Edexcel New GCE A Level Maths workbook Solving Linear and Quadratic Simultaneous Equations.

Edited by: K V Kumaran

kumarmaths.weebly.com

Solving linear simultaneous equations using the elimination method

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations.
- Make sure that the coefficient of one of the unknowns is the same in both equations.
- Eliminate this equal unknown by either subtracting or adding the two equations.

Examples

Example 1	Solve the simulta	neous equations 3	3x + y = 5 at	$\operatorname{nd} x + y = 1$
-----------	-------------------	-------------------	---------------	-------------------------------

3x + y = 5 $- x + y = 1$ $2x = 4$ So $x = 2$	1 Subtract the second equation from the first equation to eliminate the <i>y</i> term.
Using $x + y = 1$ 2 + y = 1 So $y = -1$	2 To find the value of y, substitute $x = 2$ into one of the original equations.
Check: equation 1: $3 \times 2 + (-1) = 5$ YES equation 2: $2 + (-1) = 1$ YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Example 2 Solve x + 2y = 13 and 5x - 2y = 5 simultaneously.

x + 2y = 13 + 5x - 2y = 5 6x = 18 So x = 3	1 Add the two equations together to eliminate the <i>y</i> term.
Using $x + 2y = 13$ 3 + 2y = 13 So $y = 5$	2 To find the value of y, substitute $x = 3$ into one of the original equations.
Check: equation 1: $3 + 2 \times 5 = 13$ YES equation 2: $5 \times 3 - 2 \times 5 = 5$ YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

$(2x + 3y = 2) \times 4 \rightarrow 8x + 12y = 8$ $(5x + 4y = 12) \times 3 \rightarrow 15x + 12y = 36$ $7x = 28$ So $x = 4$	1 Multiply the first equation by 4 and the second equation by 3 to make the coefficient of <i>y</i> the same for both equations. Then subtract the first equation from the second equation to eliminate the <i>y</i> term.
Using $2x + 3y = 2$ $2 \times 4 + 3y = 2$ So $y = -2$	2 To find the value of y , substitute $x = 4$ into one of the original equations.
Check: equation 1: $2 \times 4 + 3 \times (-2) = 2$ YES equation 2: $5 \times 4 + 4 \times (-2) = 12$ YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Example 3 Solve 2x + 3y = 2 and 5x + 4y = 12 simultaneously.

Practice

Solve these simultaneous equations.

- 1
 4x + y = 8 2
 3x + y = 7

 x + y = 5 3x + 2y = 5
- **3** 4x + y = 33x - y = 11**4** 3x + 4y = 7x - 4y = 5
- **5** 2x + y = 11x - 3y = 9**6** 2x + 3y = 113x + 2y = 4

Solving linear simultaneous equations using the substitution method

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous Textbook: Pure Year 1, 3.1 Linear simultaneous equations

Key points

The subsitution method is the method most commonly used for A level. This is because it is the method used to solve linear and quadratic simultaneous equations.

Examples

	-
5x + 3(2x + 1) = 14 5x + 6x + 3 = 14 11x + 3 = 14	 Substitute 2x + 1 for y into the second equation. Expand the brackets and simplify.
11x + 3 - 14 11x = 11 So $x = 1$	3 Work out the value of <i>x</i> .
Using $y = 2x + 1$ $y = 2 \times 1 + 1$ So $y = 3$	4 To find the value of y, substitute $x = 1$ into one of the original equations.
Check: equation 1: $3 = 2 \times 1 + 1$ YES equation 2: $5 \times 1 + 3 \times 3 = 14$ YES	5 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Example 4 Solve the simultaneous equations y = 2x + 1 and 5x + 3y = 14 Example 5 Solve 2x - y = 16 and 4x + 3y = -3 simultaneously.

y = 2x - 164x + 3(2x - 16) = -3	 Rearrange the first equation. Substitute 2x - 16 for y into the second equation
4x + 6x - 48 = -3 10x - 48 = -3	3 Expand the brackets and simplify.
10x = 45 So $x = 4\frac{1}{2}$	4 Work out the value of <i>x</i> .
Using $y = 2x - 16$ $y = 2 \times 4\frac{1}{2} - 16$ So $y = -7$	5 To find the value of y, substitute $x = 4\frac{1}{2}$ into one of the original equations.
Check: equation 1: $2 \times 4\frac{1}{2} - (-7) = 16$ YES equation 2: $4 \times 4\frac{1}{2} + 3 \times (-7) = -3$ YES	6 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Practice

Solve these simultaneous equations.

