Edexcel GCE A Level Maths
 Further Maths 3 Vectors

Edited by: K V Kumaran

5 Vectors

Vector product

The vector, or cross, product of $\underline{\boldsymbol{a}}$ and $\underline{\boldsymbol{b}}$ is

$$
\underline{\boldsymbol{a}} \times \underline{\boldsymbol{b}}=a b \sin \theta \underline{\hat{\boldsymbol{h}}}
$$

where $\widehat{\underline{\boldsymbol{n}}}$ is a unit (length 1) vector which is perpendicular to both $\underline{\boldsymbol{a}}$ and $\underline{\boldsymbol{b}}$, and θ is the angle
 between \underline{a} and $\underline{\boldsymbol{b}}$.

The direction of $\widehat{\underline{\boldsymbol{n}}}$ is that in which a right hand corkscrew would move when turned through the angle θ from $\underline{\boldsymbol{a}}$ to $\underline{\boldsymbol{b}}$.

Notice that $\underline{\boldsymbol{b}} \times \underline{\boldsymbol{a}}=a b \sin \theta(-\widehat{\boldsymbol{n}})$, where $-\widehat{\boldsymbol{n}}$ is in the opposite direction to $\widehat{\widehat{\boldsymbol{n}}}$, since the corkscrew would move in the opposite direction when moving from $\underline{\boldsymbol{b}}$ to \underline{a}.

Thus $\underline{\boldsymbol{b}} \times \underline{\boldsymbol{a}}=-\underline{\boldsymbol{a}} \times \underline{\boldsymbol{b}}$.

The vectors $\underline{i}, \underline{i}$ and $\underline{\boldsymbol{k}}$

For unit vectors, $\underline{\boldsymbol{i}}, \boldsymbol{i}$ and $\underline{\boldsymbol{k}}$, in the directions of the axes
$\underline{i} \times \underline{i}=\underline{k}, \quad \dot{\boldsymbol{i}} \times \underline{\boldsymbol{k}}=\underline{\boldsymbol{i}}, \quad \underline{\boldsymbol{k}} \times \underline{\boldsymbol{i}}=\boldsymbol{i}$,
$\underline{i} \times \underline{\boldsymbol{k}}=-\underline{i}, \quad \underline{i} \times \underline{\boldsymbol{i}}=-\underline{\boldsymbol{k}}, \quad \underline{\boldsymbol{k}} \times \underline{\boldsymbol{i}}=-\underline{\boldsymbol{i}}$.

Properties

$$
\begin{aligned}
& \underline{\boldsymbol{a}} \times \underline{\boldsymbol{a}}=\underline{\mathbf{0}} \\
& \underline{\boldsymbol{a}} \times \underline{\boldsymbol{b}}=\underline{\mathbf{0}} \quad \Rightarrow \quad \underline{a} \text { is parallel to } \underline{\boldsymbol{b}} \\
& \\
& \quad \text { or } \underline{\boldsymbol{a}} \text { or } \underline{\boldsymbol{b}}=\underline{\mathbf{0}} \\
& \underline{a} \times(\underline{b}+\underline{c})=\underline{a} \times \underline{b}+\underline{a} \times \underline{c}
\end{aligned}
$$

$$
\underline{\boldsymbol{a}} \times \underline{\boldsymbol{b}} \text { is perpendicular to both } \underline{a} \text { and } \underline{\boldsymbol{b}}
$$

since $\theta=0$
since $\sin \theta=0 \Rightarrow \theta=0$ or π
remember the brilliant demo with the straws!
from the definition

Component form

Using the above we can show that

$$
\underline{\boldsymbol{a}} \times \underline{\boldsymbol{b}}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \times\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
-a_{1} b_{3}+a_{3} b_{1} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right)=\left|\begin{array}{ccc}
\underline{\boldsymbol{i}} & \underline{\boldsymbol{j}} & \underline{\boldsymbol{k}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Applications of the vector product

Area of triangle $O A B=\frac{1}{2} a b \sin \theta$
$\Rightarrow \quad$ area of triangle $O A B=\frac{1}{2}|\underline{\boldsymbol{a}} \times \underline{\boldsymbol{b}}|$

Area of parallelogram $O A D B$ is twice the area of the triangle $O A B$
\Rightarrow area of parallelogram $O A D B=|\underline{\boldsymbol{a}} \times \underline{\boldsymbol{b}}|$

Example: A is $(-1,2,1), B$ is $(2,3,0)$ and C is $(3,4,-2)$.
Find the area of the triangle $A B C$.

Solution: The area of the triangle $A B C=\left|\frac{1}{2} \overrightarrow{A B} \times \overrightarrow{A C}\right|$

$$
\begin{aligned}
& \overrightarrow{A B}=\underline{\boldsymbol{b}}-\underline{\boldsymbol{a}}=\left(\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right) \text { and } \overrightarrow{A C}=\underline{\boldsymbol{c}}-\underline{\boldsymbol{a}}=\left(\begin{array}{c}
4 \\
2 \\
-3
\end{array}\right) \\
\Rightarrow & \overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\underline{\boldsymbol{i}} & \boldsymbol{j} & \underline{\boldsymbol{k}} \\
3 & 1 & -1 \\
4 & 2 & -3
\end{array}\right|=\left(\begin{array}{c}
-1 \\
5 \\
2
\end{array}\right) \\
\Rightarrow & \text { area } A B C=\left|\frac{1}{2} \overrightarrow{A B} \times \overrightarrow{A C}\right|=\frac{1}{2} \sqrt{1^{2}+5^{2}+3^{2}}=\frac{1}{2} \sqrt{35}
\end{aligned}
$$

Volume of a parallelepiped

In the parallelepiped,
the base is parallel to $\underline{\boldsymbol{b}}$ and $\underline{\boldsymbol{c}}$
$\widehat{\boldsymbol{n}}$ is a unit vector perpendicular to the base
and the height $\underline{\boldsymbol{h}}=h \underline{\hat{\boldsymbol{n}}}$,

where $h= \pm a \cos \phi= \pm \underline{\boldsymbol{a}} . \underline{\widehat{\boldsymbol{n}}}$
\pm because ϕ might be obtuse
The area of base $=b c \sin \theta$

$$
\begin{aligned}
& \Rightarrow \quad \text { volume } \quad V= \pm h \times b c \sin \theta \\
& \Rightarrow \quad \quad \pm V=a \cos \phi \times b c \sin \theta \\
& \\
& \quad \underline{\boldsymbol{a}} \cdot(\underline{\boldsymbol{b}} \times \underline{\boldsymbol{c}})=\underline{\boldsymbol{a}} \cdot(b c \sin \theta \underline{\widehat{\boldsymbol{n}}})=\underline{\boldsymbol{a}} \cdot \underline{\widehat{\boldsymbol{n}}}(b c \sin \theta) \\
& \Rightarrow \\
& \underline{\boldsymbol{a}} \cdot(\underline{\boldsymbol{b}} \times \underline{\boldsymbol{c}})=a \cos \phi \times b c \sin \theta= \pm V \\
& \Rightarrow \\
& \text { volume of parallelepiped }=|\underline{\boldsymbol{a}} \cdot(\underline{\boldsymbol{b}} \times \underline{\boldsymbol{c}})|
\end{aligned}
$$

