∗, y∗) = 0

∂L
∂y

= uy (x∗, y∗)− λgy (x∗, y∗) = 0

Theorem 17 (Lagrange Theorem2 - First Order Necessary Conditions for optimization with
multiple equality constraint). Suppose that we are solving a problem with m < n constraints,
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such as:5

max
x1,...,xn

f (x1, ..., xn) or min
x1,...,xn

f (x1, ..., xn)

s.t.

g1 (x1, ..., xn) = c1

...

gm (x1, ..., xn) = cm

The corresponding Lagrange function requires adding a Lagrange multiplier for every con-

straint:

L (x1, ..., xn, λ1, ..., λm) = f (x1, ..., xn)−
m∑
i=1

λi
[
gi (x1, ..., xn)− ci

]
The first order necessary conditions require taking derivatives with respect to all the variables

in the Lagrange function:

∂L
∂λ1

= ... =
∂L
∂λm

=
∂L
∂x1

= ... =
∂L
∂xn

= 0

Second order suffi cient conditions for local optimum

The second order suffi cient conditions are not exactly the same as for unconstrained problem

maxx1,...,xn,λ L (x1, ..., xn, λ). We start with the simplest case of optimizing a two variable

function with one constraint: maxx,y f (x, y) s.t. g (x, y) = c. The Lagrange function for this

problem is

L (x, y, λ) = f (x, y)− λ [g (x, y)− c]

The first order necessary conditions are:

Lλ (x, y, λ) = −g (x, y) + c = 0

Lx (x, y, λ) = fx − λgx = 0

Ly (x, y, λ) = fy − λgy = 0

We suspect that the Hessian of the Lagrange function L (or more precisely, its leading
principal minors) should play a role in the second order conditions, just like in unconstrained

optimization. Indeed, the Hessian matrix of the Lagrange function L, when we order the
5The condition m < n is required for the so called Nondegenerate Constraint Qualification (NDSQ). Just

like in the one constraint case, we required that the optimal solution is not a critical point of the constraint,
now we require that it is not a critical point of all m equality constraints. This cannot happen when m ≥ n
(See Simon and Blume, section 18.2).
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variables as λ, x, y, is:

H =

 Lλλ Lλx LλyLxλ Lxx Lxy
Lyλ Lyx Lyy

 =

 0 −gx −gy
−gx Lxx Lxy
−gy Lyx Lyy


The second order conditions however are stated in terms of the bordered Hessian:

H̄ =

 0 gx gy

gx Lxx Lxy
gy Lyx Lyy


Recall from the properties of determinants, that multiplication of only one row or one column

by a constant k, will result in determinant k|A|. Thus, multiplying the first row and the
first column of H by −1, will not change the determinant of H. In fact, all principal

minors of H will be the same as the corresponding principal minors of H̄. So in stating

the second order conditions for constrained optimization, we will use the bordered Hessian

H̄ and not the Hessian of the Lagrange function H, but the results will be the same. The

name bordered comes from the fact that the matrix of second derivatives with respect to the

original unknowns x, y, i.e. [
Lxx Lxy
Lyx Lyy

]
is bordered (surrounded) by the first derivatives of the constraints, from above and from the

left.

The leading principal minors of the bordered Hessian are H̄:

|H̄1| = 0

|H̄2| =

∣∣∣∣∣ 0 gx

gx Lxx

∣∣∣∣∣ = −g2
x < 0

|H̄3| =

∣∣∣∣∣∣∣
0 gx gy

gx Lxx Lxy
gy Lyx Lyy

∣∣∣∣∣∣∣
The first principal minor of H̄ is always zero, which is o.k. since it involves derivatives with

respect to λ, and we are neither maximizing nor minimizing the Lagrange function with

respect to λ. Then |H̄2| is always negative. Thus, our second order suffi cient condition
involves only |H̄3| or higher, in problems with more choice variables.
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Theorem 18 (Second order suffi cient condition for local constrained extremum, with 2 un-

knowns, and 1 equality constraint). Suppose that we are solving

max
x,y

f (x, y) or min
x,y

f (x, y)

s.t.

g (x, y) = c

The corresponding Lagrange function is

L (x, y, λ) = f (x, y)− λ [g (x, y)− c]

Suppose that (x∗, y∗, λ∗) is a critical value of L, i.e. satisfies the first order necessary condi-
tions:

∂L
∂λ

=
∂L
∂x

=
∂L
∂y

= 0

Let the bordered Hessian and the 3rd principal minor be:

H̄ =

 0 gx gy

gx Lxx Lxy
gy Lyx Lyy

 , |H̄3| =

∣∣∣∣∣∣∣
0 gx gy

gx Lxx Lxy
gy Lyx Lyy

∣∣∣∣∣∣∣
(a) If |H̄3| > 0, then (x∗, y∗) is a local maximum of f subject to the constraint g (x, y) = c.

