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Svend Hylleberg’s celebrated definition

Seasonality is the systematic, although not necessarily regular,
intra-year movement caused by the changes of the weather, the
calendar, and timing of decisions, directly or indirectly through the
production and consumption decisions made by the agents of the
economy. These decisions are influenced by endowments, the
expectations and preferences of the agents and the production
techniques available in the economy. [from Modelling Seasonality,
Hylleberg 1992]
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A citation from Thomas J. Sargent

A decision to use seasonally unadjusted data can be justified by a
prior suspicion that one’s model is least reliable for thinking about
seasonal fluctuations. [from the foreword to The Econometric

Analysis of Seasonal Data, Ghysels and Osborn, 2001]
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We start with some examples of seasonal series.
Usually, one observes quarters or months. The concept can be
extended to weeks or days over a year or days (or business days)
within a week, or hours, minutes, seconds within a day etc.

Econometrics of Seasonality University of Vienna and Institute for Advanced Studies Vienna



Introduction to Seasonal Processes Deterministic seasonality Seasonal unit root processes

Austrian unemployment (monthly)
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Austrian unemployment by months (Franses graph)
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Growth of Austrian industrial production
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Growth of Austrian industrial production (seasonal graph)
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Stylized facts of many seasonal series

Means of quarters (months) may change over time, hence
time-constant seasonal means may be inappropriate. Even the
yearly time aggregate may show non-stationary features that are
difficult to model by time-series analysis. (example: unemployment
rates are notoriously difficult to model)
Modelling typically concentrates on seasonality in the mean. There
are also models for seasonality in variance etc.
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Seasonality in the mean: deterministic seasonality

Deterministic seasonality is defined as that part of the seasonal
cycle that is known when the “process is started”.
Usually, this concept is restricted to time-constant seasonal means
or time-constant growth rates that differ across quarters/months.
In these cases, deterministic seasonality can be expressed by means
of seasonal dummy variables that are 1 in specific quarters and 0
otherwise.
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Deterministic seasonality: simple model

yt =

S
∑

s=1

δstms + zt

Here, δ = 1 if t falls to season s, and δ = 0 otherwise. ms is the
mean for season s, S is the number of seasons (usually 4 or 12),
and zt is zero-mean stationary.

Econometrics of Seasonality University of Vienna and Institute for Advanced Studies Vienna



Introduction to Seasonal Processes Deterministic seasonality Seasonal unit root processes

Simulating the simple model with white-noise z
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Quarter means are −1.5,−0.5, 0.5, 1.5; Gaussian white noise with
variance 1.

Econometrics of Seasonality University of Vienna and Institute for Advanced Studies Vienna



Introduction to Seasonal Processes Deterministic seasonality Seasonal unit root processes

Simulated data: graph by quarters
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Even for this model with time-constant seasonal means, changes in
ranking among quarters occur frequently.
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Representation by trigonometric functions

yt =
S
∑

s=1

δstms + zt

This representation is often inconvenient, as we do not see the
overall average mean and the components of the seasonal cycle.
This suggests using instead the equivalent model

yt = α0 +

S/2
∑

k=1

{

αk cos

(

2πkt

S

)

+ βk sin

(

2πkt

S

)}

+ zt
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Trigonometric representation for S = 4
For S = 4, the trigonometric components are quite simple. We
have

cos

(

2πt

4

)

= cos
(πt

2

)

= 0,−1, 0, 1, . . .

cos

(

4πt

4

)

= cos(πt) = −1,+1,−1, . . .

sin

(

2πt

4

)

= sin
(πt

2

)

= 1, 0,−1, 0, . . .

sin

(

4πt

4

)

= 0

α0 is the average mean, α1 and β1 denote the annual wave, and
α2 gives the half-year component.
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Example: trigonometric representation for the textbook
example

Quarter means are (−1.5,−0.5, 0.5, 1.5)
m1 = −1.5; m2 = −0.5; m3 = 0.5; m4 = 1.5
α0 = 0; α1 =?; α2 =?; β1 =?
Apply formulas (book (1.3)-(1.5) are in error!):