Triple scalar product

$$
\begin{aligned}
|\underline{\boldsymbol{a}} \cdot(\underline{\boldsymbol{b}} \times \underline{\boldsymbol{c}})| & =\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \cdot\left(\begin{array}{r}
b_{2} c_{3}-b_{3} c_{2} \\
-b_{1} c_{3}+b_{3} c_{1} \\
b_{1} c_{2}-b_{2} c_{1}
\end{array}\right) \\
& =a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)+a_{2}\left(-b_{1} c_{3}+b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right) \\
& =\left(\left.\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array} \right\rvert\,\right.
\end{aligned}
$$

By expanding the determinants we can show that

$$
\underline{\boldsymbol{a}} \cdot(\underline{\boldsymbol{b}} \times \underline{\boldsymbol{c}})=(\underline{\boldsymbol{a}} \times \underline{\boldsymbol{b}}) \cdot \underline{\boldsymbol{c}} \quad \text { keep the order of } \underline{\boldsymbol{a}}, \underline{\boldsymbol{b}}, \underline{c} \text { but change the order of the } \times \text { and. }
$$

For this reason the triple scalar product is written as $\{\underline{\boldsymbol{a}}, \underline{\boldsymbol{b}}, \underline{\boldsymbol{c}}\}$

$$
\{\underline{a}, \underline{b}, \underline{c}\}=\underline{a} \cdot(\underline{b} \times \underline{c})=(\underline{a} \times \underline{b}) \cdot \underline{c}
$$

It can also be shown that a cyclic change of the order of $\underline{\boldsymbol{a}}, \underline{\boldsymbol{b}}, \underline{\boldsymbol{c}}$ does not change the value, but interchanging two of the vectors multiplies the value by -1 .

$$
\Rightarrow \quad\{\underline{a}, \underline{\boldsymbol{b}}, \underline{\boldsymbol{c}}\}=\{\underline{\boldsymbol{c},}, \underline{\boldsymbol{a}}, \underline{\boldsymbol{b}}\}=\{\underline{\boldsymbol{b}}, \underline{\boldsymbol{c}}, \underline{\boldsymbol{a}}\}=-\{\underline{\boldsymbol{a}}, \underline{\boldsymbol{c}}, \underline{\boldsymbol{b}}\}=-\{\underline{\boldsymbol{c}}, \underline{\boldsymbol{b}}, \underline{\boldsymbol{a}}\}=-\underline{\boldsymbol{b}}, \underline{\boldsymbol{a}}, \underline{\boldsymbol{c}}\}
$$

Volume of a tetrahedron

The volume of a tetrahedron is

$$
\frac{1}{3} \text { Area of base } \times h
$$

The height of the tetrahedron is the same as the height of the parallelepiped, but its base has half the area

$\Rightarrow \quad$ volume of tetrahedron $=\frac{1}{6}$ volume of parallelepiped
$\Rightarrow \quad$ volume of tetrahedron $=\frac{1}{6}|\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\}|$

Example: Find the volume of the tetrahedron $A B C D$,
given that A is $(1,0,2), B$ is $(-1,2,2), C$ is $(1,1,-3)$ and D is $(4,0,3)$.

Solution: Volume $=\frac{1}{6}|\{\overrightarrow{A D}, \overrightarrow{A C}, \overrightarrow{A B}\}|$

$$
\begin{aligned}
& \overrightarrow{A D}=\underline{\boldsymbol{d}}-\underline{\boldsymbol{a}}=\left(\begin{array}{l}
3 \\
0 \\
1
\end{array}\right), \quad \overrightarrow{A C}=\left(\begin{array}{c}
0 \\
1 \\
-5
\end{array}\right), \quad \overrightarrow{A B}=\left(\begin{array}{c}
-2 \\
2 \\
0
\end{array}\right) \\
\Rightarrow & \{\overrightarrow{A D}, \overrightarrow{A C}, \overrightarrow{A B}\}=\left|\begin{array}{ccc}
3 & 0 & 1 \\
0 & 1 & -5 \\
-2 & 2 & 0
\end{array}\right|=3 \times 10+2=32
\end{aligned}
$$

\Rightarrow volume of tetrahedron is $\frac{1}{6} \times 32=5 \frac{1}{3}$

Equations of straight lines

Vector equation of a line

$\underline{\boldsymbol{r}}=\underline{\boldsymbol{a}}+\lambda \underline{\boldsymbol{b}}$ is the equation of a line through the point A and parallel to the vector $\underline{\boldsymbol{b}}$,
or $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}l \\ m \\ n\end{array}\right)+\lambda\left(\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right)$.

Cartesian equation of a line in 3-D

Eliminating λ from the above equation we obtain

$$
\frac{x-l}{\alpha}=\frac{y-m}{\beta}=\frac{z-n}{\gamma} \quad(=\lambda)
$$

is the equation of a line through the point (l, m, n) and parallel to the vector $\left(\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right)$.
This strange form of equation is really the intersection of the planes

$$
\frac{x-l}{\alpha}=\frac{y-m}{\beta} \quad \text { and } \quad \frac{y-m}{\beta}=\frac{z-n}{\gamma} \quad\left(\text { and } \quad \frac{x-l}{\alpha}=\frac{z-n}{\gamma}\right) .
$$

Vector product equation of a line

$\overrightarrow{A P}=\underline{\boldsymbol{r}}-\underline{\boldsymbol{a}}$ and is parallel to the vector $\underline{\boldsymbol{b}}$
$\Rightarrow \quad \overrightarrow{A P} \times \underline{\boldsymbol{b}}=\underline{\mathbf{0}}$
$\Rightarrow \quad(\underline{\boldsymbol{r}}-\underline{\boldsymbol{a}}) \times \underline{\boldsymbol{b}}=\underline{\mathbf{0}} \quad$ is the equation of a line through A and parallel to $\underline{\boldsymbol{b}}$.
or $\underline{\boldsymbol{r}} \times \underline{\boldsymbol{b}}=\underline{\boldsymbol{a}} \times \underline{\boldsymbol{b}}=\underline{\boldsymbol{c}}$ is the equation of a
 line parallel to $\underline{\boldsymbol{b}}$.

Notice that all three forms of equation refer to a line through the point A and parallel to the vector $\underline{\boldsymbol{b}}$.

Example: A straight line has Cartesian equation

$$
x=\frac{2 y+4}{5}=\frac{3-z}{2} .
$$

Find its equation (i) in the form $\underline{\boldsymbol{r}}=\underline{\boldsymbol{a}}+\lambda \underline{\boldsymbol{b}}$, (ii) in the form $\underline{\boldsymbol{r}} \times \underline{\boldsymbol{b}}=\underline{\boldsymbol{c}}$.