(b) If |H̄3| < 0, then (x∗, y∗) is a local minimum of f subject to the constraint g (x, y) = c.

As usual, second order suffi cient conditions are not necessary, and if they are violated,

we simply conclude that the second order test had failed and that the critical point can be

minimum, maximum, or neither. Suffi cient conditions guarantee a certain result, but if they

are violated, the result can still hold.

We now generalize the above result to optimization with n variables, but still with one

equality constraint.

Theorem 19 (Second order suffi cient condition for local constrained extremum, with n un-
knowns, and 1 equality constraint). Suppose that we are solving

max
x1,...,xn

f (x1, ..., xn) or min
x1,...,xn

f (x1, ..., xn)

s.t.

g (x1, ..., xn) = c
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The corresponding Lagrange function is

L (x1, ..., xn, λ) = f (x1, ..., xn)− λ [g (x1, ..., xn)− c]

Suppose that (x∗1, ..., x
∗
n, λ

∗) is a critical value of L, i.e. satisfies the first order necessary
conditions:

∂L
∂λ

=
∂L
∂x1

= ... =
∂L
∂xn

= 0

Let the bordered Hessian be:

H̄ =



0 g1 g2 · · · gn

g1 L11 L12 · · · L1n

g2 L21 L22 · · · L2n

...
...

...
. . .

...

gn Ln1 Ln2 · · · Lnn


(n+1)×(n+1)

where Lij =
∂2

∂xi∂xj
L

The leading principal minors, starting from 3rd (notice that there are n− 1 of them) are:

|H̄3| =

∣∣∣∣∣∣∣
0 g1 g2

g1 L11 L12

g2 L21 L22

∣∣∣∣∣∣∣ , |H̄4| =

∣∣∣∣∣∣∣∣∣∣
0 g1 g2 g3

g1 L11 L12 L13

g2 L21 L22 L23

g3 L31 L32 L33

∣∣∣∣∣∣∣∣∣∣
,...,|H̄n+1|

(a) If |H̄3| > 0, |H̄4| < 0, |H̄5| > 0,..., then (x∗1, ..., x
∗
n) is a local maximum of f subject

to the constraint g (x1, ..., xn) = c.

(b) If |H̄3| < 0, |H̄4| < 0, |H̄5| < 0,...,then (x∗1, ..., x
∗
n) is a local minimum of f subject

to the constraint g (x1, ..., xn) = c.

Finally, we generalize the last theorem to optimization with n variables and m < n

constraints. Notice that we need to introduce a Lagrange multiplier for each constraint.

Theorem 20 (Second order suffi cient condition for local constrained extremum, with n un-
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knowns, and m < n constraints). Suppose that we are solving

max
x1,...,xn

f (x1, ..., xn) or min
x1,...,xn

f (x1, ..., xn)

s.t.

g1 (x1, ..., xn) = c1

...

gm (x1, ..., xn) = cm

The corresponding Lagrange function is

L (x1, ..., xn, λ1, ..., λm) = f (x1, ..., xn)−
m∑
i=1

λi
[
gi (x1, ..., xn)− ci

]
Suppose that (x∗1, ..., x

∗
n, λ

∗
1, ..., λ

∗
m) is a critical value of L, i.e. satisfies the first order neces-

sary conditions:
∂L
∂λ1

= ... =
∂L
∂λm

=
∂L
∂x1

= ... =
∂L
∂xn

= 0

Let the bordered Hessian (evaluated at the critical point) be:

H̄ =



0 · · · 0 g1
1 · · · g1

n
...

. . .
...

...
. . .

...

0 · · · 0 gm1 · · · gmn

g1
1 · · · gm1 L11 · · · L1n

...
. . .

...
...

. . . · · ·
g1
n · · · gmn Ln1 · · · Lnn


(n+m)×(n+m)

where Lij =
∂2

∂xi∂xj
L, gij =

∂gi

∂xj

(a) If sign
∣∣H̄2m+1

∣∣ = (−1)m+1, and all the higher order leading principal minor of H̄

alternate sign, then (x∗1, ..., x
∗
n) is a local maximum of f subject to the constraints.

