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Abstract

In this paper I propose an alternative to calibration of linearized
singular dynamic stochastic general equilibrium models. Given an
a-theoretical econometric model as a representative of the data gener-
ating process, I will construct an information measure which compares
the conditional distribution of the econometric model variables with
the corresponding singular conditional distribution of the theoretical
model variables. The singularity problem will be solved by using con-
volutions of both distributions with a non-singular distribution. This
information measure will then be maximized to the deep parameters of
the theoretical model, which links these parameters to the parameters
of the econometric model and provides an alternative to calibration.
This approach will be illustrated by an application to a linearized
version of the stochastic growth model of King, Plosser and Rebelo.
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1 Introduction
In the forties through the sixties of the past century the development of
macroeconometrics was inspired and directed by Keynesian macroeconomic
theory, and vice versa, the construction and estimation of large Keynesian
macroeconomic models was facilitated by econometrics, in particular simul-
taneous equations theory. With the rise of neoclassical Dynamic Stochastic
General Equilibrium (DSGE) macroeconomics, however, econometrics and
economic theory have grown apart, to the point where most macro-theorists
now consider econometrics irrelevant for what they do. Admittedly, quite a
few econometricians have the same attitude towards theoretical macroeco-
nomics.
Most economic theories, including DSGE theory, are partial theories in

the sense that only a few related economic phenomena are studied. The
analysis of this ”partial” theory is justified, explicitly or implicitly, by the ce-
teris paribus assumption (other things being equal or constant). See Bierens
and Swanson (2000) and the references therein. However, when simple eco-
nomic models of this type are estimated using data which are themselves
generated from a much more complex real economy, it is not surprising that
they often fit poorly. Thus, these models do not represent data generating
processes, and are not designed to do. The purpose of these models is to gain
insight in particular related economic phenomena rather than to describe an
actual economy, and to conduct numerical experiments. Consequently, most
macro-theorists do not bother to estimate their models, but instead calibrate
the model parameters. See Hansen and Heckman (1996) for a review of cali-
bration, and Sims (1996) and Kydland and Prescott (1996) for opposite views
on calibration.
The literature on econometric analysis of DSGE models can be divided in

two rather short strands. One strand of literature is concerned with model
evaluation, i.e., the problem how to measure the fit of these models. The
other strand of literature is concerned with finding alternatives to calibration.
Watson (1993) proposes to augment the variables in the theoretical model

with just enough stochastic error so that the model can match the second
moments of the actual data. Measures of fit for the model, called relative
mean square approximation errors, are then constructed on the basis of the
variance of this stochastic error relative to the variance of the actual se-
ries. An alternative approach is to compare the empirical VAR innovation
response curves with those computed on the basis of artificial data gener-
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ated by the calibrated theoretical model. See for example the papers in
Pagan (1994), in particular Feve and Langot (1994) and Nason and Cogley
(1994). Schorfheide (2000) compares two DSGE models with a benchmark
model, using a Bayesian approach. Bierens and Swanson (2000) propose a
new measure of fit, called the average conditional reality bound, which com-
pares the non-singular part of a linearized DSGE model with a corresponding
marginalized econometric model. Corradi and Swanson (2004) also compare
DSGE models with a benchmark model, using squared differences of their
distribution functions.
DeJong, Ingram, and Whiteman (1996, 2000) and Geweke (1999) propose

a Bayesian approach. They assume prior distribution for the deep parame-
ters centered around calibrated values. This is indeed a natural extension
of calibration. However, there are two major limitations to the Bayesian
approach. First, one has to assume that conditional on the parameters the
theoretical model represents the data generating process, which is too far-
fetched an assumption. Second, the Bayesian approach requires the existence
of the conditional density of the model variables, whereas in most of these
models the model variables are driven by only a few random shock. The lat-
ter renders the theoretical distribution involved singular. DeJong, Ingram,
and Whiteman (1996, 2000) circumvent the singularity problem by focusing
on a subset of model variables for which the conditional distribution is non-
singular. Geweke (1999) applies the Bayesian approach to a one-dimensional
equity premium model. Ireland (2003) proposes to add noise to a linearized
DSGE model in order to estimate the resulting hybrid model by maximum
likelihood. Also this approach suffers from the limitation that one has to as-
sume that the hybrid model involved represents the data generating process.
The singularity problem also prevents direct estimation of a DSGE model

by GMM, because due to the singularity some moment conditions will hold
exactly for each time period, so that the number of moment condition will
exceed the number of observations. Therefore, the application of GMM is
only possible after (explicitly or implicitly) adding noise to the exact moment
equations. See for example Ambler et al. (2003).
In this paper I will propose an alternative non-Bayesian approach to cal-

ibration of singular DSGE models, which takes into account that these mod-
els do not represent data generating processes and are singular. Given an
a-theoretical econometric model as a representative of the data generating
process, I will construct an information measure (called the multiplicative
conditional reality bound) which compares the conditional distribution of
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the econometric model variables with the corresponding singular conditional
distribution of the theoretical model variables, along the lines in Bierens and
Swanson (2000). The singularity problem will be solved by using convolu-
tions of both distributions with a nonsingular distribution. This information
criterion can be interpreted as the probability that the distribution of the
convoluted econometric model is generated by the distribution of the convo-
luted theoretical model, conditional on the data. The information criterion
involved will then be maximized to the deep parameters of the theoretical
model, which links these parameters to the parameters of the econometric
model and provides an alternative to calibration.
This approach will be applied to a linearized version of the stochastic

growth model of King, Plosser and Rebelo (KPR) (1988a,b). The lineariza-
tion procedure is different from the one proposed by KPR, though. I will
solve the model without using linearization to the point where the only con-
trol variable left is the consumption-output ratio. At that point I will only
linearize the state variable process of the concentrated model around the de-
terministic steady state, and link the parameters of the linearized model to
the deep parameters. On the other hand, KPR linearize the (deterministic)
Lagrange multiplier solution of their model at an earlier stage. Although it
is not impossible to link the parameters of their linearized model to the deep
parameters1, it is more complicated than in my approach. Consequently,
KPR (1988a) do not provide this link, except for a deterministic version of
their model with fixed labor. See KPR (1988a, Footnote 17).
A separate appendix to this paper containing the details of some tedious

derivations is downloadable from web page
http://econ.la.psu.edu/~hbierens/SDSGEMAPP.PDF.

2 Singularity
Dynamic stochastic general equilibrium (DSGE) models, possibly after trans-
forming the control and state variables, take the form of a dynamic stochastic
optimization problem:

max E0

" ∞X
t=0

λtg(Ct, St)

#
(1)

1See for example Ireland (2003), who analyses Hansen’s (1985) model, which is similar
to the KPR model.
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subject to

St = f(Ct, St−1, Ut),

where g is a utility function, Ut is a vector of random shocks, St ∈ Rs is a
vector of state variables, Ct ∈ Rc is a vector of control variables, λ ∈ (0, 1) is
a time preference parameter, and E0 is the conditional expectation operator
relative to the information up to time t = 0.
Often the dimension m of Ut is smaller than the dimension s of St, which

renders the conditional distribution of St given the past singular. However,
this is not the only source of singularity.
As is well-known [see Stokey, Lucas and Prescott (1989)], under some reg-

ularity conditions the solution to this dynamic programming problem takes
the form of a contingency plan for Ct, which is a time-invariant Borel mea-
surable mapping Ψ: Rs → Rc such that Ct = Ψ(St−1). Thus, the dynamic
optimization problem (1) can then be reformulated as

max
Ψ:Rs→Rc

E0

" ∞X
t=0

λtg (Ψ(St−1), St)

#
(2)

subject to

St = f (Ψ(St−1), St−1, Ut) .

The solution Ct = Ψ(St−1) is another source of singularity of the joint condi-
tional distribution of the model variables Yt =

¡
Ct
St

¢
, because it holds without

errors. Therefore, singularity cannot be cured by including more random
shocks in the state variables process. Thus, singularity is an inherent prop-
erty of dynamic stochastic general equilibrium models.
Given the optimal contingency plan Ct = Ψ(St−1), model (2) postulates

that at time t,

Yt =

µ
Ct
St

¶
=

µ
Ψ(St−1)
f (Ψ(St−1), St−1, Ut)

¶
= H(Yt−1, Ut|β) ∈ Rk,

say, where k = s + c, β is a vector of ”deep” parameters, Ut ∈ Rm is a
stochastic shock process with dimension m < k, and H is the functional
specification of the model. In particular, linearized versions of these models
take the form of a singular VAR(p) model:

Yt = A(β)Xt−1 +B(β)Ut, (3)
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whereXt−1 = (1, Y Tt−1, ...Y
T
t−p)

T , A(β) is an k×k.pmatrix, andB(β) is a k×m
matrix of functions of β. If it is assumed (as usual) that Ut is an m-variate
Gaussian white noise process: Ut ∼ i.i.d. Nm[0, Im], then the distribution of
Yt conditional on Xt−1 is singular normal: Nk

£
A(β)Xt−1, B(β)B(β)T

¤
.

