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Linear Regression with One Regressor

Outline

• 1. The population linear regression model

• 2. The ordinary least squares (OLS) estimator and the sample 
regression line

• 3. Measures of fit of the sample regression

• 4. The least squares assumptions

• 5. The sampling distribution of the OLS estimator

Based on Chapter 4. Stock and Watson. “Introduction to 
Econometrics” 3rd Edition. 
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The population regression line:

• Why are      and “population” parameters?

• We would like to know the population value of .

• We don’t know , so must estimate it using data.
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The Population Linear Regression Model

• We have n observations, (Xi, Yi), i = 1,.., n.

• Xi is the independent variable or regressor

• Yi is the dependent variable

• = intercept (the value of population when X=0)

• = slope (change in Y associated with a unit change in X)

• = the regression error (all of the factors )

• The regression error consists of omitted factors. In general, these omitted 
factors are other factors that influence Y, other than the variable X. The 
regression error also includes error in the measurement of Y.
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The population regression model in a picture: Observations on Y and 

X (n = 7); the population regression line; and the regression error (the “error term”):
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Estimating the coefficient
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Mechanics of OLS
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The OLS estimator solves:

• The OLS estimator minimizes the average squared difference between 
the actual values of Yi and the prediction (“predicted value”) based on 
the estimated line.

• This minimization problem can be solved using calculus (App. 4.2).
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Interpretation of the estimated slope and intercept

TestScore = 698.9 – 2.28*STR

• Districts with one more student per teacher on average have test 
scores that are 2.28 points lower.

• The intercept (taken literally) means that, according to this 
estimated line, districts with zero students per teacher would 
have a (predicted) test score of 698.9. But this interpretation of 
the intercept makes no sense – it extrapolates the line outside the 
range of the data – here, the intercept is not economically 
meaningful.
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Predicted values & residuals:

• One of the districts in the data set is Antelope, CA, for which 
STR = 19.33 and Test Score = 657.8
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OLS regression: STATA output

(We’ll discuss the rest of this output later.)
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Measures of Fit

• Two regression statistics provide complementary measures of 
how well the regression line “fits” or explains the data:

• The regression R2 measures the fraction of the variance of Y 
that is explained by X; it is unitless and ranges between zero 
(no fit) and one (perfect fit)

• The standard error of the regression (SER) measures the 
magnitude of a typical regression residual in the units of Y.
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The regression R2 is the fraction of the sample variance of Yi “explained” by the 
regression. 

• Total sum of squares = “explained” SS + “residual” SS

Definition of R2:

• R2 = 0 means ESS = 0
• R2 = 1 means ESS = TSS
• 0 ≤ R2 ≤ 1
• For regression with a single X, R2 = the square of the correlation coefficient 

between X and Y
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The Standard Error of the Regression (SER)

• The SER measures the spread of the distribution of u. The SER 
is (almost) the sample standard deviation of the OLS 
residuals:

• The SER:
– has the units of u, which are the units of Y

– measures the average “size” of the OLS residual (the average 
“mistake” made by the OLS regression line)
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Technical note: why divide by n–2 instead of n–1?

• Division by n–2 is a “degrees of freedom” correction – just like 
division by n–1 in     , except that for the SER, two parameters 
have been estimated (     and , by and    ), whereas in only 
one has been estimated (     , by ).

• When n is large, it doesn’t matter whether n, n–1, or n–2 are used 
– although the conventional formula uses n–2 when there is a 
single regressor.

For details, see Section 17.4
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Example of the R2 and the SER

TestScore = 698.9 – 2.28*STR, R2 = .05, SER = 18.6

• STR explains only a small fraction of the variation in test 
scores. Does this make sense? Does this mean the STR is 
unimportant in a policy sense?
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The Least Squares Assumptions

• What, in a precise sense, are the properties of the sampling 
distribution of the OLS estimator? When will be unbiased? 
What is its variance?

• To answer these questions, we need to make some 
assumptions about how Y and X are related to each other, 
and about how they are collected (the sampling scheme)

• These three assumptions are known as the Least Squares 
Assumptions.
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The Least Squares Assumptions
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Least squares assumption #1: E(u|X = x) = 0 (for any given 
value of X, the mean of u is zero):
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Least squares assumption #1 (cont.):
• A benchmark for thinking about this assumption is to consider an 

ideal randomized controlled experiment:
– X is randomly assigned to people (students randomly assigned to 

different size classes; patients randomly assigned to medical treatments). 
Randomization is done by computer – using no information about the 
individual.

– Because X is assigned randomly, all other individual characteristics – the 
things that make up u – are distributed independently of X, so u and X 
are independent

– Thus, in an ideal randomized controlled experiment, E(u|X = x) = 0 (that 
is, LSA #1 holds)

– In actual experiments, or with observational data, we will need to think 
hard about whether E(u|X = x) = 0 holds.
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Least squares assumption #2: (Xi,Yi), i = 1,…,n are i.i.d.

• This arises automatically if the entity (individual, district) is 
sampled by simple random sampling:
– The entities are selected from the same population, so (Xi, Yi) are 

identically distributed for all i = 1,…, n.

– The entities are selected at random, so the values of (X,Y) for 
different entities are independently distributed.

• The main place we will encounter non-i.i.d. sampling is when 
data are recorded over time for the same entity (panel data 
and time series data) – you deal with that complication when 
we cover panel data.
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Least squares assumption #3: Large outliers are rare

• A large outlier is an extreme value of X or Y
• On a technical level, if X and Y are bounded, then they have finite 

fourth moments. (Standardized test scores automatically satisfy 
this; STR, family income, etc. satisfy this too.)