(b) If sign
∣∣H̄2m+1

∣∣ = (−1)m, and all the higher order leading principal minors of H̄ have

this sign too, then (x∗1, ..., x
∗
n) is a local minimum of f subject to the constraints.

Based on the last theorem, notice that in order to check the second order conditions,

we need to calculate n − m leading principal minors, of order 2m + 1 and higher. The

first m × m principal submatrix matrix has all zeros. The following m leading principal

minors are zeros. This is why we only need to calculate the leading principal minors of order
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2m + 1, 2m + 2, ..., n + m. Also notice that it makes a difference whether the number of

constraints m is odd or even because (−1) raised to odd power gives to opposite sign to the

case of an even power. Finally, verify that the last theorem applied to the case of m = 1 is

consistent with the the second order condition in case of a single constraint.

Example 44 Suppose we want to solve the following optimization problem,

max
x1,x2,x3,x4

x2
1 − x2

2 + x2
3 + x2

4 + 4x2x3 − 2x1x4

s.t.

x2 + x3 + x4 = 0

x1 − 9x2 + x4 = 0

The Lagrange function associated with this optimization problem is:

L (x1, x2, x3, x4, λ1, λ2) = x2
1 − x2

2 + x2
3 + x2

4 + 4x2x3 − 2x1x4

−λ1 [x2 + x3 + x4 − 0]

−λ2 [x1 − 9x2 + x4 − 0]

The first order necessary conditions are:

Lλ1 = x2 + x3 + x4 = 0

Lλ2 = x1 − 9x2 + x4 = 0

L1 = 2x1 − 2x4 − λ2 = 0

L2 = −2x2 + 4x3 − λ1 + 9λ2 = 0

L3 = 2x3 + 4x2 − λ1 = 0

L4 = 2x4 − 2x1 − λ1 − λ2 = 0

This is a linear system with 6 unknowns (x1, x2, x3, x4, λ1, λ2), and and 6 equations. If there

is no dependence among the equations, there must be a unique solution to the system. We

can see that this solution must be such that all variables are zero: x1 = x2 = x3 = x4 = λ1 =
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λ2 = 0. The bordered Hessian matrix is

H̄ =



0 0 g1
1 g1

2 g1
3 g1

4

0 0 g2
1 g2

2 g2
3 g2

4

g1
1 g2

1 L11 L12 L13 L14

g1
2 g2

2 L21 L22 L23 L24

g1
3 g2

3 L31 L32 L33 L34

g1
4 g2

4 L41 L42 L43 L44


6×6

=



0 0 0 1 1 1

0 0 1 −9 0 1

0 1 2 0 0 −2

1 −9 0 −2 4 0

1 0 0 4 2 0

1 1 −2 0 0 2


The second order conditions require the leading principal minors, starting from 2m+ 1 = 5.

Thus, we have to evaluate two leading principal minors:

∣∣H̄5

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 1 1

0 0 1 −9 0

0 1 2 0 0

1 −9 0 −2 4

1 0 0 4 2

∣∣∣∣∣∣∣∣∣∣∣∣
= 154 > 0

and

∣∣H̄6

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 1 1 1

0 0 1 −9 0 1

0 1 2 0 0 −2

1 −9 0 −2 4 0

1 0 0 4 2 0

1 1 −2 0 0 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 96 > 0

Both signs are positive, so the second order suffi cient condition for maximum does not hold

(the signs must alternate). The suffi cient condition for minimum is that all signs are the

same as (−1)m = (−1)2 > 0, so we conclude that the critical value x1 = x2 = x3 = x4 = 0 is

a local minimum of x2
1−x2

2 +x2
3 +x2

4 +4x2x3−2x1x4 subject to the constraints x2 +x3 +x4 = 0

and x1 − 9x2 + x4 = 0.

Suffi cient conditions for global optimum

Our main interest in economics is to find global optimum, not local. The second order

suffi cient conditions for local optimum presented above, are therefore not very useful. In

this section we present important results that will allow us to determine whether a critical

point is a global maximum or minimum. We will illustrate the main point with the consumer’s
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utility maximization problem:

max
x,y

u (x, y)

s.t.

pxx+ pyy = I

The first order necessary conditions:

Lλ = − (pxx+ pyy − I) = 0

Lx = ux (x, y)− λpx = 0

Ly = uy (x, y)− λpy = 0

Notice that the last two conditions imply that

ux (x, y)

px
=
uy (x, y)

py
= λ

The ratios ux/px and uy/py represent the marginal utility per dollar spent on the two goods.