3 Linking distributions
In this paper I propose an information criterion, similarly to Bierens and
Swanson (2000), which links a linearized singular DSGE model of the type
(3) to an linear econometric model, for example a Gaussian VAR(q) model

Yt = ΠZt−1 + Vt, Vt ∼ i.i.d. Nk[0,Θ], det(Θ) 6= 0, (4)

where Zt−1 = (1, Y Tt−1, ...Y
T
t−q)

T and Π is a k×(k.q)matrix of coefficients. The
econometric model (4) is assumed to represent the data-generating process.
This procedure then links the vector β of the parameters of the theoretical
model to the parameter matrices Π and Θ of the econometric model (4):
β = Φ(Π,Θ), say. Plugging in the maximum likelihood estimators bΠ and bΘ
of Π and Θ then yields an estimator bβ = Φ(bΠ, bΘ) of β. Moreover, using the
well-known delta method it is then possible to derive confidence intervals of
the estimates in bβ.
3.1 Embedding densities

Consider two densities, f(y) and f0(y), with common support. It is always
possible to squeeze f0(y) under f(y), by multiplying f0(y) by a ”squeeze”
factor p0 ∈ [0, 1], such that p0f0(y) ≤ f(y) for all y. The maximal p0 involved
is:

p0 = inf
y
[f(y)/f0(y)] ≤ 1.

Of course, it is possible that p0 = 0. This procedure is illustrated in Figure
1.
Now f(y) can be written as a mixture:

f(y) = p0f0(y) + (1− p0)f1(y),

where f1(y) = (f(y)− p0f0(y)) /(1− p0) is a density. Thus, if we draw with
probability p0 from the distribution with density f0(y) and with probability
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Figure 1: Embedding densities

1−p0 from the distribution with density f1(y), the result is actually a random
drawing from the distribution with density f(y).
Note that the quantity − ln(p0) is an information criterion which com-

pares the closeness of the two densities f0(y) and f(y), i.e., − ln(p0) = 0 if
and only if f0(y) ≡ f(y), and − ln(p0) > 0 otherwise.

3.2 Convolutions

In order to use this information criterion to compare the conditional distri-
butions of (3) and (4) we need to make their supports equal. This will be
done by using convolutions. The idea is to add i.i.d. nonsingular k-variate
normal noise R∗t , R

∗∗
t to Yt in (3) and (4), respectively2, so that (3) becomes

Y TMt = A(β)Xt−1 +B(β)Ut +R∗t , (5)

and (4) becomes
Y EMt = ΠZt−1 + Vt +R∗∗t . (6)

2The reason for adding this noise to both models is to keep the conditional distributions
involved comparable.
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Then the conditional distribution of Y TMt in (5) is absolutely continuous with
density h

TM
(y|Xt−1, β), say. Next, let

pt−1(Π,Θ, β) = inf
y

h
EM
(y|Zt−1,Π,Θ)

h
TM
(y|Xt−1,β) , (7)

where h
EM
(y|Zt−1,Π,Θ) is the conditional density of Y EMt in (6).

The interpretation of pt−1(Π,Θ, β) is similar as before: if we draw Y EMt

and Y ETt randomly from the conditional distributions with densities h
TM
(y|

Xt−1,β), and hEM (y|Zt−1,Π,Θ), respectively, then pt−1(Π,Θ,β) may be in-
terpreted as the probability that Y EMt and Y ETt have the same conditional
distribution, given the data up to time t− 1. Moreover,

nY
t=1

pt−1(Π,Θ, β)

may then be interpreted as the probability that conditional on the data
the joint distribution of Y ET1 , ..., Y ETn is the same as the joint distribution
of Y EM1 , ...., Y EMn . The latter suggests to link the parameter vector β of the
linearized DSGE model (3) to the estimated parameters of the econometric
model (4) by

βn(Π,Θ) = argmax
β

nX
t=1

ln [pt−1(Π,Θ, β)] , (8)

as an alternative to calibration.
Note that similar to Bierens and Swanson (2000) the statistic

max
β

Ã
nY
t=1

pt−1(Π,Θ,β)

!1/n
may be used as a reality check on the theoretical model.
This approach is somewhat related to the approach taken by Watson

(1993), where the variables in the theoretical model are augmented with just
enough stochastic error so that the model can match the second moments
of the actual data. One of the crucial differences with the Watson approach
is that I propose to augment also the actual data with the same stochastic
error, in order to penalize the singularity of the theoretical model. Another
fundamental difference is that Watson uses calibrated parameters, whereas I
will estimate them.
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Of course, there are alternative ways to link theoretical models to econo-
metric models. For example, one could use

βn(Π,Θ) = argmin
β

nX
t=1

Z
ln

µ
h
EM
(y|Zt−1,Π,Θ)

h
TM
(y|Xt−1, β)

¶
(9)

×h
EM
(y|Zt−1,Π,Θ)dy

instead of (8). The integral in (9) is the well-known Kullback-Leibler (1951)
information criterion, which measures the closeness of the two densities in-
volved. However, recall that − ln[pt−1(Π,Θ, β)] is also an information crite-
rion which measures the closeness of the two densities involved. In particular,
− ln[pt−1(Π,Θ,β)] = 0 if and only if hEM (y|Zt−1,Π,Θ) = hTM (y|Yt−1, β) for
all y in the common support of the two densities involved, and− ln[pt−1(Π,Θ, β)]
> 0 otherwise. The main reason for using (8) is the neat interpretation of
pt−1(Π,Θ, β) as the probability that a random drawing from h

TM
(y|Xt−1, β)

generates a random drawing from h
EM
(y|Zt−1,Π,Θ).

3.3 Implementation

In order to make this approach operational, let us rewrite the conditional
distribution of the variables in the linearized DSGE model (3) as

Y ∗t ∼ Nk [µt−1(β),Σ(β)] , det(Σ(β)) = 0, (10)

where µt−1(β) = A(β)Xt−1 3 and Σ(β) = B(β)B(β)T , and the conditional
distribution of the variables in the econometric model (4) as

Y ∗∗t ∼ Nk [ηt−1,Θ] , det(Θ) > 0, (11)

where ηt−1 = ΠZt−1. Now add independent equally distributed noise R∗t , R
∗∗
t

to the dependent variables in (10) and (11), respectively. A natural choice is

R∗t , R
∗∗
t ∼ Nk [0, τΘ] for some τ > 0.

Then
Y TMt = Y ∗t +R

∗
t ∼ Nk [µt−1(β),Σ(β) + τΘ]

3In our application below µt−1(β) is actually a function of infinitely many lagged Yt’s
because the linearized DSGE model involved is partly an ARMA(1,1) process.
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and
Y EMt = Y ∗∗t +R∗∗t ∼ Nk [ηt−1, (1 + τ )Θ] ,

with corresponding densities

hTMt−1 (y|β, τ ) =
exp

h
−1
2
(y − µt−1(β))T (Σ(β) + τΘ)−1 (y − µt−1(β))

i
¡√
2π
¢kp

det (Σ(β) + τΘ)

and

hEMt−1 (y|τ ) =
exp

h
− 1
2(1+τ)

(y − ηt−1)
T Θ−1 (y − ηt−1)

i
¡√
2π
¢kp

(1 + τ)k det (Θ)
,

respectively. Hence

hEMt−1 (y|τ )
hTMt−1 (y|β, τ )

=

s
det(Σ(β) + τΘ)

(1 + τ )k det (Θ)
(12)

× exp
∙
1

2
yTΨ(β, τ )y − yTΨ(β, τ)µt−1(β)

+
1

1 + τ
yTΘ−1 (ηt−1 − µt−1(β)) + 1

2
µt−1(β)T (Σ(β) + τΘ)−1 µt−1(β)

−1
2
(1 + τ)−1 ηTt−1Θ

−1ηt−1

¸
,

where

Ψ(β, τ) = (Σ(β) + τΘ)−1 − 1

1 + τ
Θ−1 (13)

=
1

1 + τ
Θ−1/2

Ãµ
1

1 + τ
Θ−1/2Σ(β)Θ−1/2 +

τ

1 + τ
I

¶−1
− I
!
Θ−1/2.

The matrixΨ(β, τ) is positive definite if all the eigenvalues ofΘ−1/2Σ(β)Θ−1/2

are less than 1, or equivalently if all the solutions of the generalized eigenvalue
problem

det (Σ(β)− λΘ) = 0 (14)

are less than 1. If so, (12) is minimal for
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y = µt−1(β)− 1

1 + τ
Ψ(β, τ )−1Θ−1 (ηt−1 − µt−1(β)) .

