
Computer
SCienCe

E
D

E
X

C
E

L C
o

m
pu

tE
r

 SC
iE

n
C

E
 fo

r
 G

C
SE

Steve C
ushing

EDEXCEL ComputEr SCiEnCE for GCSE

Steve Cushing

SAMPLE
CHAPTERS

9781471866227 Edexcel Computer Science CV Final.indd 3 28/10/2015 16:36

Meet the challenges of the new GCSE specification with print and digital resources
to support your planning, teaching and assessment needs alongside specialist-led CPD
events to help inspire and create confidence in the classroom.

We will be seeking endorsement for the following textbook :

Edexcel GCSE Computer Science Student Book 9781471866227 June 2016 £19.99

Visit www.hoddereducation.co.uk/ComputerScience/GCSE/Edexcel to pre-order your class
sets, or to sign up for your Inspection Copies or eInspection Copies.

Also AvAilAble:

edexcel GCse Computer science Dynamic learning

Dynamic Learning is an innovative online subscription service with interactive resources, lesson planning tools, self-
marking tests, a variety of assessment options and eTextbook elements that all work together to create the ultimate classroom
and homework resource.

“I’d have no time left to teach if I collected all these resources. It’s a great time saver.”

Caroline Ellis, Newquay Tretherras

9781471886621 February 2017 £8.99

To sign up for a free 30-day trial, visit www.hoddereducation.co.uk/dynamiclearning

My Revision Notes: edexcel GCse Computer science

Ensure your students have the knowledge and skills needed to unlock their full potential with this revision guide from our
best-selling series.

Prices from £9.99
Pub date: January 2017
To sign up for Inspection Copies visit www.hoddereducation.co.uk/ComputerScience/GCSE/Edexcel

Philip Allan events

Ensure that you are fully prepared for the upcoming changes by attending our specialist-led CPD courses.

For more information and to book your place visit www.hoddereducation.co.uk/Events

Computer
SCienCe

EDEXCEL Computer SCienCe for GCSE

Steve Cushing

Although every effort has been made to ensure that website addresses are correct at time of going
to press, Hodder Education cannot be held responsible for the content of any website mentioned. It
is sometimes possible to find a relocated web page by typing in the address of the home page for a
website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made
from wood grown in sustainable forests. The logging and manufacturing processes are expected to
conform to the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Milton Park, Abingdon, Oxon OX14 4SB. Telephone:
(44) 01235 827720. Fax: (44) 01235 400454. Lines are open 9.00–17.00, Monday to Saturday, with a
24-hour message answering service. Visit our website at www.hoddereducation.co.uk

© Steve Cushing 2016

First published in 2016 by

Hodder Education
An Hachette UK Company,
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or held within any information storage and retrieval system, without
permission in writing from the publisher or under licence from the Copyright Licensing Agency
Limited. Further details of such licences (for reprographic reproduction) may be obtained from the
Copyright Licensing Agency Limited, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

Cover photo © Antonis Papantoniou – Thinkstock.com

6

Contents

 Section one: Problem solving

 1 Computational thinking
 2 Using flowcharts
 3 Pseudo-code

 Section two: Programming

 4 Mathematical skills in computer science
 5 Loops and mathematical operations
 6 Variables and constants
 7 Programming in code
 8 Iteration and selection
 9 Boolean and logic gates
 10 Structuring programs in a modular way
 11 Subroutines
 12 Testing your code
 13 Algorithm efficiency
 14 Comparing pseudo-code, flowcharts and code

 Section three: Data

 15 The language computers actually use
 16 Binary and hexadecimal numbers
 17 Computing and data representation
 18 Data types and structures
 19 Data structures
 20 Data and program validation and verification
 21 Data size, storage and compression
 22 Databases
 23 Reading and writing to a text file
 24 Encryption
 25 Understanding search and sort algorithms

Contents

7

 Section four: Computers

 26 The computer systems architecture
 27 Memory
 28 Secondary storage
 29 Cloud computing
 30 Fetch-Decode-Execute cycle
 31 Software

 Section five: Communication and the Internet

 32 Networks
 33 Network data transfer

 Section Six: Emerging trends, issues and impact

 34 Personal vulnerabilities
 35 Social engineering and cyber security
 36 Ethics and the law
 37 Embedded systems

 Section seven: Set practical project

 38 Project

8

2 Using flowcharts

 Specification references

You should:

1.1.1 understand what an algorithm is, what
algorithms are used for and be able to interpret
algorithms (flowcharts, pseudo-code, written
descriptions, program code)

1.1.2 understand how to create an algorithm to
solve a particular problem, making use of
programming constructs (sequence, selection,

iteration) and using appropriate conventions
(flowchart, pseudo-code, written description,
draft program code)

1.1.3 understand the purpose of a given algorithm
and how an algorithm works

1.1.4 understand how to determine the correct
output of an algorithm for a given set of data

2.4.1 understand how to write code that accepts and
responds appropriately to user input

There are a lot of different design procedures and techniques for
building large software projects. The technique discussed in this
chapter, however, is for smaller coding projects and is referred to
by the term ‘top down, structured flowchart methodology’. We
will explore how to take a task and represent it using a flowchart.
A flowchart puts the sentences from a sequence into shaped
boxes. The shapes indicate the action.

You will know from the last chapter that a sequence is where a set
of instructions or actions are ordered, meaning that each action
follows the previous action.

Figure 2.1 A sequence

 Key points
▲ A flowchart is a diagram

representation of an algorithm.
▲ For the examination, you will

need to be able to interpret
flowcharts.

▲ Flowcharts are a graphical
method of designing
programs.

▲ A well-drawn flowchart is easy
to read.

 Key point

In a flowchart the lines express
the order of execution.

General rules for flowcharts

9

Flowchart advantages
● Flowcharts are a graphical way of writing pseudo-code.
● They are all standardised: we all pretty much agree on the

symbols and their meaning.
● They are very visual.

Flowchart disadvantages
● Flowcharts can be time consuming and difficult to modify.
● They need special software for symbols although some software

has these built in.
● The structured design elements are not all implemented.

General rules for flowcharts
● All symbols of the flowchart are connected by flow lines

(these must be arrows not lines to show direction).
● Flow lines enter the top of the symbol and exit out the bottom,

except for the Decision symbol, which can have flow lines
exiting from the bottom or the sides.

● Flowcharts are drawn so flow generally goes from the top to
the bottom of the page.

● The beginning and the end of the flowchart is indicated using
the Terminal symbol.

Let’s look at a simple sequence. Say we want to calculate A plus B,
where A = 200 and B = 400.

Start

A = 200 B = 400

Add = 200 + 400

Output = 600

End

We could create the simple flow-
chart shown in Figure 2.2.

Let's look at a another sequence,
for example the sequence you carry
out each morning in the bathroom.
This sequence could be:
● Brush teeth
● Wash face
● Comb hair.

As you can see, sequences are a useful tool for showing what
happens and in what logical order, but each step, for example
‘brush teeth’, needs to be defined in more detail to be carried out.

 Key points
▲ Flowcharts must have flow

lines with arrows to show the
order of execution.

▲ An algorithm is a sequence of
steps that can be followed to
complete a task.

▲ A sequence is where a set
of instructions or actions are
ordered, meaning that each
action follows the previous
action.

 Questions

1 What is a Terminator?

2 What is a Sequence?

3 What is an Input/Output?

 Task

1 Produce a sequence to show
how to brush your teeth.

Start

Action 1

End

Figure 2.2 A simple flowchart

2 Using flowcharts

10

Once we have picked up our toothbrush, turned on the tap and
added the toothpaste we can put the toothbrush in our mouth and
brush. The act of actually brushing your teeth could be recorded
in a linear way (press, brush up, brush down, brush up, brush
down, etc.), but it would be much simpler to explain the brushing
once and then tell the user to repeat the same action x times. We
will explore this later when we consider looping (iteration), but for
now let us explore how we can use a flowchart to represent simple
sequences. First we need a few more elements.

 Key point

Cleaning your teeth is called a procedure in coding. You perform the
same action every day, for example: pick up brush, put toothpaste on
brush, brush teeth for two minutes, spit out, clean brush. These actions
could be given a procedure name: ‘Brushing Teeth’.

Basic elements of flowcharts
The flowchart symbols denoting the basic building blocks of
programming are shown in Figure 2.3 below. Text inside a symbol
is called a label.

