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Abstract: - In this paper, a fuzzy model for power 
system operation is presented. Uncertainties in 
loads and generations are modeled as fuzzy 
numbers. The paper presents the application of a 
fuzzy logic controlled genetic algorithm (FCGA) to 
economic dispatch. The authors first propose an 
improved genetic algorithm with two fuzzy 
controllers based on some heuristics to adaptively 
adjust the crossover probability and mutation rate 
during the optimization process. The 
implementation of the fuzzy crossover and mutation 
controllers is described. The proposed FCGA can be 
applied to a wide range of optimization problems. 
The validity of the proposed algorithm is illustrated 
on economic dispatch of a six generator system. Its 
performance is compared with conventional GA and 
the Newton-Raphson method. The results are very 
encouraging. Among the results, one obtains a 
fuzzy cost value for system operation and 
possibility distributions for branch power flows and 
power generations. Some risk analysis is possible, 
as system robustness and exposure indices can be 
derived and hedging policies can be investigated. 
 
Keyword: fuzzy logic controlled genetic algorithm 
(FCGA), Economic power dispatch. 
 
1 Introduction 
Under the ever-strict governmental regulations on 
environmental protection, the conventional 
operation at minimum cost can no longer be the 
only basis for dispatching electric power. Society 
demands adequate and secure electricity not only at 
the cheapest possible price, but also at minimum 
levels of pollution. In particular, since the passage 
of the Clean Air Act Amendments of 1990 and 
similar Acts by European and Japanese 
governments, environmental constraints have 

topped the list of utility management concerns [2]. 
To meet these requirements needs means to reduce 
SO2 and NO, emission by various methods, such as 
installing post-combustion cleaning system, 
switching to fuels with low emission potential and 
dispatching load with consideration of the 
environmental issue. Among them, formulation of 
environmental economic dispatch is preferred in 
operation of the existing systems because it is easy 
to implement and requires minimal additional costs. 
The IEEE current operating problems working 
group [2] reported potential impacts of clean air 
regulations on system operations and current 
practice of some utilities. Including the emissions 
either in the objective function or treating emissions 
as additional constraints has been considered in a 
number of publications. Several methods have been 
proposed [3-7] since the early work by Gent [3]. [8] 
Provides a summary of environmental/ economic 
dispatching algorithms dating back to 1970 using 
conventional optimization methods. More recently, 
neural networks [9] and genetic algorithms [10, 11] 
have been applied to solve this problem. Genetic 
algorithms (GAS) based on the mechanism of 
natural selection have established themselves as a 
powerful search and optimization technique. In this 
technique, the genetic operators such as crossover 
and mutation have significant impact on its 
performance. In this paper, two fuzzy controllers 
based on some heuristics have been designed to 
adaptively adjust the crossover probability and 
mutation rate during the optimization process to 
improve the overall performance. The application of 
the proposed technique to environmental economic 
dispatch demonstrates its outstanding performance 
costs. The IEEE current operating problems 
working group [2] reported potential impacts of 
clean air regulations on system operations and 
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current practice of some utilities. Including the 
emissions either in the objective function or treating 
emissions as additional constraints has been 
considered in a number of publications. Several 
methods have been proposed [3-7] since the early 
work by Gent [3]. [8] Provides a summary of 
environmental/ economic dispatching algorithms 
dating back to 1970 using conventional 
optimization methods. More recently, neural 
networks [9] and genetic algorithms [10, 11] have 
been applied to solve this problem. Genetic 
algorithms (GAS) based on the mechanism of 
natural selection have established themselves as a 
powerful search and optimization technique. In this 
technique, the genetic operators such as crossover 
and mutation have significant impact on its 
performance. In this paper, two fuzzy controllers 
based on some heuristics have been designed to 
adaptively adjust the crossover probability and 
mutation rate during the optimization process to 
improve the overall performance. The application of 
the proposed technique to environmental economic 
dispatch demonstrates its outstanding performance. 
 
2 Fuzzy logic controlled genetic algorithms 
 
The basic GA proceeds as follows [l2]: 
(1) Create a population of random individuals, in 

which each individual represents a possible 
solution to the problem at hand. 

(2) Evaluate each individual’s fitness: its ability to 
solve the specified problem. 

(3) Select individual population members to be 
parents. 

(4) Produce children by recombining parent 
material via crossover and mutation, and add 
them to the population. 

(5) Evaluate the children’s fitness 
(6) Repeat steps 3-5 until a solution with the desired 

fitness goal is obtained. 
 