Solution:

First re-write the equation in the standard manner

$$
\Rightarrow \quad \frac{x-0}{1}=\frac{y--2}{2.5}=\frac{z-3}{-2}
$$

$\Rightarrow \quad$ the line passes through $A,(0,-2,3)$, and is parallel to $\underline{\boldsymbol{b}},\left(\begin{array}{c}1 \\ 2.5 \\ -2\end{array}\right)$ or $\left(\begin{array}{c}2 \\ 5 \\ -4\end{array}\right)$
(i) $\underline{\boldsymbol{r}}=\left(\begin{array}{c}0 \\ -2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 5 \\ -4\end{array}\right)$
(ii) $\left(\underline{r}-\left(\begin{array}{c}0 \\ -2 \\ 3\end{array}\right)\right) \times\left(\begin{array}{c}2 \\ 5 \\ -4\end{array}\right)=\underline{\mathbf{0}}$

$$
\begin{aligned}
& \Rightarrow \quad \underline{\boldsymbol{r}} \times\left(\begin{array}{c}
1 \\
2.5 \\
-2
\end{array}\right)=\left(\begin{array}{c}
0 \\
-2 \\
3
\end{array}\right) \times\left(\begin{array}{c}
2 \\
5 \\
-4
\end{array}\right)=\left|\begin{array}{ccc}
\underline{\boldsymbol{i}} & \underline{\boldsymbol{j}} & \underline{\boldsymbol{k}} \\
0 & -2 & 3 \\
2 & 5 & -4
\end{array}\right|=\left(\begin{array}{c}
-7 \\
6 \\
4
\end{array}\right) \\
& \Rightarrow \quad \underline{\boldsymbol{r}} \times\left(\begin{array}{c}
2 \\
5 \\
-4
\end{array}\right)=\left(\begin{array}{c}
-7 \\
6 \\
4
\end{array}\right) .
\end{aligned}
$$

Equation of a plane

Scalar product form

Let $\underline{\boldsymbol{n}}$ be a vector perpendicular to the plane π.
Let A be a fixed point in the plane, and P be a general point, (x, y, z), in the plane.

Then $\overrightarrow{A P}$ is parallel to the plane, and therefore
 perpendicular to \underline{n}
$\Rightarrow \overrightarrow{A P} \cdot \underline{\boldsymbol{n}}=0 \quad \Rightarrow \quad(\underline{r}-\underline{a}) \cdot \underline{\boldsymbol{n}}=0$
$\Rightarrow \underline{r} \cdot \underline{\boldsymbol{n}}=\underline{\boldsymbol{a}} \cdot \underline{\boldsymbol{n}}=\mathrm{a}$ constant, d
$\Rightarrow \underline{r} \cdot \underline{\boldsymbol{n}}=d$ is the equation of a plane perpendicular to the vector $\underline{\boldsymbol{n}}$.

Cartesian form

If $\underline{\boldsymbol{n}}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ then $\underline{\boldsymbol{r}} \cdot \underline{\boldsymbol{n}}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \cdot\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=a x+b y+c z$
$\Rightarrow a x+b y+c z=d$ is the Cartesian equation of a plane perpendicular to $\left(\begin{array}{l}\boldsymbol{a} \\ \boldsymbol{b} \\ \boldsymbol{c}\end{array}\right)$.

Example: Find the scalar product form and the Cartesian equation of the plane through the points $A,(3,2,5), B,(-1,0,3)$ and $C,(2,1,-2)$.

Solution: We first need a vector perpendicular to the plane.
$A,(3,2,5), B,(-1,0,3)$ and $C,(2,1,-2)$ lie in the plane
$\Rightarrow \overrightarrow{A B}=\left(\begin{array}{l}-4 \\ -2 \\ -2\end{array}\right)$ and $\overrightarrow{A C}=\left(\begin{array}{l}-1 \\ -1 \\ -7\end{array}\right)$ are parallel to the plane
$\Rightarrow \overrightarrow{A B} \times \overrightarrow{A C}$ is perpendicular to the plane
$\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}\underline{\boldsymbol{i}} & \underline{\boldsymbol{j}} & \underline{\boldsymbol{k}} \\ -4 & -2 & -2 \\ -1 & -1 & -7\end{array}\right|=\left(\begin{array}{c}12 \\ -26 \\ 2\end{array}\right)=2 \times\left(\begin{array}{c}6 \\ -13 \\ 1\end{array}\right) \quad$ using smaller numbers
$\Rightarrow \quad 6 x-13 y+z=d$
but $A,(3,2,5)$ lies in the plane $\Rightarrow d=6 \times 3-13 \times 2+5=-3$
\Rightarrow Cartesian equation is $6 x-13 y+z=-3$
and scalar product equation is $\underline{\boldsymbol{r}} \cdot\left(\begin{array}{c}6 \\ -13 \\ 1\end{array}\right)=-3$.

Vector equation of a plane

$\underline{\boldsymbol{r}}=\underline{\boldsymbol{a}}+\lambda \underline{\boldsymbol{b}}+\mu \underline{\boldsymbol{c}}$ is the equation of a plane, π, through A and parallel to the vectors $\underline{\boldsymbol{b}}$ and $\underline{\boldsymbol{c}}$.

Example: Find the vector equation of the plane through the points $A,(1,4,-2), B,(1,5,3)$ and $C,(4,7,2)$.

Solution: We want the plane through $A,(1,4,-2)$, parallel to $\overrightarrow{A B}=\left(\begin{array}{l}0 \\ 1 \\ 5\end{array}\right)$ and $\overrightarrow{A C}=\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right)$
\Rightarrow vector equation is $\underline{\boldsymbol{r}}=\left(\begin{array}{c}1 \\ 4 \\ -2\end{array}\right)+\lambda\left(\begin{array}{l}0 \\ 1 \\ 5\end{array}\right)+\mu\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right)$.

Distance from a point to a plane

Example: Find the distance from the point $P(-2,3,5)$ to the plane $4 x-3 y+12 z=21$.

Solution: Let M be the foot of the perpendicular from P to the plane. The distance of the origin from the plane is $P M$.

We must first find the intersection of the line $P M$ with the plane.

$P M$ is perpendicular to the plane
and so is parallel to $\underline{\boldsymbol{n}}=\left(\begin{array}{c}4 \\ -3 \\ 12\end{array}\right)$.
\Rightarrow the line $P M$ is $\underline{\boldsymbol{r}}=\left(\begin{array}{c}-2 \\ 3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}4 \\ -3 \\ 12\end{array}\right)=\left(\begin{array}{c}-2+4 \lambda \\ 3-3 \lambda \\ 5+12 \lambda\end{array}\right)$,
and the point of intersection of $P M$ with the plane is given by

$$
\begin{aligned}
& 4(-2+4 \lambda)-3(3-3 \lambda)+12(5+12 \lambda)=21 \\
\Rightarrow & -8+16 \lambda-9+9 \lambda+60+144 \lambda=21 \\
\Rightarrow & \lambda=\frac{-22}{169} \\
\Rightarrow & \overrightarrow{P M}=\frac{-22}{169}\left(\begin{array}{c}
4 \\
-3 \\
12
\end{array}\right) \\
\Rightarrow & \text { distance }=|\overrightarrow{P M}|=\frac{22}{169} \sqrt{4^{2}+3^{2}+12^{2}}=\frac{22}{13}
\end{aligned}
$$

The distance of the P from the plane is $\frac{22}{13}$.