START
Symbol

START

END

PROCESS
DECISION

END
Symbol

PROCESS
Symbol

DECISION
Symbol

Figure 2.3 Basic elements of a flowchart

The START symbol represents the start of a process.

The process symbol is labelled with a brief description of the
process carried out by the flowchart. The END symbol represents
the end of a process. It contains either ‘End’ or ‘Return’ depending
on its function in the overall process of the flowchart.

Representing a process
A PROCESS symbol is representative of some operation that is
carried out on an element of data. It usually contains a brief
description of the process being carried out on the data. It is
possible that the process could be even further broken down into

 Key points
▲ You use a PROCESS symbol

for an OPERATION or ACTION
STEP.

▲ You use a TERMINATOR
symbol for a START or END in
a PROCESS.

▲ You use a DECISION symbol
for a QUESTION or BRANCH of
a process.

▲ Flowchart symbols contain text
called labels.

▲ For the examination, you will
need to understand how to
create an algorithm using a
flowchart.

Basic elements of flowcharts

11

simpler steps by another complete flowchart representing that
process. If this is the case, the flowchart that represents the
process will have the same label in the ‘Start’ symbol as the
description in the ‘Process’ symbol at the higher level. A process
always has exactly one input arrow and one output arrow.

In practice, sequences are not a simple line. Often the next action
depends on the last decision. This is called selection. In selection,
one statement within a set of program statements is executed
depending on the state of the program at that instance. We ask a
question and choose one of two possible actions based upon that
decision.

Representing a decision
A DECISION/SELECTION symbol always makes a Boolean choice.
We will explore Booleans in more detail later in the book. The
label in a decision symbol should be a question that clearly has
only two possible answers to select from.

Condition
true?

Yes

No

Figure 2.4 How to represent a decision

The DECISION symbol will have exactly one input arrow and two
output arrows. The two outputs will be labelled with the two
answers to the question, in order to show the direction of the
logic flow depending upon the selection made.

Selections are usually expressed as decision key words, such as ‘if
... then ... else ... endif, switch or case’. They are at the heart of all
programming.

Action 2Action 1

Yes

Then Else

No
Condition

true?

Figure 2.5 A flowchart representing a selection

 Key points
▲ All flowcharts must have a

START and an END symbol.
▲ The DECISION symbol will

have exactly one input and two
outputs.

 Key points
▲ One of the most confusing

things in a flowchart is telling
the loops apart from the
selections. This is because
both use the diamond shape
as their control symbol. Mark
them clearly.

▲ A ‘Decision’ symbol always
makes a Boolean choice.

 Questions

4 What is a flowchart?

5 What is a Selection?

2 Using flowcharts

12

Flowcharts can use the following symbols:

Symbol Purpose Use

Flow line The lines show the
sequence of operations.

Terminal
(Start/Stop)

Denotes the start and end
of an algorithm.

Processing Denotes a process to be
carried out.

Decision Used to represent the
operation in which there
are two alternatives, true
and false.

We can use a decision to create a flowchart of what happens in
the morning on school days, as shown in Figure 2.6.

We also explored selections when we looked at the sequence
of making tea. We explored using IF someone wants sugar and
IF someone wants milk. The process of making the tea differed
according to their answer to these questions.

The flowchart below shows a different process for making tea and
adds two decision boxes.

Milk?

Sugar?

Remove
teabag

Stir

Find mug

Find
teabag

Put teabag
in mug

Boil kettle

Pour water
in mug

Add milk
Yes

Yes

No

No

Add Sugar

Drink tea

Start

End

Figure 2.7 A flowchart showing a difference process for making tea

Ready to
get up?

Climb out
of bed

Alarm
rings

No

Yes

Hit Snooze
button

Delay
Set for
5 mins

Start

End

Figure 2.6 A flowchart showing what
happens on a school morning

Basic elements of flowcharts

13

If we wanted to show how to play the game of snakes and ladders
we could explain how to play the game in English as follows:

Start game

Throw the dice: the number indicated by dice is x.

Move your counter x squares on the board and check:

 Have you landed on snakes head?: no/yes

 If yes slide down snake to its tail.

 If no check next statement

 Have you landed on the bottom of the ladder?: no/yes

 If yes move up the ladder.