At the optimum, the condition says that the utility generated from the last dollar spent on

x should be the same as the utility from the last dollar spent on y.

The first order conditions also imply

ux (x, y)

uy (x, y)
=
px
py

The left hand side is the Marginal Rate of Substitution between x and y, which is the absolute

value of the slope of indifference curves. The right hand side is the price ratio, i.e. the

absolute value of the slope of the budget constraint. Thus, the necessary condition for optimal

bundle (the bundle which maximizes the utility subject to the budget constraint) requires

tangency between indifference curves and the budget constraint. Figure 3.10 illustrates

the optimal bundle. The solid indifference curve represents the highest utility that can be

achieved within the budget constraint.

The question we want to ask is how do we know if the first order condition indeed gives a

unique global maximum? In figure 3.10 it seems that indeed the tangency point characterizes

a unique global maximum. There is no other point on the budget constraint that can give

higher utility. But it is possible to draw indifference curves, that are not of the "standard"

shape, such that a point of tangency with the budget constraint gives only a local maximum.

You probably realize at this point that the key for unique global maximum of utility, subject
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Figure 3.10: Optimal consumption bundle

to linear budget constraint, lies in the shape of the indifference curves. In particular, with

linear budget constraint, the suffi cient condition for unique global maximum of utility is that

indifference curves be strictly convex.

What kind of utility functions have strictly convex indifference curves? For starters,

strictly concave utility functions have strictly convex indifference curves. For example,
u (x, y) = x0.25y0.25. This is strictly concave utility function, which you can verify using its

Hessian matrix:

H =

[
− 3

16
x−1.75y0.25 1

8
x−0.75y−0.75

1
8
x−0.75y

−0.75 − 3
16
x0.25y

−1.75

]
The leading principal minors are:

|H1| = − 3

16
x−1.75y0.25 < 0

|H2| =

(
3

16

)2

x−1.5y
−1.5 −

(
2

16

)2

x−1.5y
−1.5

> 0

Thus, u (x, y) = x0.25y0.25 is strictly concave because the pattern of the signs is consistent

with negative definiteness of the Hessian matrix. Looking at a generic indifference curve,

x0.25y0.25 = ū, or explicitly

y =
ū4

x

One can see that the shape of this indifference curve is like in figure 3.10.

But strictly concave utility functions are not the only ones that have strictly convex
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indifference curves. For example, consider u (x, y) = xy, which is the utility function in the

previous example, raised to the power of 4. This utility function is not strictly concave. The

Hessian matrix is:

H =

[
0 1

1 0

]
The leading principal minors are:

|H1| = 0

|H2| = −1 < 0

This pattern is not consistent with negative definiteness of the Hessian matrix. Nevertheless,

the indifference curves have the same exact shape as in figure 3.10: xy = ū, or explicitly

y =
ū

x

This is why figure 3.10 illustrates the solution to

max
x,y

x0.25y0.25

s.t.

x+ y = 100

and also the solution to

max
x,y

xy

s.t.

x+ y = 100

In fact, the same solution is obtained when we maximize any utility function which a

monotone transformation of x0.25y0.25, subject to the same budget constraint. For exam-

ple, u (x, y) = x2y2 or u (x, y) = 0.5 lnx + 0.5 ln y. All these functions have the same shape

of indifference curves, and all lead to the same optimal bundle.

For additional illustration, figure 3.11 plots the utility function of u (x, y) = x0.25y0.25.

When we cut the utility at certain level, given by the plane at height 1, we obtain an

indifference curve on which all bundles (x, y) give utility of 1. Figure 3.12 illustrates an

indifference curve of u (x, y) = xy, obtained by cutting this utility at some fixed level.

Interestingly, both utility functions have very different shapes, but the indifference curves
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Figure 3.11: u (x, y) = x0.25y0.25

look similar, a result we showed above mathematically.