Substituting this solution in (12) yields, after some straightforward deriva-
tions,

inf
y

hEMt−1 (y|τ)
hTMt−1 (y|β, τ)

=

s
det(Θ−1/2Σ(β)Θ−1/2 + τI)

(1 + τ)k

× exp
µ −1
2(1 + τ)

(ηt−1 − µt−1(β))T Φ(β, τ) (ηt−1 − µt−1(β))
¶
,

where

Φ(β, τ ) =
1

1 + τ

£
Θ−1Ψ(β, τ)−1Θ−1 + (1 + τ)Θ−1

¤
= (15)

= Θ−1/2

⎡⎣Ãµ 1

1 + τ
Θ−1/2Σ(β)Θ−1/2 +

τ

1 + τ
Ik

¶−1
− Ik

!−1
+ Ik

⎤⎦Θ−1/2,
provided that the maximum eigenvalue of Θ−1/2Σ(β)Θ−1/2 is less than 1:

λmax
£
Θ−1/2Σ(β)Θ−1/2

¤
< 1.

Next, let λ1(β) ≥ λ2(β) ≥ ... ≥ λm(β) be the m positive eigenvalues of
Θ−1/2Σ(β)Θ−1/2. We can write

Θ−1/2Σ(β)Θ−1/2 = Q(β)Λ(β)Q(β)T = Q1(β)Λ1(β)Q1(β)T ,

where Λ1(β) = diag(λ1(β),λ2(β), ...,λm(β)) , Q1(β) is the k × m matrix of
corresponding orthonormal eigenvectors, and Q2(β) is the k×(k−m) matrix
of orthonormal eigenvectors corresponding to the zero eigenvalues. Thus,

det(Θ−1/2Σ(β)Θ−1/2 + τIk) = τ k−m
mY
j=1

(λj(β) + τ )

= τ k−m det (Λm(β) + τIm)

and

Φ(β, τ) = Θ−1/2Q(β)
h¡
(1 + τ) (Λ(β) + τIk)

−1 − Ik
¢−1

+ Ik

i
Q(β)TΘ−1/2

= (1 + τ )Θ−1/2Q(β) (Ik − Λ(β))−1Q(β)TΘ−1/2.
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Hence

pt−1(Π,Θ, β|τ ) = inf
y

hEMt−1 (y|τ)
hTMt−1 (y|β, τ )

=

s
τk−m det (Λ1(β) + τIm)

(1 + τ )k
(16)

× exp
h
−1
2
(ηt−1 − µt−1(β))T Θ−1/2Q(β) (Ik − Λ(β))−1Q(β)TΘ−1/2

× (ηt−1 − µt−1(β))] .
Now suppose that the parameter vector β can be partitioned as β =³

β1
β2

´
such that µt−1(β) = µt−1(β1) and β2 is the vector of stacked diagonal

and upper-diagonal elements of Σ(β). The latter implies that Σ = Σ(β) is
unconstrained, except for the condition that Σ is positive semi-definite with
rank m < k, and that λmax

£
Θ−1/2ΣΘ−1/2

¤
< 1. Then Q = (Q1, Q2) = Q(β)

and Λ1 = Λ1(β) are unconstrained too, except of course for the conditions
that Q is orthogonal and that the diagonal elements λ1 ≥ .... ≥ λm of Λ1 are
confined to the unit interval (0, 1). Equation (16) can now be rewritten as

pt−1(Π,Θ, β1, Q,Λ1|τ) =
s

τk−m det (Λ1 + τIm)

(1 + τ )k
(17)

× exp
h
−1
2
(ηt−1 − µt−1(β1))T Θ−1/2Q (Ik − Λ)−1QTΘ−1/2

× (ηt−1 − µt−1(β1))] ,
hence

1

n

nX
t=1

ln [pt−1(Π,Θ, β1, Q,Λ1|τ )] (18)

=
k −m
2

ln(τ)− k
2
ln(1 + τ) +

1

2

mX
j=1

ln (λj + τ )

−1
2

mX
j=1

qTj Γn(β1)qj

1− λj
− 1
2

kX
j=m+1

qTj Γn(β1)qj,

say, where Q = (q1, ..., qk) and

Γn(β1) = Θ−1/2
"
1

n

nX
t=1

(ηt−1 − µt−1(β1)) (ηt−1 − µt−1(β1))T
#
Θ−1/2. (19)
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Because (1−λ1)
−1 ≥ ... ≥ (1−λm)

−1 ≥ 1, it is easy to verify that the last
two terms in (18) are maximal if we choose the qj’s equal to the orthonormal
eigenvectors of Γn(β1) corresponding to its increasingly ordered eigenvalues.
Thus, let

Ξn(β1) = diag (ξn,1(β1), ...., ξn,k(β1)) ,

where ξn,1(β1) ≤ .... ≤ ξn,k(β1) are the eigenvalues of Γn(β1), with corre-
sponding orthogonal matrix Qn(β1) of eigenvectors. Then

min
QTQ=Ik

trace
£
(Ik − Λ)−1QTΓn(β1)Q

¤
= trace

£
(Ik − Λ)−1 Ξn(β1)

¤
=

mX
j=1

ξn,j(β1)

1− λj
+

kX
j=m+1

ξn,j(β1),

hence

max
QTQ=Ik

1

n

nX
t=1

ln [pt−1(Π,Θ, β1, Q,Λ1|τ )]

=
k −m
2

ln(τ)− k
2
ln(1 + τ) +

1

2

mX
j=1

ln (λj + τ )

−1
2

mX
j=1

ξn,j(β1)

1− λj
− 1
2

kX
j=m+1

ξn,j(β1).

Next, maximize ϕn,j(λj) = ln (λj + τ) − ξn,j(β1)/(1 − λj) to λj ∈ [0, 1].
The optimal value of λj is

λj(β1, τ ) = 1 +
ξn,j(β1)

2
(20)

−1
2

q
ξn,j(β1)2 + 4 (1 + τ ) ξn,j(β1) if ξn,j(β1)−1 > τ

λj(β1, τ ) = 0 if ξn,j(β1)−1 ≤ τ,

which satisfies λj(β1, τ) < 1, and λj(β1, τ) > 0 if and only if

τ < ξn,m(β1)
−1. (21)

Then
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sup
Q,Λ1,λmax[Λ1]<1

1

n

nX
t=1

ln [pt−1(Π,Θ, β1, Q,Λ1|τ)] (22)

=
k −m
2

ln(τ)− k
2
ln(1 + τ) +

1

2

mX
j=1

ln (λj(β1, τ) + τ )

−1
2

mX
j=1

ξn,j(β1)

1− λj(β1, τ )
− 1
2

kX
j=m+1

ξn,j(β1).

Moreover, denoting Λ1,n(β1, τ) = diag(λ1(β1, τ ), ....,λm(β1, τ )) , the opti-
mal solution for Σ given β1 is

Σn(β1, τ ) = Θ1/2Qn(β1)

µ
Λ1,n(β1, τ) O
O O

¶
Qn(β1)

TΘ1/2. (23)

Maximizing (22) to β1 now yields a solution β1,n(Π,Θ|τ) with correspond-
ing solution for Σ:

Σn(Π,Θ|τ) = Σn (β1,n(Π,Θ|τ ), τ) .

3.4 Preserving the structure of the theoretical vari-
ance matrix

If the variables in model (10) are arranged such that singular variance matrix
Σ is block-diagonal, i.e.,

Σ =

µ
Σ1 O
O O

¶
,

say, where Σ1 is an unconstrained positive definite m×m matrix, one should
impose the same structure on the estimate of Σ, as follows. Partition Θ−1/2

conformably to Σ as

Θ−1/2 =
µ

Θ∗11 Θ∗12
Θ∗21 Θ∗22

¶
.

Then (15) becomes

Φ(τ ) = (24)

Θ−1/2
∙µ £

(1 + τ) (Θ∗11Σ1Θ
∗
11 + τIm)

−1 − Im
¤−1

+ Im O
O (1 + τ )Ik−m

¶¸
Θ−1/2 .
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Next, let
Θ∗11Σ1Θ

∗
11 = Q11Λ1Q

T
11,

where Λ1 = diag(λ1, . . . ,λm), with λ1 ≥ . . . ≥ λm > 0 the eigenvalues
of Θ∗11Σ1Θ

∗
11, and Q11 is the m × m orthogonal matrix of corresponding

eigenvectors. Then

Φ(τ) = (1 + τ )Θ−1/2Q (Ik − Λ)−1QTΘ−1/2, (25)

where Λ is the same as before:

Λ =

µ
Λ1 O
O O

¶
,

but now

Q =

µ
Q11 O
O Ik−m

¶
.