 If no check next statement

 Have you reached the last block of the game?: no/yes

 If yes

 Output “you are the winner”

 If no

 Give the dice to the next player

Repeat until someone reaches the last block of the game.

End

We have more decisions in this example and could show the game
with the following flowchart.

No

No

No

Yes

Yes

Yes

Landed
on snake

head?

Landed
on bottom of

ladder?

Reached
last square of

game?

Move counter
number of places

shown on dice

Move up
ladder

Output ‘You are
the winner’

Slide down
tail of snake

Give dice to
next player

Start

End

Throw dice

Figure 2.8 A flowchart showing the game of snakes and ladders

 Key point

Repetition is used when the
same bit of code is needed
several times. Instead of writing it
over and over again, you can use
the REPEAT command. Repetition
can also be called iteration
(looping).

2 Using flowcharts

14

Other structures we will use in this book include:

SEQUENCE
Structure

SELECTION
(IF…THEN…ELSE)

Structure

INTERATION
(WHILE)
Structure

Figure 2.9 Other structures we will use in this book

On-page and off-page connectors may also appear in some
flowcharts. This occurs when a flowchart goes over more than
one page. For the purposes of this chapter we will only explore
flowcharts that can be represented on a single page. If a flowchart
is so big it needs to go onto another page, you should split it into
sub-processes

Subprocesses
We can also use subprocesses in flowcharts using the symbol
below.

Subprocess

Figure 2.10 The subprocess symbol

Subprocesses are useful because:
● they help with the modularisation of complex programs;
● they provide a way of simplifying programs by making common

processes available to a wide number of programs;
● they lead to more reliable programs since once a process is

tested and works it can be made a subprocess and need not be
tested again.

In flowcharts subprocesses are also useful in sticking to the rule
that a flowchart should fit on a single page.

Basic elements of flowcharts

15

Figure 2.11 shows an example of the main page of a flowchart.
It contains two subprocess symbols. Each subprocess symbol
contains text which describes briefly what the subprocess does.
Each subprocess symbol also contains a page reference where the
flowchart for the subprocess will exist.

In this chapter we built upon the last chapter to explore sequences in
more detail and established how we can show these using flowcharts.

We looked at the basic elements of flowcharts and introduced the
concept of decisions and how these can be represented.

Remember, before tackling any computer science task or examination
question on this topic you must:

➨ understand what an algorithm is and what algorithms are used for,
and be able to interpret algorithms in the form of flowcharts

➨ Understand and be able to explain and create algorithms to solve a
particular problem, making use of programming constructs such as
sequence, selection and iteration

➨ understand and be able to use appropriate conventions in flowcharts

➨ understand and be able to explain the purpose of a given algorithm
and explain how it works

➨ understand and be able to explain and determine the correct output
of an algorithm for a given set of data.

Chapter review

Initialise
variables

1

Run
calculation

script
2

Print sum

Start

End

Figure 2.11 The subprocess

16

3 Pseudo-code

 Specification references

You should:

1.1.1 understand what an algorithm is, what
algorithms are used for and be able to interpret
algorithms (flowcharts, pseudo-code, written
descriptions, program code)

1.1.2 understand how to create an algorithm to
solve a particular problem, making use of
programming constructs (sequence, selection,
iteration) and using appropriate conventions
(flowchart, pseudo-code, written description,
draft program code)

1.1.3 understand the purpose of a given algorithm
and how an algorithm works

1.1.4 understand how to determine the correct
output of an algorithm for a given set of data

2.1.2 understand the benefit of producing
programs that are easy to read and be able
to use techniques (comments, descriptive
names (variables, constants, subprograms),
indentation) to improve readability and to
explain how the code works

2.2.1 understand the structural components of
a program (variable and type declarations,
command sequences, selection, iteration, data
structures, subprograms)

2.2.2 be able to use sequencing, selection and
iteration constructs in their programs

2.4.1 understand how to write code that accepts and
responds appropriately to user input

Basic elements of pseudo-code
Pseudo-code is another way to develop an algorithm. It consists
of natural language-like statements that precisely describe the
steps required.

Pseudo-code must:
● contain statements which describe actions;
● focus on the logic of the algorithm or program;
● avoid language-specific elements;
● be written at a level so that the desired programming code can

be generated with little effort from each statement;
● contain steps, subordinate numbers and/or indentation used

to show dependent statements in selection and repetition
structures.

