## Radians Assessment

## Red

1) a) State the exact value of $\tan \frac{5 \pi}{6}$
b) Express $330^{\circ}$ in radians, giving your answer in the form $\mathrm{k} \pi$ where k is a fraction in its lowest terms
c) Express $\frac{7 \pi}{3}$ in degrees
2) 

The diagram shows the sector $A O B$ of a circle, with centre $O$ and radius 6.5 cm , and $\angle A O B=0.8$ radians

a) Calculate, in $\mathrm{cm}^{2}$, the area of the sector $A O B$.
b) Show that the length of the chord $A B$ is 5.06 cm , to 3 significant figures

The segment $R$, shaded in Fig. 1, is enclosed by the arc $A B$ and the straight line $A B$
c) Calculate, in cm, the perimeter of the shaded segment

## Radians Assessment

## Amber

3) $\quad$ Solve for $0 \leq x \leq 2 \pi$
a) $\sin (x-1)=\frac{1}{\sqrt{2}}$
b) $\cos (3 x)=-0.4$
4) 

Solve: $5 \sin x=2 \cos x, \quad-\frac{3 \pi}{4} \leq x<\frac{3 \pi}{4}$

## Radians Assessment

5) 

The shape of a badge is a sector $A B C$ of a circle with centre $A$ and radius $A B$, as shown in the diagram.

The triangle $A B C$ is equilateral and has a perpendicular height 3 cm

a) Find, in surd form, the length $A B$.
b) Find, in terms of $\pi$, the area of the badge.
c) Prove that the perimeter of the badge is $\frac{2 \sqrt{3}}{3}(\pi+6) \mathrm{cm}$.

## Radians Assessment

6) 



Triangle $A B C$ has $A B=9 \mathrm{~cm}, B C 10 \mathrm{~cm}$ and $C A=5 \mathrm{~cm}$.
A circle, centre $A$ and radius 3 cm , intersects $A B$ and $A C$ at $P$ and $Q$ respectively
a) Show that, to 3 decimal places, $\angle B A C=1.504$ radians.
b) Calculate the area, in $\mathrm{cm}^{2}$, of the sector $A P Q$,
c) Calculate the area, in $\mathrm{cm}^{2}$, of the shaded region $B P Q C$,
d) Calculate the perimeter, in cm , of the shaded region $B P Q C$

## Radians Assessment

7) 


a) Find the length of the arc $B D$,
b) Find the perimeter of $R$, giving your answer to 3 significant figures,
c) Find the area of $R$, giving your answer to 3 significant figures.

## Radians Assessment

## Green

8) a) Sketch, for $0 \leq x \leq 2 \pi$ the graph of $y=\sin \left(x+\frac{\pi}{6}\right)$
b) Write down the coordinates of the points at which the graph meets the axes
c) Solve, for $0 \leq x \leq 2 \pi$ the equation $\sin \left(x+\frac{\pi}{6}\right)=-\frac{1}{2}$

## Radians Assessment

9) 



The diagram shows ABC , a sector of a circle with centre A and radius 7 cm
Given that the size of $\angle \mathrm{BAC}$ is exactly 0.8 radians
a) Find the length of the arc BC ,
b) Find the area of the sector ABC .

The point D is the mid-point of AC . The region R, shown shaded in Figure 1, is bounded by CD, DB and the arc BC
c) Find the perimeter of R, giving your answer to 3 significant figures
d) Find the area of R , giving your answer to 3 significant figures.

## Radians Assessment

10) Find, in degrees, the value of $\theta$ in the interval $0 \leq x \leq 2 \pi$ for which

$$
2 \cos ^{2} \theta-\cos \theta-1=\sin ^{2} \theta
$$

Give your answers to 1 decimal place where appropriate
11) a) Show that the equation $2 \sin x \tan x-5=\cos x$ can be written in the form $3 \cos ^{2} x+5 \cos x-2=0$
b) Hence solve the equation $2 \sin x \tan x-5=\cos x$, giving all values of x in radians for $0 \leq x \leq 2 \pi$

## Radians Assessment

TOTAL 88 marks

| A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: |
| $80 \%$ | $70 \%$ | $60 \%$ | $50 \%$ | $40 \%$ |

WWW:

EBI: (What you are going to do)