Therefore, the main difference with the previous case is the latter constraint
on the matrix Q. Partitioning the matrix (19) according to Q,

Γn(β1) =

µ
Γ1,1,n(β1) Γ1,2,n(β1)
Γ2,1,n(β1) Γ2,2,n(β1)

¶
,

it follows easily that

trace
£
(Ik − Λ)−1QTΓn(β1)Q

¤
= trace

£
(Im − Λ1)

−1QT11Γ1,1,n(β1)Q11
¤
+ trace [Γ2,2,n(β1)] .

Hence, (18) becomes

1

n

nX
t=1

ln [pt−1(Π,Θ, β1, Q,Λ1|τ )]

=
k −m
2

ln(τ)− k
2
ln(1 + τ) +

1

2

mX
j=1

ln (λj + τ )

−1
2

mX
j=1

qTj Γ1,1n(β1)qj

1− λj
− 1
2
trace [Γ2,2,n(β1)] ,

where now Q11 = (q1, ..., qm).
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Similarly as before, the optimal qj’s are equal to the orthonormal eigen-
vectors of Γ1,1,n(β1) corresponding to its increasingly ordered eigenvalues.
Thus, let now ξn,1(β1) ≤ .... ≤ ξn,m(β1) be the eigenvalues of Γ1,1,n(β1), and
let Q1,1,n(β1) be the corresponding orthogonal matrix of eigenvectors. Then

sup
Q1,1,Λ1,λmax[Λ1]<1

1

n

nX
t=1

ln [pt−1(Π,Θ, β1, Q,Λ1|τ)] (26)

=
k −m
2

ln(τ)− k
2
ln(1 + τ) +

1

2

mX
j=1

ln (λj(β1, τ) + τ )

−1
2

mX
j=1

ξn,j(β1)

1− λj(β1, τ )
− 1
2
trace [Γ2,2,n(β1)]

for Q1,1 = Q1,1,n(β1) and Λ1 = Λ1,n(β1, τ) = diag(λ1(β1, τ), ....,λm(β1, τ)) ,
where the λj(β1, τ )’s are the same as in (20). The optimal solution for Σ1
given β1 is now

Σ1,n(β1, τ ) = (Θ
∗
11)

−1Q1,1,n(β1)Λ1,n(β1, τ )Q1,1,n(β1)T (Θ∗11)
−1 . (27)

4 The KPR model
I will now apply the above approach to a partially linearized version of the
stochastic growth model of King, Plosser and Rebelo (KPR) (1988a,b), which
is derived from Kydland and Prescott (1982) and Hansen (1985). The rea-
sons for using this model is that it is a relatively simple real business cycle
textbook model, and that I have used it before in Bierens and Swanson
(2000).

4.1 The initial model

The stochastic version of the KPR model that I will consider takes the form:

KPR model 1:

max E0

" ∞X
t=0

λt (ln(Ct) + θ ln(1−Nt))
#
, λ < 1, (28)

16



subject to

Qt = Ct + It = A
α
t K

1−α
t N α

t , (29)

Kt = (1− δ)Kt−1 + It, (30)

ln(At) = γ − vt + ln(At−1), vt is i.i.d. N(0, σ2), (31)

where Ct denotes consumption, Qt is output, Kt is capital, Nt is employment,
It is investment, and At is a technology index. The negative sign of vt in (31)
is harmless, of course, but has a notational advantage. Note that the log of
the technology index At follows a Gaussian random walk, with drift equal to
γ. Except for the technology index At, the variables in the above theoretical
model may be interpreted as per capita aggregates.
Note that KPR model 1 is a special case of one of the models proposed

in KPR (1988a). In particular, KPR use the Cobb-Douglas production func-
tion Qt = AtK1−α

t (XtNt)
α , where Xt is the labor productivity index and At

represents temporary changes in factor productivity. In (29) labor produc-
tivity changes are included in the technology index At. Moreover, the orig-
inal KPR (1988a) model is a deterministic model: Their objective function isP∞

t=0 λ
t (ln(Ct) + θ ln(1−Nt)) rather thanE0 [

P∞
t=0 λ

t (ln(Ct) + θ ln(1−Nt))] ,
so that they assume perfect foresight with respect to the technology index
At. Therefore, KPR solve the problem

max
∞X
t=0

λt (ln(Ct) + θ ln(1−Nt)) (32)

subject to

Aα
t K

1−α
t N α

t − Ct −Kt + (1− δ)Kt−1 = 0

via the first-order conditions of the Lagrange function

L =
∞X
t=0

λt (ln(Ct) + θ ln(1−Nt)) (33)

+
∞X
t=0

Λt
¡
Aα
t K

1−α
t N α

t − Ct −Kt + (1− δ)Kt−1
¢
,

17



where the Λt’s are the Lagrange multipliers, together with the transversal-
ity condition limt→∞ΛtKt = 0. In particular, KPR linearize the first-order
conditions of the Lagrangian (33) around the steady state solution.
In this paper I will solve KPR model 1 analytically as far as I can, by re-

formulating the model and concentrating as much control and state variables
out as possible, up to the point where the last equation, for the consumption-
output ratio Ct/Qt, can only be derived from the Bellman equation. In the
process of concentrating variables out I will derive a deterministic nonlinear
relation between Nt and Ct/Qt. Upon arriving at the Bellman equation for
Ct/Qt I will partially linearized the concentrated model around the determin-
istic steady state solution. Finally, the solution for Qt/At will be converted
into a nonlinear ARMA(1,1) model for ln(Qt/Qt−1), which then can be lin-
earized as a stationary linear ARMA(1,1) model.
The resulting system of equations is quite different from the linearized

version of the model in KPR (1988a,b). Admittedly, this linearization ap-
proach is specific to the KPR model. However, the econometric approach in
this paper is applicable to any DSGE model that can be linearized such that
the link between the parameters of the linear model and the deep parameters
is preserved.

4.2 Reformulation of the KPR model

I will assume that once output is used as capital it is no longer fit for con-
sumption. This assumption implies that consumption cannot exceed output,
0 ≤ Ct ≤ Qt, and neither can investment. Therefore, without loss of gen-
erality we may now replace the control variable Ct with xtQt, where the
consumption-output ratio xt = Ct/Qt is the new control variable. The ad-
vantage is that xt has non-stochastic bounds: 0 ≤ xt ≤ 1. Thus, denote

xt =
Ct
Qt
, qt =

Qt
At
, kt =

Kt

At
.

Then (29) can be rewritten as

qt = k
1−α
t N α

t , (34)

Ct is now equal to
Ct = xtk

1−α
t N α

t At,

18



and (30) can be rewritten as

kt =
Kt

At
= (1− δ)

Kt−1
At

+
It
At

(35)

= (1− δ)
At−1
At

kt−1 + (1− xt) qt
= exp [ln(1− δ)− γ + vt] kt−1 + (1− xt) qt
= exp [ln(1− δ)− γ + vt + ln kt−1] + (1− xt) k1−αt N α

t .

KPR model 1 is now equivalent to:4

KPR model 2:

max E0

" ∞X
t=0

λt ((1− α) ln(kt) + ln(xt) + α ln(Nt) + θ ln(1−Nt))
#
, (36)

subject to
0 ≤ xt ≤ 1, 0 ≤ Nt ≤ 1, (37)

(34) and (35).

It follows from (35) that

kt = exp (ln(1− xt) + α lnNt) k
1−α
t (38)

+exp (ln(1− δ)− γ + vt + ln kt−1) ,

which has a unique solution of the form

ln kt = ln gα (− ln(1− xt)− α lnNt, ln(1− δ)− γ + vt + ln kt−1) (39)
= ln gα(zt, yt−1),

say, where
zt = − ln(1− xt)− α lnNt ≥ 0, (40)

and
yt−1 = ln(1− δ)− γ + vt + ln kt−1. (41)

4Without loss of generality we may ignore the term
P∞
t=0 λ

t lnAt in the objective
function.
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Thus, gα(zt, yt−1) is the fixed point solution of the equation

kt = exp (−zt) k1−αt + exp(yt−1), (42)

i.e., gα(z, y) corresponds to the intersection of the curve

f1(k) = exp (−z) k1−α + exp(y), k ≥ 0,

with the 45% line f2(k) = k. This intersection is unique, and shifts up with
exp (−z) and exp(y), hence gα(z, y) is decreasing in z and increasing in y. In
particular, it is not hard to verify that

∂ ln gα(z, y)

∂y
=

exp(y)

αgα(z, y) + (1− α) exp(y)
∈ (0, 1), (43)

∂ ln gα(z, y)

∂z
=

1

α

µ
∂ ln gα(z, y)

∂y
− 1
¶
< 0.

