
CHAPTER 3

Economic Growth

3.1 Introduction

Of all the issues facing development economists, economic growth has to
be one of the most compelling. In Chapter 2, we noted the variety of
growth experiences across countries. It is true that all of these numbers,
with very few exceptions, were in the single digits, but we also appreciated
the power of exponential growth. A percentage point added or subtracted
can make the di↵erence between stagnation and prosperity over the period
of a generation. Small wonder, then, that the search for key variables in the
growth process can be tempting. For precisely this reason, the theory and
empirics of economic growth (along with the distribution of that growth)
has fired the ambitions and hopes of academic scholars and policy makers
alike. I was certainly inspired by Robert Lucas’s Marshall Lectures at the
University of Cambridge:

Rates of growth of real per-capita income are diverse, even
over sustained periods. Indian incomes will double every
50 years; Korean every 10. An Indian will, on average, be
twice as well o↵ as his grandfather; a Korean 32 times.1

I do not see how one can look at figures like these without
seeing them as representing possibilities. . . The consequences
for human welfare involved in questions like these are
simply staggering: Once one starts to think about them,
it is hard to think about anything else.

1As we have seen, this is no longer true of India and Korea post 1990, but the general point,
made at a time when India was growing slowly, is still valid.
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Never mind the fact that India has grown at far faster rates since these
words were penned. The sentiment still makes sense: Lucas captures,
more keenly than any other writer, the passion that drives the study of
economic growth. We can sense the big payo↵, the possibility of change
with extraordinarily beneficial consequences, if one only knew the exact
combination of circumstances that drives economic growth.

If only one knew. . . , but to expect a single theory about an incredibly
complicated economic universe to deliver that would be unwise. Yet
theories of economic growth do take us some way in understanding the
development process, at least at an aggregate level. This is especially so if
we supplement the theories with what we know empirically.

3.2 Modern Economic Growth: Basic Features

Economic growth, as the title of Simon Kuznets’ pioneering book [1966]
on the subject suggests, is a relatively “modern” phenomenon. Today, we
greet 3% annual rates of per capita growth with approval but no great
surprise. But throughout most of human history, such growth — or indeed
any growth at all — was the exception rather than the rule. In fact, it isn’t
far from the truth to say that modern economic growth was born after the
Industrial Revolution in Britain.

Consider the growth rates of the world’s leaders over the past four
centuries. During the period 1580–1820 the Netherlands was the leading
industrial nation; it experienced an average annual growth in real GDP
per worker hour2 of roughly 0.2%. The United Kingdom, leader during
the approximate period 1820–90, experienced an annual growth of 1.2%.
That’s (much) faster than the Netherlands, true, but nevertheless a veritable
tortoise compared to today’s hares. And since then it’s been the United
States, but from 1890 to the present it has averaged around 2% a year,
dropping to more sedate 1.7% over 1990–2011. That is certainly impressive,
but it still isn’t what we’ve seen lately: first from Japan and then from East
Asia more generally, and more recently South Asia.

A little calculation suggests that you don’t even have to look at history
to establish the modernity of economic growth. Simply run our trusty
formula on doubling times backwards; (Chapter 2, footnote 15). Let’s use
what by today’s high standards is a pretty moderate number: 3% per year.
A country growing at that rate will halve its income every 23 years or so,

2Notice that we are referring here not to growth in per capita GDP as such, but growth in
GDP per worker hour, or labor productivity. However, the data suggests that the former is
largely driven by the latter.
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Country 1850 1930 2010 1930/1850 2010/1930

Austria 1,650 3,586 24,096 2.2 6.7
Belgium 1,847 4,979 23,557 2.7 4.7
Canada 1,330 4,811 24,941 3.6 5.2
Denmark 1,767 5,341 23,513 3.0 4.4
Finland 911 2,666 23,290 2.9 8.7
France 1,597 4,532 21,477 2.8 4.7
Germany 1,428 3,973 20,661 2.8 5.2
Japan 681 1,850 21,935 2.7 11.9
Netherlands 2,355 5,603 24,303 2.4 4.3
Norway 956 3,627 27,987 3.8 7.7
Sweden 1,076 4,238 25,306 3.9 6.0
Switzerland 2,293 8,492 25,033 3.7 2.9
United Kingdom 2,330 5,441 23,777 2.3 4.4
United States 1,849 6,213 30,491 3.4 4.9

Simple Average 1,576 4,668 24,312 3.0 5.2

Table 3.1. Per capita GDP (1990 international dollars) in
selected OECD countries, 1850–2010.

Source: Maddison [2008] and Bolt and Van Zanden [2013]. First-column Switzerland data
from 1851.

which means that running back 200 years, that country would have to have
an income around 1/350th of what it has today! For the United States, that
would mean an princely annual income of around $100 per year in 1800.
That was most assuredly not the case. And poorer countries extrapolated
backwards at this rate would vanish.

