ECON4150 - Introductory Econometrics

Lecture 14: Panel data

Monique de Haan (moniqued@econ.uio.no)

Stock and Watson Chapter 10

OLS: The Least Squares Assumptions

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

Assumption 1: conditional mean zero assumption: $E[u_i|X_i] = 0$

Assumption 2: (X_i, Y_i) are i.i.d. draws from joint distribution

Assumption 3: Large outliers are unlikely

- Under these three assumption the OLS estimators are unbiased, consistent and normally distributed in large samples.
- Last week we discussed threats to internal validity
- In this lecture we discuss a method we can use in case of omitted variables
 - Omitted variable is a determinant of the outcome Y_i
 - Omitted variable is correlated with regressor of interest X_i

2

3

$$Y_i = \beta_0 + \beta_1 X 1_i + \beta_2 X 2_i + \beta_3 X 3_i + ... + \beta_k X k_i + u_i$$

- Even with multiple regression there is threat of omitted variables:
 - some factors are difficult to measure
 - · sometimes we are simply ignorant about relevant factors
- Multiple regression based on panel data may mitigate detrimental effect of omitted variables without actually observing them.

Panel data

Cross-sectional data:

A sample of individuals observed in 1 time period

Panel data: same sample of individuals observed in multiple time periods

2010 INTROVINATION OF THE PARTY OF THE PARTY

- Panel data consist of observations on n entities (cross-sectional units) and T time periods
- Particular observation denoted with two subscripts (i and t)

$$Y_{it} = \beta_0 + \beta_1 X_{it} + u_{it}$$

- Y_{it} outcome variable for individual i in year t
- For balanced panel this results in nT observations

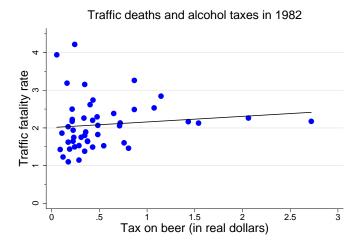
Advantages of panel data

- More control over omitted variables.
- More observations.
- Many research questions typically involve a time component.

The effect of alcohol taxes on traffic deaths

- About 40,000 traffic fatalities each year in the U.S.
- Approximately 25% of fatal crashes involve driver who drunk alcohol.
- Government wants to reduce traffic fatalities.
- One potential policy: increase the tax on alcoholic beverages.
- We have data on traffic fatality rate and tax on beer for 48 U.S. states in 1982 and 1988.
- What is the effect of increasing the tax on beer on the traffic fatality rate?

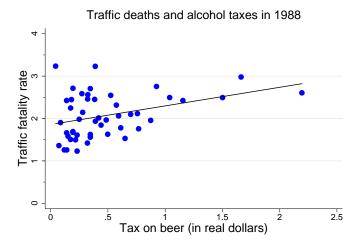
Data from 1982



8

$$FatalifyRate_{i,1982} = 2.01 + 0.15 BeerTax_{i,1982} \\ (0.14) (0.18)$$

Data from 1988



$$FatalifyRate_{i,1988} = 1.86 + 0.44 BeerTax_{i,1988} \\ (0.11) (0.16)$$

Panel data: before-after analysis

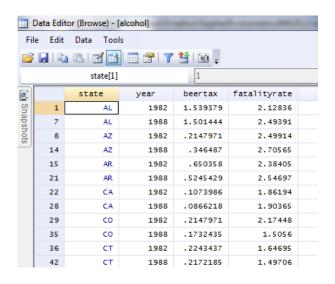
- Both regression using data from 1982 & 1988 likely suffer from omitted variable bias
- We can use data from 1982 and 1988 together as panel data
- Panel data with T = 2
- Observed are Y_{i1} , Y_{i2} and X_{i1} , X_{i2}
- Suppose model is

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 Z_i + u_{it}$$

and we assume $E(u_{it}|X_{i1},X_{i2},Z_i)=0$

- Z_i are (unobserved) variables that vary between states but not over time
 - (such as local cultural attitude towards drinking and driving)
- Parameter of interest is β₁

Panel data



Panel data: before

• Consider cross-sectional regression for first period (t = 1):

$$Y_{i1} = \beta_0 + \beta_1 X_{i1} + \beta_2 Z_i + u_{i1}$$
 $E[u_i | X_{i1}, Z_i] = 0$

- Z_i observed: multiple regression of Y_{i1} on constant, X_{i1} and Z_i leads to unbiased and consistent estimator of β₁
- Z_i not observed: regression of Y_{i1} on constant and X_{i1} only results in unbiased estimator of β₁ when Cov(X_{i1}, Z_i) = 0
- What can we do if we don't observe Z_i?