Because by (40),

ln xt = ln (N
α
t − exp (−zt))− α lnNt, (44)

KPR model 2 now becomes

KPR model 3:

max E0

" ∞X
t=0

λt ((1− α) ln gα(zt, yt−1) + ln (N α
t − exp (−zt)) + θ ln(1−Nt))

#
(45)

subject to zt ≥ 0, 0 ≤ Nt ≤ 1,

yt = ln gα(zt, yt−1) + ln(1− δ)− γ + vt+1, (46)

t ≥ 0,

and the initial condition

y−1 = ln(1− δ)− γ + v0 + ln k−1. (47)
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4.3 The relation between employment and the consumption-
output ratio

Given the optimal zt’s, the optimal solutions for the Nt’s is now given by

max
Nt
{ln (Nα

t − exp (−zt)) + θ ln(1−Nt)} ,

with first order conditions

αNα−1
t

Nα
t − exp (−zt)

=
θ

1−Nt . (48)

Substituting exp(−zt) = (1− xt)N α
t [c.f. (40)] in (48) yields

Nt = 1/ (1 + (θ/α)xt) . (49)

Note that by 0 ≤ xt ≤ 1,
α

α+ θ
≤ Nt ≤ 1. (50)

4.4 The law of motion of output

Due to (49), we can now write output as a function of xt and lagged output,
as follows. It follows from (40) and (49) that now

zt = α ln (1 + (θ/α)xt)− ln(1− xt) (51)

= h
α,θ
(xt), (52)

say, which is a monotonic increasing function of xt:

h0
α,θ
(xt) =

α(1 + θ) + θ(1− α)xt
(1− xt) (α+ θxt)

> 0. (53)

Next, it follows from (29), and (49) that

Qt = A
α
t K

1−α
t (1 + (θ/α)xt)

−α , (54)

so that
Kt = Q

1/(1−α)
t (1 + (θ/α)xt)

α/(1−α)A−α/(1−α)t , (55)

or in log form

ln kt = ln(Kt/At) =
α

1− α
ln (1 + (θ/α)xt) +

1

1− α
ln(Qt/At). (56)
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Furthermore, it follows from (30) and (55) that

Kt = Q
1/(1−α)
t (1 + (θ/α)xt)

α/(1−α)A−α/(1−α)t

= (1− δ)Kt−1 + (1− xt)Qt
= (1− δ)Q

1/(1−α)
t−1 (1 + (θ/α)xt−1)

α/(1−α)A−α/(1−α)t−1
+(1− xt)Qt,

hence

(Qt/At)
1/(1−α) (1 + (θ/α)xt)

α/(1−α) − (1− xt)Qt/At (57)

= (1− δ)(Qt−1/At−1)1/(1−α) (1 + (θ/α)xt−1)
α/(1−α)At−1A−1t .

Given the right-hand side of (57) and xt, we can solve qt = Qt/At from (57).
Hence the law of motion for output is given by (31), together with

ln(Qt/At) = η
α,θ

µ
xt, ln(1− δ)− γ +

α

1− α
ln (1 + (θ/α)xt−1) (58)

+
1

1− α
ln(Qt−1/At−1) + vt

¶
,

where exp(η
α,θ
(x, y)) = q is the solution of the equation

q1/(1−α) (1 + (θ/α)x)α/(1−α) − (1− x)q = exp(y), (59)

i.e., given x and y, q = exp(η
α,θ
(x, y)) corresponds to the point of intersection

of the curve q1/(1−α) (1 + (θ/α)x)α/(1−α) with the line (1− x)q + exp(y).
Note that the partial derivatives of η

α,θ
(x, y) are:

η(1)
α,θ
(x, y) =

∂η
α,θ
(x, y)

∂x
=

−1
(1 + (θ/α)x)

(60)

− (θ(1− x) + 1) (1− α) exp(η
α,θ
(x, y))¡

exp(y) + α(1− x) exp(η
α,θ
(x, y))

¢
(1 + (θ/α)x)

< −α/ (α+ θ) ,

η(2)
α,θ
(x, y) =

∂η
α,θ
(x, y)

∂y

=
(1− α) exp(y)

exp(y) + α(1− x) exp(η
α,θ
(x, y))

∈ (0, 1− α) .

The latter implies that

∂ ln(Qt/At)/∂ ln(Qt−1/At−1) ∈ (0, 1). (61)
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4.5 Concentrating employment out

Plugging in Nt = α (α+ θxt)
−1 and (51) in ln (Nα

t − exp (−zt))+θ ln(1−Nt)
yields

ln (N α
t − exp (−zt)) + θ ln(1−Nt)

= α lnα+ θ ln θ + (1 + θ) ln (xt)− (α+ θ) ln (α+ θxt)

= α lnα+ θ ln θ + (1− α)f
α,θ
(xt) ,

say, where

f
α,θ
(xt) =

(1 + θ) ln (xt)− (α+ θ) ln (α+ θxt)

1− α
. (62)

Note that f
α,θ
(x) is monotonic increasing:

f 0
α,θ
(x) =

α(1 + θ) + θ(1− α)x

x (α+ θx) (1− α)
> 0. (63)

Thus KPR model 3 now becomes:

KPR model 4:

max E0

∞X
t=0

λt
£
ln gα

¡
h
α,θ
(xt), yt−1

¢
+ f

α,θ
(xt)

¤
(64)

subject to 0 ≤ xt ≤ 1 and
yt = ln gα

¡
h
α,θ
(xt), yt−1

¢
+ ln(1− δ)− γ + vt+1 (65)

t ≥ 0,

y−1 =
α

1− α
ln (1 + (θ/α)x−1) +

1

1− α
ln (Q−1/A−1)

+ ln(1− δ)− γ + v0

vt ∼ i.i.d. N(0,σ2)

Note that it follows from (31), (56) and (66) that

yt = ln(1− δ)− γ + ln(Kt/At) + vt+1

= ln(1− δ)− γ +
α

1− α
ln (1 + (θ/α)xt)

+
1

1− α
ln (Qt/At) + vt+1.
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4.6 The Bellman equation of the concentrated model

As is well-known, KPR model 4 reads as: Find a contingency plan xt =
Ψ(yt−1) ∈ [0, 1], where Ψ is a nonrandom Borel measurable function, such
that (64) is maximized subject to (65). See Stokey, Lucas and Prescott
(1989). Then x0 = Ψ(y−1) is the actual decision made by the economic agent
at time t = 0, which applies to all t:

xt = Ψ(yt−1) = Ψ (ln(1− δ)− γ + ln(Kt−1/At−1) + vt) (66)

= Ψ

µ
ln(1− δ)− γ +

α

1− α
ln (1 + (θ/α)xt−1)

+
1

1− α
ln (Qt−1/At−1) + vt

¶
.

The optimal contingency plan can in principle be derived from the value
function, i.e., x0 = Ψ(y−1) maximizes the value function

V (x0|y−1) (67)

= ln gα
¡
h
α,θ
(x0), y−1

¢
+ f

α,θ
(x0) + λE0

∙
max
0≤x1≤1

V (x1|y0)
¸

= ln gα
¡
h
α,θ
(x0), y−1

¢
+ f

α,θ
(x0) + λ

Z ∞

−∞
V (Ψ(z)|z)

×
exp

h
−1
2

¡
z − ln(1− δ) + γ − ln gα

¡
h
α,θ
(x0), y−1

¢¢2
/σ2
i

σ
√
2π

dz

In practice this equality is too difficult to solve analytically, because
V (x0|y−1) depends on Ψ, whereas Ψ has to be determined by maximizing
V (x0|y−1). It is for this very reason that Kydland and Prescott (1982) pro-
pose an iterative procedure starting from an initial quadratic approximation
of V (x0|y−1).

5 Linearization
I will now solve (64) subject to a linearized version of the state process (65).
In particular, I will linearize (65) around the deterministic steady state.
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Set vt+1 in (65) equal to zero for all t, and denote the corresponding
variables in KPR model 4 by xt and yt. Then the deterministic version of
KPR model 4 is:

Deterministic KPR model 4:

max

∞X
t=0

λt
£
ln gα

¡
h
α,θ
(xt), yt−1

¢
+ f

α,θ
(xt)

¤
,

subject to 0 ≤ xt ≤ 1 and
yt = ln gα

¡
h
α,θ
(xt), yt−1

¢
+ ln(1− δ)− γ. (68)

In the deterministic steady state, xt → x as t→∞, because then Ct and
Qt will grow at the same exponential rate, and yt → y, where

y = ln gα
¡
h
α,θ
(x), y

¢
+ ln(1− δ)− γ. (69)

In order to determine xt and its limit x I will now linearize (68) around
(x, y). Observe from (43) and (69) that

∂ ln gα
¡
h
α,θ
(x), y

¢
∂y

=
exp(y)

αgα
¡
h
α,θ
(x), y

¢
+ (1− α) exp(y)

=
1− δ

α exp(γ) + (1− α)(1− δ)
,

∂ ln gα
¡
h
α,θ
(x), y

¢
∂x

=
h0
α,θ
(x)

α

Ã
∂ ln gα

¡
h
α,θ
(x), y

¢
∂y

− 1
!