But of course, this sort of calculation isn’t merely theoretical. You can see
the acceleration, even among now-developed countries, and even if we go
right to 2010 (remembering that the first decade of the 21st century hasn’t
exactly been a bed of roses). Table 3.1 provides a historical glimpse of the
period 1850–2010, and shows how growth has transformed the world. This
table displays per capita real GDP (valued in 1990 international dollars)
for selected OECD countries in the equally spaced years 1850, 1930, and
2010. The penultimate column gives us the ratio of per capita GDP in 1930,
at the peak just before the Depression, to its counterpart in 1950. The last
column does the same for the years 2010 and 1930. The numbers are pretty
stunning. On average (see the last row of the table), GDP per capita in
1930 was 3 times the figure for 1850, but the corresponding ratio for the
equally long period period between 1930 and 2010 is by 1978 is 5.2! A nearly
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Country 1982 1996 2009 Country 1982 1996 2009

Argentina 34.8 28.8 31.6 India 3.7 4.4 7.2
Bangladesh 2.4 2.2 3.1 Indonesia 5.7 8.6 9.1
Botswana 15.8 22.4 29.1 Malaysia 20.9 28.3 30.5
Brazil 27.6 22.3 22.5 Mexico 42.7 29.7 29.8
Chile 19.4 27.8 31.3 Nigeria 5.4 4.1 4.8
China 2.3 5.8 14.8 Pakistan 5.1 5.5 5.7
Cote d’Ivoire 9.9 5.2 3.7 Rwanda 3.3 1.9 2.5
Egypt 10.5 10.1 12.3 South Africa 34.8 22.0 22.3
Ethiopia 2.3 1.5 2.0 Sri Lanka 6.5 7.3 10.4
Ghana 3.3 2.8 3.4 Thailand 9.5 17.1 17.4

Table 3.2. Per capita GDP in Selected Developing Countries
Relative to that of the United States (%), 1982–1996–2009.

Source: World Bank Development Report [2011].

sixteen-fold increase in real per capita GDP in the space of 150 years cannot
but transform societies completely. The developing world, currently going
through its own transformation, will be no exception.

Indeed, in the broader sweep of historical time, the development story
has only just begun. In the nineteenth and twentieth centuries, only a
handful of countries, mostly in Western Europe and North America, and
largely represented by the list in Table 3.1, could manage the “takeo↵
into sustained growth,” to use a well-known term coined by the economic
historian W. W. Rostow. Throughout most of what is commonly known
as the Third World, the growth experience only began well into this
century; for many of them, probably not until the post-World War II era,
when colonialism ended. Although detailed and reliable national income
statistics for most of these countries were not available until only a few
decades ago, the economically backward nature of these countries is amply
revealed in less quantitative historical accounts, and also by the fact that
they are way behind the industrialized nations of the world today in per
capita GDP levels. To see this, refer to Table 3.2, which records the per
capita incomes of several developing countries (and some now-developed
countries as well) relative to that of the United States, for the last two decades
of the twentieth century. I don’t plan to be around to update this table 50
years from now, but I would be very curious to know what it will look like.

The table makes it obvious that despite the very high growth rates
experienced by several developing countries, there is plenty of catching-up
to do. Moreover, there is a twist in the story that wasn’t present a century
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ago. Then, the now-developed countries grew (although certainly not
in perfect unison) in an environment uninhabited by nations of far greater
economic strength. Today, the story is completely di↵erent. The developing
nations not only need to grow, they must grow at rates that far exceed
historical experience. The developed world already exists, and their access
to economic resources is not only far higher than that of the developing
countries, but the power a↵orded by this access is on display. The urgency of
the situation is further heightened by the extraordinary flow of information
in the world today. People are increasingly and more quickly aware of new
products elsewhere and of changes and disparities in standards of living
the world over. Exponential growth at rates of 2% may well have significant
long-run e↵ects, but they cannot match the parallel growth of human
aspirations, and the increased perception of global inequalities. Perhaps
no one country, or group of countries, can be blamed for the emergence of
these inequalities, but they do exist, and the need for sustained growth is
all the more urgent as a result.

3.3 The Beginnings of a Theory

3.3.1 Savings and Investment. In its simplest terms, economic growth is
the result of abstention from current consumption. An economy produces
goods and services. The act of production generates income, which in turn
is used to buy these goods and services. Exactly which goods are produced
depends on individual preferences and the distribution of income, but as
a broad first pass, the following statement is true: commodity production
creates income, which creates the demand for those very same commodities.

Let’s go a step further and broadly classify commodities into two groups.
We may think of the first group as consumption goods, which are produced
for the express purpose of satisfying human wants and preferences. The
mangos you buy at the market, or a tshirt, or an iPad all come under this
category. The second group of commodities consists of what we might call
capital goods, which we may think of as commodities that are produced for
the purpose of producing other commodities. A blast furnace, a conveyor
belt, or a screwdriver might come under the second category.3

3It should be clear from our examples that there is an intrinsic ambiguity regarding this
classification. Although a mango or a blast furnace may be easily classified into its respective
category, the same is not true of screwdrivers or an IPad. The correct distinction is between
goods that generate current consumption and those that produce future consumption, and
many goods embody a little of each.
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Figure 3.1. Production, consumption, savings, and investment.