Panel data: after

• We also observe Y_{i2} and X_{i2} , hence model for second period is:

$$Y_{i2} = \beta_0 + \beta_1 X_{i2} + \beta_2 Z_i + u_{i2}$$

- Similar to argument before cross-sectional analysis for period 2 might fail
- Problem is again the unobserved heterogeneity embodied in Z_i

Before-after analysis (first differences)

We have

$$Y_{i1} = \beta_0 + \beta_1 X_{i1} + \beta_2 Z_i + u_{i1}$$

and

$$Y_{i2} = \beta_0 + \beta_1 X_{i2} + \beta_2 Z_i + u_{i2}$$

Subtracting period 1 from period 2 gives

$$Y_{i2} - Y_{i1} = (\beta_0 + \beta_1 X_{i2} + \beta_2 Z_i + u_{i2}) - (\beta_0 + \beta_1 X_{i1} + \beta_2 Z_i + u_{i1})$$

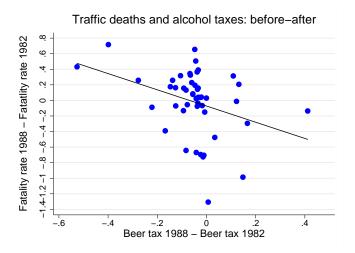
· Applying OLS to:

$$Y_{i2} - Y_{i1} = \beta_1(X_{i2} - X_{i1}) + (u_{i2} - u_{i1})$$

will produce an unbiased and consistent estimator of β_1

- Advantage of this regression is that we do not need data on Z
- By analyzing changes in dependent variable we automatically control for time-invariant unobserved factors

Data from 1982 and 1988



$$\widehat{\textit{Fatality}}_{i,1988} - \widehat{\textit{Fatality}}_{i,1982} = -0.07 - 1.04 \quad (\textit{BeerTax}_{i,1988} - \textit{BeerTax}_{i,1982}) \\ (0.06) \quad (0.42)$$

Panel data with more than 2 time periods

<u> </u>	Data Edit	or (Browse)	- [a	lcohol]	MINISTER OF REAL PROPERTY.		Ary Haryth St.	
Fil	e Edit	View D	ata	Tools				
<u>~</u>		ß 🖪		7 🚼 😤	<u> </u>			
var25[24]								
0,		state	Т	year	fatalityrate	beertax		
🗐 Snapshots	1	А	L	1982	2.12836	1.539379		
PS	2	А	ıL.	1983	2.34848	1.788991		
ots	3	А	ıL.	1984	2.33643	1.714286		
	4	А	ıL.	1985	2.19348	1.652542		
	5	А	ıL.	1986	2.66914	1.609907		
	6	А	ıL.	1987	2.71859	1.56		
	7	А	ıL.	1988	2.49391	1.501444		
	8	А	z	1982	2.49914	.2147971		
	9	А	z	1983	2.26738	.206422		
	10	А	z	1984	2.82878	.2967033		
	11	А	Z	1985	2.80201	.3813559		
	12	А	Z	1986	3.07106	.371517		
	13	А	Z	1987	2.76728	.36		
	14	А	Z	1988	2.70565	.346487		
	15	А	R	1982	2.38405	.650358		
	16	А	R	1983	2.3957	.6754587		
	17	А	R	1984	2.23785	.5989011		
	18	А	R	1985	2.26367	.5773305		
	19	А	R	1986	2.54323	.5624355		
	20	А	R	1987	2.67588	.545		
	21	А	R	1988	2.54697	.5245429		