Pseudo-code advantages
● Pseudo-code is similar to everyday English.
● It helps programmers to plan an algorithm.
● It can be done easily on a word processor.
● It is easily modified.
● It implements structured concepts well.

 Key points
▲ Pseudo-code is a language

designed to express algorithms
in an easy to follow form.

▲ Pseudo-code is an easy to
read language to help with
the development of coded
solutions.

▲ When writing in pseudo-code
resist the urge to write in
whatever language you are
most comfortable with.

The importance of syntax

17

Pseudo-code disadvantages
● Pseudo-code is not visual like flowcharts.
● There is no accepted standard, so it varies widely.
● It is not an actual programming language.
● It is an artificial and informal language.
● Some people have a tendency to put actual code in. This makes

it harder to understand.

The importance of syntax
Syntax is the set of rules, principles, and processes that enable us
to understand a language. The syntax rules of a language define
the spelling and grammar and as with natural human languages
each language has its own rules. Computers are very inflexible
and understand what you write only if you state what you want
in the exact syntax that the computer expects and understands.

Each programming language has its own rules and specialist
syntax including the words that the computer understands, which
combinations of words are meaningful, and what punctuation is
necessary for the code to be correctly structured. Whilst pseudo-
code does not have a fixed syntax, you will need to understand
the syntax used in the examination papers. Understanding the
importance of syntax is also vital when you start using a
programming language.

Symbols
When we write code in English we also use symbols in the form of
punctuation. Symbols are used because they are human-readable.
The symbols you use are important as they have an effect in your
code.

these-words-are-seperated-by-a-symbol #the – is the symbol used
 here

there is also a symbol in this sentence #here the space is the symbol
 used

Symbols can also be used as what are called identifiers. In some
programming languages, they are also called atoms rather than
symbols.

The symbols ←, <<, <, –, and = are often used as what are called
operators.

In pseudo-code, you use the following syntax to receive data from
a device. The red brackets < > are only to show where you add
something; you don’t need to put them in your code.

Syntax

RECEIVE <add identifier here> FROM (type) <add device here>

 Question

1 What is pseudo-code?

 Key point

For the examination you will need
to understand how to create
an algorithm using appropriate
conventions (flowchart, pseudo-
code, written description, draft
program code).

 Key point

The symbols ←, <<, <, –, =
are often used to represent
the assignment operator in
programming languages.

3 Pseudo-code

18

Examples

RECEIVE Name FROM (STRING) KEYBOARD

or

RECEIVE LengthOfJourney FROM (INTEGER) CARD_READER

or

RECEIVE YesNo FROM (CHARACTER) CARD_READER

Common action keywords
Several keywords are often used to indicate common input,
output, and processing operations.
● Input: READ, OBTAIN, GET
● Output: PRINT, DISPLAY, SHOW
● Process/compute: COMPUTE, CALCULATE, DETERMINE
● Initialise: SET, INIT
● Add one: INCREMENT

In pseudo-code, you use the following syntax to send output to
the screen. The red brackets < > are only to show where you add
something; you don’t need to put them in your code.

Syntax

SEND <add expression here> TO DISPLAY

Example

SEND ‘Have a good day.’ TO DISPLAY

Whilst there is no common way of writing pseudo-code, in
this book we have written the commands in capital letters to
differentiate them from the examples in Python and to help you
understand what the command words are.

Questions in the Edexcel written examination that involve code
will use the following pseudo-code command words alongside
other words:

ELSE

END FOR

END IF

END WHILE

FOR

IF

INPUT

OUTPUT

REPEAT

RETURN

THEN

WHILE

 Key point

For the examination, you will
need to be able to interpret
program code.

Commenting on your code

19

Commenting on your code
Good code is not only well written, but should also be well
annotated. There are programmers who argue that comments
are not necessary if the code is written well, but you are
undertaking an examination and it will be useful to explain what
your code does and why.

You will find many examples of commented code in this book.
Comments are shown using either // or #. Different programming
languages have different ways to tell the computer that this is a
comment NOT the code. You can make all the code you write in
pseudo-code a comment when you write the actual code using
your chosen language. This is considered good practice when
learning to code. You can also comment out bits of code to find
errors, but we will explore this later.