Distance from any point to a plane

The above technique can be used to find the formula:distance, s, from the point $P(\alpha, \beta, \gamma)$ to the plane $n_{1} x+n_{2} y+n_{3} z+d=0$ is given by
$s=\left|\frac{n_{1} \alpha+n_{2} \beta+n_{3} \gamma+d}{\sqrt{n_{1}{ }^{2}+n_{2}{ }^{2}+n_{3}{ }^{2}}}\right|$
This formula is in your formula booklets, but not in your text books.

Reflection of a point in a plane

Example: Find the reflection of the point $A(10,1,7)$ in the plane $\pi, \underline{r} \cdot\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)=7$.
Solution: Find the point of intersection, P, of the line through A and perpendicular to π with the plane π. Then find $\overrightarrow{A P}$, to give $\overrightarrow{O A^{\prime}}=\overrightarrow{O A}+2 \overrightarrow{A P}$.

Line through A perpendicular to π is

$$
\underline{r}=\left(\begin{array}{c}
10 \\
1 \\
7
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right)
$$

This meets the plane π when

$$
\begin{aligned}
& 3(10+3 \lambda)-2(1-2 \lambda)+(7+\lambda)=7 \\
\Rightarrow & 30+9 \lambda-2+4 \lambda+7+\lambda=7 \\
\Rightarrow & \lambda=-2
\end{aligned}
$$

$$
\Rightarrow \quad \overrightarrow{O P}=\left(\begin{array}{c}
10 \\
1 \\
7
\end{array}\right)+(-2)\left(\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right)
$$

$$
\Rightarrow \overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{O A}=(-2)\left(\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right)=\left(\begin{array}{c}
-6 \\
4 \\
-2
\end{array}\right)
$$

$$
\Rightarrow \overrightarrow{O A^{\prime}}=\overrightarrow{O A}+2 \overrightarrow{A P}=\left(\begin{array}{c}
10 \\
1 \\
7
\end{array}\right)+2\left(\begin{array}{c}
-6 \\
4 \\
-2
\end{array}\right)=\left(\begin{array}{c}
-2 \\
9 \\
3
\end{array}\right)
$$

$$
\Rightarrow \text { the reflection of } A \text { is } A^{\prime},(-2,9,3)
$$

Distance between parallel planes

Example: Find the distance between the parallel planes $\pi_{1}: 2 x-6 y+3 z=9$ and $\pi_{2}: 2 x-6 y+3 z=5$

Solution: Take any point, P, on one of the planes, and then use the above formula for the shortest distance, $P Q$, between the planes.

By inspection the point $P(0,0,3)$ lies on π_{1}

\Rightarrow shortest distance s from P to the plane π_{2} is $\left|\frac{n_{1} \alpha+n_{2} \beta+n_{3} \gamma+d}{\sqrt{n_{1}{ }^{2}+n_{2}{ }^{2}+n_{3}{ }^{2}}}\right|$ $\Rightarrow \quad$ shortest distance $s=\left|\frac{2 \times 0-6 \times 0+3 \times 3-5}{\sqrt{2^{2}+6^{2}+3^{2}}}\right|=\frac{4}{7}$

The distance between the planes is $\frac{4}{7}$.

Shortest distance from a point to a line

Example: Find the shortest distance from the point
$P(3,-2,4)$ to the line $l, \underline{\boldsymbol{r}}=\left(\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -3 \\ 6\end{array}\right)$
Solution: Any plane $2 x-3 y+6 z=d$ must be perpendicular to the line l. If we make this plane pass through P and if it meets the line l in the point X, then $P X$ must be perpendicular to the line l, and so $P X$ is the shortest distance from P to the line l.

Plane passes through $P(3,-2,4)$
$\Rightarrow 2 x-3 y+6 z=2 \times 3-3 \times(-2)+6 \times 4=36$
$\Rightarrow 2 x-3 y+6 z=36$
l meets plane $\Rightarrow 2(-2+2 \lambda)-3(3-3 \lambda)+6(6 \lambda)=36$
$\Rightarrow-4+4 \lambda-9+9 \lambda+36 \lambda=36 \quad \Rightarrow \lambda=1$
$\Rightarrow \quad X$ is the point $(-2,0,6)$

$$
\overrightarrow{P X}=\left(\begin{array}{l}
0 \\
0 \\
6
\end{array}\right)-\left(\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right)=\left(\begin{array}{c}
-3 \\
2 \\
2
\end{array}\right)
$$

\Rightarrow shortest distance is $P X=\sqrt{3^{2}+2^{2}+2^{2}}=\sqrt{17}$

Projections - an alternative approach

Imagine a light bulb causing a rod, $A B$, to make a shadow, $A^{\prime} B^{\prime}$, on the line l. If the light bulb is far enough away, we can think of all the light rays as parallel, and, if the rays are all perpendicular to the line l, the shadow is the projection of the rod onto l (strictly speaking an orthogonal projection).

The length of the shadow, $B^{\prime} A^{\prime}$, is $|B A \cos \theta|=|\overrightarrow{B A} \cdot \underline{\hat{\boldsymbol{n}}}|$, where $\underline{\widehat{\boldsymbol{n}}}$ is a unit vector parallel to the line l.
Modulus signs are needed in case $\widehat{\boldsymbol{n}}$ is in the opposite direction.

Shortest distance from a point from a plane.

To find $A M$, the shortest distance from A to the plane π,
For any point, B, on $\pi \quad A M$ is the projection of $A B$ onto the line $A M$
$\Rightarrow A M=|\overrightarrow{A B} \cdot \underline{\hat{n}}|$

Example: Find the shortest distance from the point $A(-2$,
3, 5)
to the plane $4 x-3 y+12 z=21$.
Solution: By inspection $B(0,-7,0)$ lies on the plane

$$
\begin{array}{ll}
\Rightarrow & \overrightarrow{A B}=\left(\begin{array}{c}
0 \\
-7 \\
0
\end{array}\right)-\left(\begin{array}{c}
-2 \\
3 \\
5
\end{array}\right)=\left(\begin{array}{c}
2 \\
-10 \\
-5
\end{array}\right) \\
& \underline{\boldsymbol{n}}=\left(\begin{array}{c}
4 \\
-3 \\
12
\end{array}\right) \Rightarrow n=\sqrt{4^{2}+3^{2}+12^{2}}=13 \\
\Rightarrow & \text { shortest distance }=|\overrightarrow{A B} \cdot \underline{\widehat{\boldsymbol{n}}}|=\left|\left(\begin{array}{c}
2 \\
-10 \\
-5
\end{array}\right) \cdot \frac{1}{13}\left(\begin{array}{c}
4 \\
-3 \\
12
\end{array}\right)\right|=\frac{22}{13}
\end{array}
$$

Distance between parallel planes

Example: Find the distance between the parallel planes
$\pi_{1}: 2 x-6 y+3 z=9$ and $\pi_{2}: 2 x-6 y+3 z=5$
Solution: Take any point, B, on one of the planes, π_{2}, and then consider the line $B X$ perpendicular to both planes; $B X$ is then the shortest distance between the planes.