Although this basic GA has been applied to some 
problems [13], its drawbacks prevent the acceptance 
of the theoretic performances claimed. Thus various 
techniques [14,15,18] have been studied to improve 
genetic search. These include using advanced string 
coding, generating an initial population with some 
prior knowledge, establishing some better 
evaluation function, properly choosing parameters, 

and using advanced genetic operators. Particularly, 
as genetic algorithms are distinguished from others 
by the emphasis on crossover and mutation, more 
recently much attention and effort has been devoted 
to improving them. In this respect, two-point, 
multipoint and uniform crossover, and variable 
mutation rate have been recently proposed. 
In this paper, more advanced genetic operators have 
been presented which are based on fuzzy logic with 
the ability to adaptively dynamically adjust the 
crossover and mutation during the evolution 
process.  

 
Fig.1 Block Diagram of Proposed Fuzzy Controlled 

Genetic Algorithm   
Fig. 1 presents the block diagram of a fuzzy-
controlled genetic algorithm, in which two online 
fuzzy logic controllers are used to adapt the 
crossover and mutation. The objective here is to 
provide a significant improvement in the rate of 
convergence. The fuzzy controller in Fig. 1 consists 
of four principal components: fuzzification 
interface, which converts crisp input data into 
suitable linguistic values; fuzzy rule base, which 
consists of a set of linguistic control rules 
incorporating heuristics that are used for the 
purpose of achieving a faster rate of convergence; 
fuzzy inference engine, which is a decision-making 
logic that employs rules from the fuzzy rule base to 
infer fuzzy control actions in response to fuzzied 
inputs; and defuzzification interface, which yields a 
crisp control action from an inferred fuzzy control 
action. In the rest of the Section, a detailed 
description of the design of fuzzy crossover and 
fuzzy mutation controllers is given 
 
2.1 Fuzzy Crossover Controller 
The fuzzy crossover controller is implemented to 
automatically adjust the crossover probability 
during the optimization process. The heuristic 
updating principles of the crossover probability is if 
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the change in average fitness of the populations is 
greater than zero and keeps the same sign in 
consecutive generations, the crossover probability 
should be increased. Otherwise the crossover 
probability should be decreased.  
 
2.1.1 Inputs and Output of Fuzzy Crossover 
Controller: The inputs to the crossover fuzzy logic 
controller are changes in fitness at two consecutive 
steps, i.e. ∆f(t-1), ∆f(t), and the output of which is 
change in crossover ∆c(t). 
 
2.1.2 Membership Functions of ∆f(t-1), ∆f(t), and 
∆c(t): Membership functions of fuzzy input and 
output linguistic variables are illustrated in Fig. 2. 
∆f(t-1), ∆f(t), are normalized into the range of [-1.0, 
1.0], and ∆c(t) is normalized into the range of [-0.1, 
0.1] according to their corresponding maximum 
values.  
 
2.1.3 Fuzzy Decision Table: Based on a number of 
experiments and domain expert opinions, the fuzzy 
decision table is drawn in Table 1. 
 

 
 
 

 

 
 
 
Fig. 2 Membership Function of ∆f(t-1), ∆f (t), ∆c(t),   
NL = negative larger; NR= negative large; NS = 
negative small; NM = negative medium; ZE = zero; 
PS = positive small, PM = positive medium; PR = 
positive large: PL = positive larger 
 
Table 1: Fuzzy Decision Table for Crossover  
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Table 2: Lock-up Table for control Action of 
Crossover 

 
 
2.1.4 Look-up table for control actions: For 
simplicity, a look-up table for actions of the 
crossover fuzzy logic controller is set up. First, the 
quantified levels corresponding to the linguistic 
values of input and output fuzzy variables of the 
crossover fuzzy logic controller are designated, 
which are -4, -3, -2, -1, 0, I, 2, 3, 4, respectively. Let 
x label the quantified levels of ∆f(t-1), y label the 
quantified levels of ∆f(t-1), and z label the 
quantified levels of ∆c(t),  Then the look-up table is 
formulated as Table 2. In Table 2, z = <ax + (1 - α) 
y>, where z means a minimum integer which is not 
greater than ax + (1 - α) y. α is an adaptive 
coefficient which varies with the changes in the 
fitness of whole populations. It is found that good 
performances of' the crossover fuzzy controller 
have been achieved when α equals 0.5. The output 
of the crossover fuzzy logic controller is formulated 
in eqn. 1 
 
∆𝑐(𝑡) = Lock − up Table[i][j] ∗ 0.02 ∗  β           (1) 

 
where i, j ∈{O, 1, 2, 3, 4, 5, 6, 7, 8), the contents of 
the look-up table [i][j] are the values of z in Table 2, 
β is another adaptive coefficient which is less than 
1.0 when the changes in fitness of whole 
populations are less than 0.02. Therefore the 
crossover is computed by eqn. 2. 
 