8 y = 2x - 37 y = x - 42x + 5y = 435x - 3y = 11**10** 2x = y - 29 2y = 4x + 59x + 5y = 228x - 5y = -11**11** 3x + 4y = 8**12** 3y = 4x - 72y = 3x - 42x - y = -1313 3x = y - 114 3x + 2y + 1 = 04y = 8 - x

Extend

2y - 2x = 3

15 Solve the simultaneous equations 3x + 5y - 20 = 0 and $2(x + y) = \frac{3(y - x)}{4}$.

Answers

x = 1, y = 4 x = 3, y = -2x = 2, y = -5 $x = 3, y = -\frac{1}{2}$ x = 6, y = -1 x = -2, y = 5 x = 9, y = 5x = -2, y = -7 $x = \frac{1}{2}, y = 3\frac{1}{2}$ $x = \frac{1}{2}, y = 3$ x = -4, y = 5 x = -2, y = -5 $x = \frac{1}{4}, y = 1\frac{3}{4}$ $x = -2, y = 2\frac{1}{2}$ $x = -2\frac{1}{2}, y = 5\frac{1}{2}$

Solving linear and quadratic simultaneous equations

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

Example 1 Solve the simultaneous equations y = x + 1 and $x^2 + y^2 = 13$

$x^{2} + (x + 1)^{2} = 13$ $x^{2} + x^{2} + x + x + 1 = 13$ $2x^{2} + 2x + 1 = 13$	 Substitute x + 1 for y into the second equation. Expand the brackets and simplify.
$2x^2 + 2x - 12 = 0$	3 Factorise the quadratic equation.
(2x-4)(x+3) = 0 So $x = 2$ or $x = -3$	4 Work out the values of <i>x</i> .
Using $y = x + 1$ When $x = 2$, $y = 2 + 1 = 3$ When $x = -3$, $y = -3 + 1 = -2$	5 To find the value of <i>y</i> , substitute both values of <i>x</i> into one of the original equations.
So the solutions are $x = 2$, $y = 3$ and $x = -3$, $y = -2$	
Check: equation 1: $3 = 2 + 1$ YES and $-2 = -3 + 1$ YES	6 Substitute both pairs of values of <i>x</i> and <i>y</i> into both equations to check your answers.
equation 2: $2^2 + 3^2 = 13$ YES and $(-3)^2 + (-2)^2 = 13$ YES	

$x = \frac{5 - 3y}{2}$	1	Rearrange the first equation.
$2y^2 + \left(\frac{5-3y}{2}\right)y = 12$	2	Substitute $\frac{5-3y}{2}$ for x into the
$2 - 5y - 3y^2 = 12$		second equation. Notice how it is easier to substitute for <i>x</i> than for <i>y</i> .
$2y^2 + \frac{y^2 - y^2}{2} = 12$		Expand the brackets and simplify.
$4y^2 + 5y - 3y^2 = 24$		
$y^{2} + 5y - 24 = 0$ (y + 8)(y - 3) = 0	4	Factorise the quadratic equation.
So $y = -8$ or $y = 3$	5	Work out the values of <i>y</i> .
Using $2x + 3y = 5$ When $y = -8$, $2x + 3 \times (-8) = 5$, $x = 14.5$ When $y = 3$, $2x + 3 \times 3 = 5$, $x = -2$	6	To find the value of <i>x</i> , substitute both values of <i>y</i> into one of the original equations.
So the solutions are $x = 14.5$, $y = -8$ and $x = -2$, $y = 3$		
Check: $(2) \times 145 + 2 \times (2) = 5$ VES	7	Substitute both pairs of values of x
equation 1: $2 \times 14.5 + 3 \times (-8) = 5$ YES and $2 \times (-2) + 3 \times 3 = 5$ YES		and y into both equations to check your answers.
equation 2: $2 \times (-8)^2 + 14.5 \times (-8) = 12$ YES and $2 \times (3)^2 + (-2) \times 3 = 12$ YES		,

Practice

Solve these simultaneous equations.