α1 =
1

2

4
∑

s=1

ms cos
(sπ

2

)

=
1

2
(−m2 +m4) = 1

α2 =
1

4

4
∑

s=1

ms cos (sπ) =
1

4
(−m1 +m2 −m3 +m4) =

1

2

β1 =
1

2

4
∑

s=1

ms sin
( sπ

2

)

=
1

2
(m1 −m3) = −1

“yearly cycle at π/2 dominates”
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Ghysels/Osborn example: decomposition into
trigonometric components

Plus signs mark the seasonal deterministic cycle.
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Example: trigonometric representation for growth of
Austrian industrial production

Sample quarter averages are: −0.079, 0.071,−0.075, 0.121
m1 = −0.079; m2 = 0.071; m3 = −0.075; m4 = 0.121
α0 = 0.0094; α1 =?; α2 =?; β1 =?

α1 =
1

2

4
∑

s=1

ms cos
(sπ

2

)

=
1

2
(−m2 +m4) = 0.025

α2 =
1

4

4
∑

s=1

ms cos (sπ) =
1

4
(−m1 +m2 −m3 +m4) = 0.086

β1 =
1

2

4
∑

s=1

ms sin
(sπ

2

)

=
1

2
(m1 −m3) = −0.002

Semiannual cycle dominates (π).
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Industrial production growth: decomposition into
trigonometric components

Plus signs mark the seasonal deterministic cycle.
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Another model class: linear stationary seasonal models

For example:

yt = φSyt−S + εt , |φS | < 1

Such models generate cycles of length S . Unfortunately, these
cycles are too transitory to be a useful representation for seasonal
cycles.
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Simulating the simple model with S = 4, φ = 0.9,
Gaussian white-noise ε, T = 1000 + 200
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Stationary model: simulated data by season
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Too many crossings, not a realistic representation
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More general stationary models

For example,

φ(B)
(

1− ϕBS
)

yt = θ(B)εt ,

or, in the Box-Jenkins tradition

φS (B
S)yt = θS(B

S)εt ,

Such variants tend to be a bit more realistic.
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Important model class: seasonal unit-root non-stationary
model

The basic process of this class is the seasonal random walk

yt = yt−S + εt ,∆Syt = εt ,

using the notation ∆S = 1− BS . The seasonal random walk
consists of S independent random walks that alternate.
Observation t depends on observations at t − S , t − 2S , . . . only.
Seasonal cycle is very persistent but it also changes persistently.
Variance is increasing and therefore the process is not stationary.
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Simulating the seasonal random walk with S = 4
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Simulated SRW by season
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Few crossings but: some may feel uneasy at the divergence between
seasons.
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More general seasonal unit-root models

The model may be generalized by assuming seasonal differences to
be autocorrelated. For example, consider:

φ(B)∆Syt =

S
∑

s=1

δstms + θ(B)εt ,

assuming φ(B) and θ(B) to be well-behaved (all roots outside unit
circle). These are, according to Box-Jenkins, members of the
SARIMA class. y is non-stationary and seasonal cycles are
persistent and also persistently changing.
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Summary: important seasonal models

I Deterministic seasonality: time-constant seasonal means:
non-stationary but sub-series for seasons are stationary

II Stochastic seasonality

a stationary stochastic seasonality: time-constant means (not so
good models)

b unit-root seasonality: non-stationary, seasonal means evolve over
time

Models from class II may contain elements from models I.
Stochastic models usually also contain deterministic parts.
I: summer remains summer
II: summer may become winter
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Unobserved components

Ideology: Box-Jenkins type time-series analysis looks for possible
unit roots in ARMA representations. Unobserved-components
models assume all unit-root components to be there and may test
for their “significance”. For example (ns=non-seasonal,
s=seasonal part):

yt = ynst + y st ,

∆ynst = εnst ,
(

1 + B + B2 + . . .+ B s−1
)

y st = εst

Here, a crucial parameter is the variance ratio between errors.
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Unobserved components: simulated data
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Left graph with σns/σs = 3, right graph with σns/σs = 1/3. Both cases
are really seasonal unit-root models.
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More models: periodic processes

Different coefficients for different seasons. A simple example:

yt =

(

S
∑

s=1

δstφ
P
s

)

yt−1 + εt

This is a first-order autoregression with periodically varying
coefficients. Stability conditions are relatively complex. Here,
absolute value of product of all coefficients should be less than one.
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Simulating a periodic model: S = 2, φP
1 = 0.7, φP

2 = 1.35
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Simulated periodic process by semester
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Seasons do not wander apart as in the SRW but model class is complex.