Then choose any point, A, on π_{1}, and $B X$ is now the
 projection of $A B$ onto $B X$
\Rightarrow shortest distance $=B X=|\overrightarrow{A B} \cdot \underline{\hat{\boldsymbol{n}}}|$
or shortest distance $=|(\underline{\boldsymbol{b}}-\underline{\boldsymbol{a}}) \cdot \underline{\hat{\boldsymbol{n}}}|$, for any two points A and B, one on each plane, where $\widehat{\boldsymbol{n}}$ is a unit vector perpendicular to both planes.

By inspection the point $A(0,0,3)$ lies on π_{1}, and the point $B(2 \cdot 5,0,0)$ lies on π_{2}
$\overrightarrow{A B}=\left(\begin{array}{l}0 \\ 0 \\ 3\end{array}\right)-\left(\begin{array}{c}2 \cdot 5 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}-2 \cdot 5 \\ 0 \\ 3\end{array}\right)$
$\underline{n}=\left(\begin{array}{c}2 \\ -6 \\ 3\end{array}\right) \Rightarrow n=\sqrt{2^{2}+6^{2}+3^{2}}=7$
$\Rightarrow \quad$ shortest distance $=\left|\left(\begin{array}{c}-2 \cdot 5 \\ 0 \\ 3\end{array}\right) \cdot \frac{1}{7}\left(\begin{array}{c}2 \\ -6 \\ 3\end{array}\right)\right|=\frac{4}{7}$

Shortest distance between two skew lines

It can be shown that there must be a line joining two skew lines which is perpendicular to both lines.

This line is $X Y$ and is the shortest distance between the lines.

The vector $\underline{\boldsymbol{n}}=\underline{\boldsymbol{b}} \times \underline{\boldsymbol{d}}$ is perpendicular
 to both lines
\Rightarrow the unit vector $\underline{\hat{\boldsymbol{n}}}=\frac{\underline{\boldsymbol{b}} \times \underline{\boldsymbol{d}}}{|\underline{\boldsymbol{b}} \times \underline{\underline{\mid}}|}$
Now imagine two parallel planes π_{1} and π_{2}, both perpendicular to $\underline{\widehat{\boldsymbol{n}}}$, one containing the line l_{1} and the other containing the line l_{2}.
A and C are points on l_{1} and l_{2}, and therefore on π_{1} and π_{2}.
We now have two parallel planes with two points, A and C, one on each plane, and the planes are both perpendicular to $\underline{\widehat{n}}$.

As in the example for the distance between parallel planes,
the shortest distance $d=|\overrightarrow{A C} \cdot \underline{\hat{\imath}}|$
$\Rightarrow d=\left|(\underline{\boldsymbol{c}}-\underline{\boldsymbol{a}}) \cdot \frac{\underline{\boldsymbol{b}} \times \underline{\boldsymbol{d}}}{|\underline{\boldsymbol{b}} \times \underline{\boldsymbol{d}}|}\right|$
This result is not in your formula booklet, SO LEARN IT - please

Shortest distance from a point to a line

In trying to find the shortest distance from a point P to a line $l, \underline{\boldsymbol{r}}=\underline{\boldsymbol{a}}+\lambda \underline{\boldsymbol{b}}$, we do not know $\underline{\hat{\boldsymbol{n}}}$, the direction of the line through P perpendicular to l.

Some lateral thinking is needed.
We do know A, a point on the line, and $\underline{\widehat{\boldsymbol{b}}}$, the direction of the line l

$\Rightarrow|\overrightarrow{A P} \cdot \underline{\widehat{b}}|=A X$, the projection of $A P$ onto l
and we can now find $P X=\sqrt{A P^{2}-A X^{2}}$, using Pythagoras

Example: Find the shortest distance from the point $P(3,-2,4)$
to the line $l, r=\left(\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -3 \\ 6\end{array}\right)$
Solution: If l is $\underline{\boldsymbol{r}}=\underline{\boldsymbol{a}}+\lambda \underline{\boldsymbol{b}}$, then $\underline{\boldsymbol{a}}=\left(\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right)$ and $\underline{\boldsymbol{b}}=\left(\begin{array}{c}2 \\ -3 \\ 6\end{array}\right)$
$\Rightarrow b=\sqrt{2^{2}+3^{2}+6^{2}}=7, \quad \Rightarrow \quad \widehat{\underline{b}}=\frac{1}{7}\left(\begin{array}{c}2 \\ -3 \\ 6\end{array}\right)$
and $\overrightarrow{A P}=\left(\begin{array}{c}3 \\ -2 \\ 4\end{array}\right)-\left(\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right)=\left(\begin{array}{c}5 \\ -5 \\ 4\end{array}\right)$
$\Rightarrow A X=|\overrightarrow{A P} \cdot \underline{\widehat{b}}|=\left|\left(\begin{array}{c}5 \\ -5 \\ 4\end{array}\right) \cdot \frac{1}{7}\left(\begin{array}{c}2 \\ -3 \\ 6\end{array}\right)\right|=\frac{10+15+24}{7}=7$
$\Rightarrow P X=\sqrt{A P^{2}-A X^{2}}=\sqrt{\left(5^{2}+5^{2}+4^{2}\right)-7^{2}}$
$=\sqrt{17}$

Line of intersection of two planes

Example: Find an equation for the line of intersection of the planes

$$
x+y+2 z=4
$$

and

$$
2 x-y+3 z=4
$$

II

Solution: Eliminate one variable -

$$
\mathbf{I}+\mathbf{I I} \Rightarrow 3 x+5 z=8
$$

We are not expecting a unique solution, so put one variable, z say, equal to λ and find the other variables in terms of λ.

$$
\begin{aligned}
& \quad z=\lambda \Rightarrow x=\frac{8-5 \lambda}{3} \\
& \mathbf{I} \Rightarrow \quad y=4-x-2 z=4-\frac{8-5 \lambda}{3}-2 \lambda=\frac{4-\lambda}{3} \\
& \Rightarrow \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
8 / 3 \\
4 / 3 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
-5 / 3 \\
-1 / 3 \\
1
\end{array}\right) \\
& \text { or } \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
8 / 3 \\
4 / 3 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
-5 \\
-1 \\
3
\end{array}\right) \quad \text { making the numbers nicer in the direction vector only }
\end{aligned}
$$

which is the equation of a line through $\left(\frac{8}{3}, \frac{4}{3}, 0\right)$ and parallel to $\left(\begin{array}{c}-5 \\ -1 \\ 3\end{array}\right)$.

Angle between line and plane

Let the acute angle between the line and the plane be ϕ.
First find the angle between the line and the normal vector, θ.
There are two possibilities - as shown below:

(i) $\quad \underline{n}$ and the angle ϕ are on the same side of the plane
(ii) \underline{n} and the angle ϕ are on opposite sides of the plane
$\Rightarrow \quad \phi=90-\theta$
$\Rightarrow \quad \phi=\theta-90$

Example: Find the angle between the line $\frac{x+1}{2}=\frac{y-2}{1}=\frac{z-3}{-2}$ and the plane $2 x+3 y-7 z=5$.

