Edexcel
 New GCE A Level Maths workbook
 Solving Linear and Quadratic
 Simultaneous
 Equations.

Edited by: K V Kumaran

Solving linear simultaneous equations using the elimination method

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations.
- Make sure that the coefficient of one of the unknowns is the same in both equations.
- Eliminate this equal unknown by either subtracting or adding the two equations.

Examples

Example 1 Solve the simultaneous equations $3 x+y=5$ and $x+y=1$

Example 2 Solve $x+2 y=13$ and $5 x-2 y=5$ simultaneously.

$\begin{array}{r} x+2 y=13 \\ +\quad 5 x-2 y=5 \\ \hline \end{array}$	1 Add the two equations together to eliminate the y term.
$\begin{array}{cc} 6 x & =18 \\ \text { So } x=3 \end{array}$	
$\begin{aligned} & \text { Using } x+2 y=13 \\ & 3+2 y=13 \\ & \text { So } y=5 \end{aligned}$	2 To find the value of y, substitute $x=3$ into one of the original equations.
Check: equation $1: 3+2 \times 5=13 \quad$ YES equation $2: 5 \times 3-2 \times 5=5$ YES	3 Substitute the values of x and y into both equations to check your answers.

Example 3 Solve $2 x+3 y=2$ and $5 x+4 y=12$ simultaneously.

$$
\begin{aligned}
& (2 x+3 y=2) \times 4 \rightarrow
\end{aligned} \begin{array}{r}
8 x+12 y=8 \\
(5 x+4 y=12) \times 3 \rightarrow
\end{array} \begin{array}{r}
15 x+12 y=36 \\
\hline 7 x
\end{array}
$$

So $x=4$

Using $2 x+3 y=2$

$$
2 \times 4+3 y=2
$$

So $y=-2$
Check:
equation 1: $2 \times 4+3 \times(-2)=2 \quad$ YES equation $2: 5 \times 4+4 \times(-2)=12$ YES

1 Multiply the first equation by 4 and the second equation by 3 to make the coefficient of y the same for both equations. Then subtract the first equation from the second equation to eliminate the y term.

2 To find the value of y, substitute $x=4$ into one of the original equations.

3 Substitute the values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.
$1 \quad 4 x+y=8$
$x+y=5$
$3 \quad 4 x+y=3$
$3 x-y=11$
$5 \quad 2 x+y=11$
$x-3 y=9$
$2 \quad 3 x+y=7 \quad \begin{aligned} 3 x+2 y=5\end{aligned}$
$3 x+2 y=5$
$4 \quad 3 x+4 y=7$
$x-4 y=5$
$6 \quad 2 x+3 y=11$
$3 x+2 y=4$

Solving linear simultaneous equations using the substitution method

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous
Textbook: Pure Year 1, 3.1 Linear simultaneous equations

Key points

- The subsitution method is the method most commonly used for A level. This is because it is the method used to solve linear and quadratic simultaneous equations.

Examples

Example 4 Solve the simultaneous equations $y=2 x+1$ and $5 x+3 y=14$

Example 5 Solve $2 x-y=16$ and $4 x+3 y=-3$ simultaneously.

$y=2 x-16$	1 Rearrange the first equation.
$4 x+3(2 x-16)=-3$	2 Substitute $2 x-16$ for y into the second equation.
$4 x+6 x-48=-3$	3 Expand the brackets and simplify.
$10 x-48=-3$	
$10 x=45$	4 Work out the value of x.
So $x=4 \frac{1}{2}$	
$\begin{aligned} \text { Using } y & =2 x-16 \\ y & =2 \times 4 \frac{1}{2}-16 \end{aligned}$	5 To find the value of y, substitute $x=4 \frac{1}{2}$ into one of the original
So $y=-7$	equations.
Check: equation $1: 2 \times 4 \frac{1}{2}-(-7)=16 \quad$ YES equation $2: 4 \times 4 \frac{1}{2}+3 \times(-7)=-3$ YES	6 Substitute the values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.
$7 \quad y=x-4$
$2 x+5 y=43$
$8 y=2 x-3$
$5 x-3 y=11$
$9 \quad 2 y=4 x+5$
$9 x+5 y=22$
$10 \quad 2 x=y-2$
$8 x-5 y=-11$
$113 x+4 y=8$
$2 x-y=-13$
$123 y=4 x-7$
$2 y=3 x-4$
$133 x=y-1$
$2 y-2 x=3$
$143 x+2 y+1=0$
$4 y=8-x$