There are many parameters to be estimated.
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Seasonality in higher moments I

Stochastic seasonal unit roots are really random-coefficients
models, for example:

yt = (1− φt) yt−S + εt ,

φt = ρφt−1 + ξt ,

|ρ| < 1,

with white-noise εt and ξt . Note that Eφt = 0. This model class
can be similar to ARCH models.
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Seasonality in higher moments II

Seasonal GARCH models may look like

yt = εt ,

εt = νt
√

ht ,

ht = µ+ φε2t−S + θht−S

where νt is iid. Similarly, one may consider periodic GARCH.
Note error in book: (1.20)-(1.21) yield imaginary data!
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More on the deterministic seasonal model

Now, the model has an average-mean constant µ, and the sum of
all ms is assumed as 0:

yt = µ+
S
∑

s=1

msδst + zt ,

where z is a mean-zero stationary process. The model can be
generalized to contain seasonal trends, but this is usually
implausible (diverging seasons). Also note the sample-size
convention:
There are T observations for T/S = Tτ years.
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Transformation to trigonometric representation

For quarterly data (S=4), it is relatively straight forward to switch
between a variant of the dummy representation (sum of γs is
non-zero)

yt =

4
∑

s=1

γsδst + zt

and the trigonometric form (β2 = 0)

yt = µ+

2
∑

k=1

{

αk cos

(

πkt

2

)

+ βk sin

(

πkt

2

)}

+ zt .
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Using simple algebra, one can show that

Γ = RA,

where Γ = (γ1, γ2, γ3, γ4)
′ and A = (µ, α1, β1, α2)

′ are related via

R =









1 0 1 −1
1 −1 0 1
1 0 −1 −1
1 1 0 1









R is non-singular and it also has a simple inverse.
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The inverse of R

R−1 =
1

4









1 1 1 1
0 −2 0 2
2 0 −2 0
−1 1 −1 1









can be used for the transformation A = R−1Γ .
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Re-consider the example

In that example, it was given that:
m1 = −1.5; m2 = −0.5; m3 = 0.5; m4 = 1.5
The sum is 0, hence γs and ms coincide. Evaluation by insertion
yields

R−1Γ = A =









0
1
−1
0.5









Note that here the semi-annual ‘fast’ seasonal α2 is in the last
position.
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Re-consider Austrian production example

In that example, we estimated (new γ notation):
γ1 = −0.079; γ2 = 0.071; γ3 = −0.075; γ4 = 0.121
Note that the sum is not 0. We apply the transformation and get

R−1Γ = A =









0.0094
0.0250
−0.0022
0.0864









The first entry stands for the ‘average mean’. The annual growth
rate is around 3.8%.
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Stochastic and deterministic seasonality

Idea: test procedures should be developed that have deterministic
seasonality as the null hypothesis. Then, the alternative represents
cases where purely deterministic seasonal models are mis-specified.
This alternative must be understood in more detail.
Warning: deterministic seasonality is not non-stochastic. Rather,
‘deterministic’ is a special case of ‘stochastic’. However, current
usage identifies ‘stochastic seasonality’ with stationary and
unit-root seasonality and ‘deterministic seasonality’ with pure
dummy patterns.
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More on the stationary model IIa

The simple seasonal autoregression (S = 4, season s in year τ)

zsτ = φ4zs,τ−1 + εsτ , s = 1, . . . , 4, τ = 1, . . . ,Tτ ,

describes a stable (asymptotically stationary) model for |φ4| < 1.
Repeated substitution yields:

var (zsτ ) = φ2τ4 var (zs0) + σ2ε

τ−1
∑

j=0

φ2j4

The variance just depends on the history of a specific season. In
principle, the variance of starting values may vary across seasons.
As τ becomes large, the variance converges to σ2/(1− φ24).
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The model can also be written as

(

1− φ4B
4
)

zt = εt

The operator can be decomposed as (assume a positive φ4)

1− φ4B
4 =

(

1− 4
√

φ4B
)(

1 + 4
√

φ4B
)(

1 + 2
√

φ4B
2
)

and the inverted roots are clearly ± 4
√
φ4,± 4

√
φ4i .