Solution: The line is parallel to $\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)$, and the normal vector to the plane is $\left(\begin{array}{c}2 \\ 3 \\ -7\end{array}\right)$.

$$
\underline{\boldsymbol{a}} \cdot \underline{\boldsymbol{b}}=a b \cos \theta \Rightarrow 21=\sqrt{2^{2}+1^{2}+2^{2}} \sqrt{2^{2}+3^{2}+7^{2}} \cos \theta
$$

$\Rightarrow \cos \theta=\frac{7}{\sqrt{62}} \quad \Rightarrow \quad \theta=27.3^{\circ}$
\Rightarrow the angle between the line and the plane, $\phi=90-27.3=62.7^{\circ}$

Angle between two planes

If we look 'end-on' at the two planes, we can see that the angle between the planes, θ, equals the angle between the normal vectors.

Example: Find the angle between the planes

$$
2 x+y+3 z=5 \quad \text { and } \quad 2 x+3 y+z=7
$$

Solution: The normal vectors are $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$

$$
\begin{aligned}
& \underline{\boldsymbol{a}} \cdot \underline{\boldsymbol{b}}=a b \cos \theta \Rightarrow 10=\sqrt{2^{2}+1^{2}+3^{2}} \times \sqrt{2^{2}+1^{2}+3^{2}} \cos \theta \\
\Rightarrow & \cos \theta=\frac{10}{14} \Rightarrow \theta=44.4^{\circ}
\end{aligned}
$$

1. The plane Π passes through the points

$$
A(-1,-1,1), B(4,2,1) \text { and } C(2,1,0) .
$$

(a) Find a vector equation of the line perpendicular to Π which passes through the point $D(1,2$, 3).
(b) Find the volume of the tetrahedron $A B C D$.
(c) Obtain the equation of Π in the form r.n $=p$.

The perpendicular from D to the plane Π meets Π at the point E.
(d) Find the coordinates of E.
(e) Show that $D E=\frac{11 \sqrt{35}}{35}$.

The point D^{\prime} is the reflection of D in Π.
(f) Find the coordinates of D^{\prime}.
[P6 June 2002 Qn 7]
2. Referred to a fixed origin O, the position vectors of three non-collinear points A, B and C are \mathbf{a}, \mathbf{b} and \mathbf{c} respectively. By considering $A B \times A C$, prove that the area of $\triangle A B C$ can be expressed in the form $\frac{1}{2}|\mathbf{a} \times \mathbf{b}+\mathbf{b} \times \mathbf{c}+\mathbf{c} \times \mathbf{a}|$.
[P6 June 2003 Qn 1]
3. The plane Π_{1} passes through the P, with position vector $\mathbf{i}+2 \mathbf{j}-\mathbf{k}$, and is perpendicular to the line L with equation

$$
\mathbf{r}=3 \mathbf{i}-2 \mathbf{k}+\lambda(-\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})
$$

(a) Show that the Cartesian equation of Π_{1} is $x-5 y-3 z=-6$.

The plane Π_{2} contains the line L and passes through the point Q, with position vector $\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$.
(b) Find the perpendicular distance of Q from Π_{1}.
(c) Find the equation of Π_{2} in the form $\mathbf{r}=\mathbf{a}+s \mathbf{b}+t \mathbf{c}$.
4. The points A, B and C lie on the plane Π and, relative to a fixed origin O, they have position vectors

$$
\mathbf{a}=3 \mathbf{i}-\mathbf{j}+4 \mathbf{k}, \quad \mathbf{b}=-\mathbf{i}+2 \mathbf{j}, \quad \mathbf{c}=5 \mathbf{i}-3 \mathbf{j}+7 \mathbf{k}
$$

respectively.
(a) Find $A B \times A C$.
$\rightarrow \quad \rightarrow$
(b) Find an equation of Π in the form r.n $=p$.

The point D has position vector $5 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$.
(c) Calculate the volume of the tetrahedron $A B C D$.
[P6 June 2004 Qn 3]
5. (a) (i) Explain why, for any two vectors \mathbf{a} and $\mathbf{b}, \mathbf{a} \cdot \mathbf{b} \times \mathbf{a}=0$.
(ii) Given vectors \mathbf{a}, \mathbf{b} and \mathbf{c} such that $\mathbf{a} \times \mathbf{b}=\mathbf{a} \times \mathbf{c}$, where $\mathbf{a} \neq \mathbf{0}$ and $\mathbf{b} \neq \mathbf{c}$, show that

$$
\begin{equation*}
\mathbf{b}-\mathbf{c}=\lambda \mathbf{a}, \quad \text { where } \lambda \text { is a scalar. } \tag{2}
\end{equation*}
$$

(b) \mathbf{A}, \mathbf{B} and \mathbf{C} are 2×2 matrices.
(i) Given that $\mathbf{A B}=\mathbf{A C}$, and that \mathbf{A} is not singular, prove that $\mathbf{B}=\mathbf{C}$.
(ii) Given that $\mathbf{A B}=\mathbf{A C}$, where $\mathbf{A}=\left(\begin{array}{ll}3 & 6 \\ 1 & 2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right)$, find a matrix \mathbf{C} whose elements are all non-zero.
[FP3/P6 June 2005 Qn 2]
6. The line l_{1} has equation

$$
\mathbf{r}=\mathbf{i}+6 \mathbf{j}-\mathbf{k}+\lambda(2 \mathbf{i}+3 \mathbf{k})
$$

and the line l_{2} has equation

$$
\mathbf{r}=3 \mathbf{i}+p \mathbf{j}+\mu(\mathbf{i}-2 \mathbf{j}+\mathbf{k}), \text { where } p \text { is a constant. }
$$

The plane Π_{1} contains l_{1} and l_{2}.
(a) Find a vector which is normal to Π_{1}.
(b) Show that an equation for Π_{1} is $6 x+y-4 z=16$.
(c) Find the value of p.

The plane Π_{2} has equation $\mathbf{r} .(\mathbf{i}+2 \mathbf{j}+\mathbf{k})=2$.
(d) Find an equation for the line of intersection of Π_{1} and Π_{2}, giving your answer in the form

$$
\begin{equation*}
(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=\mathbf{0} . \tag{5}
\end{equation*}
$$

[FP3/P6 June 2005 Qn 3]
7. The plane Π passes through the points

$$
P(-1,3,-2), Q(4,-1,-1) \text { and } R(3,0, c) \text {, where } c \text { is a constant. }
$$

(a) Find, in terms of $c, \overrightarrow{R P} \times \overrightarrow{R Q}$.

Given that $\overrightarrow{R P} \times \overrightarrow{R Q}=3 \mathbf{i}+d \mathbf{j}+\mathbf{k}$, where d is a constant,
(b) find the value of c and show that $d=4$,
(c) find an equation of Π in the form $\mathbf{r} . \mathbf{n}=p$, where p is a constant.

The point S has position vector $\mathbf{i}+5 \mathbf{j}+10 \mathbf{k}$. The point S^{\prime} is the image of S under reflection in Π.
(d) Find the position vector of S^{\prime}.
[FP3/P6 January 2006 Qn 7]
8. The points A, B and C lie on the plane Π_{1} and, relative to a fixed origin O, they have position vectors

$$
\mathbf{a}=\mathbf{i}+3 \mathbf{j}-\mathbf{k}, \quad \mathbf{b}=3 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k} \quad \text { and } \quad \mathbf{c}=5 \mathbf{i}-2 \mathbf{j}-2 \mathbf{k}
$$

respectively.
(a) Find $(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})$.
(b) Find an equation for Π_{1}, giving your answer in the form $\mathbf{r} . \boldsymbol{n}=p$.