Questions in the Edexcel written examination that involve code
will use the following pseudo-code syntax for comments:

some text

Multiline comments will show the hash # for each separate
comment line.

some text

some more text on a new line

Comments remind you and the examiner why you included
certain functions. They also make maintenance easier for you
later.

Have you ever tried to work with someone else’s complex
spreadsheet or database? It’s not easy. Now imagine how difficult
it is if you’re looking at someone else’s programming code.

When you fully document your code with comment tags, you’re
answering (at least) three questions:
● Where is it?
● Why did I do that?
● What does this code do?

No matter how simple, concise, and clear your code may end up
being, it’s impossible for code to be completely self-documenting.
Even with very good code it can only tell the viewer how the
program works; comments can also say why it works.

Adding selection
As we discovered in the last chapter on flowcharts, another
important aspect of programming is selection. If we want to
write pseudo-code that tells a user to enter a number to a variable,

 Key point

A comment is explanatory text for
the human reader.

 Key points
▲ Good code is well written and

well annotated.
▲ For the examination, you will

need to understand the benefit
of producing programs that
are easy to read, and be able
to use techniques (such as
comments, descriptive names
and indentation) to improve
readability and to explain how
the code works.

▲ For the examination, you will
need to understand how to
create an algorithm making
use of programming constructs
such as sequence, selection
and iteration.

 Question

2 What is a comment?

 Task

1 Describe the main reasons
why a programmer would wish
to annotate or add comments
to their code.

3 Pseudo-code

20

and then we want the code to see if the number they entered is a 3
or a 4 we could write a selection algorithm in pseudo-code that
could look like this:

RECIEVE inputNumber FROM (int) KEYBOARD #Input

IF inputNumber = 3 #Selection (Process)

 SEND “your number is 3” TO DISPLAY #Output

ELSE IF inputNumber = 4

 SEND “your number is 4” TO DISPLAY

ELSE

 SEND “your number is not 3 or 4” TO DISPLAY

END IF

We could also write the code a different way:

RECIEVE inputNumber FROM (int) KEYBOARD

IF inputNumber = 3

THEN SEND “Your number is a 3” TO DISPLAY

ELSE IF inputNumber = 4

 THEN SEND “Your number is a 4” TO DISPLAY

 ELSE SEND “Your number is not a 3 or a 4” TO DISPLAY

 END IF

 Key points
▲ The IF statement is used to

create a decision structure,
which allows a program to
have more than one path of
execution.

▲ The IF statement causes
one or more statements to
execute only when a Boolean
expression is true.

▲ An IF-ELSE statement
will execute one block of
statements if its condition is
true, or another block if its
condition is false.

 Task

2 Use this book and other sources such as the Internet to research how
to identify and correct errors in algorithms.

3 Use this book and other sources such as the Internet to research how
standard algorithms (bubble sort, merge sort, linear search, binary
search) work.

Commenting on your code

21

In this chapter we have explored pseudo-code and
how to use it to show program flow and decision
making.

We also explored the importance of syntax and how to
comment on your code.

Remember, before tackling any computer science task
or examination question on this topic you must:

➨ understand and be able to explain what algorithms
are used for

➨ be able to interpret and write algorithms in pseudo-
code

➨ understand and be able to explain and create
algorithms to solve a particular problem, making
use of programming constructs (such as sequence,
selection, iteration)

➨ understand and be able to explain and apply the
purpose of a given algorithm and how an algorithm
works

➨ understand how to determine the correct output of
an algorithm for a given set of data

➨ understand and be able to use appropriate
conventions in pseudo-code

➨ understand and be able to explain the benefit of
producing programs that are easy to read and be
able to use techniques such as comments and
descriptive names for variables, constants, and
subprograms alongside indentation to improve
readability and to explain how the code works

➨ be able to use sequencing, selection and iteration
constructs in your programs

➨ understand and be able to apply structural
components of a program including variable and
type declarations and sequences, selection,
iteration, data structures, and subprograms.

Chapter review

Summary of features

22

General rules for flowcharts

32

2 Using flowcharts General rules for �owcharts
● All symbols of the flowchart are connected by �ow lines

(these must be arrows not lines to show direction).
● Flow lines enter the top of the symbol and exit out the bottom,

except for the Decision symbol, which can have flow lines
exiting from the bottom or the sides.