Looking around us, it is obvious that the income generated from the
production of all goods is spent on both consumer goods and capital goods.
Typically, households buy consumer goods, whereas firms buy capital
goods to expand their production or to replace worn-out machinery. That
immediately raises a question: if income is paid out to households, and
if households spend their income on consumption goods, where does the
money for capital goods come from? How does it all add up?

The answer to this question is simple, although in many senses that we
ignore here, deceptively so: households save. No doubt some borrow
too, to finance current consumption, but on the whole, national savings is
generally positive. All income is not spent on current consumption. By
abstaining from consumption, households make available a pool of funds
(via deposits, stock purchases, or undeclared dividends) that firms use to
buy capital goods. This latter purchase is the act of investment. Buying
power is channeled from savers to investors through banks, individual
loans, governments, and stock markets. How these transfers are actually
carried out is a story in itself. Later chapters will tell some of this story.

Implicit in the story is the idea of macroeconomic balance. Figure 3.1 depicts
a circuit diagram with income flowing “out” of firms as they produce
and income flowing back “into” firms as they sell. You can visualize
savings as a leakage from the system: the demand for consumption goods
alone falls short of the income that created this demand. Investors fill this
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gap by stepping in with their demand for capital goods. Macroeconomic
balance is achieved when this investment demand is at a level that exactly
counterbalances the savings leakage.

By entering a new business, by expanding a current business, or by
replacing worn-out capital, investment creates a market demand for capital
goods. These goods add to the stock of capital in the economy and endow
it, in the future, with an even larger capacity for production, and so an
economy grows. Note, however, that without the initial availability of
savings, it would not be possible to invest and there would be no expansion.
This is the simple starting point of all of the theory of economic growth.

3.3.2 Inputs, Outputs and the Production Function. At the heart of it
all is, of course, production, that most central of all activities that converts
inputs to outputs. It will help — as an organizing device — to introduce the
production function. It is a simple mathematical description of how various
inputs (such as capital, land, labor, and various raw materials) are combined
to produce outputs. An easy example is one in which just two inputs —
capital and labor — combine to produce a single output. Symbolically, we
write

Y = F(K,L)
where K stands for capital, L for labor, Y for output, and F(K,L) is
mathematical notation for some function that converts input pairs (K,L)
to output Y. A classic instance is the Cobb-Douglas production function, in
which we write

(3.1) Y = AK↵L�,

for some positive constants A, ↵ and �. The parameter A is a measure of
the degree of technological proficiency in the economy. The larger it is, the
higher is output for any fixed combination of K and L. The parameters↵ and
� capture both the relative importance of each input, as well as whether (and
how much) the marginal returns to each input diminish. It is easy to verify
that if ↵ lies between 0 and 1, then there are diminishing returns to capital:
each additional input of capital increases output, but by a progressively
smaller amount. (The same is true of labor, if � lies between 0 and 1.)
Indeed, “diminishing returns to each input” is a reasonable presumption:
if more and more of a particular input is added, without changing the amounts
of any other input, its marginal e�cacy in producing fresh output should go
down.

In contrast, if all inputs — or overall “scale” for short — are increased in the
same proportion, it seems reasonable that output should climb in the same
proportion as well. The argument that makes this sound reasonable is one
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of pure replication: if you’ve doubled every input, then it’s like installing
a perfect twin of a manufacturing unit: how can output not double? That
typically starts a discussion with some interesting philosophical twists, but
we will bypass such matters for the moment.4 This phenomenon in which
output changes in the same proportion as all inputs is called constant returns
to scale. It is very easy to verify that in the Cobb-Douglas case described
by equation (3.1), “constant returns to scale” is captured by the additional
restriction that ↵ + � = 1.

That isn’t to say that the other cases of diminishing returns to scale (↵+� < 1)
or increasing returns to scale (↵ + � > 1) should be summarily dismissed.
We will return to such matters later in the text. But the assumption of
constant returns to scale, coupled with diminishing returns to each input,
is a good starting point.

When there are constant returns to scale, we can typically express all
productive activity in per capita terms; that is, by dividing by the amount
of labor being used in production. The Appendix to this chapter shows
you how to do this quite generally for production functions, but the Cobb-
Douglas case is particularly easy. Change � to 1 � ↵ in (3.1) to get

(3.2) Y = AK↵L1�↵,

which gives us a familiar functional form much used in the literature, and
now divide by L to see that

(3.3) y = Ak↵

where the lower case letters y and k stand for per capita magnitudes: Y/L
and K/L respectively. As before, ↵, typically a number between 0 and 1, is
an inverse measure of diminishing returns to capital. The lower the value
of ↵, the greater the “curvature” of the production function and the higher
the extent of diminishing returns.

Figure 3.2 depicts a production function in per capita format. Typically,
it will display diminishing returns to per-capita capital. As k increases,
so does y (of course), but in a progressively more muted way. Thus the
output-capital ratio y/k will fall as k climbs, because of a relative shortage
of labor. Just how quickly it falls will depend on the extent of diminishing
returns to capital.