The plane Π_{2} has cartesian equation $x+z=3$ and Π_{1} and Π_{2} intersect in the line l.
(c) Find an equation for l, giving your answer in the form $(\mathbf{r}-\mathbf{p}) \times \mathbf{q}=\mathbf{0}$.

The point P is the point on l that is the nearest to the origin O.
(d) Find the coordinates of P.
[FP3 June 2006 Qn 7]
9. The points A, B and C have position vectors, relative to a fixed origin O,

$$
\begin{aligned}
& \mathbf{a}=2 \mathbf{i}-\mathbf{j} \\
& \mathbf{b}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k} \\
& \mathbf{c}=2 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}
\end{aligned}
$$

respectively. The plane Π passes through A, B and C.
(a) Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
(b) Show that a cartesian equation of Π is $3 x-y+2 z=7$.

The line l has equation $(\mathbf{r}-5 \mathbf{i}-5 \mathbf{j}-3 \mathbf{k}) \times(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})=\mathbf{0}$. The line l and the plane Π intersect at the point T.
(c) Find the coordinates of T.
(d) Show that A, B and T lie on the same straight line.
[FP3 June 2007 Qn 7]
10.

Figure 1
Figure 1 shows a pyramid $P Q R S T$ with base $P Q R S$.
The coordinates of P, Q and R are $P(1,0,-1), Q(2,-1,1)$ and $R(3,-3,2)$.

Find
(a) $\overrightarrow{P Q} \times \overrightarrow{P R}$
(b) a vector equation for the plane containing the face $P Q R S$, giving your answer in the form \mathbf{r}, \mathbf{n} $=d$.

The plane Π contains the face $P S T$. The vector equation of Π is $\mathbf{r} .(\mathbf{i}-2 \mathbf{j}-5 \mathbf{k})=6$.
(c) Find cartesian equations of the line through P and S.
(d) Hence show that $P S$ is parallel to $Q R$.

Given that $P Q R S$ is a parallelogram and that T has coordinates $(5,2,-1)$,
(e) find the volume of the pyramid PQRST.
[FP3 June 2008 Qn 7]
11.

Figure 1
The points A, B and C have position vectors \mathbf{a}, \mathbf{b} and \mathbf{c} respectively, relative to a fixed origin O, as shown in Figure 1.

It is given that

$$
\mathbf{a}=\mathbf{i}+\mathbf{j}, \quad \mathbf{b}=\mathbf{3} \mathbf{i}-\mathbf{j}+\mathbf{k} \quad \text { and } \quad \mathbf{c}=\mathbf{2} \mathbf{i}+\mathbf{j}-\mathbf{k} .
$$

Calculate
(a) $\mathbf{b} \times \mathbf{c}$,
(b) a. $(\mathbf{b} \times \mathbf{c})$,
(c) the area of triangle $O B C$,
(d) the volume of the tetrahedron $O A B C$.
12. The lines l_{1} and l_{2} have equations

$$
\mathbf{r}=\left(\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{r}
-1 \\
3 \\
4
\end{array}\right) \quad \text { and } \quad \mathbf{r}=\left(\begin{array}{r}
\alpha \\
-4 \\
0
\end{array}\right)+\mu\left(\begin{array}{l}
0 \\
3 \\
2
\end{array}\right) .
$$

If the lines l_{1} and l_{2} intersect, find
(a) the value of α,
(b) an equation for the plane containing the lines l_{1} and l_{2}, giving your answer in the form $a x+b y$ $+c z+d=0$, where a, b, c and d are constants.

For other values of α, the lines l_{1} and l_{2} do not intersect and are skew lines.
Given that $\alpha=2$,
(c) find the shortest distance between the lines l_{1} and l_{2}.
[FP3 June 2009 Qn 7]
13. The plane Π has vector equation

$$
\mathbf{r}=3 \mathbf{i}+\mathbf{k}+\lambda(-4 \mathbf{i}+\mathbf{j})+\mu(6 \mathbf{i}-2 \mathbf{j}+\mathbf{k})
$$

(a) Find an equation of Π in the form $\mathbf{r} . \mathbf{n}=p$, where \mathbf{n} is a vector perpendicular to Π and p is a constant.

The point P has coordinates $(6,13,5)$. The line l passes through P and is perpendicular to Π. The line l intersects Π at the point N.
(b) Show that the coordinates of N are (3, 1, -1).

The point R lies on Π and has coordinates (1, 0,2).
(c) Find the perpendicular distance from N to the line $P R$. Give your answer to 3 significant figures.
14. The plane P has equation

$$
\mathbf{r}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{r}
0 \\
2 \\
-1
\end{array}\right)+\mu\left(\begin{array}{l}
3 \\
2 \\
2
\end{array}\right)
$$

(a) Find a vector perpendicular to the plane P.

The line l passes through the point $A(1,3,3)$ and meets P at $(3,1,2)$.
The acute angle between the plane P and the line l is α.
(b) Find α to the nearest degree.
(c) Find the perpendicular distance from A to the plane P.
[FP3 June 2011 Qn 6]
15. The position vectors of the points A, B and C relative to an origin O are $\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}, 7 \mathbf{i}-3 \mathbf{k}$ and $4 \mathbf{i}+4 \mathbf{j}$ respectively.

Find
(a) $\overrightarrow{A C} \times \overrightarrow{B C}$,
(b) the area of triangle $A B C$,
(c) an equation of the plane $A B C$ in the form $\mathbf{r} . \mathbf{n}=p$.
16. The plane Π_{1} has vector equation

$$
\mathbf{r} .(3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})=5
$$

(a) Find the perpendicular distance from the point $(6,2,12)$ to the plane Π_{1}.

The plane Π_{2} has vector equation

$$
\mathbf{r}=\lambda(2 \mathbf{i}+\mathbf{j}+5 \mathbf{k})+\mu(\mathbf{i}-\mathbf{j}-2 \mathbf{k}), \text { where } \lambda \text { and } \mu \text { are scalar parameters. }
$$

(b) Find the acute angle between Π_{1} and Π_{2} giving your answer to the nearest degree.
(c) Find an equation of the line of intersection of the two planes in the form $\mathbf{r} \times \mathbf{a}=\mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors.
17. Two skew lines l_{1} and l_{2} have equations

$$
\begin{aligned}
& l_{1}: \mathbf{r}=(\mathbf{i}-\mathbf{j}+\mathbf{k})+\lambda(4 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}) \\
& l_{2}: \mathbf{r}=(3 \mathbf{i}+7 \mathbf{j}+2 \mathbf{k})+\mu(-4 \mathbf{i}+6 \mathbf{j}+\mathbf{k})
\end{aligned}
$$

respectively, where λ and μ are real parameters.
(a) Find a vector in the direction of the common perpendicular to l_{1} and l_{2}.
(b) Find the shortest distance between these two lines.
[FP3 June 2013_R Qn 2]
18. The plane Π_{1} has vector equation

$$
\mathbf{r}=\left(\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right)+s\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{r}
1 \\
2 \\
-2
\end{array}\right),
$$

where s and t are real parameters.
The plane Π_{1} is transformed to the plane Π_{2} by the transformation represented by the matrix \mathbf{T}, where

$$
\mathbf{T}=\left(\begin{array}{ccc}
2 & 0 & 3 \\
0 & 2 & -1 \\
0 & 1 & 2
\end{array}\right)
$$

Find an equation of the plane in the form $\mathbf{r} . \mathbf{n}=p$.
[FP3 June 2013_R Qn 4]
19. The plane Π_{1} has vector equation

$$
\mathbf{r} .(3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})=5
$$

(a) Find the perpendicular distance from the point $(6,2,12)$ to the plane Π_{1}.