The roots are symmetric around 0, on the real and on the
imaginary axis. As φ4 approaches one, they approach the unit
circle. If S = 12, the pattern is comparable.

Econometrics of Seasonality University of Vienna and Institute for Advanced Studies Vienna



Introduction to Seasonal Processes Deterministic seasonality Seasonal unit root processes

More on the seasonal random walk

Formally, this is the first-order seasonal autoregression with φ4 = 1:

ysτ = ys,τ−1 + εsτ

= ys0 +

τ
∑

j=1

εsj , s = 1, . . . , 4,

which yields immediately

var (ysτ ) = var (ys0) + τσ2ε .
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Inverted roots for seasonal autoregressions

S = 4 and S = 12. Roots for stationary autoregression (cyan) and for

seasonal RW (magenta).
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A functional limit theorem

For the seasonal random walk (and for any random walk), one may
use a special property called the functional central limit theorem
(FCLT), here

T−1/2
τ ys,rτ ⇒ σWs(r), s = 1, . . . ,S , r ∈ [0, 1].

The scaled trajectory (in its entirety) converges in distribution to
Brownian motion. Ws denotes a standard Brownian motion.
(Note that the form in the textbook does not make much sense, as
r is missing from the left side)
This holds for any season s, we have S independent Brownian
motions as limits (spring motion, summer motion etc.).

Econometrics of Seasonality University of Vienna and Institute for Advanced Studies Vienna



Introduction to Seasonal Processes Deterministic seasonality Seasonal unit root processes

The genesis of limit theorems

Laws of large numbers (LLN) are used to establish that, under
certain conditions

x̄T =
1

T

T
∑

t=1

xt → Ex .

Central limit theorems (CLT) are used to establish that, under
certain conditions (note that LLN is used)

1√
T

T
∑

t=1

(xt − x̄T ) ⇒ N(0, σ2).
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Functional central limit theorems establish joint convergence for
the function b(r) on [0, 1] that is defined by T–vectors of all
partial sums from a CLT

b(r) =
1√
T

rT
∑

t=1

(xt − x̄) , r =
1

T
,
2

T
, . . .

(and some interpolation for other r) to a stochastic process on
[0, 1], usually a form of Brownian motion. Because of ongoing
refinement, convergence works for all r in [0, 1]. Because Brownian
motion is normally distributed for any fixed r , traditional CLTs will
then hold for any fixed r and particularly for r = 1.
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Some more limits

T−3/2
τ

Tτ
∑

τ=1

ysτ ⇒ σ

∫ 1

0
Ws(r)dr

T−1
τ

Tτ
∑

τ=1

εsτ ys,τ−1 ⇒ σ2
∫ 1

0
Ws(r)dWs(r)

T−2
τ

Tτ
∑

τ=1

y2sτ ⇒ σ2
∫ 1

0
W 2

s (r)dr

These are limit properties but not functional. The expressions on
the right are real random variables. The first one is Gaussian, the
second one is a transformed chi-square, the last one is
non-standard. These are derived using FCLT and the property that
weighted sums converge to integrals.
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What are the limit properties used for?

These limit properties are used to derive asymptotic properties of
estimators for parameters of non-stationary seasonal processes of
type IIb (unit roots).
They are also useful for deriving asymptotic properties of test
statistics.
Here, test statistics are presented with the null of a purely
deterministic seasonal model and a unit-root alternative. In
practice, the reverse idea is more common (next section).
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Ideas for seasonal stationarity tests

1. One may use an unobserved-components model that assumes
unit-root components. If the variance of the seasonal
component is zero, this is evidence for the deterministic null
hypothesis.