$y = 2x + 1$ $x^2 + y^2 = 10$	2	$y = 6 - x$ $x^2 + y^2 = 20$
$y = x - 3$ $x^2 + y^2 = 5$	4	$y = 9 - 2x$ $x^2 + y^2 = 17$
$y = 3x - 5$ $y = x^2 - 2x + 1$	6	$y = x - 5$ $y = x^2 - 5x - 12$
$y = x + 5$ $x^2 + y^2 = 25$	8	$y = 2x - 1$ $x^2 + xy = 24$
$y = 2x$ $y^2 - xy = 8$	10	2x + y = 11 $xy = 15$
end		
x - y = 1 $x2 + y2 = 3$	12	$y - x = 2$ $x^2 + xy = 3$
	y = 2x + 1 $x^{2} + y^{2} = 10$ y = x - 3 $x^{2} + y^{2} = 5$ y = 3x - 5 $y = x^{2} - 2x + 1$ y = x + 5 $x^{2} + y^{2} = 25$ y = 2x $y^{2} - xy = 8$ end x - y = 1 $x^{2} + y^{2} = 3$	$y = 2x + 1$ $x^{2} + y^{2} = 10$ $y = x - 3$ $x^{2} + y^{2} = 5$ $y = 3x - 5$ $y = x^{2} - 2x + 1$ $y = x + 5$ $x^{2} + y^{2} = 25$ $y = 2x$ $y^{2} - xy = 8$ end $x - y = 1$ $x^{2} + y^{2} = 3$ 12

Answers

1 x = 1, y = 3 $x = -\frac{9}{5}, y = -\frac{13}{5}$ 2 x = 2, y = 4x = 4, y = 23 x = 1, y = -2x = 2, y = -14 x = 4, y = 1 $x = \frac{16}{5}, y = \frac{13}{5}$ 5 x = 3, y = 4x = 2, y = 16 x = 7, y = 2x = -1, y = -67 x = 0, y = 5x = -5, y = 08 $x = -\frac{8}{3}, y = -\frac{19}{3}$ x = 3, y = 59 x = -2, y = -4x = 2, y = 4**10** $x = \frac{5}{2}, y = 6$ x = 3, y = 511 $x = \frac{1+\sqrt{5}}{2}$, $y = \frac{-1+\sqrt{5}}{2}$ $x = \frac{1-\sqrt{5}}{2}, y = \frac{-1-\sqrt{5}}{2}$ 12 $x = \frac{-1 + \sqrt{7}}{2}, y = \frac{3 + \sqrt{7}}{2}, x = \frac{-1 - \sqrt{7}}{2}, y = \frac{3 - \sqrt{7}}{2}$

Q1.

Solve the simultaneous equations

$$x + y = 2$$
$$4y^2 - x^2 = 11$$

(7)

Q2.

Solve the simultaneous equations

$$y - 3x + 2 = 0$$
$$y2 - x - 6x2 = 0$$

(7)

The line y = x + 2 meets the curve $x^2 + 4y^2 - 2x = 35$ at the points *A* and *B* as shown in Figure 2.

Find the coordinates of *A* and the coordinates of *B*.

(6)

Q4.

Solve the simultaneous equations

$$y - 2x - 4 = 0$$

$$4x^2 + y^2 + 20x = 0$$

(7)

Q5. Solve the simultaneous equations

$$x + y = 2$$
$$x^2 + 2y = 12.$$

(6)

Q6.

(a) By eliminating *y* from the equations

$$y = x - 4$$
$$2x^2 - xy = 8,$$

show that

$$x^2 + 4x - 8 = 0$$

(2)

(b) Hence, or otherwise, solve the simultaneous equations

$$y = x - 4,$$
$$2x^2 - xy = 8,$$

giving your answers in the form $a \pm b\sqrt{3}$, where a and b are integers.

(5)

Q7. Solve the simultaneous equations

$$y = x - 2,$$

 $y^2 + x^2 = 10.$

(7)

Q8.

(*a*) By eliminating *y* from the equations

$$y = x - 4,$$
$$2x^2 - xy = 8,$$

show that

$$x^2 + 4x - 8 = 0. (2)$$

(b) Hence, or otherwise, solve the simultaneous equations

$$y = x - 4,$$
$$2x^2 - xy = 8,$$

giving your answers in the form $a \pm b\sqrt{3}$, where a and b are integers.

(5)

Q9. Solve the simultaneous equations

$$y - 3x + 2 = 0$$

$$y^2 - x - 6x^2 = 0$$
 (7)

Q10. Solve the simultaneous equations

$$x + y = 2$$
$$4y^2 - x^2 = 11$$

(7)