4One question has to do with whether we can really double all inputs within the
mathematical frame of the production function. What about, say, that elusive input called
entrepreneurship or oversight: are we doubling that too? If not, output might less than
double. On the other hand, if bricks-and-mortar build a production facility and we double
the amount of bricks, the volume of the facility will typically more than double, the former
being proportional to surface area and the latter rising at (surface area)3/2.



Economic Growth 65

Figure 3.2. The production function in per-capita form.

The concept of a production function already allows to sift and sort
some preliminary thoughts about underdevelopment. For instance, using
equation (3.1), one might argue that the A term is somehow lower for
developing countries: it is in technical knowledge that development lies.
Perhaps patent restrictions and other limitations on the flow of knowledge
across countries are fundamentally responsible for underdevelopment.
Alas, such arguments beg the question of how now-developed countries
came to acquire the knowledge they did, and indeed, they ignore the
willingness and ability of human beings to take apart new products and
simply learn how to rebuild them.

One important interpretation of the “di↵erences in technical knowhow”
viewpoint is that developing countries lack a skilled and educated labor
force. But properly viewed, these di↵erences should not be thrown into
the A-term. Rather, we should recognize that the production functions
described in equations such as (3.1) are two-input caricatures of reality. For
instance, we could write

Y = F(K, labor of di↵erent qualities)

and recognize that developing countries have lower endowments of some
types of labor. That’s conceptually di↵erent from saying that they are
incapable of producing the same output even with all relevant labor and
nonlabor inputs at hand. One quick example using the Cobb-Douglas
formulation is to write

(3.4) Y = AK↵(eL)�



66 Economic Growth

where e is years of schooling per person. That mathematically links up
with “lower A,” but it’s conceptually very di↵erent, pointing the finger as
it does to education and not technology.

Another interpretation of “di↵erent A” is that while the same technologies
are available in both developed and developing countries, the resources to
each technology are misallocated in developing countries. For instance,
entrepreneurs in the poorer country might not have enough access to
capital or credit markets to raise the funds for the move to a newer and
better technology. Or the older technology may be in the hands of older,
elite groups with political power, who block access to new technologies
that could spell their own ruin. Or local communities — again, possibly
encouraged by domestic elites — might oppose new technologies for fear
that these will let “foreign interests” into the country.

We will have much to say about these and related issues later in the
book. But our quest for explanations starts with the limited input story.
A developing country surely has less capital — physical and human —
relative to labor, compared to its developed-country counterpart. Might
this, and this alone, not explain persistent, ongoing di↵erences in per capita
income across countries? To understand such matters, we must expand our
theory to allow capital to be systematically accumulated. That is the job of
the fundamental “growth equation,” to which we now turn.

3.3.3 The Growth Equation. A little algebra at this stage will make our
lives simpler. Divide time into periods t = 0, 1, 2, 3, . . . .We will tag relevant
economic variables with the date: Y(t) for output, I(t) for investment, and so
on. Investment augments the capital stock after accounting for depreciated
capital, so in symbols:

K(t + 1) = (1 � �)K(t) + I(t),
where � is the rate of depreciation. But we’ve just been going on about the
famous macroeconomic balance condition, that investment equals savings.
It follows that I(t) = sY(t), where s is the rate of savings and Y(t) is aggregate
output, and using this in the equation above, we see that
(3.5) K(t + 1) = (1 � �)K(t) + sY(t),
which tells us how the capital stock must change over time.

We’re going to convert this into per-capita terms by dividing by the total
population, which we assume (only for expositional simplicity) to be equal
to the active labor force L(t). If we assume that population grows at a
constant rate n, so that L(t + 1) = (1 + n)L(t), (3.5) changes to
(3.6) (1 + n)k(t + 1) = (1 � �)k(t) + sy(t),
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where the lowercase ks and ys represent per capita magnitudes (K/L and
Y/L, respectively).

This is our basic growth equation: make sure you understand the economic
intuition underlying the algebra. It really is very simple. The right-hand
side has two parts, depreciated per capita capital (which is (1 � �)k(t))
and current per capita savings (which is sy(t)). Added together, this should
give us the new per capita capital stock k(t+1), except for one complication:
population is growing, which exerts a downward drag on per capita capital
stocks. This is why the left-hand side of (3.6) has the rate of growth of
population (n) in it: the larger that rate, the lower is per capita capital stock
in the next period.

Take the growth equation for a spin: start in your mind’s eye with the per
capita capital stock at any date t, k(t). That produces per capita output y(t)
via the production function described in Section 3.3.2. Now the equation
tells you what k(t + 1) must be, and the story repeats, presumably without
end.

3.4 The Solow Model

So far we’ve described the ingredients of a basic growth model, any growth
model. A more detailed study must rely on a specific form of the production
function, and we will start by presuming constant returns to scale and
diminishing returns to each input, as in the Cobb-Douglas formulation of
equation (3.2). The resulting analysis yields a fundamental and much-
venerated theory of growth, due to Robert Solow (1957).