• The substance of this assumption is that a large outlier can 
strongly influence the results – so we need to rule out large 
outliers.

• Look at your data! If you have a large outlier, is it a typo?
• Does it belong in your data set? Why is it an outlier?



Linear Regression with One Regressor

OLS can be sensitive to an outlier:

Is the lone point an outlier in 
X or Y?
In practice, outliers are often 
data glitches (coding or 
recording problems). Sometimes 
they are observations that really 
shouldn’t be in your data set. 
Plot your data!
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The Sampling Distribution of the OLS Estimator

• The OLS estimator is computed from a sample of data. A 
different sample yields a different value of . This is the 
source of the “sampling uncertainty” of .  We want to:

– quantify the sampling uncertainty associated with 

– use     to test hypotheses such as = 0

– construct a confidence interval for 

– All these require figuring out the sampling distribution of the OLS 
estimator. Two steps to get there…

• Probability framework for linear regression

• Distribution of the OLS estimator
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The probability framework for linear regression is summarized by 
the three least squares assumptions.

• Population
– The group of interest (ex: all possible school districts)

• Random variables: Y, X
– Ex: (Test Score, STR)

• Joint distribution of (Y, X). We assume:
– The population regression function is linear

– E(u|X) = 0 (1st Least Squares Assumption)

– X, Y have nonzero finite fourth moments (3rd L.S.A.)

• Data Collection by simple random sampling implies:
– {(Xi, Yi)}, i = 1,…, n, are i.i.d. (2nd L.S.A.)
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Summary of Sampling Distribution

• is unbiased: E( )=    – just like Y !

• var( )is inversely proportional to n–just like Y!

– The exact sampling distribution is complicated – it depends on the 
population distribution of (Y, X) – but when n is large we get some 
simple (and good) approximations.

– The larger the variance of X, the smaller the variance of 
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• The number of black and blue dots is the same. Using which would you 
get a more accurate regression line?



Linear Regression with One Regressor

Hypothesis Tests and Confidence Intervals

Outline

• 1. The standard error of 

• 2. Hypothesis tests concerning 

• 3. Confidence intervals for 

• 4. Heteroskedasticity and homoskedasticity

• 5. Efficiency of OLS and the Student t distribution

Based on Chapter 5. Stock and Watson. “Introduction to 
Econometrics” 3rd Edition. 
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A big picture review of where we are going…
• We want to learn about the slope of the population regression 

line. We have data from a sample, so there is sampling 
uncertainty. There are five steps towards this goal:

1. State the population object of interest
2. Provide an estimator of this population object
3. Derive the sampling distribution of the estimator (this requires 

certain assumptions). In large samples this sampling distribution 
will be normal by the CLT.

4. The square root of the estimated variance of the sampling 
distribution is the standard error (SE) of the estimator

5. Use the SE to construct t-statistics (for hypothesis tests) and 
confidence intervals.
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• Object of interest:     in

• Estimator: the OLS estimator

• The Sampling Distribution of      (three assumption of 
distribution)  
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Hypothesis Testing and the Standard Error of

• The objective is to test a hypothesis, like     = 0, using data –to 
reach a tentative conclusion whether the (null) hypothesis is 
correct or incorrect.

– Null hypothesis can be two-sided:

– Can be one-sided: 

1

1



Linear Regression with One Regressor

• General approach: construct t-statistic, and compute p-value 
(or compare to the N(0,1) critical value)

where      is the hypothesized value under the null.

and SE( )= the square root of an estimator of the 
variance of the sampling distribution of 
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Example: Test Scores and STR, California data
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Estimated regression line: TestScore = 698.9 – 2.28*STR

The standard errors:

t-statistic testing:

• What is the 2-sided significance level for a degree of freedom 
>120 ??? Do we reject the null or not?

• Alternatively, we can compute the p-value…
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The p-value based on the 
large-n standard normal 
approximation to the t-
statistic is 0.00001 (10-5)
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Confidence Intervals

• Recall that a 95% confidence is, equivalently:

– The set of points that cannot be rejected at the 5% significance 
level;

– A set-valued function of the data (an interval that is a function of 
the data) that contains the true parameter value 95% of the time in 
repeated samples.

Thus:
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The following two statements are equivalent (why?)

• The 95% confidence interval does not include zero;

• The hypothesis = 0 is rejected at the 5% level1
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A concise (and conventional) way to report regressions:

• Put standard errors in parentheses below the estimated 
coefficients to which they apply.

Standard errors of      and0̂ 1̂
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Heteroskedasticity and Homoskedasticity, and 
Homoskedasticity-Only Standard Errors

What do these two terms mean?

• If var(u|X=x) is constant – that is, if the variance of the 
conditional distribution of u given X does not depend on X –
then u is said to be homoskedastic. Otherwise, u is 
heteroskedastic.
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Homoskedasticity in a picture:
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Heteroskedasticity in a picture:
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The class size data:

Heteroskedastic or homoskedastic?
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What if the errors are in fact homoskedastic?

• You can prove that OLS has the lowest variance among estimators that 
are linear in Y… a result called the Gauss-Markov theorem

• We have formulas for standard errors for 

– Homoskedasticity-only standard errors 

– Heteroskedasticity – robust standard errors

• The main advantage of the homoskedasticity-only standard 
errors is that the formula is simpler. But the disadvantage is 
that the formula is only correct if the errors are 
homoskedastic.
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Heteroskedasticity-robust standard errors in STATA

• If you use the “, robust” option, STATA computes heteroskedasticity-robust 
standard errors

• Otherwise, STATA computes homoskedasticity-only standard errors