Panel data with more than 2 time periods

Panel data with T > 2

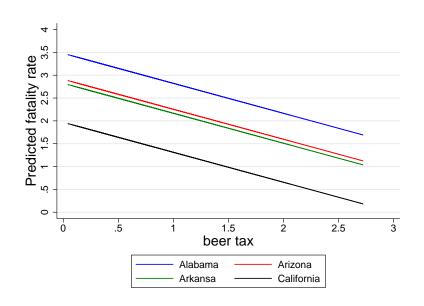
$$Y_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 Z_i + u_{it}, \qquad i = 1, ..., n; \quad t = 1, ..., T$$

- Y_{it} is dependent variable; X_{it} is explanatory variable; Z_i are state specific, time invariant variables
- Equation can be interpreted as model with n specific intercepts (one for each state)

$$Y_{it} = \beta_1 X_{it} + \alpha_i + u_{it},$$
 with $\alpha_i = \beta_0 + \beta_2 Z_i$

- α_i, i = 1, ..., n are called entity fixed effects
- α_i models impact of omitted time-invariant variables on Y_{it}

State specific intercepts



Fixed effects regression model

Least squares with dummy variables

Having data on Y_{it} and X_{it} how to determine β_1 ?

- Population regression model: $Y_{it} = \beta_1 X_{it} + \alpha_i + u_{it}$
- In order to estimate the model we have to quantify α_i
- Solution: create n dummy variables D1_i,..., Dn_i
 - with $D1_i = 1$ if i = 1 and 0 otherwise,
 - with $D2_i = 1$ if i = 2 and 0 otherwise,....
- Population regression model can be written as:

$$Y_{it} = \beta_1 X_{it} + \alpha_1 D 1_i + \alpha_2 D 2_i + ... + \alpha_n D n_i + u_{it}$$

Alternatively, population regression model can be written as:

$$Y_{it}=\beta_0+\beta_1X_{it}+\gamma_2D2_i+...+\gamma_nDn_i+u_{it}$$
 with $\beta_0=\alpha_1$ and $\gamma_i=\alpha_i-\beta_0$ for $i>1$

- Interpretation of β_1 identical for both representations
- Ordinary Least Squares (OLS): choose $\hat{\beta}_0, \hat{\beta}_1, \hat{\gamma}_2..., \hat{\gamma}_n$ to minimize squared prediction mistakes (*SSR*):

$$\sum_{i=1}^{n} \sum_{t=1}^{T} \left(Y_{it} - \hat{\beta}_0 - \hat{\beta}_1 X_{it} - \hat{\gamma}_2 D 2_i - ... - \hat{\gamma}_n D n_i \right)^2$$

• *SSR* is function of $\hat{\beta}_0, \hat{\beta}_1, \hat{\gamma}_2, \dots, \hat{\gamma}_n$

Fixed effect regression model

Least squares with dummy variables

$$\sum_{i=1}^{n} \sum_{t=1}^{T} \left(Y_{it} - \hat{\beta}_0 - \hat{\beta}_1 X_{it} - \hat{\gamma}_2 D 2_i - ... - \hat{\gamma}_n D n_i \right)^2$$

OLS procedure:

- Take partial derivatives of *SSR* w.r.t. $\hat{\beta}_0, \hat{\beta}_1, \hat{\gamma}_2..., \hat{\gamma}_n$
- Equal partial derivatives to zero resulting in n + 1 equations with n + 1 unknown coefficients
- Solutions are the OLS estimators $\hat{\beta}_0, \hat{\beta}_1, \hat{\gamma}_2..., \hat{\gamma}_n$

Fixed effect regression model Least squares with dummy variables

- Analytical formulas require matrix algebra
- Algebraic properties OLS estimators (normal equations, linearity) same as for simple regression model
- Extension to multiple X's straightforward: n + k normal equations
- OLS procedure is also labeled Least Squares Dummy Variables (LSDV) method
- Dummy variable trap: Never include all n dummy variables and the constant term!