3.4.1 Dynamics of the Growth Equation. Figure 3.3 embeds a produc-
tion function with diminishing returns into the growth equation (3.6).
Mark any value of k on the horizontal axis, multiply the per capita output
produced from it by s, which gives us fresh investment, and add the result to
the depreciated value of k. The end product is the curved line in Figure 3.3,
which looks very much like the production function itself (and indeed, is
closely related), but has been transformed in the way we’ve just described.
Figure 3.3 also plots the left-hand side of (3.6), the straight line (1+ n)k as k
changes. When there are diminishing returns, the curved line initially lies
above this straight line and then falls below.5

5If you’ve been following the argument particularly closely, you will see that this last
statement is exactly true if we make the additional assumption that the marginal product of
capital is very high when there is very little capital and diminishes to zero as the per capita
capital stock becomes very high.
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Figure 3.3. The dynamics of the Solow model.

Armed with this diagram, we can make some very strong predictions about
growth. Figure 3.3 shows us two initial historical levels of the per capita
capital stock — one “low” (Figure 3.3a) and one “high” (Figure 3.3b) —
starting, in deference to the year I began writing this book, 1996. With
the low stock, the marginal return to capital is very high and so the per
capita capital stock expands quite rapidly. How do we see this in Figure
3.3? Well, we know from (3.6) that the supply of per capita capital is read
o↵ by traveling up to the point on the curved line corresponding to the
initial stock k(96). However, some of this supply is eroded by population
growth. To find k(97), we simply travel horizontally until the line (1 + n)k
is touched; the capital stock corresponding to this point is 1997’s per capita
capital stock. Now just repeat the process. We obtain the zigzag path in
Figure 3.3a. Note that the growth of per capita capital slows down and that
per capita capital finally settles close to k⇤, which is a distinguished capital
stock level where the curved and straight lines meet.

Likewise, you may trace the argument for a high initial capital stock, as in
Figure 3.3b. Here, there is an erosion of the per capita stock as time passes,
with convergence occurring over time to the same per capita stock, k⇤, as in
Figure 3.3a. The idea here is exactly the opposite of that in the previous
paragraph: the output-capital ratio is low, so the rate of expansion of
aggregate capital is low. Therefore, population growth outstrips the rate of
growth of capital, thus eroding the per capita capital stock.

3.4.2 The Steady State. We can think of k⇤ as a steady-state level of the
per capita capital stock, to which the per capita capital stock, starting from
any initial level, must converge.
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In other words, growth in this model loses its momentum if capital is
growing too fast relative to labor, which is precisely what happens to the
left of k⇤ in Figure 3.3a. The reason is diminishing returns to capital, which
lowers the marginal return to capital as it is accumulated faster than labor.
That brings down the growth of capital in line with the growth of labor.
This means that the long-run capital-labor ratio must be constant (and this
is captured by the ratio k⇤).

However, if the per capita capital stock settles down to some “steady-state”
level, then so must per capita income! Thus in this version of the growth
model, there is no long-run growth of per capita output, and total output
grows precisely at the rate of growth of the population.

Indeed, were the economy to start from the steady-state level of k⇤, it would
stay at k⇤ in every period (after all, that is what the term “steady state”
means). This means that in equation (3.6), we can put k(t) = k(t + 1) = k⇤. If
we use the notation y⇤ to denote the steady-state per capita output produced
from k⇤, and move terms around in (3.6) a bit, we obtain

(3.7)
k⇤

y⇤
=

s
n + �

.

(You can connect k⇤ and y⇤ more explicitly with an equation like (3.3), if
you’d like. Take a look at Section 3.4.5, where we do just this.)

At this point you must be scratching your head in some confusion. Or if
you’re not, you should be. A growth model that predicts no growth? Do
not fear, we will come back to this question.

3.4.3 How Parameters Affect the Steady State. The di↵erent parame-
ters of the Solow model — the savings rate, population growth rate, or
the rate of depreciation — do not a↵ect the long-run growth rate of per
capita income (which is zero). But they certainly a↵ect the long-run level of
income.

The e↵ects of changes in various parameters can be easily studied using
equation (3.7). An increase in s, the rate of savings, raises the right-hand
side of the equation, necessitating an increase in the left-hand side to restore
equality. This means that the new steady-state capital-output ratio — the
value k⇤/y⇤ — must be higher. With diminishing returns, that can only
happen if the new steady-state level of y⇤ is higher as well. We thus see
that an increase in the savings rate raises the long-run level of per capita
income. By exactly the same logic, we can check that an increase in the
population growth rate or the rate of depreciation will lower the long-run
level of per capita income.
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But as always, make sure you understand the economics behind the algebra.
For instance, a higher rate of depreciation means that more of national
savings must go into the replacement of worn-out capital. This means
that, all other things being equal, the economy accumulates a smaller net
amount of per capita capital, and this lowers the steady-state level. You
should similarly run through — verbally — the e↵ects of changes in the
savings rate and the population growth rate.