= −h0
α,θ
(x)

µ
exp(γ)− (1− δ)

α exp(γ) + (1− α)(1− δ)

¶
,

hence

yt − y = ln gα
¡
h
α,θ
(xt), yt−1

¢− ln gα ¡hα,θ(x), y¢
≈ ∂ ln gα

¡
h
α,θ
(x), y

¢
∂x

(xt − x)

+
∂ ln gα

¡
h
α,θ
(x), y

¢
∂y

(yt−1 − y)
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=
1− δ

α exp(γ) + (1− α)(1− δ)
(yt−1 − y)

−h0
α,θ
(x)

µ
exp(γ)− (1− δ)

α exp(γ) + (1− α)(1− δ)

¶
(xt − x) .

Thus
yt ≈ β0 + β1yt−1 − β2xt, (70)

where

β0 = y + γ − ln(1− δ)− 1− δ

α exp(γ) + (1− α)(1− δ)
y

+x.h0
α,θ
(x)

µ
exp(γ)− (1− δ)

α exp(γ) + (1− α)(1− δ)

¶
x

β1 =
1− δ

α exp(γ) + (1− α)(1− δ)
∈ (0, 1− δ) (71)

β2 = h
0
α,θ
(x)

µ
exp(γ)− (1− δ)

α exp(γ) + (1− α)(1− δ)

¶
> 0 (72)

Replacing (68) by (70) in deterministic KPR model 4 now yields:

Linearized deterministic KPR model 4:

max
∞X
t=0

λt
£
yt + fα,θ (xt)

¤
(73)

subject to 0 ≤ xt ≤ 1 and yt = β0 + β1yt−1 − β2xt.

Because

yt =
1− βt+11

1− β1
+ βt+11 y−1 − β2

Ã
tX
j=0

βj1xt−j

!
,

and
∞X
t=0

λt

"
tX
j=0

βj1xt−j

#
=

1

1− λβ1

∞X
t=0

λtxt,
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it follows that (73) is equivalent to

max
0≤xt≤1

∞X
t=0

λt
∙
f
α,θ
(xt)− β2

1− λβ1
xt

¸
.

Thus, each xt is the solution of

max
x

∙
f
α,θ
(x)− β2

1− λβ1
x

¸
. (74)

and so is its limit x.
Substituting (71) and (72) in (74) it follows that the first-order condition

for (74) is

f 0
α,θ
(x) = h0

α,θ
(x)

µ
exp(γ)− (1− δ)

α exp(γ) + (1− α)(1− δ)− λ (1− δ)

¶
.

Hence it follows from (53) and (63) that

x

1− x =
α

1− α
+

(1− λ) (1− δ)

(1− α) (exp(γ)− (1− δ))
. (75)

Along the same lines we can linearize (65) around (x, y), which yields:

Linearized KPR model 4:

max E0

∞X
t=0

λt
£
yt + fα,θ (xt)

¤
subject to 0 ≤ xt ≤ 1 and

yt = β0 + β1yt−1 − β2xt + vt+1.

Also in this case xt is the solution of (74), hence the solution involved is
the same as (75):

Ct
It
=

xt
1− xt =

x

1− x =
α

1− α
+

(1− λ) (1− δ)

(1− α) (exp(γ)− (1− δ))
. (76)
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This solution, together with (31), (49) and (58), now completes the so-
lution of the KPR model. Given (76), it follows from (58) and (61) that
ln(Qt/At) is a stationary nonlinear AR(1) process, hence ln(Qt) and ln(At)
are cointegrated, with cointegrating vector (1,−1)T . However, ln(At) is not
observable. Therefore, I will convert to law of motion of output into a law of
motion for the output growth ln(Qt/Qt−1).

5.1 A nonlinear ARMA(1,1) model for output growth

Assuming that the economic agent restricts his choice of contingency plans
for xt to a constant x given by (76), the complete model consists of the
following four equations:

Ct/Qt = x, (77)

Nt ≡ 1/ (1 + (θ/α)x) = ν, (78)

say, and

ln(Qt/At) = η
α,θ

µ
x, µ+

1

1− α
ln(Qt−1/At−1) + vt

¶
, (79)

where µ = ln(1 − δ) − γ − (α/(1− α)) ln (ν) , together with equation (31),
written as

ln(Qt/Qt−1) = ln(Qt/At)− ln(Qt−1/At−1)− vt + γ. (80)

Recall from (58) that (79) now reads as

(Qt/At)
1/(1−α)ν−α/(1−α) − (1− x)(Qt/At) (81)

= (1− δ)(Qt−1/At−1)1/(1−α)ν−α/(1−α) exp(vt − γ).

The equations (80) and (81) can be combined into an equation for Qt/Qt−1
only, as follows. Substitute

(Qt−1/At−1) = (Qt/At)(Qt/Qt−1)−1 exp(−vt + γ) (82)

in (81), and solve for Qt/At, i.e.,

Qt/At = ν exp(vt − γ)(Qt/Qt−1)1/α (83)

×
∙

1− x
(Qt/Qt−1)1/(1−α)(exp(vt − γ))α/(1−α) − 1 + δ

¸(1−α)/α
.
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This result implies that

P [(Qt/Qt−1)1/(1−α)(exp(vt − γ))α/(1−α) − 1 + δ > 0] = 1,

hence
P [ln(Qt/Qt−1) > (1− α) ln(1− δ) + αγ − αvt] = 1, (84)

and consequently

ln(Qt/Qt−1) = (1− α) ln(1− δ) + αγ − αvt + wt, (85)

where
P [wt > 0] = 1.

Substituting (85) in (83) now yields

ln(Qt/At) =
1− α

α
[ln(1− x)] + ln(ν) (86)

+wt/α− 1− α

α
ln [exp(wt/(1− α))− 1] ,

and combining (80), (85) and (86) yields

exp(wt)

exp(wt/(1− α))− 1 (87)

=
exp(wt−1/(1− α))

exp(wt−1/(1− α))− 1 × (1− δ)α exp [α(vt − γ)] .

This equation can be solved as

wt = ϕ
α,δ,γ
(wt−1, vt), (88)

say. Hence

ln(Qt/Qt−1) (89)

= (1− α) ln(1− δ) + αγ − αvt

+ϕ
α,δ,γ
(ln(Qt−1/Qt−2)− (1− α) ln(1− δ)− αγ + αvt−1, vt)

= Φ
α,δ,γ

(ln(Qt−1/Qt−2), vt, vt−1) ,

say, which is a nonlinear ARMA(1,1) process.
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Note that I have implicitly assumed that δ < 1, because if δ ↑ 1 then it
follows from (85) that wt →∞. In the case δ = 1 equation (81) becomes

(Qt/At)
1/(1−α)ν−α/(1−α) = (1− x)(Qt/At) (90)

which can be rewritten as

ln(Qt/At) =
1− α

α
ln(1− x) + ln (ν) , (91)

which is the limit of (86) for wt →∞. It follows now from (91) and (80) that
in the case δ = 1,

ln(Qt/Qt−1) = γ − vt.

5.2 A linearized ARMA(1,1) model for output growth.

The nonlinear ARMA(1,1) model for ln(Qt/Qt−1) is pretty intractable. There-
fore, I will now linearize this model around the deterministic steady state for
wt, as follows. Replace vt in (87) by 0, and let the resulting steady state
solution be w. It it easy to verify that

w = (1− α) (γ − ln(1− δ)) . (92)

After some tedious calculations it follows that

∂ϕ
α,δ,γ
(wt−1, vt)

∂wt−1

¯̄̄̄
wt−1=w,vt=0

(93)

=
1− δ

α exp γ + (1− δ) (1− α)

and

∂ϕ
α,δ,γ
(wt−1, vt)
∂vt

¯̄̄̄
wt−1=w,vt=0

(94)

=
−α (1− α) (exp γ − (1− δ))

α exp γ + (1− δ) (1− α)
.