2. One may take seasonal differences of the data. If the
deterministic model is correct, seasonal differences have no
seasonality and they have unit roots in their moving-average
representation.

Both ideas have been taken up in the literature. They lead to
comparable test statistics that also have comparable distributions
under the deterministic-stationary null.
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The Canova-Hansen test

Formally, the trigonometric representation of the deterministic
model can be written as

yt =
S
∑

s=1

F ′

sAδst + zt ,

where F ′

s is a row from the transformation matrix R . If A = At is
allowed to vary over time like a random walk, the variable yt will
belong to the alternative and have seasonal unit roots (but will not
be a simple SRW). Canova and Hansen motivated this idea by
a UC model.
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Some properties of the Canova-Hansen test

The test statistic is constructed on the Lagrange-multiplier (LM)
principle. The model is estimated under the null (deterministic),
and ‘improvements of fit’ in the direction of seasonal unit roots are
explored.
There are versions that test for specific unit roots (1,−1, i) only.
The limit distribution is defined by an integral over a Brownian
bridge (starts at 0 for r = 0 and comes down to 0 again for r = 1).
This law is sometimes called the van Mises distribution, for the
standard version a VM(S) law with S degrees of freedom. One has
to consult special tables for the VM significance points.
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The Caner test

This test is very similar to the Canova-Hansen test. The main
difference is that Caner bases his derivation on a parametric
model. He considers the autoregressive representation

φ(B)yt =

S
∑

s=1

F ′

sAδst + εt ,

where again under the alternative At is time-dependent and
contains unit roots. Caner uses the observation that, under the
null, seasonal differences ∆Syt have a unit root in the
moving-average representation.
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Some properties of the Caner test

Like the Canova-Hansen test, the Caner test is derived from the
LM principle. The limiting distribution of the test statistic under
the null is again a VM(3) distribution, if S = 4 and both the root
at − 1 and the root pair at ±i are tested for. If also the unit root
at +1 is under scrutiny, the limiting law will be VM(4).
Generally, the experience of many researchers is that tests based on
parametric models are slightly more reliable than those based on
non-parametric concepts. Thus, the Caner test may be better than
the Canova-Hansen test.
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The Tam-Reinsel test

Tam and Reinsel preferred to derive a test solely on the idea of
moving-average unit roots. If, in the special ARMA model

Φ(B)∆Syt = θ∗(B)(1− θSB
S)εt ,

(assuming well-behaved Φ and θ∗) we find θS = 1, then the factor
∆S cancels from both sides and yt has a representation without
seasonal or other unit roots. Under the alternative θS 6= 1, yt has
all S seasonal unit roots.
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Some properties of the Tam-Reinsel test

Like the Canova-Hansen and Caner tests, the construction uses the
LM principle. The limit distribution is also a scaled version of
VM(S).
The Tam-Reinsel test is less popular than the other tests, as it
does not allow to investigate the occurrence of some of the unit
roots. In many applications, the researcher does not want to
consider the unit root at 1 together with the seasonal roots.
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Seasonal integration

In modern language, one does not use words like ‘seasonal ARIMA’
or ‘seasonal non-stationarity’ but rather seasonal integration. A
precise definition is:

Definition
The process yt , observed at S equally spaced time intervals per
year, is seasonally integrated of order d , in symbols yt ∼ SI (d), if
∆d

Syt is a stationary, invertible ARMA process.