- Typically *n* is large in panel data applications
- With large n computer will face numerical problem when solving system of n + 1 equations
- OLS estimator can be calculated in two steps
- First step: demean Y_{it} and X_{it}
- Second step: use OLS on demeaned variables

We have

$$Y_{it} = \beta_1 X_{it} + \alpha_i + u_{it}$$

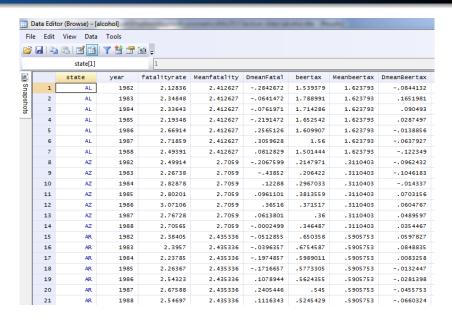
$$\bar{Y}_i = \beta_1 \bar{X}_i + \alpha_i + \bar{u}_i$$

- $\bar{Y}_i = \frac{1}{T} \sum_{t=1}^{T} Y_{it}$, etc. is entity mean
- Subtracting both expressions leads to

$$Y_{it} - \bar{Y}_i = (\beta_1 X_{it} + \alpha_i + u_{it}) - (\beta_1 \bar{X}_i + \alpha_i + \bar{u}_i)$$

$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{u}_{it}$$

- $\tilde{Y}_{it} = Y_{it} \bar{Y}_i$, etc. is entity demeaned variable
- α_i has disappeared; OLS on demeaned variables involves solving one normal equation only!



- Entity demeaning is often called the Within transformation
- Within transformation is generalization of "before-after" analysis to more than T=2 periods
- Before-after: $Y_{i2} Y_{i1} = \beta_1(X_{i2} X_{i1}) + (u_{i2} u_{i1})$
- Within: $Y_{it} \bar{Y}_i = \beta_1 (X_{it} \bar{X}_i) + (u_{it} \bar{u}_i)$
- LSDV and Within estimators are identical:

$$FatalityRate_{it} = -0.66$$
 $BeerTax_{it} + State dummies$ (0.19)

$$(FatalityRate_{it} - \overline{FatalityRate}) = -0.66 \quad (BeerTax_{it} - \overline{BeerTax})$$

$$(0.19)$$

Fixed effects regression model time fixed effects

- In addition to entity effects we can also include time effects in the model
- Time effects control for omitted variables that are common to all entities but vary over time
- Typical example of time effects: macroeconomic conditions or federal policy measures are common to all entities (e.g. states) but vary over time
- Panel data model with entity and time effects:

$$Y_{it} = \beta_1 X_{it} + \alpha_i + \lambda_t + u_{it}$$

Fixed effects regression model

time fixed effects

- OLS estimation straightforward extension of LSDV/Within estimators of model with only entity fixed effects
- LSDV: create T dummy variables B1_t....BT_t

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \gamma_2 D 2_i + \dots + \gamma_n D n_i$$
$$+ \delta_2 B 2_t + \delta_3 B 3_t + \dots + \delta_T B T_t + u_{it}$$

- Within estimation: Deviating Y_{it} and X_{it} from their entity and time-period means
- The effect of the tax on beer on the traffic fatality rate:

$$FatalityRate_{it} = -0.64$$
 $BeerTax_{it} + State dummies + Time dummies (0.20)$

Fixed effects regression model statistical properties OLS

$$Y_{it} = \beta_1 X_{it} + \alpha_i + \lambda_t + u_{it}$$

statistical assumptions are:

ASS #1: $E(u_{it}|X_{i1},...,X_{iT},\alpha_i,\lambda_t) = 0$

ASS #2: $(X_{i1},...,X_{iT},Y_{i1},...,Y_{iT})$ are i.i.d. over the cross-section

ASS #3: large outliers are unlikely

ASS #4: no perfect multicollinearity

ASS #5: $cov(u_{it}, u_{is}|X_{i1}, ..., X_{iT}, \alpha_i, \lambda_t) = 0$ for $t \neq s$

Fixed effects regression model statistical properties OLS

ASS #1 to ASS #5 imply that:

- OLS estimator $\hat{\beta}_1$ is *unbiased* and *consistent* estimator of β_1
- OLS estimators approximately have a normal distribution

remarks:

- ASS #1 is most important
- extension to multiple X's straightforward

$$Y_{it} = \beta_1 X 1_{it} + \beta_2 X 2_{it} + \dots + \beta_k X k_{it} + \alpha_i + \lambda_t + u_{it}$$

 additional assumption ASS #5 implies that error terms are uncorrelated over time (no autocorrelation)

Fixed effects regression model Clustered standard errors

- Violation of assumption #5: error terms are correlated over time: $(Cov(u_{it}, u_{is}) \neq 0)$
- u_{it} contains time-varying factors that affect the traffic fatality rate (but that are uncorrelated with the beer tax)
- These omitted factors might for a given entity be correlated over time
- Examples: downturn in local economy, road improvement project
- Not correcting for autocorrelation leads to standard errors which are often too low

Fixed effects regression model Clustered standard errors

- Solution: compute HAC-standard errors (clustered se's)
 - robust to arbitrary correlation within clusters (entities)
 - robust to heteroskedasticity
 - · assume no correlation across entities
- Clustered standard errors valid whether or not there is heteroskedasticity and/or autocorrelation
- Use of clustered standard errors problematic when number of entities is below 50 (or 42)
- In stata: command, cluster(entity)

The effect of a tax on beer on traffic fatalities

Dependent variable: traffic fatality rate (number of deaths per 10 000)							
Beer tax	0.36***	-0.66***	-0.64***	-0.59***	-0.59*		
	(0.06)	(0.19)	(0.20)	(0.18)	(0.33)		
State fixed effects	-	yes	yes	yes	yes		
Time fixed effects	-	-	yes	yes	yes		
Additional control variables	-	-	-	yes	yes		
Clustered standard errors	-	-	-	-	yes		
N	336	336	336	336	336		

Note: * significant at 10% level, *** significant at 5% level, *** significant at 1% level. Control variables: Unemployment rate, per capita income, minimum legal drinking age.

Panel data: an example returns to schooling

$$Y_{it} = \beta_1 X_{it} + \alpha_i + U_{it}$$

- Y_{it} is logarithm of individual earnings; X_{it} is years of completed education
- α_i unobserved ability
- Likely to be cross-sectional correlation between X_{it} and α_i , hence standard cross-sectional analysis with OLS fails
- However, in this case panel data does not solve the problem because X_{it} typically lacks time series variation ($X_{it} = X_i$)
- We have to resort to cross-sectional methods (instrumental variables) to identify returns to schooling

Is there an effect of cigarette taxes on smoking behavior?

$$Y_{it} = \beta_1 X_{it} + \alpha_i + u_{it}$$

- Y_{it} number of packages per capita in state i in year t, X_{it} is real tax on cigarettes in state i in year t
- α_i is a state specific effect which includes state characteristics which are constant over time
- Data for 48 U.S. states in 2 time periods: 1985 and 1995

Lpackpc = log number of packages per capita in state i in year t
 rtax = real avr cigarette specific tax during fiscal year in state i
 Lperinc = log per capita real income

. regress lpackpc rtax lperinc

Source	SS	df	MS		Number of obs	= 96
+					F(2, 93)	= 21.25
Model	1.76908655	2 .884	543277		Prob > F	= 0.0000
Residual	3.87049389	93 .041	618214		R-squared	= 0.3137
+					Adj R-squared	= 0.2989
Total	5.63958045	95 .059	364005		Root MSE	= .20401
lpackpc	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
+-						
rtax	0156393	.0027975	-5.59	0.000	0211946	0100839
lperinc	0139092	.158696	-0.09	0.930	3290481	.3012296
_cons	5.206614	.3781071	13.77	0.000	4.455769	5.95746

Before-After estimation

```
. gen diff_rtax= rtax1995- rtax1985
```

- . gen diff_lpackpc= lpackpc1995- lpackpc1985
- . gen diff_lperinc= lperinc1995- lperinc1985
- . regress diff_lpackpc diff_rtax diff_lperinc, nocons