Therefore, we have approximately,

wt ≈
µ
1− 1− δ

α exp(γ) + (1− δ) (1− α)

¶
(1− α) (γ − ln(1− δ)) (95)

+
1− δ

α exp γ + (1− δ) (1− α)
wt−1 − α(1− α) (exp(γ)− (1− δ))

α exp(γ) + (1− α) (1− δ)
vt.
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Substituting (85) in (95) it follows, after some tedious but straightforward
manipulations, that approximately

∆ ln(Qt) = ln(Qt/Qt−1) (96)

= αγ

µ
exp γ − (1− δ)

α exp γ + (1− δ) (1− α)

¶
+

µ
1− δ

α exp γ + (1− δ) (1− α)

¶
ln(Qt−1/Qt−2)

+

µ −α exp(γ)
α exp(γ) + (1− α) (1− δ)

¶
vt

−
µ
1− δ

exp(γ)

¶µ −α exp(γ)
α exp γ + (1− δ) (1− α)

¶
vt−1

It is convenient to reparametrize this ARMA(1,1) model as

∆ ln(Qt) = κ∆ ln(Qt−1) + ξ + εt − ςεt−1, (97)

where

κ =
1− δ

α exp γ + (1− α) (1− δ)
, (98)

ξ = αγ

∙
exp γ − (1− δ)

α exp γ + (1− δ) (1− α)

¸
= γ(1− κ), (99)

ς =
1− δ

exp(γ)
< κ (100)

and

εt = −
µ

α exp(γ)

α exp(γ) + (1− α) (1− δ)

¶
vt. (101)

Note that if γ > 0 then exp γ − (1− δ) > 0, hence κ < 1. Moreover,
note that the value of xt does no longer play a role in (97), because the
linearization involved employs the assumption that xt is constant.

6 The data
The data for Ct and It is the same as used by Watson (1993), although
the sample period has been updated through 1994:4, so that we have 188
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quarterly US observations, from 1948:1 to 1994:4, on Ct = per capita total
consumption expenditures in1987 dollars, and It = per capita total fixed
investment in 1987 dollars. As output I will use Qt = Ct+It. KPR (1988a,b),
Watson (1993) and Bierens and Swanson (2000) use a differentQt, namely per
capita GNP less government purchases of goods and services in1987 dollars,
but in that case Ct and It do not add up exactly to Qt. These authors use
as employment Nt the per capita total labor hours in private nonagricultural
establishments. However, the KPR model assumes 0 < Nt < 1. Because
there is no clear upper bound to the per capita total labor hours, it will
not be possible to identify the parameter θ in (78) if we use this variable.
Therefore, in the empirical application I will focus on output growth and the
consumption-output ratio only.
Table 1 provides some descriptive data statistics of the model variables.

Table 1: Data statistics
V ariable Minimum Maximum Mean Median
xt = Ct/Qt 0.8117 0.8523 0.8315 0.8319
∆ ln(Qt) −0.0399 0.0518 0.0049 0.0055

We see from Table 1 that there is little variation in xt = Ct/Qt. Therefore,
the linearized solution (76) for xt = Ct/Qt reflects the stylized fact that in
reality xt = Ct/Qt is approximately constant.
I have subjected the time series ln(Ct), ln(It), and ln (xt/(1− xt)) =

ln(Ct)− ln(It) 5 to a variety of unit root and stationarity tests6, in particular
the ADF test [c.f. Fuller. (1996)] with lag length determined by the max-
imum of the Hannan-Quinn and Schwarz information criteria, the Phillips-
Perron (1988) test, the Breitung (2002) test, the Bierens (1993) unit root
test on the basis of higher order autocorrelations, the Bierens-Guo (1993)
stationarity test, and the KPSS (1992) stationarity test. It appears that
ln(Ct) and ln(It) are unit root with drift processes and that ln(Ct) − ln(It)
is stationary, hence ln(Ct) and ln(It) are cointegrated.

5The reason for the transformation ln (xt/(1− xt)) is to make the variable involved
unbounded, because a bounded time series cannot be a unit root process.

6These tests have been conducted using EasyReg International [Bierens (2003)] using
the EasyReg default setting for the truncation lags and other test parameters.
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7 The linearized theoretical model
Recall that (76) predicts that

ln (Ct)− ln(It) = ω, (102)

say, where

ω = ln

µ
α

1− α
+

(1− λ) (1− δ)

(1− α) (exp(γ)− (1− δ))

¶
, (103)

hence ln (Ct) and ln(It) are cointegrated without error, and the same holds
of course for ln (Ct) and ln(Qt). Consequently, model (97) also applies to
∆ ln(Ct) and ∆ ln(It) with the same parameters and error term. Therefore
my linearized version of the KPR model is determined by the following two
equations:

∆ ln(Ct) = κ∆ ln(Ct−1) + ξ + εt − ςεt−1, (104)

ln (Ct)− ln(It) = ω. (105)

Note that the deep parameter α, γ, δ,λ are identified from κ, ξ, ς,ω. Thus,
the vector time series process I will work with is:

Yt =

µ
∆ ln(Ct)
ln (Ct)− ln(It)

¶
,

which is assumed to be observable for t = 0, 1, 2, ..., n. The linearized DSGE
model (10) now corresponds to

µt−1(β1) =

µ
κ∆ ln(Ct−1) + ξ − ςrt−1
ω

¶
(106)

Σ =

µ
σ2ε 0
0 0

¶
,

where
β1 = (α, δ,λ, γ)

T ,

with κ, ξ, ς defined by (98), (99) and (100), respectively, ω by (103), σ2ε =
var(εt), and rt is defined recursively by

rt = ςrt−1 +∆ ln(Ct)− κ∆ ln(Ct−1)− ξ for t ≥ 1,
rt = 0 for t ≤ 0.
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If one would assume that the ARMA(1,1) model for ∆ ln(Ct) in (104)
represents the data generating process then it is justified to estimate the
parameters κ, ς and σ2ε by maximum likelihood, and the ML estimates of κ
and ς can then be used to estimate γ, α and δ:

Table 2: ML estimation results for ∆ ln(Ct)
parameters estimates t-value
κ 0.075000 0.027
ς 0.049000 0.017
γ = ξ/(1− κ) 0.004936 7.193
α =

¡
1
κ
− 1¢ ς

1−ς 0.635471
δ = 1− ς exp(γ) 0.950758
σ2ε = 0.0000833569 R2 = 0.0007

Although the estimated value of α is close to the usual calibrated value
(0.65), the estimated value of the capital depreciation rate δ is extremely
high. Moreover, replacing α, δ and γ in (103) by their estimated values, and
ω by the sample mean 1.597920 of ln (Ct)− ln(It) yield λ = −21.63578, which
is an impossible value.
Of course, the estimation approach proposed in this paper does not re-

quire that the theoretical model represents the data generating process, and
due to the singularity of model (105) it is unrealistic to assume that it does.
Therefore, the estimation results in Table 2 are only preliminary, and merely
serve as an illustration of what happens if the model is taken directly to the
data.

8 The econometric model
The starting point for the specification of an econometric model is a vector
error correction model (VECM) for

Y ∗∗t =

µ
ln(Ct)
ln(It)

¶
.

The Johansen cointegration analyses [Johansen (1988, 1991, 1994), Johansen
and Juselius (1990)] indicates that Y ∗∗t is cointegrated, with cointegrating
vector (1,−1)T and VECM order 3:

∆Y ∗∗t = π0 + β(1,−1)Y ∗∗t−1 +Π1∆Y
∗∗
t−1 +Π2∆Y

∗∗
t−2 + V

∗
t .
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It is easy to verify that this model can be written as a VAR(2) model for

Yt =

µ
∆ lnCt
ln(Ct/It)

¶
.

Thus, the conditional expectation ηt−1 of the econometric model (11) takes
the form

ηt−1 =
µ

ϕ1∆ lnCt−1 + ϕ2 ln(Ct−1/It−1) + ϕ3∆ lnCt−2 + ϕ4 ln(Ct−2/It−2) + ϕ5
ψ1∆ lnCt−1 + ψ2 ln(Ct−1/It−1) + ψ3∆ lnCt−2 + ψ4 ln(Ct−2/It−2) + ψ5

¶
.

The maximum likelihood estimation results involved are given in Table 3:

Table 3: Estimation result for the econometric model
∆ ln(Ct) ln(Ct/It)
estimates t-values estimates t-values

∆ ln(Ct−1) −0.049888 −0.681 −0.681538 −4.081
ln(Ct−1/It−1) −0.040625 −1.293 1.283050 17.919
∆ ln(Ct−2) 0.256873 3.425 −0.119271 −0.698
ln(Ct−2/It−2) 0.067755 2.165 −0.375238 −5.262
1 −0.039430 −2.517 0.151406 4.242
R2 0.140 0.911

Θ =

µ
7.10750955E-5 -4.34092710E-5
-4.34092710E-5 3.69134238E-4

¶
Note that the parameters of∆ ln(Ct−1) and ln(Ct−1/It−1) in the model for

∆ ln(Ct) are not significant, and neither are they jointly at any conventional
significance level, as appears from the Wald test involved.
In Figures 2-5 the responses of∆ ln(Ct) and ln(Ct/It) to unit shocks in the

innovations of these variables are presented, based on the upper-triangular
Cholesky decomposition of Θ, so that the shocks are imposed in the order
ln(Ct/It), ∆ ln(Ct). The dots represent the asymptotic one- and two-times
standard error bands, computed on the basis of Baillie’s (1987) approach.
Figures 2 and 3 confirm that the lagged ln(Ct/It) and ∆ ln(Ct) do not

have much effect on ∆ ln(Ct), as suggested by the low R2. Moreover, Figures
4 and 5 confirm once more that the theoretical model solution ln(Ct/It) ≡ ω
is quite unrealistic.
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Figure 2: Innovation response of ∆ ln(Ct) to a unit shock in ln(Ct/It).