Such utility functions, that have the "right" shape of indifference curves, are called

strictly quasiconcave. In general discussion of constrained optimization we talk about
level curves instead of indifference curves. So strictly quasiconcave objective functions,
have strictly convex level curves. In general optimization problems, instead of a budget

constraint, we have a constraint set, which is the set of all the choice variables that satisfy
the constraints. The general suffi cient condition for a unique global maximum in a con-

strained optimization problem is strict quasiconcave objective function and convex
constraint set.

Definition 22 A set C is convex if for any two elements in the set, x1, x2 ∈ C, any linear
combination of these elements is also an element in the set:

αx1 + (1− α)x2 ∈ C ∀α ∈ [0, 1] .

A set C is strictly convex if any linear combination αx1 + (1− α)x2, α ∈ (0, 1), belongs

to the interior of the set.6

Definition 23 (i) The upper contour set of a function f : X → R at level α ∈ R is the

6Interior of a set S contains all the elements that are not on the boundary of the set. A point p is said to
be a boundary point of set S, if any open neighborhood containing the point, also contains elements outside
the set. The boundary of a set S, denoted ∂S, contains all the boundary points.
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Figure 3.12: u (x, y) = xy

set

U (α; f) ≡ {x ∈ X|f (x) ≥ α}

(ii) The lower contour set of a function f : X → R at level α ∈ R is the set

L (α; f) ≡ {x ∈ X|f (x) ≤ α}

Graphically, in the case of consumer choice model (see figure 3.10), an upper contour

set of a utility function u, at level ū, is the set of all the bundles that are on, or above the

indifference curve with utility level ū. The lower contour set of a utility function u, at level

ū is the collection of all the bundles on, or below the indifference curve with utility level ū.

Thus, the upper contour sets of utility function u (x, y) at level ū, are

U (ū;u) =
{

(x, y) ∈ R2|u (x, y) ≥ ū
}

L (ū;u) =
{

(x, y) ∈ R2|u (x, y) ≤ ū
}

Definition 24 (i) A function f is quasiconcave if and only if for all α ∈ R, the upper
contour set U (α; f) is convex.

(ii) A function f is strictly quasiconcave if and only if for all α ∈ R, the upper contour
set U (α; f) is strictly convex.

(iii) A function f is quasiconvex if and only if for all α ∈ R, the lower contour
set L (α; f) is convex.



160 CHAPTER 3. OPTIMIZATION

(iv) A function f is strictly quasiconvex if and only if for all α ∈ R, the lower contour
set L (α; f) is strictly convex.

The following is the most important and the most general theorem characterizing global

constrained optima.

Theorem 21 (Suffi cient conditions for constrained global optimum). Let f : X → R be

a function, defined on a convex subset X of Rn. Let C ⊆ X be a convex constraint set.
Suppose we want to solve

max
x

f (x) or min
x
f (x)

s.t. x ∈ C

Let x∗ be a critical point f subject to the constraint set. Then

(i) if f is quasiconcave, then x∗ is constrained global maximum,
(ii) if f is strictly quasiconcave, or C is strictly convex, then x∗ is a unique con-

strained global maximum,
(ii) if f is quasiconvex, then x∗ is constrained global minimum,
(iv) if f is strictly quasiconvex, or C is strictly convex, then x∗ is a unique con-

strained global minimum.

In other words, any local maximum with convex constraint set and quasiconcave objec-

tive, is also a global maximum. Similarly, and any local minimum with convex constraint

set and quasiconvex objective, is also a global minimum. Next, we would like to be able to

check if some function is quasiconcave/quasiconvex. One easy way of recognizing quasicon-

cave functions, without using calculus, is based on the following two theorems.

Theorem 22 (Concavity implies quasiconcavity). Any concave function is quasiconcave,
and any convex function is quasiconvex. Similarly, strictly concave function is strictly qua-

siconcave, and any strictly convex function is strictly quasiconcave.

Theorem 23 (Monotone increasing transformations of concave/convex functions are qua-
siconcave/quasiconvex). Let f be concave function and g an increasing monotone function.

Then the composite function g ◦ f is quasiconcave. Similarly, if f is convex, then g ◦ f is
quasiconvex.

The next examples illustrate how we can easily recognize quasiconcave functions, as

monotone transformations of concave functions.
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Example 45 The probability density function (pdf) of normal random variable, is quasi-

concave function:

f (x) =
1√
2πσ

exp

{
−1

2

(
x− µ
σ

)2
}

The graph of the function is:

5 4 3 2 1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

x

f(x)

Notice that the quadratic function (x− µ)2 = x2− 2xµ+ µ2 is convex (the coeffi cient on the

quadratic term is positive). The minus makes the function in the curly brackets concave (f

is concave if and only if −f is convex). The exponential function exp (x) = ex is monomtone

increasing, and 1√
2πσ

is a positive constant. Thus, by theorem 23, the entire function f (x)

is quisiconcave. In fact, all the concavities and quasiconcavities in the above example are

strict.