Extend

15 Solve the simultaneous equations $3 x+5 y-20=0$ and $2(x+y)=\frac{3(y-x)}{4}$.

Answers

$1 x=1, y=4$
$2 x=3, y=-2$
$3 x=2, y=-5$
$4 x=3, y=-\frac{1}{2}$
$5 x=6, y=-1$
$6 x=-2, y=5$
$7 x=9, y=5$
$8 \quad x=-2, y=-7$
$9 x=\frac{1}{2}, y=3 \frac{1}{2}$
$10 x=\frac{1}{2}, y=3$
$11 x=-4, y=5$
$12 x=-2, y=-5$
$13 x=\frac{1}{4}, y=1 \frac{3}{4}$
$14 x=-2, y=2 \frac{1}{2}$
$15 x=-2 \frac{1}{2}, y=5 \frac{1}{2}$

Solving linear and quadratic simultaneous equations

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

Example 1 Solve the simultaneous equations $y=x+1$ and $x^{2}+y^{2}=13$

$x^{2}+(x+1)^{2}=13$		Substitute $x+1$ for y into the second equation.
$x^{2}+x^{2}+x+x+1=13$	2	Expand the brackets and simplify.
$2 x^{2}+2 x+1=13$		
$\begin{aligned} & 2 x^{2}+2 x-12=0 \\ & (2 x-4)(x+3)=0 \end{aligned}$	3	Factorise the quadratic equation.
So $x=2$ or $x=-3$	4	Work out the values of x.
Using $y=x+1$	5	To find the value of y, substitute
When $x=2, y=2+1=3$		both values of x into one of the
When $x=-3, y=-3+1=-2$		original equations.
So the solutions are $x=2, y=3 \quad \text { and } \quad x=-3, y=-2$		
Check: $\begin{aligned} \text { equation } 1: 3 & =2+1 & & \text { YES } \\ \text { and }-2 & =-3+1 & & \text { YES } \end{aligned}$	6	Substitute both pairs of values of x and y into both equations to check your answers.
$\begin{gathered} \text { equation 2: } 2^{2}+3^{2}=13 \text { YES } \\ \text { and }(-3)^{2}+(-2)^{2}=13 \text { YES } \end{gathered}$		

Example 2 Solve $2 x+3 y=5$ and $2 y^{2}+x y=12$ simultaneously.

$$
\begin{aligned}
& x=\frac{5-3 y}{2} \\
& 2 y^{2}+\left(\frac{5-3 y}{2}\right) y=12 \\
& 2 y^{2}+\frac{5 y-3 y^{2}}{2}=12 \\
& 4 y^{2}+5 y-3 y^{2}=24 \\
& y^{2}+5 y-24=0 \\
& (y+8)(y-3)=0 \\
& \text { So } y=-8 \text { or } y=3
\end{aligned}
$$

Using $2 x+3 y=5$
When $y=-8, \quad 2 x+3 \times(-8)=5, \quad x=14.5$
When $y=3, \quad 2 x+3 \times 3=5, \quad x=-2$
So the solutions are $x=14.5, y=-8$ and $x=-2, y=3$

Check:

equation 1: $2 \times 14.5+3 \times(-8)=5$
YES
and $2 \times(-2)+3 \times 3=5 \quad$ YES
equation $2: 2 \times(-8)^{2}+14.5 \times(-8)=12$ YES
and $2 \times(3)^{2}+(-2) \times 3=12 \quad$ YES

1 Rearrange the first equation.
2 Substitute $\frac{5-3 y}{2}$ for x into the second equation. Notice how it is easier to substitute for x than for y.
3 Expand the brackets and simplify.

4 Factorise the quadratic equation.
5 Work out the values of y.
6 To find the value of x, substitute both values of y into one of the original equations.