3.4.4 Technical Progress. We promised to address the no-growth para-
dox of the Solow model, and we shall do so at several points, starting
now.

First a quick review of that counterfactual conclusion: given diminishing
returns, the marginal contribution of capital to output must decline when
capital grows faster than population, and increase when capital grows
slower than population. That eventually forces the growth rate of aggregate
capital — and output — to equal the growth rate of population, with zero
growth per capita.

But this is the most parsimonious sca↵olding of the model, which we can
modify in several ways. For instance, the no-growth scenario disappears
if there is continuing technical progress; that is, if the production function
shifts upward over time as new knowledge is gained and applied. As long as
the optimistic force of this shift outweighs the doom of diminishing returns,
there is no reason why per capita growth cannot be sustained indefinitely.

This twist on the model makes intuitive sense. Imagine a world in which
we never learnt to do things better. Then the influence of fixed factors —
land, oil, and other resources — would make itself felt, and growth could
conceivably vanish. In our simple model, we are benchmarking everything
relative to labor by taking per-capita magnitudes, so labor plays the role of
that fixed factor, and in the absence of technical progress, growth per capita
must slow to a crawl.

A simple way to think about technical progress is that it contributes to
the e�ciency, or economic productivity, of labor. Let’s make a distinction
between the working population L(t) and the amount of labor in “e�ciency
units” (call it E(t)). This distinction is necessary now because in the exten-
sion we’re about to consider, the productivity of the working population
is constantly increasing. The simplest way to capture this increase in
productivity is to postulate that

(3.8) E(t) = e(t)L(t),
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Figure 3.4. The Solow model with technical change.

where we can think of e(t) as the productivity of an individual at time t. Not
only does population grow over time (at the rate of n, just as before), but we
now take it that e�ciency grows too at the rate of⇡. Thus e(t+1) = (1+⇡)e(t).
We will refer to ⇡ as the rate of technical progress.

One more step and our adapted model is complete. Recall how we passed
from (3.5) to (3.6) after dividing through by the working population to
obtain per capita magnitudes. We do the same here, but with a twist: we
divide by the e↵ective population e(t)L(t) to arrive at what looks like per
capita capital and income, but these will really be magnitudes per e�ciency
unit of labor. Let’s call them k̂ and ŷ to distinguish them from the earlier per
capita values k and y. Performing the required division, we get something
that looks very much like our old equation (3.6):

(3.9) (1 + n)(1 + ⇡)k̂(t + 1) = (1 � �)k̂(t) + sŷ(t).

Now we simply apply our old ideas regarding production functions.
Capital per e�ciency unit of labor (k̂) produces output per e�ciency unit
of labor (ŷ). As in the basic Solow model, if there is too much capital
per e�ciency unit, we have a shortage of (e↵ective) labor and the output–
capital ratio tends to fall: diminishing returns to an input still applies, but
this time to e�ciency units of labor. Thus Figure 3.4 repeats, in spirit, the
analysis done for equation (3.6) in Figure 3.3. Exactly the same logic applies
to equation (3.9).
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Over time, the amount of capital per e↵ective labor may rise or fall. Observe
that if it is rising, this simply means that physical capital is growing
faster than the rate of population growth and technical progress combined.
However, by diminishing returns, output per e�ciency unit rises less than
proportionately. That tones down the subsequent growth rate of capital
per e�ciency unit. In Figure 3.4, this discussion corresponds to the region
lying left of the intersection point k̂⇤. In this region, the growth rate of total
capital falls over time as capital per e�ciency unit rises. Likewise, to the
right of the intersection, capital per e�ciency unit falls over time. Once
again, we have convergence, this time to the steady-state level k̂⇤.

To solve for the steady state, put k̂(t) = k̂(t + 1) = k̂⇤ in (3.9), just as we did
to arrive at the steady state formula without technical progress; see (3.7).
That gives us

(1 + n)(1 + ⇡)k̂⇤ = (1 � �)k̂⇤ + sŷ⇤,
and rearranging this equation, we conclude that

k̂⇤

ŷ⇤
=

s
(1 + n)(1 + ⇡) � (1 � �) .

For an easy-to-remember version of this equation, note that both⇡ and n are
small numbers, such as 0.05 or 0.02, so their product is very small relative
to the other terms and can be ignored in a first-order approximation. So
multiplying out (1 + n)(1 + ⇡) and ignoring the term n⇡, we see that

(3.10)
k̂⇤

ŷ⇤
' s

n + ⇡ + �
.

(Once again, just as for equation (3.7), you can connect k̂⇤ and ŷ⇤ with a
specific production function, as we will do in Chapter 4, Section 4.3.4.)

So far the analysis runs parallel to the case of no technical progress. The
novelty lies in the interpretation. Even though capital per e�ciency unit
converges to a stationary steady state, the amount of capital per member
of the working population continues to increase. Indeed, the long-run
increase in per capita income takes place precisely at the rate of technical
progress.