Figure 3: Innovation response of ∆ ln(Ct) to a unit shock in ∆ ln(Ct).
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Figure 4: Innovation response of ln(Ct/It) to a unit shock in ln(Ct/It).

Figure 5: Innovation response of ln(Ct/It) to a unit shock in ∆ ln(Ct).
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9 Re-estimation of the KPR model
Given the estimates in Table 3, I have maximized (26) to β1 = (α, δ,λ, γ)

T

over the parameter space B = [0, 1]× [0, 1]× [0, 1]× [0, 0.1], using the simplex
method of Nelder and Mead (1965), for τ = 0.1. Although one may limit
the parameter space to an area of ”acceptable” values, acceptable in the
sense that the parameter space corresponds to values that theorists expect
and find acceptable as calibrated values, I have left the deep parameters free
in order to let the data speak. Only the deterministic growth rate γ has
been restricted to the interval [0, 0.1], but this is done for numerical reasons.
The choice of τ = 0.1 is arbitrary, of course. Due to the restriction (21) we
cannot choose τ too large, but what is too large depends on the optimal β1.
Anyhow, I have experimented with smaller values of τ, and the estimation
results appears to be about the same as for τ = 0.1.
Because (26) appears to have quite a few local maxima on B, the simplex

iteration has been restarted ten time from the last solution, and then this
procedure has been repeated starting from random drawing from the uniform
distribution on B. After running for a few hours the solution with the largest
value of (26) has been chosen. The restriction of the solution to B has been
enforced by assigning a the value −1029 to the objective function for values
outside B, and the restriction (21) has been enforced in the same way. The
results are presented in Table 4, for the deep parameters as well as for the
corresponding parameters of model (104), together with the 95% confidence
intervals of the deep parameter. The standard errors on which the confidence
intervals are based have been derived from the (10×10) variance matrix of the
estimated parameters of the VAR(2) model in Table 3, and the (numerically
computed) 4 × 10 matrix of derivatives of the deep parameters α, δ,λ, γ to
the parameters of the VAR(2) model, using the well-known delta method.
The confidence intervals have been modified by taking intersections with the
interval [0,1]. The estimate of σ2ε (the variance of εt in (97)) is based on (27),
with τ = 0.1, and the estimate of the deep parameter σ2 (the variance of vt
in (31)) has been derived from (101).
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Table 4: Estimation results for τ = 0.1
Deep parameters [95% confidence intervals] Model (104)-(105)
α 0.831885 [0.831062, 0.832707]
δ 0.999997 [0.999397, 1]
λ 0.039859 [0, 1]
γ 0.004948 [0.002823, 0.007073]
σ2 0.000027

κ 0.0000030
ς 0.0000025
ξ 0.0049482
ω 1.5990481
σ2ε 0.0000273

10 Discussion
The most striking result in Table 4 is the value of the capital depreciation
rate δ, which is almost equal to its upper bound 1, with very narrow 95%
confidence interval. Therefore, the time preference parameter λ is in practice
no longer identified from (103), which is reflected by the corresponding 95%
confidence interval. Also, the estimate of α is higher than the usually cali-
brated value (0.65), but its 95% confidence interval is very narrow. On the
other hand, observe from Table 1 that the estimated value of α is very close to
the sample mean 0.8315 of the consumption-output ratio Ct/Qt. If one would
interpret Ct as the cost of the production factor labor and Qt − Ct = It as
profit, this result corresponds to short-run profit maximization.
The estimated value of γ implies an annual deterministic growth rate of

about 2%, which is not unreasonable. Note that the implied value of ω is
very close to the sample mean 1.597920 of ln(Ct/It), as should be. Because
the AR and MA parameters κ and ς are very close to zero7, the theoretical
process for ∆ lnCt is approximately white noise. This was already apparent
from the preliminary estimation results in Table 2, because the ML estimates
of κ and ς were insignificant, and from the innovation responses in Figures 3
and 4. Moreover, observe from Table 3 that also the fit of the econometric
model for ∆ lnCt is very low. Furthermore, note that in the case δ = 1 the
linearized solution (104) of the KPR model is the exact solution, i.e.,

∆ ln(Ct) = γ − vt, Ct/Qt = α.

The KPR model describes a Robinson Crusoe8-type economy (before the

7Therefore, κ and ς do no longer contribute to the identification of α, but instead α is
now almost entirely indentified by (103).

8Daniel Defoe (1719).
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arrival of Friday), where Robinson has to decide how much of his harvest of
say potatoes to eat, how much to plant for the next harvest, and how much
to work in the fields, in order to maximize his lifetime utility. Because the
potatoes he plants yield only one harvest, in this economy the depreciation
rate of capital (potatoes) is total: δ = 1.
The results in Table 4 indicate that, given the structure of the KPRmodel

and its linearization, this Robinson Crusoe economy is the best fit for the
US economy. Theorists may find this conclusion a strong argument in favor
of calibration. However, the fact that the estimated deep parameters are
incredible indicates that the KPR model in its present form is of limited use
in explaining economic growth and business cycles in a real economy, and
using calibrated ”credible” parameters moves the model even farther away
from reality.
Note that my linearization procedure does not hinge on the assumption

that the random variables vt in (31) are i.i.d. N(0, σ2). The latter assumption
is only used in the Bellman equation (67), but this equation itself has not
been used. Therefore, it is possible to generalize the theoretical ARMA(1,1)
model for ∆ ln(Ct) by assuming a more general model for the vt’s. It is
even possible to specify the distribution of vt such that the theoretical model
(105) can almost match the corresponding econometric model, namely if vt =
(ς−κ)vt−1+κςvt−2+ut, where ut is i.i.d. N(0, σ2). Then εt−ςεt−1+κ(εt−1−
ςεt−2) = et, where et is i.i.d. N(0,σ2e), hence ∆ ln(Ct) = κ2∆ ln(Ct−2) + (1 +
κ)ξ + et. Moreover, using (102) the latter model can be written as

∆ ln(Ct) = κ2∆ ln(Ct−2) + ϕ ln(Ct−2/It−2) + (1 + κ)ξ − ϕω + et, (107)

which is close to the corresponding econometric model because the parame-
ters of ∆ ln(Ct−1) and ln(Ct−1/It−1) in the econometric model for ∆ ln(Ct) in
Table 3 were not jointly significant. However, only the growth rate γ can be
identified from (107) and (105), via (99), because given γ only the equations
(98) and (103) are available to determine the parameters α, δ and λ.

11 Conclusion
In the current literature on econometric analysis of DSGE models it is implic-
itly or explicitly assumed, eventually after adding noise to eliminate singu-
larity, that the model represents the data generating process, and that then
the model parameters can be estimated by linking the model to the data via
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maximum likelihood, GMM or other estimation procedures. In this paper I
adopt the theorist’s view that these models are misspecified as representatives
of data generating processes. Instead of linking a DSGE model directly to
the data, I propose to link it indirectly to the data via an econometric model
which is assumed to represent the data generating process. In doing so I can
estimate the deep parameters as function of the parameters of the econo-
metric model, without worrying about misspecification of the DSGE model.
Moreover, via the delta method the estimated deep parameters inherit the
asymptotic normality of the estimated parameters of the econometric model,
so that the former estimates can be endowed with confidence intervals.
The estimation approach in this paper is applicable to any linearized

DSGE model for which the link between the parameters of the linearized
model and the deep parameters is preserved. For example, the DSGE mod-
els considered by Corradi and Swanson (2004) are linearized using iterated
quadratic approximations of the value function, which preserves the link with
the deep parameters, and can therefore be estimated by my approach. The
same applies to the linearized DSGE model considered by Ireland (2003),
which is derived from the model restrictions and an Euler equation. Of
course, alternative linearization procedures may yield different estimates of
the deep parameters.
As indicated before, by calibrating DSGE models theorists will limit their

ability to detect model failure. In particular the extent of deviation of the
estimated deep parameters from the usual calibrated values, as in the KPR
case, provides useful information about possible model failure, and could (or
should!) lead to a quest for more realistic models. This paper provides new
econometric tools to assist in this endeavor.
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