crossover(t)  =  crossover(t −  1)  +  ∆c(t)    (2) 
 
2.2 Fuzzy Mutation Controller 
The mutation operation is determined by the flip 
function with mutation probability rate, and the 
mutate bit is randomly performed. The mutation 
probability rate is automatically modified during the 
optimization process based on a fuzzy logic 
controller. The heuristic information for adjusting 
the mutation probability rate is if the change in 
average fitness is very small in consecutive 
generations, then the mutation probability rate 
should be increased until the average fitness begins 
to increase in consecutive generations. If the 
average fitness decreases the mutation probability 
rate should be decreased. The inputs to the mutation 
fuzzy controller are the same as those of the 
crossover fuzzy controller, and the output of which 
is the change in mutation ∆m(t). The design of the 
membership function, decision and action tables for 
the fuzzy mutation controller is similar to these for 
the fuzzy crossover controller. The proposed fuzzy 
logic controlled genetic algorithm (FCGA) is then 
programmed in Turbo C ++ on a PC486. 
 
3 Environmental/Economic Power Dispatch 
There are several ways to take emission into the 
formulation of economic dispatch. One approach is 
to include the reduction of emission as an objective. 
In this Section, as an example, only NO, reduction 
is considered. The economic emission dispatch can 
be formulated as  
     

min [F1, F2]   (3) 
 
Subject to 

𝑃𝐷 + 𝑃𝐿 − ∑𝑃𝑖=0    (4) 
 

𝑃𝑖𝑚𝑖𝑛  ≤ 𝑃𝑖 ≤ 𝑃𝑖𝑚𝑎𝑥  (5) 
 

 
∆c(t) 

∆f(t-1) 

NL NR NM NS ZE PS PM PR PL 

 
 
 
 
 
∆f(t) 
 

NL NL NR NR NM NM NS NS ZE ZE 

NR NR NR NM NM NS NS ZE ZE PS 

NM NR NM NM NS NS ZE ZE PS PS 

NS NM NM NS NS ZE ZE PS PS PM 

ZE NM NS NS ZE ZE PS PS PM PM 

PS NS NS ZE ZE PS PS PM PM PR 

PM NS ZE ZE PS PS PM PM PR PR 

PR ZE ZE PS PS PM PM PR PR PL 

PL ZE PS PS PM PM PR PR PL PL 

 
Z 

X 

-4 -3 -2 -1 0 1 2 3 4 
 
 
 
 

Y 

-4 -4 -3 -3 -2 -2 -1 -1 -0 +0 
-3 -3 -3 -2 -2 -1 -1 -0 +0 1 
-2 -3 -2 -2 -1 -1 -0 +0 1 1 
-1 -2 -2 -1 -1 -0 +0 1 1 2 
0 -2 -1 -1 -0 +0 1 1 2 2 
1 -1 -1 -0 +0 1 1 2 2 3 
2 -1 -0 +0 1 1 2 2 3 3 
3 -0 +0 1 1 2 2 3 3 4 
4 -0 1 1 2 2 3 3 4 4 IJSER
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Where F1 is the expected fuel cost which is 
assumed to be approximated by a quadratic function 
of the generator power output P1  
 
F1 = ∑(𝑎𝑖𝑃𝑖2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖)    (6) 
 
Where F2 is the expected NOx emission which can 
be directly related to the cost curve through the 
emission rate per MBtu 
 
F2 = ∑(𝑑𝑖𝑃𝑖2 + 𝑒𝑖𝑃𝑖 + 𝑓𝑖)    (7) 
 
where PD, is the power demand and PL, is the 
expected transmission loss given by 
 
PL = ∑∑𝑃𝑖𝐵𝑖𝑗𝑃𝑗      (8) 
The multi objective problem (eqn. 3) is converted to 
a scalar optimization problem with weighted 
constraints 
 
min{𝐹 = 𝑤𝐹1 + 𝑤2𝐹2 + 𝜆[𝑃𝐷 + 𝑃𝐿 − ∑𝑃𝑖]} (9) 
 
Where w1, w2 are weighting coefficients. When w2 
is set to 0, the problem becomes pure economic 
dispatch or when w1 is set to 0, the problem 
becomes pure emission dispatch. λ is the 
Lagrangian operator. When fuel cost coefficients, 
emission coefficients and load demand are 
considered as random variables, the basic economic 
emission dispatch can be extended as a stochastic 
problem which is detailed in [7]. The stochastic 
economic emission provides the facility to consider 
the inaccuracies and uncertainties in the economic 
dispatch procedure. 
 