Example 46 The Cobb-Douglas utility function u (x, y) = xαyβ, α, β > 0, is quasiconcave.

Notice that

xαyβ = exp {α log (x) + β log (y)}

The logarithmic functions are concave, and sum of concave functions is concave. Thus, the

term in the curly brackets is concave, and exponential function exp (x) = ex is a monotone

increasing transformation. Again, by theorem 23, the entire function f (x) is quasiconcave

(strictly). Thus, when maximizing Cobb-Douglas utility over a convex constraint set, the

critical point is a unique global maximum.

Example 47 The CES utility function u (x, y) = [αxσ + (1− α) yσ]
1
σ , σ ≤ 1 is quasicon-

cave. If σ = 1, then u (x, y) is linear function, which is both concave and convex. Thus,



162 CHAPTER 3. OPTIMIZATION

u (x, y) in this case is both quasiconcave and quasiconvex. The case of σ = 0 is Cobb-

Douglas, and was discussed in the previous example. Consider first the case of 0 < σ < 1.

The functions αxσ and (1− α) yσ are concave, and their sum g (x, y) = αxσ + (1− α) yσ is

concave. Thus, u = g
1
σ is a monotone increasing transformation of a concave function, so

u is quasiconcave. Finally, when σ < 0, the functions αxσ and (1− α) yσ are convex, so

−αxσ and − (1− α) yσ are concave, so their sum h (x, y) = −αxσ − (1− α) yσ is also con-

cave. Then u (x, y) = (−h)
1
σ is a monotone increasing transformation of a concave function

( d
dh

(−h)
1
σ = − 1

σ
(−h)

1
σ
−1 = − 1

σ
(αxσ + (1− α) yσ)

1
σ
−1 > 0). Notice that the sign is positive

since σ < 0 and − 1
σ
> 0.

The last examples illustrated how we can detect quasiconcave functions, without using

calculus. There are also easy to check calculus criteria that help detect quasiconcave and

quasiconvex functions. These conditions are based on yet another type of functions, pseudo-
concae (and pseudocnvex). The details are provided in Simon and Blume 1994 (theorem
21.19) and omitted here.

In summary, this section provided useful results about suffi cient conditions for global

optima: convexity of constraint set + quasiconcavity of objective function are suffi cient for

global maximum, and convexity of constraint set + quasiconvexity of objective function

are suffi cient for global minimum. Notice that convexity of constraint set is always a nice

property to have, but unfortunately, in some research problems we can encounter non-convex

constraint sets - a problem named nonconvexities. Also observe that theorem 21 provides

suffi cient conditions for constrained global optimum via quasiconcave/quasiconvex functions.

With unconstrained optimization, we learned that a critical point of a concave function is

a global maximum, while a critical point of a convex function is a global minimum. The

same is not true for quasiconcave and quasiconvex functions. For example, f (x) = x3 is

quasiconcave and also quasiconvex function. The critical point x∗ = 0 however is neither

global nor local maximum or minimum. The function in example 45, the pdf of Normal

random variable, is an example where the critical point is indeed a global maximum, but

this example cannot be generalized, as the f (x) = x3 demonstrates. So keep it is important

to keep in mind that quasiconcave and quasiconvex functions are mainly used in constrained

optimization.
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3.6.2 The meaning of Lagrange multipliers

Consider a simple maximization problem

max
x,y

f (x, y)

s.t.

g (x, y) = c

Solving this problem with Lagrange method, gives

L = f (x, y)− λ [g (x, y)− c]

The first order necessary conditions are

Lλ = −g (x, y) + c = 0

Lx = fx (x, y)− λgx (x, y) = 0

Ly = fy (x, y)− λgy (x, y) = 0

Suppose that the first order necessary conditions indeed characterize the maximum. This

problem has one parameter, c, and we are often interested in finding how the maximized

value of the objective function changes when we change the value of some parameter. For

example, c could represent a scarce resource, and we would like to measure its social value.