Usually, d > 1 is never used in applications. An SI(1) process has
S unit roots, among them the root at +1.
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Seasonal random walk with drift

The process
∆Syt = γ + εt , t = 1, . . . ,T ,

with εt IID(0, σ
2), is called the SRW with drift γ. It is clearly

first-order seasonally integrated SI(1). By continuous substitution,
one gets

ysτ = γτ + ys0 +

τ
∑

j=1

εsj , s = 1, . . . ,S , τ = 1, . . . ,Tτ ,

with possibly different seasonal starting values ys0.
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SRW with drift: simulated trajectory
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Starting patterns survive for a while and change permanently. The trend

dominates for larger γ, here γ = σ2 = 1.
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Some properties of the SRW with drift

The SRW with drift really consists of S different and independent
drifting random walks that alternate with the seasons. All S
random walks have identical drift.
The deterministic component of a SRW with drift consists of the
linear trend and of the seasonal pattern in the starting values.
Usual first differences of a seasonal random walk eliminate the
trend and yield a series with strong seasonal pattern. The series
still has S − 1 seasonal unit roots.
Second-order seasonal differences or differences ∆k with k < S

eliminate the trend and some though not all seasonal unit roots.

Econometrics of Seasonality University of Vienna and Institute for Advanced Studies Vienna



Introduction to Seasonal Processes Deterministic seasonality Seasonal unit root processes

Differences of seasonal random walks
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First-order differences of the SRW (left) and second-order seasonal

differences (right) applied to drifting seasonal random walks.
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Seasonal dummies plus SRW

The model

∆Sysτ = γs + εsτ , s = 1, . . . ,S , τ = 1, . . . ,Tτ ,

plays a role as an auxiliary model in tests. It is not a useful model
per se, as it implies divergent seasonal trends. This is similar to the
trend plus random-walk model in the Dickey-Fuller test: an
auxiliary construction that does not describe the data in a plausible
way, as it implies a quadratic trend.
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SRW plus dummies: simulated trajectory
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This simulation uses the textbook values Γ = (−1.5,−0.5, 0.5, 1.5)′. The

variable is not SI (1), as ∆4y is not stationary!
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The general SI(1) process

According to definition, all SI(1) processes are described by the
model

φ(B)∆Syt = γ + θ(B)εt ,

with lag orders p for the AR and q for the MA polynomial. Then,
y can be expressed as

ysτ = γτ + ys0 +
τ
∑

j=1

zsj , s = 1, . . . ,S , τ = 1, . . . ,Tτ ,

with z a stationary ARMA process. The S alternating seasons are
no more independent.
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Transforming seasonal variables

For many methods and derivations, it is convenient to apply
transformations to the observed seasonal variables. Particularly,
one may apply the transformations that were used for the seasonal
dummies (assume S = 4):











y
(1)
t

y
(2)
t

y
(3)
t

y
(4)
t











=









1 1 1 1
−1 1 −1 1
0 −1 0 1
1 0 −1 0

















yt−3

yt−2

yt−1

yt









The transformation matrix is the transpose of the R that was
introduced before.
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The seasonal moving average y (1)

The first transformed variable is defined as

y
(1)
t = yt + yt−1 + yt−2 + yt−3,

4 times a seasonal average. If y is SI(1), then y (1) has no seasonal
unit roots but it has the unit root at +1. It is I (1). If y is a SRW,
then y (1) is a random walk. y (1) can also be written as

y
(1)
t =

(

1 + B + B2 + B3
)

yt = (1 + B)(1 + B2)yt .
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The alternating average y (2)

The second transformed variable is defined as

y
(2)
t = yt − yt−1 + yt−2 − yt−3,

an alternating seasonal average. If y is SI (1), then y (2) does not
have unit roots at +1 nor at ±i but a root at −1. If y is a SRW,
then y (2) is a ‘random jump’. y (2) can also be written as

y
(2)
t =

(

1− B + B2 − B3
)

yt = (1− B)(1 + B2)yt .
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The half-year differences y (3) and y (4)

The third and fourth transformed variables are defined as

y
(3)
t = yt − yt−2,

y
(4)
t = −yt−1 + yt−3,

half-year differences ∆2yt and ∆2yt−1. If y is SI (1), these do not
have unit roots at ±1 but they have roots at ±i . If y is a SRW,
these are two independent, alternating random-jump processes.
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Transformed variables: simulated trajectories
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From left to right: y (1), y (2), and y (3), if original y is a SRW with drift.
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Testing seasonal integration