4 Tests and results 
As Two test examples are presented to illustrate the 
proposed FCGA. The first is a pure economic 
dispatch problem. Comparison between GA and 

FCGA is reported for this example. The second one 
is an emission economic dispatch. Results are 
compared with a stochastic method.  
 
4.1 Test 1: economic dispatch  
The first test is carried out on pure economic 
dispatch of a six generator system. The data 
employed in this paper are obtained from [17]. The 
fuel cost function of each unit is a quadratic 
function of the generator real power output, and the 
output limits are given as follows: 
𝐹1=0.00156𝑃12 + 7.92P1 𝑃1+ 561.0 100 < 𝑃1< 600 
𝐹2 = 0.00194𝑃22 + 7.85𝑃2 + 310.0  100 < 𝑃2< 400 
𝐹3 = 0.00482𝑃32 + 7.97𝑃3 + 78.0  50 < 𝑃3 < 200 
 𝐹4= 0.00139𝑃42j + 7.06𝑃4 + 500.0 140 < 𝑃4< 590 
𝐹5 = 0.00184 𝑃522 + 7.46𝑃5 + 295.0  110 <𝑃5< 440 
𝐹6 = 0.00184𝑃52,' + 7.46𝑃6 + 295.0 110< 𝑃6 < 440 
 
The load demand is assumed to be 1800, 1200 and 
800MW. For simplicity, transmission losses are 
ignored in the test. For solving the environmental 
economic dispatch problem, the fitness function is 
chosen to be 
  𝑓 = 𝐾 𝐹⁄    (10) 
Where F is the value of the objective function 
defined by eqn. 9 and K is a large constant. K is 
used to amplify the value of l/F, which is usually 
very small, such that the fitness values of the strings 
are in a wider range for the selection process. The 
parameters used in conventional GA and FCGA 
are: population size = 100; sub chromosome length 
(i.e. for each unit) = 10; optimized parameters = 6; 
chromosome length = 60; initial crossover rate = 
0.5; initial mutation rate = 0.01; Desired generations 
= 100. The economic dispatch results obtained by 
the conventional genetic algorithms (CGAs) and the 
fuzzy 

 
 
Table 3: Economic dispatch results by CGAs and FCGAs 
 
Method        Load          Unit 1       Unit 2       Unit  3     Unit 4        Unit 5         Unit 6        Total Cost    Computing  
                      (MW)         (MW)       (MW)        (MW)       (MW)        (MW)          (MW)             ($)                Time (s) 
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CGAs               800         109.17      104.08       52.04       305.05        114.83     114.83       8232.89            14.16 
FCGAs             800         104.89      102.87       51.74       314.18        113.16     113.16       8231.03             05.62 
CGAs               1200       142.55      117.80      58.90        515.20        182.78     182.78     11493.74            17.83 
FCGAs             1200      131.50       129.05      52.08         494.08         200.61       200.61     11480.03               7.43 
CGAs               1800      222.42       190.73      95.36        555.63        367.92     367.92     16589.05            19.66 
FCGAs             1800      250.49       215.43     109.92       572.84        325.66     325.66    16585.85             10.44 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4: Pure economic and pure emission dispatch results by FCGAs 
 

 
                                  Pure economic dispatch                             Pure economic dispatch                                  
Load                               500               700                   900                       500                  700                    900 
Fuel Cost  ($/h)            28150.80     38384.09        49655.40           28756.71        39455.00           53299.64 
Emission  (kg/h)           314.53          543.48             877.61                286.59             516.55              785.64 
Power loss (MW)          18.86           36.15                58.58                  24.61               42.44                65.00 
Computing time (s)      34.18           74.65                122.41                  6.67               15.55                39.12 
Unit 1                             49.47           72.14                101.11                 81.08              120.16              133.31 
Unit 2                             29.40           50.02                 67.64                  13.93              21.36                110.00 
Unit 3                             35.31           46.47                 50.39                  66.37              62.09                100.38 
Unit 4                             70.42            99.33               158.80                 85.59              128.05             119.27 
Unit 5                             199.03          264.60            324.08                141.70             209.65             250.79 
Unit 6                             135.22         203.58              256.56                135.93             201.12             251.25 
Total capacity(MW)    518.86         736.14              958.57                524.60            742.44              964.99     

 
 
Table 5: Economic emission dispatch by FCGAs and Newton-Raphson method 
 
 