● Flowcharts are drawn so flow generally goes from the top to
the bottom of the page.

● The beginning and the end of the flowchart is indicated using
the Terminal symbol.

Let’s look at a simple sequence. Say we want to calculate A plus B,
where A = 200 and B = 400.

Start

A = 200 B = 400

Add = 200 + 400

Output = 600

End

Let's look at a another sequence,
for example the sequence you carry
out each morning in the bathroom.
This sequence could be:
● Brush teeth
● Wash face
● Comb hair.

As you can see, sequences are a useful tool for showing what
happens and in what logical order, but each step, for example
‘brush teeth’, needs to be defined in more detail to be carried out.

 Key points
▲

lines with arrows to show the
order of execution.

▲ An algorithm is a sequence of
steps that can be followed to
complete a task.

▲ A sequence is where a set
of instructions or actions are
ordered, meaning that each
action follows the previous
action.

 Questions

1 What is a Terminator?

2 What is a Sequence?

3 What is an Input/Output?

 Task

1 Produce a sequence to show
how to brush your teeth.

 Specification references

You should:

1.1.1 understand what an algorithm is, what
algorithms are used for and be able to interpret

descriptions, program code)

1.1.2 understand how to create an algorithm to
solve a particular problem, making use of
programming constructs (sequence, selection,

iteration) and using appropriate conventions

draft program code)

1.1.3 understand the purpose of a given algorithm
and how an algorithm works

1.1.4 understand how to determine the correct
output of an algorithm for a given set of data

2.4.1 understand how to write code that accepts and
responds appropriately to user input

There are a lot of different design procedures and techniques for
building large software projects. The technique discussed in this
chapter, however, is for smaller coding projects and is referred to
by the term ‘top down, structured flowchart methodology’. We
will explore how to take a task and represent it using a flowchart.
A flowchart puts the sentences from a sequence into shaped
boxes. The shapes indicate the action.

You will know from the last chapter that a sequence is where a set
of instructions or actions are ordered, meaning that each action
follows the previous action.

Figure 2.1 A sequence

 Key points
▲ A is a diagram

representation of an algorithm.
▲ For the examination, you will

need to be able to interpret

▲ Flowcharts are a graphical
method of designing
programs.

▲
to read.

 Key point

the order of execution.

Start

Action 1

End

Figure 2.2

 Key term

For the examination, you will
need to be able to interpret

In this chapter we built upon the last chapter to explore sequences in
more detail and established how we can show these using �owcharts.

We looked at the basic elements of �owcharts and introduced the
concept of decisions and how these can be represented.

Remember, before tackling any computer science task or examination
question on this topic you must:

➨ understand what an algorithm is and what algorithms are used for,
and be able to interpret algorithms in the form of �owcharts

➨ use a systematic approach to problem solving and algorithm creation
representing those algorithms using �owcharts;

➨ understand and be able to use appropriate conventions in �owcharts

Chapter review

Key points clarify signif icant
information for students to
be able to process and recall
easily

Key terms will help students
develop computing language
skills to facilitate greater
subject understanding

Each chapter clearly references
the understanding and skills
students will need to practise
and exhibit in their exams

Edexcel Computer Science for GCSE

23

General rules for flowcharts

32

2 Using flowcharts General rules for �owcharts
● All symbols of the flowchart are connected by �ow lines

(these must be arrows not lines to show direction).
● Flow lines enter the top of the symbol and exit out the bottom,

except for the Decision symbol, which can have flow lines
exiting from the bottom or the sides.

● Flowcharts are drawn so flow generally goes from the top to
the bottom of the page.

● The beginning and the end of the flowchart is indicated using
the Terminal symbol.

Let’s look at a simple sequence. Say we want to calculate A plus B,
where A = 200 and B = 400.

Start

A = 200 B = 400

Add = 200 + 400

Output = 600

End

Let's look at a another sequence,
for example the sequence you carry
out each morning in the bathroom.
This sequence could be:
● Brush teeth
● Wash face
● Comb hair.

As you can see, sequences are a useful tool for showing what
happens and in what logical order, but each step, for example
‘brush teeth’, needs to be defined in more detail to be carried out.