Idea: in all seasonal unit root tests, the null hypothesis is the SI (1)
model (or some generalization), while the alternative is a model
without seasonal unit roots (or without some of them), although
possibly with seasonal deterministic patterns (or also seasonal
stationary patterns).
The limit theorems from the seasonal stationarity tests are again
the basis for the limit distributions of test statistics. Rather than
on Brownian bridge integrals (VM distributions), they now depend
on integrals over (transforms of) Brownian motion proper. These
are generalizations of the Dickey-Fuller distributions.
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Dickey-Hasza-Fuller test

The oldest and simplest test is based on the model

yt = φSyt−S + εt ,

where φS = 1 under the SI (1) null hypothesis. In practice, the
equation will be ‘augmented’ with deterministic regressors
(dummies or a constant only) and with lagged stationary seasonal
differences ∆Sy . Usually, the model is re-written as

∆Syt = αSyt−S + εt ,

and αS = 0 under the SRW or SI (1) null.
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The DHF test statistic

In order to test the null αS = 0 against the alternative αS < 0 in
the model

∆Syt = αSyt−S + εt ,

one may use the t–statistic for the coefficient αS . As in the
Dickey-Fuller test, this t–statistic is not t–distributed under the
null.
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The distribution of the DHF statistic

Dickey-Fuller’s test statistic has an asymptotic law that is
characterized as

∫ 1

0
W (r)dW (r)/

(
∫ 1

0
W 2(r)dr

)1/2

,

where W is standard Brownian motion. Similarly, the DHF statistic
has the asymptotic null distribution

S
∑

s=1

∫ 1

0
Ws(r)dWs(r)/

(

S
∑

s=1

∫ 1

0
W 2

s (r)dr

)1/2

,

with S different Brownian motions.
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DHF is rarely used nowadays

The problem of the DHF test is that, under the null hypothesis,
one has exactly S unit roots. Under the alternative, one has no
unit root. This is very restrictive, as some people may wish to test
for specific seasonal or non-seasonal unit roots. The HEGY test by
Hylleberg, Granger, Engle, Yoo can do this. Therefore, it
is the most customary test.
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The HEGY test

Hylleberg, Engle, Granger, Yoo (HEGY) suggest to build on the
regression (S = 4)

∆4yt = π1y
(1)
t−1 − π2y

(2)
t−1 − π3y

(3)
t−2 − π4y

(3)
t−1 + εt ,

where y (j) are the transformed variables introduced above. It is
important that the four regressors together form a one-one
transform of (yt−1, yt−2, yt−3, yt−4)

′, and that every AR(4) model
can be re-written in this form, whether it has unit roots or not.
[Other authors use other sign conventions for the coefficients]
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All HEGY coefficients are zero

We see immediately that, if all p coefficients in

∆4yt = π1y
(1)
t−1 − π2y

(2)
t−1 − π3y

(3)
t−2 − π4y

(3)
t−1 + εt ,

are zero, then y is a seasonal random walk and is therefore SI(1).
One can use the F–statistic for such a joint test. As expected, the
null distribution of this F–statistic is not an F distribution but it
depends on integrals over four Brownian motion terms. Such an F

test is at least as informative as the DHF test.
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The first coefficient π1 is 0

If π1 = 0, one has

∆4yt = −π2y (2)t−1 − π3y
(3)
t−2 − π4y

(3)
t−1 + εt .

The factor 1− B is contained in ∆4 but also in the construction of
the variables y (2) and y (3). Therefore, the AR operator φ(z) in

φ(B)yt = ∆4yt+π2∆(1+B2)yt−1+π3∆(1+B)yt−2+π4∆(1+B)yt−1

has a unit root at +1. The t–test on π1 = 0 is just a variant of the
usual Dickey-Fuller test. Same tables are to be consulted.
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The second coefficient π2 is 0

If π2 = 0, one has

∆4yt = π1y
(1)
t−1 − π3y

(3)
t−2 − π4y

(3)
t−1 + εt .