                                             FGAs                                                   Newton Raphson Method 
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Load                               500               700                   900                       500                  700                    900 
Fuel Cost  ($/h)           28231.06     38408.82       49674.28             28550.15      39070.74          50807.24 
Emission  (kg/h)          304.90         527.46            850.29                   312.513        528.447            864.060 
Power loss (MW)        17.41           32.85               54.92                     17.162          34.927              54.498    
Computing time (s)    50.22           124.66             176.41                     -                       -                          - 
Unit 1                            65.23           80.16              111.40                   59.873            85.924               122.004 
Unit 2                            24.29           53.71              69.33                     39.651            60.963              86.523 
Unit 3                            40.44           40.93              59.43                     35.000            53.909              59.947 
Unit 4                            74.22           116.23            143.26                  72.397            107.124             140.959 
Unit 5                            187.75         251.20            319.40                  185.241          250.503            325.000 
Unit 6                            125.48         190.62            252.11                  125.000         176.504             220.063 
Total capacity(MW)    517.41         732.85            954.92                  517.162         734.927             954.498 

 
 
Controlled genetic algorithm (FCGA) is given in 
Table 3. Figs. 3a and 36, respectively, show the cost 
curves of FCGAs and CGAs when load demand is 
assumed to be l8OOMW during the optimization 
process. The outstanding performances of FCGA, 
such as the reduction of both the cost and the 
computation time, can be clearly seen. Furthermore, 
the cost curve of Fig. 36 is oscillating from one 
generation to another. This is mainly because the 
crossover rate and mutation rate have been kept 
constant in CGAs. This causes problems to set 
criteria to stop the search for an optimal solution. 
On the other hand, the cost curve of the proposed 
FCGA indicates the solution is improved during 
each generation. 
 
4.2 Tests 2: Economic Emission Dispatch 
The second example is the six-generator system 
from [7], which details the fuel cost and NO, 
emission equations, the average expected 
transmission loss coefficients, and the operating 
limits of the generators. The type of the fuel burned 
is assumed to be fixed. The parameters used in 
FCGA are: population size = 200; sub chromosome 
length (i.e. for each unit) = 10; optimized 
parameters = 6; chromosome length = 60; initial 
crossover rate = 0.6; initial mutation rate = 0.03; 
desired generations = 200. Table 4 presents the 
results obtained by the FCGA for pure economic 
and pure emission dispatch. Table 5 presents the 
results obtained by the proposed FCGA method and 
the Newton-Raphson method (case 1 of Tables 5 

and 6 in [7]). From Tables 4 and 5, it is clear that 
pure economic dispatch produces a minimum cost 
dispatch and the emission is higher. In the pure 
emission dispatch, emission is minimum and the 
cost is higher. The economic emission dispatch 
products a suboptimal solution to both economic 
and emission objectives. When comparing FCGA's 
results with the Newton-Raphson method in Table 
5, the reduction of fuel cost and emission is very 
clear in all the three load demands by the FCGA 
method, while constraint are satisfied and 
transmission losses are kept almost the same.  

 
                                                        a 
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                                                     b 
Fig. 3 Cost curve for FCGAs and CGAs 
a FCGAs 
b CGAs 
 
 
 

 

 
Fig. 4 Initial and Tenth Population 
a Initial 200 Population 
b Tenth Population  
 
To appreciate the evolution process of the FCGAs, 
Fig. 4u illustrates the initial 200 populations which 
are generated randomly. Fig. 4 gives the population 
of the tenth generation. It can be seen that the 

population is grouping towards the optimal point. 
However, there are some points scattering in the 
whole space. These points reflect the effect of 
mutation which has the ability of avoiding 
premature convergence or sticking to a local 
minimum. Fig. 5 illustrates the best and average 
fitness curves generated by FCGA when load 
demand is assumed to be 900MW. 
 

 
Fig. 5 Fitness Curve of FCGA 
            best 
- - - - - average 
 
5 Conclusions 
Environmental concern is an important issue in the 
operation of modern power systems. This paper has 
proposed fuzzy controlled genetic algorithms for 
environmental/ economic dispatch. Two fuzzy 
controllers have been designed to adaptively adjust 
the crossover probability and mutation rate during 
the optimization process based on some heuristics. 
The implementation of fuzzy crossover and 
mutation controllers has been described. The 
proposed algorithm has been tested on a six-
generator economic emission load dispatch 
problem. Compared with conventional GA and the 
Newton- Raphson method, the results reported have 
demonstrated the improved performances by the 
proposed algorithm. It is worth pointing out that the 
proposed FCGA can be applied to a wide range of 
optimization problems. 
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