 Key points
▲

lines with arrows to show the
order of execution.

▲ An algorithm is a sequence of
steps that can be followed to
complete a task.

▲ A sequence is where a set
of instructions or actions are
ordered, meaning that each
action follows the previous
action.

 Questions

1 What is a Terminator?

2 What is a Sequence?

3 What is an Input/Output?

 Task

1 Produce a sequence to show
how to brush your teeth.

 Specification references

You should:

1.1.1 understand what an algorithm is, what
algorithms are used for and be able to interpret

descriptions, program code)

1.1.2 understand how to create an algorithm to
solve a particular problem, making use of
programming constructs (sequence, selection,

iteration) and using appropriate conventions

draft program code)

1.1.3 understand the purpose of a given algorithm
and how an algorithm works

1.1.4 understand how to determine the correct
output of an algorithm for a given set of data

2.4.1 understand how to write code that accepts and
responds appropriately to user input

There are a lot of different design procedures and techniques for
building large software projects. The technique discussed in this
chapter, however, is for smaller coding projects and is referred to
by the term ‘top down, structured flowchart methodology’. We
will explore how to take a task and represent it using a flowchart.
A flowchart puts the sentences from a sequence into shaped
boxes. The shapes indicate the action.

You will know from the last chapter that a sequence is where a set
of instructions or actions are ordered, meaning that each action
follows the previous action.

Figure 2.1 A sequence

 Key points
▲ A is a diagram

representation of an algorithm.
▲ For the examination, you will

need to be able to interpret

▲ Flowcharts are a graphical
method of designing
programs.

▲
to read.

 Key point

the order of execution.

Start

Action 1

End

Figure 2.2

 Key term

For the examination, you will
need to be able to interpret

In this chapter we built upon the last chapter to explore sequences in
more detail and established how we can show these using �owcharts.

We looked at the basic elements of �owcharts and introduced the
concept of decisions and how these can be represented.

Remember, before tackling any computer science task or examination
question on this topic you must:

➨ understand what an algorithm is and what algorithms are used for,
and be able to interpret algorithms in the form of �owcharts

➨ use a systematic approach to problem solving and algorithm creation
representing those algorithms using �owcharts;

➨ understand and be able to use appropriate conventions in �owcharts

Chapter review

Practice questions will
help build students’
coding, programming
and problem-solving
skills

Practice tasks will
help build students’
coding, programming
and problem-solving
skills

Each chapter concludes with
a review of key information
to assess and consolidate
topic knowledge and
understanding

E
D

E
X

C
E

L C
o

m
pu

tE
r

 SC
iE

n
C

E
 fo

r
 G

C
SE

Steve C
ushing

EdExcEl GcSE computEr SciEncE StudEnt Book
These sample chapters are taken from the forthcoming Edexcel GcSE computer Science Student Book.

Build student confidence and ensure successful progress through GCSE Computer Science. Our
expert author provides insight and guidance for students to meet the demands of the new Edexcel
specification, with challenging tasks and activities to test the computational skills and knowledge
required for success in the assessment, and advice for successful completion of the non-examined
assessment.
■■ Builds students’ knowledge and confidence through detailed topic coverage and explanation of
key terms.

■■ Develops computational thinking skills with practice exercises and problem-solving tasks.
■■ Instils a deeper understanding and awareness of computer science, and its applications and
implications in the wider world.

■■ Helps monitor progression through GCSE with regular assessment questions, that can be further developed
with supporting Dynamic Learning digital resources.

Author:
Steve Cushing is a well-respected and widely published author for secondary Computing, with examining
experience.

Textbook subject to change based on endorsement review.

Visit www.hoddereducation.co.uk/ComputerScience/GCSE/Edexcel to pre order your class sets or
to sign up for Inspection Copies or eInspection Copies.

ALSO AVAILABLE

First teaching
from September

2016

Dynamic Learning

Edexcel GCSE Computer Science Dynamic Learning is an online
subscription solution that supports teachers and students with high
quality content and unique tools. Dynamic Learning incorporates
Teaching and Learning resources, Whiteboard and Student eTextbook elements
that all work together to give you the ultimate classroom and homework resource.

Sign up for a free trial – visit: www.hoddereducation.co.uk/dynamiclearning