The factor 1 + B is contained in ∆4 but also in the construction of
the variables y (1) and y (3). Therefore, the AR operator φ(z) in

φ(B)yt = ∆4yt−π1(1+B)(1+B2)yt−1+π3∆(1+B)yt−2+π4∆(1+B)yt−1

contains a unit root at −1. The t–test for π2 = 0 tests for the fast
semi-annual cycle root. Critical values are the same as for the
Dickey-Fuller test.
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The coefficients π3 and π4 are 0

If π3 = π4 = 0, one has

∆4yt = π1y
(1)
t−1 − π2y

(2)
t−1 + εt .

The factor 1 + B2 is contained in ∆4 but also in the construction
of the variables y (1) and y (2). Therefore, the AR operator φ(z) in

φ(B)yt = ∆4yt − π1(1 + B)(1 + B2)yt−1 + π2∆(1 + B2)yt−1

contains the complex unit roots ±i . The F–statistic for
π3 = π4 = 0 tests for the annual seasonal frequency and needs
special tables for significance points. Separate t–tests for π3 = 0
and π4 = 0 should not be used.
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The three coefficients π2, π3, π4 are 0

If π2 = π3 = π4 = 0, one has

∆4yt = π1y
(1)
t−1 + εt .

The autoregressive operator φ(B) has the unit root at −1 and the
complex roots at ±i . There may be a unit root at +1 or not. The
F–test for π2 = π3 = π4 = 0 tests for the presence of all seasonal
unit roots. When it rejects, this is evidence on either no unit root
at −1 or no unit root at ±i . The distribution of the F–statistic
under the null has been tabulated by HEGY.
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Deterministic terms in the HEGY test

Usually, either a constant or seasonal dummies are added to the
HEGY regression, for example

∆4yt =

4
∑

s=1

γsδst + π1y
(1)
t−1 − π2y

(2)
t−1 − π3y

(3)
t−2 − π4y

(3)
t−1 + εt ,

This is done, as in the Dickey-Fuller test, to take care of the purely
deterministic seasonality without (some) unit roots under the
alternative. The dummies improve test properties. They also affect
significance points for the HEGY F and t statistics.
Note that the model with π1 = π2 = π3 = π4 = 0 but γs 6= 0 is
highly implausible.
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Lag augmentation in the HEGY test

If errors are not white noise, distributions are invalid. To get
white-noise errors, one can augment the equation by lags of ∆4yt .
These lags are stationary under null and alternative.

∆4yt =
4
∑

s=1

γsδst + π1y
(1)
t−1 − π2y

(2)
t−1 − π3y

(3)
t−2 − π4y

(3)
t−1

+

p
∑

j=1

ψj∆4yt−j + εt

Some algebra shows that every autoregression of order p + 4 can
be transformed into this form (ignoring the dummies).
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Example: Austrian industrial production

Data for log production (without taking first differences) is for
1957-2009. AIC and also BIC recommend three additional
augmenting lags, and we estimate the regression

∆4yt =
4
∑

s=1

γsδst + π1y
(1)
t−1 − π2y

(2)
t−1 − π3y

(3)
t−2 − π4y

(3)
t−1

+

3
∑

j=1

ψj∆4yt−j + εt

by OLS. First, we analyze the t–statistics for π1 and π2, and then
the F–statistic for π3 = π4 = 0.
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The statistic t(π1) is 2.10. Using the usual Dickey-Fuller µ, we see
that this is insignificant. There is evidence on a unit root at +1, as
expected.
The statistic t(π2) is 2.74. According to HEGY, we revert its sign.
The literature gives a critical 5% value at − 3.11 and a critical
10% value at −2.54 . Because −2.54 > −2.74 > −3.11, the unit
root at −1 is rejected at 10% but not at 5%.
The statistic F (π3, π4) is 8.08. This is larger than the 5%
significance point by HEGY of 6.57, though smaller than the 1%
point of 8.79 . The unit root pair at ±i is rejected at the usual 5%
level.
No seasonal unit root at ±i but some evidence on a unit root at
−1 and convincing evidence on a unit root at +1. The joint
F–test F (π2, π3, π4) has a 1% point of 7.63, which is surpassed by
the observed value of 8.48. Thus, the joint test would tend to
reject all seasonal unit roots.
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