Source	SS	df	MS	Number of obs =	48
	+			F(2, 46) =	145.66
Model	3.33475011	2	1.66737506	Prob > F =	0.0000
Residual	.526571782	46	.011447213	R-squared =	0.8636
	+			Adj R-squared =	0.8577
Total	3.86132189	48	.080444206	Root MSE =	.10699

diff_lpackpc		Std. Err.		P> t	
diff_rtax diff_lperinc	0169369	.0020119	-8.42	0.000	0128872

Least squares with dummy variables (no constant term)

. regress lpackpc rtax lperinc stateB*, nocons

Source	SS	df	MS		Number of obs	= 96
+					F(50, 46)	= 7317.61
Model	2094.15728	50 41.88	31457		Prob > F	= 0.0000
Residual	.263285891	46 .0057	23606		R-squared	= 0.9999
+					Adj R-squared	= 0.9997
Total	2094.42057	96 21.81	68809		Root MSE	= .07565
lpackpc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
rtax	0169369	.0020119	-8.42	0.000	0209865	0128872
lperinc	-1.011625	.1325691	-7.63	0.000	-1.278473	7447771
stateBl	7.663688	.3037711	25.23	0.000	7.052229	8.275148
stateB2	7.834448	.2926539	26.77	0.000	7.245367	8.42353
stateB3	7.678433	.3121525	24.60	0.000	7.050103	8.306763
stateB4	7.66627	.3392221	22.60	0.000	6.983451	8.349088
		:	:	:		
stateB45	7.844359	.3193189	24.57	0.000	7.201603	8.487114
stateB46	7.92666	.3154175	25.13	0.000		8.561563
stateB47	7.644741	.2936826	26.03	0.000		8.235894
stateB48	7.825943	.3275694	23.89	0.000	7.16658	8.485306

Least squares with dummy variables with constant term

. regress lpackpc rtax lperinc stateB*

Source	ss +	df 	MS		Number of obs F(49, 46)	= 96 = 19.17
Model	5.37629455	49 .10	9720297		Prob > F	= 0.0000
Residual	.263285891	46 .00	5723606		R-squared	= 0.9533
	+				Adj R-squared	= 0.9036
Total	5.63958045	95 .05	9364005		Root MSE	= .07565
lpackpc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
rtax	0169369	.0020119	-8.42	0.000	0209865	0128872
lperinc	-1.011625	.1325691	-7.63	0.000	-1.278473	7447771
stateBl	1530275	.0900694	-1.70	0.096	3343279	.0282728
stateB2	.0177322	.1005272	0.18	0.861	1846185	.220083
			: :			
			•			
stateB42	771239	.0918679	-8.40	0.000	9561594	5863186
stateB43	(dropped)					
stateB44	.1757536	.0854144	2.06	0.045	.0038233	.347684
stateB45	.0276429	.0948094	0.29	0.772	1631985	.2184843
stateB46	.1099444	.0918156	1.20	0.237	0748708	.2947597
stateB47	1719747	.0959042	-1.79	0.080	3650198	.0210705
stateB48	.0092272	.0787188	0.12	0.907	1492255	.16768
_cons	7.816716	.3458507	22.60	0.000	7.120554	8.512877

Within estimation

. xtreg lpackpc rtax lperinc, fe i(STATE) Fixed-effects (within) regression Number of obs = 96 Group variable: STATE Number of groups = 48 R-sq: within = 0.8636Obs per group: min = 2 between = 0.0896avg = 2.0overall = 0.2354max = F(2.46) = 145.66corr(u i, Xb) = -0.5687Prob > F = 0.0000lpackpc | Coef. Std. Err. t P>|t| [95% Conf. Interval] rtax | -.0169369 .0020119 -8.42 0.000 -.0209865 -.0128872 lperinc | -1.011625 .1325691 -7.63 0.000 -1.278473 -.7447771 _cons | 7.856714 .3150362 24.94 0.000 7.222579 8.490849 sigma u | .25232518 sigma_e | .07565452 rho | .91751731 (fraction of variance due to u i) F test that all u i=0: F(47, 46) = 13.41 Prob > F = 0.0000