The plane Π_{2} has vector equation

$$
\mathbf{r}=\lambda(2 \mathbf{i}+\mathbf{j}+5 \mathbf{k})+\mu(\mathbf{i}-\mathbf{j}-2 \mathbf{k}), \text { where } \lambda \text { and } \mu \text { are scalar parameters. }
$$

(b) Find the acute angle between Π_{1} and Π_{2} giving your answer to the nearest degree.
(c) Find an equation of the line of intersection of the two planes in the form $\mathbf{r} \times \mathbf{a}=\mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors.
20. The plane Π_{1} has vector equation $\mathbf{r} .\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)=5$.

The plane Π_{2} has vector equation $\mathbf{r} .\left(\begin{array}{r}-1 \\ 2 \\ 4\end{array}\right)=7$.
(a) Find a vector equation for the line of intersection of Π_{1} and Π_{2}, giving your answer in the form $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$ where \mathbf{a} and \mathbf{b} are constant vectors and λ is a scalar parameter.

The plane Π_{3} has cartesian equation

$$
x-y+2 z=31
$$

(b) Using your answer to part (a), or otherwise, find the coordinates of the point of intersection of the planes Π_{1}, Π_{2} and Π_{3}.
21. The line l passes through the point $P(2,1,3)$ and is perpendicular to the plane Π whose vector equation is

$$
\mathbf{r} .(\mathbf{i}-2 \mathbf{j}-\mathbf{k})=3
$$

Find
(a) a vector equation of the line l,
(b) the position vector of the point where l meets Π.
(c) Hence find the perpendicular distance of P from Π.
22. The position vectors of the points A, B and C from a fixed origin O are

$$
\mathbf{a}=\mathbf{i}-\mathbf{j}, \quad \mathbf{b}=\mathbf{i}+\mathbf{j}+\mathbf{k}, \quad \mathbf{c}=2 \mathbf{j}+\mathbf{k}
$$

respectively.
(a) Using vector products, find the area of the triangle $A B C$.
(b) Show that $\frac{1}{6} \mathbf{a} .(\mathbf{b} \times \mathbf{c})=0$.
(c) Hence or otherwise, state what can be deduced about the vectors \mathbf{a}, \mathbf{b} and \mathbf{c}.
23. The points A, B and C have position vectors $\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right),\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ respectively.
(a) Find a vector equation of the straight line $A B$.
(b) Find a cartesian form of the equation of the straight line $A B$.

The plane Π contains the points A, B and C.
(c) Find a vector equation of Π in the form $\mathbf{r} . \mathbf{n}=p$.
(d) Find the perpendicular distance from the origin to Π.
24. The plane Π_{1} has equation

$$
x-5 y-2 z=3 .
$$

The plane Π_{2} has equation

$$
\mathbf{r}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}+\lambda(\mathbf{i}+4 \mathbf{j}+3 \mathbf{k})+\mu(2 \mathbf{i}-\mathbf{j}+\mathbf{k}),
$$

where λ and μ are scalar parameters.
(a) Show that Π_{1} is perpendicular to Π_{2}.
(b) Find a cartesian equation for Π_{2}.
(c) Find an equation for the line of intersection of Π_{1} and Π_{2} giving your answer in the form (\mathbf{r} $-\mathbf{a}) \times \mathbf{b}=\mathbf{0}$, where \mathbf{a} and \mathbf{b} are constant vectors to be found.

FP3 June 2016 Q8
25. The plane has equation $x-2 y-3 z=5$ and the plane \quad has equation $6 x+y-4 z=7$
(a) Find, to the nearest degree, the acute angle between \quad and $\quad 2$

The point P has coordinates $(2,3,-1)$. The line l is perpendicular to $\quad{ }_{1}$ and passes through the point P. The line l intersects $\quad{ }_{2}$ at the point Q.
(b) Find the coordinates of Q.

The plane $\quad{ }_{3}$ passes through the point Q and is perpendicular to $\quad{ }_{1}$ and $\quad{ }_{2}$
(c) Find an equation of the plane ${ }_{3}$ in the form $\mathbf{r} . \mathbf{n}=p$
26. The line l has equation

$$
\mathbf{r}=(2 \mathbf{i}+\mathbf{j}-2 \mathbf{k})+\lambda(3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}), \text { where } \lambda \text { is a scalar parameter, }
$$

and the plane Π has equation

$$
\mathbf{r} .(\mathbf{i}+\mathbf{j}-2 \mathbf{k})=19
$$

(a) Find the coordinates of the point of intersection of l and Π.

The perpendicular to Π from the point $A(2,1,-2)$ meets Π at the point B.
(b) Verify that the coordinates of B are $(4,3,-6)$.

The point $A(2,1,-2)$ is reflected in the plane Π to give the image point A^{\prime}.
(c) Find the coordinates of the point A^{\prime}.
(d) Find an equation for the line obtained by reflecting the line l in the plane Π, giving your answer in the form

$$
\mathbf{r} \times \mathbf{a}=\mathbf{b}
$$

where \mathbf{a} and \mathbf{b} are vectors to be found.
F3 IAL June 2014 Q8
27. The plane Π_{1} contains the point $(3,3,-2)$ and the line $\frac{x-1}{2}=\frac{y-2}{-1}=\frac{z+1}{4}$
(a) Show that a cartesian equation of the plane Π_{1} is

$$
\begin{equation*}
3 x-10 y-4 z=-13 \tag{5}
\end{equation*}
$$

The plane Π_{2} is parallel to the plane Π_{1}
The point $(\alpha, 1,1)$, where α is a constant, lies in Π_{2}
Given that the shortest distance between the planes Π_{1} and Π_{2} is $\frac{1}{\sqrt{5}}$
(b) find the possible values of α.
28. The coordinates of the points A, B and C relative to a fixed origin O are (1,2,3), $(-1,3,4)$ and $(2,1,6)$ respectively. The plane Π contains the points A, B and C.
(a) Find a cartesian equation of the plane Π.

The point D has coordinates $(k, 4,14)$ where k is a positive constant.
Given that the volume of the tetrahedron $A B C D$ is 6 cubic units,
(b) find the value of k.
29. With respect to a fixed origin O, the points $A(-1,5,1), B(1,0,3), C(2,-1,2)$ and $D(3,6,-1)$ are the vertices of a tetrahedron.
(a) Find the volume of the tetrahedron $A B C D$.

The plane contains the points A, B and C.
(b) Find a cartesian equation of

The point T lies on the plane
The line $D T$ is perpendicular to .
(c) Find the exact coordinates of the point T.