7 Substitute both pairs of values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.
$1 y=2 x+1$
$x^{2}+y^{2}=10$
$3 y=x-3$
$x^{2}+y^{2}=5$
$5 y=3 x-5$
$y=x^{2}-2 x+1$
$7 y=x+5$
$x^{2}+y^{2}=25$
$9 y=2 x$
$y^{2}-x y=8$

Extend

$11 \begin{aligned} & x-y=1 \\ & \\ & x^{2}+y^{2}=3\end{aligned}$
$2 y=6-x$
$x^{2}+y^{2}=20$
$4 \quad y=9-2 x$
$x^{2}+y^{2}=17$
$6 y=x-5$
$y=x^{2}-5 x-12$
$8 \quad y=2 x-1$
$x^{2}+x y=24$
$10 \quad 2 x+y=11$
$x y=15$
$12 \begin{aligned} & y-x=2 \\ & x^{2}+x y=\end{aligned}$
$x^{2}+x y=3$

Answers

$1 x=1, y=3$
$x=-\frac{9}{5}, y=-\frac{13}{5}$
$2 x=2, y=4$
$x=4, y=2$
$3 x=1, y=-2$
$x=2, y=-1$
$4 x=4, y=1$
$x=\frac{16}{5}, y=\frac{13}{5}$
$5 \quad x=3, y=4$
$x=2, y=1$
$6 \quad x=7, y=2$
$x=-1, y=-6$
$7 x=0, y=5$
$x=-5, y=0$
$8 x=-\frac{8}{3}, y=-\frac{19}{3}$
$x=3, y=5$
$9 \quad x=-2, y=-4$
$x=2, y=4$
$10 x=\frac{5}{2}, y=6$
$x=3, y=5$
$11 x=\frac{1+\sqrt{5}}{2}, y=\frac{-1+\sqrt{5}}{2}$
$x=\frac{1-\sqrt{5}}{2}, y=\frac{-1-\sqrt{5}}{2}$
$12 x=\frac{-1+\sqrt{7}}{2}, y=\frac{3+\sqrt{7}}{2}, \quad x=\frac{-1-\sqrt{7}}{2}, y=\frac{3-\sqrt{7}}{2}$

Q1.
Solve the simultaneous equations

$$
\begin{aligned}
x+y & =2 \\
4 y^{2}-x^{2} & =11
\end{aligned}
$$

Q2.
Solve the simultaneous equations

$$
\begin{gathered}
y-3 x+2=0 \\
y^{2}-x-6 x^{2}=0
\end{gathered}
$$

Q3.

Figure 2
The line $y=x+2$ meets the curve $x^{2}+4 y^{2}-2 x=35$ at the points A and B as shown in Figure 2.

Find the coordinates of A and the coordinates of B.

Q4.

Solve the simultaneous equations

$$
\begin{gathered}
y-2 x-4=0 \\
4 x^{2}+y^{2}+20 x=0
\end{gathered}
$$

Q5.
Solve the simultaneous equations

$$
\begin{gathered}
x+y=2 \\
x^{2}+2 y=12 .
\end{gathered}
$$

Q6.

(a) By eliminating y from the equations

$$
\begin{gathered}
y=x-4 \\
2 x^{2}-x y=8
\end{gathered}
$$

show that

$$
x^{2}+4 x-8=0
$$

(b) Hence, or otherwise, solve the simultaneous equations

$$
\begin{gathered}
y=x-4 \\
2 x^{2}-x y=8
\end{gathered}
$$

giving your answers in the form $a \pm b \sqrt{3}$, where a and b are integers.

Q7.
Solve the simultaneous equations

$$
\begin{aligned}
& y=x-2 \\
& y^{2}+x^{2}=10 .
\end{aligned}
$$

Q8.
(a) By eliminating y from the equations

$$
\begin{gathered}
y=x-4, \\
2 x^{2}-x y=8
\end{gathered}
$$

show that

$$
\begin{equation*}
x^{2}+4 x-8=0 . \tag{2}
\end{equation*}
$$

(b) Hence, or otherwise, solve the simultaneous equations

$$
\begin{gathered}
y=x-4, \\
2 x^{2}-x y=8,
\end{gathered}
$$

giving your answers in the form $a \pm b \sqrt{ } 3$, where a and b are integers.

Q9.
Solve the simultaneous equations

$$
\begin{array}{r}
y-3 x+2=0 \\
y^{2}-x-6 x^{2}=0
\end{array}
$$

Q10.
Solve the simultaneous equations

$$
\begin{gathered}
x+y=2 \\
4 y^{2}-x^{2}=11
\end{gathered}
$$