The solution to the problem depends on the parameter c, and we therefore write the solution

as:

x (c) , y (c) , λ (c)

The maximized value of the objective function also depends on the parameter c, and it is

called the maximum value function, defined as:

V (c) ≡ f (x (c) , y (c))

We are interested in the following derivative:

∂

∂c
V (c) =

∂

∂c
f (x (c) , y (c)) = fx (x (c) , y (c))

∂x (c)

∂c
+ fy (x (c) , y (c))

∂y (c)

∂c

This says that changes in c affect the objective function through x and y, which readjust

(recall section 2.1.9).



164 CHAPTER 3. OPTIMIZATION

We can also express the Lagrange function at the optimum as:

L (x (c) , y (c) , λ (c)) = f (x (c) , y (c))− λ (c) [g (x (c) , y (c))− c]

Notice that at the optimum, since the constraint holds, the term in the squared brackets is

zero, and we must have

L (x (c) , y (c) , λ (c)) = f (x (c) , y (c)) = V (c)

So, we can find the desired effect of changes in c on the objective function, also through

calculating the effect of changes in c on the Lagrange function. Thus, differentiating the

Lagrange function, gives:

∂

∂c
L (c) = fx

∂x (c)

∂c
+ fy

∂y (c)

∂c
− λ′ (c) [g (x (c) , y (c))− c]︸ ︷︷ ︸

=0, by FONC

−λ (c)

[
gx
∂x (c)

∂c
+ gy

∂y (c)

∂c
− 1

]
= [fx − λ (c) gx]︸ ︷︷ ︸

=0, by FONC

∂x (c)

∂c
+ [fy − λ (c) gy]︸ ︷︷ ︸

=0, by FONC

∂y (c)

∂c
+ λ (c)

= λ (c)

Thus, we get
∂

∂c
L (c) =

∂

∂c
V (c) = λ (c)

Thus, λ is the marginal effect of a shift in constraint through the constant c, on the maximized

value of the objective function. Notice that although the parameter c affects the maximum

value function through x and y, we can find this effect by taking the partial derivative of

the Lagrange function, i.e. ignoring the effect of the parameter on the choice variables x and

y. This result is an example of a class of theorems, called envelope theorems, that study the

impact of changes in parameters of an optimization problem, on the optimized value of the

objective function.
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3.6.3 Envelope theorems

The last example was a special case of an envelope theorem. Consider a parametrized

optimization problem where the parameter a affects both the objective and the constraint:

max
x1,...,xn

f (x1, ..., xn; a) or min
x1,...,xn

f (x1, ..., xn; a)

s.t.

g (x1, ..., xn; a) = 0

Let the solution to this problem be x∗1 (a) , ..., x∗n (a), and the optimized value of the objective

function is:

V (a) = f (x∗1 (a) , ..., x∗n (a) ; a)

The envelope theorem states
∂

∂a
V (a) =

∂

∂a
L

where L is the Lagrange function associated with the optimization problem,

L = f (x1, ..., xn; a)− λg (x1, ..., xn; a)

The next example in an application of the above envelope theorem to consumer’s choice

model.

Example 48 Consider consumer’s problem:

max
x,y

u (x, y)

s.t.

pxx+ pyy = I

Find the marginal effect of changes in income and prices on the maximized utility function

(also called inderect utility). The lagrange function is

L = u (x, y)− λ [pxx+ pyy − I]

Using the envelope theorem, we need to take the partial derivatives the Lagrange function
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with respect to income and prices:

∂V

∂I
=

∂L
∂I

= λ

∂V

∂px
=

∂L
∂px

= −λx

∂V

∂py
=

∂L
∂py

= −λy

Notice that the indirect utility is increasing in income, and decreasing in prices - higher

prices lower the maximized value of utility. The size of the impact of a unit increase in prices

depends on the amount of the good consumed. For example, λ = 2 and and the consumer

originally bought 5 units, the impact of a one unit increase in price is −2 · 5 = −10, same as

the impact of 5 units decrease in income. The last result is called Roy’s Identity after René

Roy (1947)[3]. That is,

∂V

∂px
= −λx

⇒ x = −
∂V
∂px

λ

or x = −
∂V
∂px
∂V
∂I

The last expression is the more common form of Roy’s identity, which shows how to derive

the Marshallian (uncompensated) demand from derivatives of the indirect utility function.

In words, the demand for x is equal to the derivative of the indirect utility function with

respect to px, normalized by the the marginal value of income.
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