In summary, think of two broad sources of growth: one is through better
and more advanced methods of production (technical progress) and the
second is via the continued buildup of plant, machinery, and other inputs
that bring increased productive power.6 The Solow model claims that in

6This is not to deny that these two sources are often intimately linked: technical progress
may be embodied in the new accumulation of capital inputs.
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the absence of the first source, the second is not enough for sustained per capita
growth. Viewed in this way, the Solow model is a pointer to studying the
economics of technological progress, arguing that it is there that one must
look for the ultimate sources of growth. This is not to say that such a claim
is necessarily true, but it is certainly provocative and very far from being
obviously wrong.

3.4.5 Another Route to Sustained Growth: The Harrod-Domar Model.
Let’s take a second look at sustained growth. Eliminate technical progress
for the moment, and return to the fundamental growth equation (3.6),
reproduced here for easy reference:
(3.11) (1 + n)k(t + 1) = (1 � �)k(t) + sy(t).
This turns into the Solow model under the additional assumption of
diminishing returns to capital. That assumption creates variation in the
capital-output ratio, allowing the economy to settle at the distinguished
level k⇤ given by

(3.12)
k⇤

y⇤
=

s
n + �

,

which is equation (3.7), again reproduced here. (This second equation is
obtained, as already discussed, by setting k(t) = k(t+1) = k⇤ and y(t) = y⇤ in
the growth equation (3.11), and solving out for corresponding ratio k⇤/y⇤.)
A solution exists because k/y varies from very high to very low values over
the range of the production function.7 For instance, when the production
function is Cobb-Douglas, so that

y = Ak↵,

the steady state condition (3.12) becomes
k⇤

Ak⇤↵
=

s
n + �

,

so that after a little not-so-tedious algebra, we see that

(3.13) k⇤ =
✓ sA
n + �

◆1/(1�↵)
.

This is a simple and rewarding equation, because you can “see” the steady
state as explicitly as possible, and what is more, you can redo all the
parametric exercises of Section 3.4.3 in a flash simply by eyeballing (3.13).

But there is something else that I’d like to draw your attention to. Look
at the “diminishing returns parameter” ↵ and remember that the smaller

7The careful reader will observe again that we’re assuming diminishing returns plus suitable
end-point conditions on the marginal product of capital.
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it is, the more it is that returns diminish, while at the other end, as ↵
becomes close to 1, the production function becomes almost linear and
exhibits constant returns to capital. As we bring ↵ up close to 1, the steady
state level of capital becomes ever larger (if sA > n + �) or ever smaller (if
sA < n+�) and at ↵ equal to 1, when the production function is exactly linear
in capital, there is no steady state: the economy either grows to infinity or
shrinks to zero! This is not an algebraic sleight of hand; on the contrary,
it makes intuitive sense. The easiest way to see it is to appreciate that
when ↵ = 1, the current scale of the economy (proxied by k) is irrelevant:
whatever rate it can grow at k, it can replicate that at 2k, 3k, or a million
times k. With diminishing returns, that isn’t possible, which is why a steady
state is ultimately reached, but when there is constant returns to the capital
input, everything can grow or decline at exactly the same rate, irrespective
of scale.

The fundamental growth equation (3.11) can handle this without a problem,
provided we don’t go down the garden path looking for steady states where
there are none to be found. With constant returns to scale, the output-capital
ratio is a constant; in fact, it is exactly A in the Cobb-Douglas production
function with ↵ = 1: y = Ak. Using this in the growth equation yields

(1 + n)k(t + 1) = (1 � �)k(t) + sAk(t),

and after the inevitable moving-around of terms, we have

(3.14) Rate of growth =
k(t + 1) � k(t)

k(t)
=

sA � (n + �)
1 + n

.

This is an influential relationship, known as the Harrod-Domar equation.
named after Roy Harrod and Evsey Domar, who wrote some of the earliest
papers on the subject in 1939 and 1946, respectively. The left-hand side is
just the rate of growth of the per capita capital stock, and by the linearity
of the production function it is also the rate of growth of per capita income.
Time appears here on the left-hand side, but it doesn’t in the rest of the
equation, which shows that the rate of growth is constant and unchanging.
What is more, it provides a formula for that rate of growth, given by the
right-hand side of (3.14).

For an easy-to-remember version of (3.14), let g stand for the rate of
growth, multiply through by 1 + n, and note that both g and n are small
numbers (analogous to our approach to deriving (3.10)), and their product
gn is therefore extra small relative to these numbers. That gives us the
approximation

(3.15) sA ' g + n + �,
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which can be used in place of (3.14) without much loss of accuracy.

It isn’t hard to see why this equation was influential. It has the air of a
recipe. Thomas Piketty, in his book Capital (2014) — on which more later
— calls it the “second fundamental law of capitalism.” The equation firmly
links the growth rate of the economy to fundamental variables, such as
the ability of the economy to save, the capital–output ratio and the growth
rate of population. And capitalism apart, central planning in countries
such as India and the erstwhile Soviet Union was deeply influenced by the
Harrod–Domar equation (see box).

Growth Engineering: The Soviet Experience

The Harrod–Domar model, as we have seen, has both descriptive and prescriptive
value. The growth rate depends on certain parameters and, in a free market
economy, these parameters are determined by people’s tastes and technology.
However, in a socialist, centrally planned economy (or even in a mixed economy
with a large public sector), the government may have enough instruments (such
as direct control over production and allocation, strong powers of taxation and
confiscation, etc.) to manipulate these parameters to influence the growth rate.
Given a government’s growth objectives and existing technological conditions
(e.g., the capital–output ratio), the Harrod–Domar model can be used to obtain
policy clues; for example, the desired rate of investment to be undertaken so as to
achieve this aim.

The first controlled experiment in “growth engineering” undertaken in the world
was in the former Soviet Union, after the Bolshevik Revolution in 1917. The
years immediately following the Revolution were spent in a bitter struggle—
between the Bolsheviks and their various enemies, particularly the White Army
of the previous Czarist regime—over the control of territory and productive assets
such as land, factories, and machinery. Through the decade of the 1920s, the
Bolsheviks gradually extended control over most of the Soviet Union (consisting
of Russia, Ukraine, and other smaller states) that encompassed almost the whole of
industry, channels of trade and commerce, food-grain distribution, and currency.
The time had come, therefore, to use this newly acquired control over the economic
machinery to achieve the economic goals of the revolutionary Bolsheviks, the
foremost among these goals being a fast pace of industrialization.8

8On the eve of the Revolution, Russia took a back seat among European nations in extent
of industrialization, despite a rich endowment of natural resources. According to the
calculations of P. Bairoch, based on the per capita consumption of essential industrial inputs,
namely, raw cotton, pig iron, railway services, coal, and steam power, Russia ranked last
among nine major European nations in 1910, behind even Spain and Italy. See Nove [1969].
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1927–28 (actual) 1932–33 (plan) 1932 (actual)

National income 24.4 49.7 45.5
Gross industrial production 18.3 43.2 43.3

(a) Producers’ goods 6.0 18.1 23.1
(b) Consumers’ goods 12.3 25.1 20.2

Gross agricultural production 13.1 25.8 16.6
Source: Dobb [1966].

aAll figures are in 100 million 1926–27 rubles.
Table 3.3. Targets and achievements of the first Soviet five
Year Plan (1928–29 to 1932–33).a

Toward the end of the 1920s, the need for a coordinated approach to tackle the
problem of industrialization on all fronts was strongly felt. Under the auspices
of the State Economic Planning Commission (called the Gosplan), a series of
draft plans was drawn up which culminated in the first Soviet Five Year Plan
(a predecessor to many more), which covered the period from 1929 to 1933. At the
level of objectives, the plan placed a strong emphasis on industrial growth. The
resulting need to step up the rate of investment was reflected in the plan target
of increasing it from the existing level of 19.9% of national income in 1927–28 to
33.6% by 1932–33. (Dobb [1966, p. 236]).

How did the Soviet economy perform under the first Five Year Plan? Table 3.3
shows some of the plan targets and actual achievements, and what emerges is quite
impressive. Within a space of five years, real national income nearly doubled,
although it stayed slightly below the plan target. Progress on the industrial front
was truly spectacular: gross industrial production increased almost 2.5 times.
This was mainly due to rapid expansion in the machine producing sector (where
the increment was a factor of nearly 4, far in excess of even plan targets), which
is understandable, given the enormous emphasis on heavy industry in order to
expand Russia’s meager industrial base. Note that the production of consumer
goods fell way below plan targets.

An equally spectacular failure shows up in the agricultural sector, in which actual
production in 1932 was barely two-thirds of the plan target and only slightly more
than the 1927–28 level. The reason was probably that the Bolsheviks’ control over
agriculture was never as complete as that over industry: continuing strife with
the kulak farmers (large landowners from the Czarist era) took its toll on crop
production.

Unlike the Solow model, the Harrod-Domar variant it generates sustained
growth without having to invoke technical progress. And yet, does that make
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it a “better” model? Not necessarily. There is a price to be paid for the
result, which is that the model assumes that labor is not a serious constraint
on production at all (if it were, the returns to ever more capital, holding
labor constant, would presumably diminish). But matters are a bit more
complicated than that. In real life, there aren’t just two inputs, “capital”
and “labor.” There is a whole host of them, and the predictive power of
Harrod-Domar versus Solow would ultimately stand or fall on the combined
diminishing returns — or lack thereof — of all those inputs relative to raw
labor.

We will be back to Solow versus Harrod-Domar at a later stage. For now,
my only request is that you don’t get confused. It doesn’t matter that one
model generates sustained growth while the other doesn’t. They rely, as
I’ve tried to make clear, on di↵erent assumptions. Therefore, which model
is more relevant is ultimately an empirical question and, as we shall soon
see, the jury is still out on the issue. For now, the takeaway point is that
constant technical progress is needed to generate sustained growth in the
face of diminishing returns to capital, while capital accumulation per se is
enough to do the trick when the return to capital is constant (or increasing).


